Use dentry_path() to create full path to inode object
[pohmelfs.git] / drivers / usb / host / ehci-q.c
blob36ca5077cdf79df7898880024470f788b7bac45f
1 /*
2 * Copyright (C) 2001-2004 by David Brownell
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or (at your
7 * option) any later version.
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 /* this file is part of ehci-hcd.c */
21 /*-------------------------------------------------------------------------*/
24 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
26 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
27 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28 * buffers needed for the larger number). We use one QH per endpoint, queue
29 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
31 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32 * interrupts) needs careful scheduling. Performance improvements can be
33 * an ongoing challenge. That's in "ehci-sched.c".
35 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37 * (b) special fields in qh entries or (c) split iso entries. TTs will
38 * buffer low/full speed data so the host collects it at high speed.
41 /*-------------------------------------------------------------------------*/
43 /* fill a qtd, returning how much of the buffer we were able to queue up */
45 static int
46 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
47 size_t len, int token, int maxpacket)
49 int i, count;
50 u64 addr = buf;
52 /* one buffer entry per 4K ... first might be short or unaligned */
53 qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
54 qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
55 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
56 if (likely (len < count)) /* ... iff needed */
57 count = len;
58 else {
59 buf += 0x1000;
60 buf &= ~0x0fff;
62 /* per-qtd limit: from 16K to 20K (best alignment) */
63 for (i = 1; count < len && i < 5; i++) {
64 addr = buf;
65 qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
66 qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
67 (u32)(addr >> 32));
68 buf += 0x1000;
69 if ((count + 0x1000) < len)
70 count += 0x1000;
71 else
72 count = len;
75 /* short packets may only terminate transfers */
76 if (count != len)
77 count -= (count % maxpacket);
79 qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
80 qtd->length = count;
82 return count;
85 /*-------------------------------------------------------------------------*/
87 static inline void
88 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
90 struct ehci_qh_hw *hw = qh->hw;
92 /* writes to an active overlay are unsafe */
93 BUG_ON(qh->qh_state != QH_STATE_IDLE);
95 hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
96 hw->hw_alt_next = EHCI_LIST_END(ehci);
98 /* Except for control endpoints, we make hardware maintain data
99 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
100 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
101 * ever clear it.
103 if (!(hw->hw_info1 & cpu_to_hc32(ehci, 1 << 14))) {
104 unsigned is_out, epnum;
106 is_out = qh->is_out;
107 epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
108 if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) {
109 hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
110 usb_settoggle (qh->dev, epnum, is_out, 1);
114 hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
117 /* if it weren't for a common silicon quirk (writing the dummy into the qh
118 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
119 * recovery (including urb dequeue) would need software changes to a QH...
121 static void
122 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
124 struct ehci_qtd *qtd;
126 if (list_empty (&qh->qtd_list))
127 qtd = qh->dummy;
128 else {
129 qtd = list_entry (qh->qtd_list.next,
130 struct ehci_qtd, qtd_list);
131 /* first qtd may already be partially processed */
132 if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw->hw_current)
133 qtd = NULL;
136 if (qtd)
137 qh_update (ehci, qh, qtd);
140 /*-------------------------------------------------------------------------*/
142 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
144 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
145 struct usb_host_endpoint *ep)
147 struct ehci_hcd *ehci = hcd_to_ehci(hcd);
148 struct ehci_qh *qh = ep->hcpriv;
149 unsigned long flags;
151 spin_lock_irqsave(&ehci->lock, flags);
152 qh->clearing_tt = 0;
153 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
154 && ehci->rh_state == EHCI_RH_RUNNING)
155 qh_link_async(ehci, qh);
156 spin_unlock_irqrestore(&ehci->lock, flags);
159 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
160 struct urb *urb, u32 token)
163 /* If an async split transaction gets an error or is unlinked,
164 * the TT buffer may be left in an indeterminate state. We
165 * have to clear the TT buffer.
167 * Note: this routine is never called for Isochronous transfers.
169 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
170 #ifdef DEBUG
171 struct usb_device *tt = urb->dev->tt->hub;
172 dev_dbg(&tt->dev,
173 "clear tt buffer port %d, a%d ep%d t%08x\n",
174 urb->dev->ttport, urb->dev->devnum,
175 usb_pipeendpoint(urb->pipe), token);
176 #endif /* DEBUG */
177 if (!ehci_is_TDI(ehci)
178 || urb->dev->tt->hub !=
179 ehci_to_hcd(ehci)->self.root_hub) {
180 if (usb_hub_clear_tt_buffer(urb) == 0)
181 qh->clearing_tt = 1;
182 } else {
184 /* REVISIT ARC-derived cores don't clear the root
185 * hub TT buffer in this way...
