4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
64 * dentry->d_inode->i_lock
67 * dcache_hash_bucket lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
73 * dentry->d_parent->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
81 int sysctl_vfs_cache_pressure __read_mostly
= 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
84 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lru_lock
);
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
87 EXPORT_SYMBOL(rename_lock
);
89 static struct kmem_cache
*dentry_cache __read_mostly
;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
102 static unsigned int d_hash_mask __read_mostly
;
103 static unsigned int d_hash_shift __read_mostly
;
105 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
107 static inline struct hlist_bl_head
*d_hash(const struct dentry
*parent
,
110 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
111 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
112 return dentry_hashtable
+ (hash
& D_HASHMASK
);
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat
= {
120 static DEFINE_PER_CPU(unsigned int, nr_dentry
);
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
127 for_each_possible_cpu(i
)
128 sum
+= per_cpu(nr_dentry
, i
);
129 return sum
< 0 ? 0 : sum
;
132 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
133 size_t *lenp
, loff_t
*ppos
)
135 dentry_stat
.nr_dentry
= get_nr_dentry();
136 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
144 static inline int dentry_cmp(const unsigned char *cs
, size_t scount
,
145 const unsigned char *ct
, size_t tcount
)
147 if (scount
!= tcount
)
160 static void __d_free(struct rcu_head
*head
)
162 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
164 WARN_ON(!list_empty(&dentry
->d_alias
));
165 if (dname_external(dentry
))
166 kfree(dentry
->d_name
.name
);
167 kmem_cache_free(dentry_cache
, dentry
);
173 static void d_free(struct dentry
*dentry
)
175 BUG_ON(dentry
->d_count
);
176 this_cpu_dec(nr_dentry
);
177 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
178 dentry
->d_op
->d_release(dentry
);
180 /* if dentry was never visible to RCU, immediate free is OK */
181 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
182 __d_free(&dentry
->d_u
.d_rcu
);
184 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
188 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
189 * @dentry: the target dentry
190 * After this call, in-progress rcu-walk path lookup will fail. This
191 * should be called after unhashing, and after changing d_inode (if
192 * the dentry has not already been unhashed).
194 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
196 assert_spin_locked(&dentry
->d_lock
);
197 /* Go through a barrier */
198 write_seqcount_barrier(&dentry
->d_seq
);
202 * Release the dentry's inode, using the filesystem
203 * d_iput() operation if defined. Dentry has no refcount
206 static void dentry_iput(struct dentry
* dentry
)
207 __releases(dentry
->d_lock
)
208 __releases(dentry
->d_inode
->i_lock
)
210 struct inode
*inode
= dentry
->d_inode
;
212 dentry
->d_inode
= NULL
;
213 list_del_init(&dentry
->d_alias
);
214 spin_unlock(&dentry
->d_lock
);
215 spin_unlock(&inode
->i_lock
);
217 fsnotify_inoderemove(inode
);
218 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
219 dentry
->d_op
->d_iput(dentry
, inode
);
223 spin_unlock(&dentry
->d_lock
);
228 * Release the dentry's inode, using the filesystem
229 * d_iput() operation if defined. dentry remains in-use.
231 static void dentry_unlink_inode(struct dentry
* dentry
)
232 __releases(dentry
->d_lock
)
233 __releases(dentry
->d_inode
->i_lock
)
235 struct inode
*inode
= dentry
->d_inode
;
236 dentry
->d_inode
= NULL
;
237 list_del_init(&dentry
->d_alias
);
238 dentry_rcuwalk_barrier(dentry
);
239 spin_unlock(&dentry
->d_lock
);
240 spin_unlock(&inode
->i_lock
);
242 fsnotify_inoderemove(inode
);
243 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
244 dentry
->d_op
->d_iput(dentry
, inode
);
250 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
252 static void dentry_lru_add(struct dentry
*dentry
)
254 if (list_empty(&dentry
->d_lru
)) {
255 spin_lock(&dcache_lru_lock
);
256 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
257 dentry
->d_sb
->s_nr_dentry_unused
++;
258 dentry_stat
.nr_unused
++;
259 spin_unlock(&dcache_lru_lock
);
263 static void __dentry_lru_del(struct dentry
*dentry
)
265 list_del_init(&dentry
->d_lru
);
266 dentry
->d_flags
&= ~DCACHE_SHRINK_LIST
;
267 dentry
->d_sb
->s_nr_dentry_unused
--;
268 dentry_stat
.nr_unused
--;
272 * Remove a dentry with references from the LRU.
274 static void dentry_lru_del(struct dentry
*dentry
)
276 if (!list_empty(&dentry
->d_lru
)) {
277 spin_lock(&dcache_lru_lock
);
278 __dentry_lru_del(dentry
);
279 spin_unlock(&dcache_lru_lock
);
284 * Remove a dentry that is unreferenced and about to be pruned
285 * (unhashed and destroyed) from the LRU, and inform the file system.
286 * This wrapper should be called _prior_ to unhashing a victim dentry.
288 static void dentry_lru_prune(struct dentry
*dentry
)
290 if (!list_empty(&dentry
->d_lru
)) {
291 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
292 dentry
->d_op
->d_prune(dentry
);
294 spin_lock(&dcache_lru_lock
);
295 __dentry_lru_del(dentry
);
296 spin_unlock(&dcache_lru_lock
);
300 static void dentry_lru_move_list(struct dentry
*dentry
, struct list_head
*list
)
302 spin_lock(&dcache_lru_lock
);
303 if (list_empty(&dentry
->d_lru
)) {
304 list_add_tail(&dentry
->d_lru
, list
);
305 dentry
->d_sb
->s_nr_dentry_unused
++;
306 dentry_stat
.nr_unused
++;
308 list_move_tail(&dentry
->d_lru
, list
);
310 spin_unlock(&dcache_lru_lock
);
314 * d_kill - kill dentry and return parent
315 * @dentry: dentry to kill
316 * @parent: parent dentry
318 * The dentry must already be unhashed and removed from the LRU.
320 * If this is the root of the dentry tree, return NULL.
322 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
325 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
326 __releases(dentry
->d_lock
)
327 __releases(parent
->d_lock
)
328 __releases(dentry
->d_inode
->i_lock
)
330 list_del(&dentry
->d_u
.d_child
);
332 * Inform try_to_ascend() that we are no longer attached to the
335 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
337 spin_unlock(&parent
->d_lock
);
340 * dentry_iput drops the locks, at which point nobody (except
341 * transient RCU lookups) can reach this dentry.
348 * Unhash a dentry without inserting an RCU walk barrier or checking that
349 * dentry->d_lock is locked. The caller must take care of that, if
352 static void __d_shrink(struct dentry
*dentry
)
354 if (!d_unhashed(dentry
)) {
355 struct hlist_bl_head
*b
;
356 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
357 b
= &dentry
->d_sb
->s_anon
;
359 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
362 __hlist_bl_del(&dentry
->d_hash
);
363 dentry
->d_hash
.pprev
= NULL
;
369 * d_drop - drop a dentry
370 * @dentry: dentry to drop
372 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
373 * be found through a VFS lookup any more. Note that this is different from