191 static int qtd_copy_status (
192 struct ehci_hcd *ehci,
193 struct urb *urb,
194 size_t length,
195 u32 token
198 int status = -EINPROGRESS;
200 /* count IN/OUT bytes, not SETUP (even short packets) */
201 if (likely (QTD_PID (token) != 2))
202 urb->actual_length += length - QTD_LENGTH (token);
204 /* don't modify error codes */
205 if (unlikely(urb->unlinked))
206 return status;
208 /* force cleanup after short read; not always an error */
209 if (unlikely (IS_SHORT_READ (token)))
210 status = -EREMOTEIO;
212 /* serious "can't proceed" faults reported by the hardware */
213 if (token & QTD_STS_HALT) {
214 if (token & QTD_STS_BABBLE) {
215 /* FIXME "must" disable babbling device's port too */
216 status = -EOVERFLOW;
217 /* CERR nonzero + halt --> stall */
218 } else if (QTD_CERR(token)) {
219 status = -EPIPE;
221 /* In theory, more than one of the following bits can be set
222 * since they are sticky and the transaction is retried.
223 * Which to test first is rather arbitrary.
225 } else if (token & QTD_STS_MMF) {
226 /* fs/ls interrupt xfer missed the complete-split */
227 status = -EPROTO;
228 } else if (token & QTD_STS_DBE) {
229 status = (QTD_PID (token) == 1) /* IN ? */
230 ? -ENOSR /* hc couldn't read data */
231 : -ECOMM; /* hc couldn't write data */
232 } else if (token & QTD_STS_XACT) {
233 /* timeout, bad CRC, wrong PID, etc */
234 ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
235 urb->dev->devpath,
236 usb_pipeendpoint(urb->pipe),
237 usb_pipein(urb->pipe) ? "in" : "out");
238 status = -EPROTO;
239 } else { /* unknown */
240 status = -EPROTO;
243 ehci_vdbg (ehci,
244 "dev%d ep%d%s qtd token %08x --> status %d\n",
245 usb_pipedevice (urb->pipe),
246 usb_pipeendpoint (urb->pipe),
247 usb_pipein (urb->pipe) ? "in" : "out",
248 token, status);
251 return status;
254 static void
255 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
256 __releases(ehci->lock)
257 __acquires(ehci->lock)
259 if (likely (urb->hcpriv != NULL)) {
260 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
262 /* S-mask in a QH means it's an interrupt urb */
263 if ((qh->hw->hw_info2 & cpu_to_hc32(ehci, QH_SMASK)) != 0) {
265 /* ... update hc-wide periodic stats (for usbfs) */
266 ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
268 qh_put (qh);
271 if (unlikely(urb->unlinked)) {
272 COUNT(ehci->stats.unlink);
273 } else {
274 /* report non-error and short read status as zero */
275 if (status == -EINPROGRESS || status == -EREMOTEIO)
276 status = 0;
277 COUNT(ehci->stats.complete);
280 #ifdef EHCI_URB_TRACE
281 ehci_dbg (ehci,
282 "%s %s urb %p ep%d%s status %d len %d/%d\n",
283 __func__, urb->dev->devpath, urb,
284 usb_pipeendpoint (urb->pipe),
285 usb_pipein (urb->pipe) ? "in" : "out",
286 status,
287 urb->actual_length, urb->transfer_buffer_length);
288 #endif
290 /* complete() can reenter this HCD */
291 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
292 spin_unlock (&ehci->lock);
293 usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
294 spin_lock (&ehci->lock);
297 static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
298 static void unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
300 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
303 * Process and free completed qtds for a qh, returning URBs to drivers.
304 * Chases up to qh->hw_current. Returns number of completions called,
305 * indicating how much "real" work we did.
307 static unsigned
308 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
310 struct ehci_qtd *last, *end = qh->dummy;
311 struct list_head *entry, *tmp;
312 int last_status;
313 int stopped;
314 unsigned count = 0;
315 u8 state;
316 struct ehci_qh_hw *hw = qh->hw;
318 if (unlikely (list_empty (&qh->qtd_list)))
319 return count;
321 /* completions (or tasks on other cpus) must never clobber HALT
322 * till we've gone through and cleaned everything up, even when
323 * they add urbs to this qh's queue or mark them for unlinking.
325 * NOTE: unlinking expects to be done in queue order.
327 * It's a bug for qh->qh_state to be anything other than
328 * QH_STATE_IDLE, unless our caller is scan_async() or
329 * scan_periodic().
331 state = qh->qh_state;
332 qh->qh_state = QH_STATE_COMPLETING;
333 stopped = (state == QH_STATE_IDLE);
335 rescan:
336 last = NULL;
337 last_status = -EINPROGRESS;
338 qh->needs_rescan = 0;
340 /* remove de-activated QTDs from front of queue.
341 * after faults (including short reads), cleanup this urb
342 * then let the queue advance.
343 * if queue is stopped, handles unlinks.
345 list_for_each_safe (entry, tmp, &qh->qtd_list) {
346 struct ehci_qtd *qtd;
347 struct urb *urb;
348 u32 token = 0;
350 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
351 urb = qtd->urb;
353 /* clean up any state from previous QTD ...*/
354 if (last) {
355 if (likely (last->urb != urb)) {
356 ehci_urb_done(ehci, last->urb, last_status);
357 count++;
358 last_status = -EINPROGRESS;
360 ehci_qtd_free (ehci, last);
361 last = NULL;
364 /* ignore urbs submitted during completions we reported */
365 if (qtd == end)
366 break;
368 /* hardware copies qtd out of qh overlay */
369 rmb ();
370 token = hc32_to_cpu(ehci, qtd->hw_token);
372 /* always clean up qtds the hc de-activated */
373 retry_xacterr:
374 if ((token & QTD_STS_ACTIVE) == 0) {
376 /* Report Data Buffer Error: non-fatal but useful */
377 if (token & QTD_STS_DBE)
378 ehci_dbg(ehci,
379 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
380 urb,
381 usb_endpoint_num(&urb->ep->desc),
382 usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
383 urb->transfer_buffer_length,
384 qtd,
385 qh);
387 /* on STALL, error, and short reads this urb must
388 * complete and all its qtds must be recycled.
390 if ((token & QTD_STS_HALT) != 0) {
392 /* retry transaction errors until we
393 * reach the software xacterr limit
395 if ((token & QTD_STS_XACT) &&
396 QTD_CERR(token) == 0 &&
397 ++qh->xacterrs < QH_XACTERR_MAX &&
398 !urb->unlinked) {
399 ehci_dbg(ehci,
400 "detected XactErr len %zu/%zu retry %d\n",
401 qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
403 /* reset the token in the qtd and the
404 * qh overlay (which still contains
405 * the qtd) so that we pick up from
406 * where we left off
408 token &= ~QTD_STS_HALT;
409 token |= QTD_STS_ACTIVE |
410 (EHCI_TUNE_CERR << 10);
411 qtd->hw_token = cpu_to_hc32(ehci,
412 token);
413 wmb();
414 hw->hw_token = cpu_to_hc32(ehci,
415 token);
416 goto retry_xacterr;
418 stopped = 1;
420 /* magic dummy for some short reads; qh won't advance.
421 * that silicon quirk can kick in with this dummy too.
423 * other short reads won't stop the queue, including
424 * control transfers (status stage handles that) or
425 * most other single-qtd reads ... the queue stops if
426 * URB_SHORT_NOT_OK was set so the driver submitting
427 * the urbs could clean it up.
429 } else if (IS_SHORT_READ (token)
430 && !(qtd->hw_alt_next
431 & EHCI_LIST_END(ehci))) {
432 stopped = 1;
435 /* stop scanning when we reach qtds the hc is using */
436 } else if (likely (!stopped
437 && ehci->rh_state == EHCI_RH_RUNNING)) {
438 break;
440 /* scan the whole queue for unlinks whenever it stops */
441 } else {
442 stopped = 1;
444 /* cancel everything if we halt, suspend, etc */
445 if (ehci->rh_state != EHCI_RH_RUNNING)
446 last_status = -ESHUTDOWN;
448 /* this qtd is active; skip it unless a previous qtd
449 * for its urb faulted, or its urb was canceled.
451 else if (last_status == -EINPROGRESS && !urb->unlinked)
452 continue;
454 /* qh unlinked; token in overlay may be most current */
455 if (state == QH_STATE_IDLE
456 && cpu_to_hc32(ehci, qtd->qtd_dma)
457 == hw->hw_current) {
458 token = hc32_to_cpu(ehci, hw->hw_token);
460 /* An unlink may leave an incomplete
461 * async transaction in the TT buffer.
462 * We have to clear it.
464 ehci_clear_tt_buffer(ehci, qh, urb, token);
468 /* unless we already know the urb's status, collect qtd status
469 * and update count of bytes transferred. in common short read
470 * cases with only one data qtd (including control transfers),
471 * queue processing won't halt. but with two or more qtds (for
472 * example, with a 32 KB transfer), when the first qtd gets a
473 * short read the second must be removed by hand.
475 if (last_status == -EINPROGRESS) {
476 last_status = qtd_copy_status(ehci, urb,
477 qtd->length, token);
478 if (last_status == -EREMOTEIO
479 && (qtd->hw_alt_next
480 & EHCI_LIST_END(ehci)))
481 last_status = -EINPROGRESS;
483 /* As part of low/full-speed endpoint-halt processing
484 * we must clear the TT buffer (11.17.5).
486 if (unlikely(last_status != -EINPROGRESS &&
487 last_status != -EREMOTEIO)) {
488 /* The TT's in some hubs malfunction when they
489 * receive this request following a STALL (they
490 * stop sending isochronous packets). Since a
491 * STALL can't leave the TT buffer in a busy
492 * state (if you believe Figures 11-48 - 11-51
493 * in the USB 2.0 spec), we won't clear the TT
494 * buffer in this case. Strictly speaking this
495 * is a violation of the spec.
497 if (last_status != -EPIPE)
498 ehci_clear_tt_buffer(ehci, qh, urb,
499 token);
503 /* if we're removing something not at the queue head,
504 * patch the hardware queue pointer.
506 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
507 last = list_entry (qtd->qtd_list.prev,
508 struct ehci_qtd, qtd_list);
509 last->hw_next = qtd->hw_next;
512 /* remove qtd; it's recycled after possible urb completion */
513 list_del (&qtd->qtd_list);
514 last = qtd;
516 /* reinit the xacterr counter for the next qtd */
517 qh->xacterrs = 0;
520 /* last urb's completion might still need calling */
521 if (likely (last != NULL)) {
522 ehci_urb_done(ehci, last->urb, last_status);
523 count++;
524 ehci_qtd_free (ehci, last);
527 /* Do we need to rescan for URBs dequeued during a giveback? */
528 if (unlikely(qh->needs_rescan)) {
529 /* If the QH is already unlinked, do the rescan now. */
530 if (state == QH_STATE_IDLE)
531 goto rescan;
533 /* Otherwise we have to wait until the QH is fully unlinked.
534 * Our caller will start an unlink if qh->needs_rescan is
535 * set. But if an unlink has already started, nothing needs
536 * to be done.
538 if (state != QH_STATE_LINKED)
539 qh->needs_rescan = 0;
542 /* restore original state; caller must unlink or relink */
543 qh->qh_state = state;
545 /* be sure the hardware's done with the qh before refreshing
546 * it after fault cleanup, or recovering from silicon wrongly
547 * overlaying the dummy qtd (which reduces DMA chatter).
549 if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci)) {
550 switch (state) {
551 case QH_STATE_IDLE:
552 qh_refresh(ehci, qh);
553 break;
554 case QH_STATE_LINKED:
555 /* We won't refresh a QH that's linked (after the HC
556 * stopped the queue). That avoids a race:
557 * - HC reads first part of QH;
558 * - CPU updates that first part and the token;
559 * - HC reads rest of that QH, including token
560 * Result: HC gets an inconsistent image, and then
561 * DMAs to/from the wrong memory (corrupting it).
563 * That should be rare for interrupt transfers,
564 * except maybe high bandwidth ...
567 /* Tell the caller to start an unlink */
568 qh->needs_rescan = 1;
569 break;
570 /* otherwise, unlink already started */
574 return count;
577 /*-------------------------------------------------------------------------*/
579 // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
580 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
581 // ... and packet size, for any kind of endpoint descriptor
582 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
585 * reverse of qh_urb_transaction: free a list of TDs.
586 * used for cleanup after errors, before HC sees an URB's TDs.
588 static void qtd_list_free (
589 struct ehci_hcd *ehci,
590 struct urb *urb,
591 struct list_head *qtd_list
593 struct list_head *entry, *temp;
595 list_for_each_safe (entry, temp, qtd_list) {
596 struct ehci_qtd *qtd;
598 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
599 list_del (&qtd->qtd_list);
600 ehci_qtd_free (ehci, qtd);
605 * create a list of filled qtds for this URB; won't link into qh.
607 static struct list_head *
608 qh_urb_transaction (
609 struct ehci_hcd *ehci,
610 struct urb *urb,
611 struct list_head *head,
612 gfp_t flags
614 struct ehci_qtd *qtd, *qtd_prev;
615 dma_addr_t buf;
616 int len, this_sg_len, maxpacket;
617 int is_input;
618 u32 token;
619 int i;
620 struct scatterlist *sg;
623 * URBs map to sequences of QTDs: one logical transaction
625 qtd = ehci_qtd_alloc (ehci, flags);
626 if (unlikely (!qtd))
627 return NULL;
628 list_add_tail (&qtd->qtd_list, head);
629 qtd->urb = urb;
631 token = QTD_STS_ACTIVE;
632 token |= (EHCI_TUNE_CERR << 10);
633 /* for split transactions, SplitXState initialized to zero */
635 len = urb->transfer_buffer_length;
636 is_input = usb_pipein (urb->pipe);
637 if (usb_pipecontrol (urb->pipe)) {
638 /* SETUP pid */
639 qtd_fill(ehci, qtd, urb->setup_dma,
640 sizeof (struct usb_ctrlrequest),
641 token | (2 /* "setup" */ << 8), 8);
643 /* ... and always at least one more pid */
644 token ^= QTD_TOGGLE;
645 qtd_prev = qtd;
646 qtd = ehci_qtd_alloc (ehci, flags);
647 if (unlikely (!qtd))
648 goto cleanup;
649 qtd->urb = urb;
650 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
651 list_add_tail (&qtd->qtd_list, head);
653 /* for zero length DATA stages, STATUS is always IN */
654 if (len == 0)
655 token |= (1 /* "in" */ << 8);
659 * data transfer stage: buffer setup
661 i = urb->num_mapped_sgs;
662 if (len > 0 && i > 0) {
663 sg = urb->sg;
664 buf = sg_dma_address(sg);
666 /* urb->transfer_buffer_length may be smaller than the
667 * size of the scatterlist (or vice versa)
669 this_sg_len = min_t(int, sg_dma_len(sg), len);
670 } else {
671 sg = NULL;
672 buf = urb->transfer_dma;
673 this_sg_len = len;
676 if (is_input)
677 token |= (1 /* "in" */ << 8);
678 /* else it's already initted to "out" pid (0 << 8) */
680 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
683 * buffer gets wrapped in one or more qtds;
684 * last one may be "short" (including zero len)
685 * and may serve as a control status ack
687 for (;;) {
688 int this_qtd_len;
690 this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
691 maxpacket);
692 this_sg_len -= this_qtd_len;
693 len -= this_qtd_len;
694 buf += this_qtd_len;
697 * short reads advance to a "magic" dummy instead of the next
698 * qtd ... that forces the queue to stop, for manual cleanup.
699 * (this will usually be overridden later.)
701 if (is_input)
702 qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
704 /* qh makes control packets use qtd toggle; maybe switch it */
705 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
706 token ^= QTD_TOGGLE;
708 if (likely(this_sg_len <= 0)) {
709 if (--i <= 0 || len <= 0)
710 break;
711 sg = sg_next(sg);
712 buf = sg_dma_address(sg);
713 this_sg_len = min_t(int, sg_dma_len(sg), len);
716 qtd_prev = qtd;
717 qtd = ehci_qtd_alloc (ehci, flags);
718 if (unlikely (!qtd))
719 goto cleanup;
720 qtd->urb = urb;
721 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
722 list_add_tail (&qtd->qtd_list, head);
726 * unless the caller requires manual cleanup after short reads,
727 * have the alt_next mechanism keep the queue running after the
728 * last data qtd (the only one, for control and most other cases).
730 if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
731 || usb_pipecontrol (urb->pipe)))
732 qtd->hw_alt_next = EHCI_LIST_END(ehci);
735 * control requests may need a terminating data "status" ack;
736 * other OUT ones may need a terminating short packet
737 * (zero length).
739 if (likely (urb->transfer_buffer_length != 0)) {
740 int one_more = 0;
742 if (usb_pipecontrol (urb->pipe)) {
743 one_more = 1;
744 token ^= 0x0100; /* "in" <--> "out" */
745 token |= QTD_TOGGLE; /* force DATA1 */
746 } else if (usb_pipeout(urb->pipe)
747 && (urb->transfer_flags & URB_ZERO_PACKET)
748 && !(urb->transfer_buffer_length % maxpacket)) {
749 one_more = 1;
751 if (one_more) {
752 qtd_prev = qtd;
753 qtd = ehci_qtd_alloc (ehci, flags);
754 if (unlikely (!qtd))
755 goto cleanup;
756 qtd->urb = urb;
757 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
758 list_add_tail (&qtd->qtd_list, head);
760 /* never any data in such packets */
761 qtd_fill(ehci, qtd, 0, 0, token, 0);
765 /* by default, enable interrupt on urb completion */
766 if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
767 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
768 return head;
770 cleanup:
771 qtd_list_free (ehci, urb, head);
772 return NULL;
775 /*-------------------------------------------------------------------------*/
777 // Would be best to create all qh's from config descriptors,
778 // when each interface/altsetting is established. Unlink
779 // any previous qh and cancel its urbs first; endpoints are
780 // implicitly reset then (data toggle too).
781 // That'd mean updating how usbcore talks to HCDs. (2.7?)
785 * Each QH holds a qtd list; a QH is used for everything except iso.
787 * For interrupt urbs, the scheduler must set the microframe scheduling
788 * mask(s) each time the QH gets scheduled. For highspeed, that's
789 * just one microframe in the s-mask. For split interrupt transactions
790 * there are additional complications: c-mask, maybe FSTNs.
792 static struct ehci_qh *
793 qh_make (
794 struct ehci_hcd *ehci,
795 struct urb *urb,
796 gfp_t flags
798 struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
799 u32 info1 = 0, info2 = 0;
800 int is_input, type;
801 int maxp = 0;
802 struct usb_tt *tt = urb->dev->tt;
803 struct ehci_qh_hw *hw;
805 if (!qh)
806 return qh;
809 * init endpoint/device data for this QH
811 info1 |= usb_pipeendpoint (urb->pipe) << 8;
812 info1 |= usb_pipedevice (urb->pipe) << 0;
814 is_input = usb_pipein (urb->pipe);
815 type = usb_pipetype (urb->pipe);
816 maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
818 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
819 * acts like up to 3KB, but is built from smaller packets.
821 if (max_packet(maxp) > 1024) {
822 ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
823 goto done;
826 /* Compute interrupt scheduling parameters just once, and save.
827 * - allowing for high bandwidth, how many nsec/uframe are used?
828 * - split transactions need a second CSPLIT uframe; same question
829 * - splits also need a schedule gap (for full/low speed I/O)
830 * - qh has a polling interval
832 * For control/bulk requests, the HC or TT handles these.
834 if (type == PIPE_INTERRUPT) {
835 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
836 is_input, 0,
837 hb_mult(maxp) * max_packet(maxp)));
838 qh->start = NO_FRAME;
839 qh->stamp = ehci->periodic_stamp;
841 if (urb->dev->speed == USB_SPEED_HIGH) {
842 qh->c_usecs = 0;
843 qh->gap_uf = 0;
845 qh->period = urb->interval >> 3;
846 if (qh->period == 0 && urb->interval != 1) {
847 /* NOTE interval 2 or 4 uframes could work.
848 * But interval 1 scheduling is simpler, and
849 * includes high bandwidth.
851 urb->interval = 1;
852 } else if (qh->period > ehci->periodic_size) {
853 qh->period = ehci->periodic_size;
854 urb->interval = qh->period << 3;
856 } else {
857 int think_time;
859 /* gap is f(FS/LS transfer times) */
860 qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
861 is_input, 0, maxp) / (125 * 1000);
863 /* FIXME this just approximates SPLIT/CSPLIT times */
864 if (is_input) { // SPLIT, gap, CSPLIT+DATA
865 qh->c_usecs = qh->usecs + HS_USECS (0);
866 qh->usecs = HS_USECS (1);
867 } else { // SPLIT+DATA, gap, CSPLIT
868 qh->usecs += HS_USECS (1);
869 qh->c_usecs = HS_USECS (0);
872 think_time = tt ? tt->think_time : 0;
873 qh->tt_usecs = NS_TO_US (think_time +
874 usb_calc_bus_time (urb->dev->speed,
875 is_input, 0, max_packet (maxp)));
876 qh->period = urb->interval;
877 if (qh->period > ehci->periodic_size) {
878 qh->period = ehci->periodic_size;
879 urb->interval = qh->period;
884 /* support for tt scheduling, and access to toggles */
885 qh->dev = urb->dev;
887 /* using TT? */
888 switch (urb->dev->speed) {
889 case USB_SPEED_LOW:
890 info1 |= (1 << 12); /* EPS "low" */
891 /* FALL THROUGH */
893 case USB_SPEED_FULL:
894 /* EPS 0 means "full" */
895 if (type != PIPE_INTERRUPT)
896 info1 |= (EHCI_TUNE_RL_TT << 28);
897 if (type == PIPE_CONTROL) {
898 info1 |= (1 << 27); /* for TT */
899 info1 |= 1 << 14; /* toggle from qtd */
901 info1 |= maxp << 16;
903 info2 |= (EHCI_TUNE_MULT_TT << 30);
905 /* Some Freescale processors have an erratum in which the
906 * port number in the queue head was 0..N-1 instead of 1..N.
908 if (ehci_has_fsl_portno_bug(ehci))
909 info2 |= (urb->dev->ttport-1) << 23;
910 else
911 info2 |= urb->dev->ttport << 23;
913 /* set the address of the TT; for TDI's integrated
914 * root hub tt, leave it zeroed.
916 if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
917 info2 |= tt->hub->devnum << 16;
919 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
921 break;
923 case USB_SPEED_HIGH: /* no TT involved */
924 info1 |= (2 << 12); /* EPS "high" */
925 if (type == PIPE_CONTROL) {
926 info1 |= (EHCI_TUNE_RL_HS << 28);
927 info1 |= 64 << 16; /* usb2 fixed maxpacket */
928 info1 |= 1 << 14; /* toggle from qtd */
929 info2 |= (EHCI_TUNE_MULT_HS << 30);
930 } else if (type == PIPE_BULK) {
931 info1 |= (EHCI_TUNE_RL_HS << 28);
932 /* The USB spec says that high speed bulk endpoints
933 * always use 512 byte maxpacket. But some device
934 * vendors decided to ignore that, and MSFT is happy
935 * to help them do so. So now people expect to use
936 * such nonconformant devices with Linux too; sigh.
938 info1 |= max_packet(maxp) << 16;
939 info2 |= (EHCI_TUNE_MULT_HS << 30);
940 } else { /* PIPE_INTERRUPT */
941 info1 |= max_packet (maxp) << 16;
942 info2 |= hb_mult (maxp) << 30;
944 break;
945 default:
946 dbg ("bogus dev %p speed %d", urb->dev, urb->dev->speed);
947 done:
948 qh_put (qh);
949 return NULL;
952 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
954 /* init as live, toggle clear, advance to dummy */
955 qh->qh_state = QH_STATE_IDLE;
956 hw = qh->hw;
957 hw->hw_info1 = cpu_to_hc32(ehci, info1);
958 hw->hw_info2 = cpu_to_hc32(ehci, info2);
959 qh->is_out = !is_input;
960 usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
961 qh_refresh (ehci, qh);
962 return qh;
965 /*-------------------------------------------------------------------------*/
967 /* move qh (and its qtds) onto async queue; maybe enable queue. */
969 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
971 __hc32 dma = QH_NEXT(ehci, qh->qh_dma);
972 struct ehci_qh *head;
974 /* Don't link a QH if there's a Clear-TT-Buffer pending */
975 if (unlikely(qh->clearing_tt))
976 return;
978 WARN_ON(qh->qh_state != QH_STATE_IDLE);
980 /* (re)start the async schedule? */
981 head = ehci->async;
982 timer_action_done (ehci, TIMER_ASYNC_OFF);
983 if (!head->qh_next.qh) {
984 u32 cmd = ehci_readl(ehci, &ehci->regs->command);
986 if (!(cmd & CMD_ASE)) {
987 /* in case a clear of CMD_ASE didn't take yet */
988 (void)handshake(ehci, &ehci->regs->status,
989 STS_ASS, 0, 150);
990 cmd |= CMD_ASE;
991 ehci_writel(ehci, cmd, &ehci->regs->command);
992 /* posted write need not be known to HC yet ... */
996 /* clear halt and/or toggle; and maybe recover from silicon quirk */
997 qh_refresh(ehci, qh);
999 /* splice right after start */
1000 qh->qh_next = head->qh_next;
1001 qh->hw->hw_next = head->hw->hw_next;
1002 wmb ();
1004 head->qh_next.qh = qh;
1005 head->hw->hw_next = dma;
1007 qh_get(qh);
1008 qh->xacterrs = 0;
1009 qh->qh_state = QH_STATE_LINKED;
1010 /* qtd completions reported later by interrupt */
1013 /*-------------------------------------------------------------------------*/
1016 * For control/bulk/interrupt, return QH with these TDs appended.
1017 * Allocates and initializes the QH if necessary.
1018 * Returns null if it can't allocate a QH it needs to.
1019 * If the QH has TDs (urbs) already, that's great.
1021 static struct ehci_qh *qh_append_tds (
1022 struct ehci_hcd *ehci,
1023 struct urb *urb,
1024 struct list_head *qtd_list,
1025 int epnum,
1026 void **ptr
1029 struct ehci_qh *qh = NULL;
1030 __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1032 qh = (struct ehci_qh *) *ptr;
1033 if (unlikely (qh == NULL)) {
1034 /* can't sleep here, we have ehci->lock... */
1035 qh = qh_make (ehci, urb, GFP_ATOMIC);
1036 *ptr = qh;
1038 if (likely (qh != NULL)) {
1039 struct ehci_qtd *qtd;
1041 if (unlikely (list_empty (qtd_list)))
1042 qtd = NULL;
1043 else
1044 qtd = list_entry (qtd_list->next, struct ehci_qtd,
1045 qtd_list);
1047 /* control qh may need patching ... */
1048 if (unlikely (epnum == 0)) {
1050 /* usb_reset_device() briefly reverts to address 0 */
1051 if (usb_pipedevice (urb->pipe) == 0)
1052 qh->hw->hw_info1 &= ~qh_addr_mask;
1055 /* just one way to queue requests: swap with the dummy qtd.
1056 * only hc or qh_refresh() ever modify the overlay.
1058 if (likely (qtd != NULL)) {
1059 struct ehci_qtd *dummy;
1060 dma_addr_t dma;
1061 __hc32 token;
1063 /* to avoid racing the HC, use the dummy td instead of
1064 * the first td of our list (becomes new dummy). both
1065 * tds stay deactivated until we're done, when the
1066 * HC is allowed to fetch the old dummy (4.10.2).
1068 token = qtd->hw_token;
1069 qtd->hw_token = HALT_BIT(ehci);
1071 dummy = qh->dummy;
1073 dma = dummy->qtd_dma;
1074 *dummy = *qtd;
1075 dummy->qtd_dma = dma;
1077 list_del (&qtd->qtd_list);
1078 list_add (&dummy->qtd_list, qtd_list);
1079 list_splice_tail(qtd_list, &qh->qtd_list);
1081 ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1082 qh->dummy = qtd;
1084 /* hc must see the new dummy at list end */
1085 dma = qtd->qtd_dma;
1086 qtd = list_entry (qh->qtd_list.prev,
1087 struct ehci_qtd, qtd_list);
1088 qtd->hw_next = QTD_NEXT(ehci, dma);
1090 /* let the hc process these next qtds */
1091 wmb ();
1092 dummy->hw_token = token;
1094 urb->hcpriv = qh_get (qh);
1097 return qh;
1100 /*-------------------------------------------------------------------------*/
1102 static int
1103 submit_async (
1104 struct ehci_hcd *ehci,
1105 struct urb *urb,
1106 struct list_head *qtd_list,
1107 gfp_t mem_flags
1109 int epnum;
1110 unsigned long flags;
1111 struct ehci_qh *qh = NULL;
1112 int rc;
1114 epnum = urb->ep->desc.bEndpointAddress;
1116 #ifdef EHCI_URB_TRACE
1118 struct ehci_qtd *qtd;
1119 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1120 ehci_dbg(ehci,
1121 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1122 __func__, urb->dev->devpath, urb,
1123 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1124 urb->transfer_buffer_length,
1125 qtd, urb->ep->hcpriv);
1127 #endif
1129 spin_lock_irqsave (&ehci->lock, flags);
1130 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1131 rc = -ESHUTDOWN;
1132 goto done;
1134 rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1135 if (unlikely(rc))
1136 goto done;
1138 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1139 if (unlikely(qh == NULL)) {
1140 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1141 rc = -ENOMEM;
1142 goto done;
1145 /* Control/bulk operations through TTs don't need scheduling,
1146 * the HC and TT handle it when the TT has a buffer ready.
1148 if (likely (qh->qh_state == QH_STATE_IDLE))
1149 qh_link_async(ehci, qh);
1150 done:
1151 spin_unlock_irqrestore (&ehci->lock, flags);
1152 if (unlikely (qh == NULL))
1153 qtd_list_free (ehci, urb, qtd_list);
1154 return rc;
1157 /*-------------------------------------------------------------------------*/
1159 /* the async qh for the qtds being reclaimed are now unlinked from the HC */
1161 static void end_unlink_async (struct ehci_hcd *ehci)
1163 struct ehci_qh *qh = ehci->reclaim;
1164 struct ehci_qh *next;
1166 iaa_watchdog_done(ehci);
1168 // qh->hw_next = cpu_to_hc32(qh->qh_dma);
1169 qh->qh_state = QH_STATE_IDLE;
1170 qh->qh_next.qh = NULL;
1171 qh_put (qh); // refcount from reclaim
1173 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1174 next = qh->reclaim;
1175 ehci->reclaim = next;
1176 qh->reclaim = NULL;
1178 qh_completions (ehci, qh);
1180 if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
1181 qh_link_async (ehci, qh);
1182 } else {
1183 /* it's not free to turn the async schedule on/off; leave it
1184 * active but idle for a while once it empties.
1186 if (ehci->rh_state == EHCI_RH_RUNNING
1187 && ehci->async->qh_next.qh == NULL)
1188 timer_action (ehci, TIMER_ASYNC_OFF);
1190 qh_put(qh); /* refcount from async list */
1192 if (next) {
1193 ehci->reclaim = NULL;
1194 start_unlink_async (ehci, next);
1197 if (ehci->has_synopsys_hc_bug)
1198 ehci_writel(ehci, (u32) ehci->async->qh_dma,
1199 &ehci->regs->async_next);
1202 /* makes sure the async qh will become idle */
1203 /* caller must own ehci->lock */
1205 static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
1207 int cmd = ehci_readl(ehci, &ehci->regs->command);
1208 struct ehci_qh *prev;
1210 #ifdef DEBUG
1211 assert_spin_locked(&ehci->lock);
1212 if (ehci->reclaim
1213 || (qh->qh_state != QH_STATE_LINKED
1214 && qh->qh_state != QH_STATE_UNLINK_WAIT)
1216 BUG ();
1217 #endif
1219 /* stop async schedule right now? */
1220 if (unlikely (qh == ehci->async)) {
1221 /* can't get here without STS_ASS set */
1222 if (ehci->rh_state != EHCI_RH_HALTED
1223 && !ehci->reclaim) {
1224 /* ... and CMD_IAAD clear */
1225 ehci_writel(ehci, cmd & ~CMD_ASE,
1226 &ehci->regs->command);
1227 wmb ();
1228 // handshake later, if we need to
1229 timer_action_done (ehci, TIMER_ASYNC_OFF);
1231 return;
1234 qh->qh_state = QH_STATE_UNLINK;
1235 ehci->reclaim = qh = qh_get (qh);
1237 prev = ehci->async;
1238 while (prev->qh_next.qh != qh)
1239 prev = prev->qh_next.qh;
1241 prev->hw->hw_next = qh->hw->hw_next;
1242 prev->qh_next = qh->qh_next;
1243 if (ehci->qh_scan_next == qh)
1244 ehci->qh_scan_next = qh->qh_next.qh;
1245 wmb ();
1247 /* If the controller isn't running, we don't have to wait for it */
1248 if (unlikely(ehci->rh_state != EHCI_RH_RUNNING)) {
1249 /* if (unlikely (qh->reclaim != 0))
1250 * this will recurse, probably not much
1252 end_unlink_async (ehci);
1253 return;
1256 cmd |= CMD_IAAD;
1257 ehci_writel(ehci, cmd, &ehci->regs->command);
1258 (void)ehci_readl(ehci, &ehci->regs->command);
1259 iaa_watchdog_start(ehci);
1262 /*-------------------------------------------------------------------------*/
1264 static void scan_async (struct ehci_hcd *ehci)
1266 bool stopped;
1267 struct ehci_qh *qh;
1268 enum ehci_timer_action action = TIMER_IO_WATCHDOG;
1270 timer_action_done (ehci, TIMER_ASYNC_SHRINK);
1271 stopped = (ehci->rh_state != EHCI_RH_RUNNING);
1273 ehci->qh_scan_next = ehci->async->qh_next.qh;
1274 while (ehci->qh_scan_next) {
1275 qh = ehci->qh_scan_next;
1276 ehci->qh_scan_next = qh->qh_next.qh;
1277 rescan:
1278 /* clean any finished work for this qh */
1279 if (!list_empty(&qh->qtd_list)) {
1280 int temp;
1283 * Unlinks could happen here; completion reporting
1284 * drops the lock. That's why ehci->qh_scan_next
1285 * always holds the next qh to scan; if the next qh
1286 * gets unlinked then ehci->qh_scan_next is adjusted
1287 * in start_unlink_async().
1289 qh = qh_get(qh);
1290 temp = qh_completions(ehci, qh);
1291 if (qh->needs_rescan)
1292 unlink_async(ehci, qh);
1293 qh->unlink_time = jiffies + EHCI_SHRINK_JIFFIES;
1294 qh_put(qh);
1295 if (temp != 0)
1296 goto rescan;
1299 /* unlink idle entries, reducing DMA usage as well
1300 * as HCD schedule-scanning costs. delay for any qh
1301 * we just scanned, there's a not-unusual case that it
1302 * doesn't stay idle for long.
1303 * (plus, avoids some kind of re-activation race.)
1305 if (list_empty(&qh->qtd_list)
1306 && qh->qh_state == QH_STATE_LINKED) {
1307 if (!ehci->reclaim && (stopped ||
1308 time_after_eq(jiffies, qh->unlink_time)))
1309 start_unlink_async(ehci, qh);
1310 else
1311 action = TIMER_ASYNC_SHRINK;
1314 if (action == TIMER_ASYNC_SHRINK)
1315 timer_action (ehci, TIMER_ASYNC_SHRINK);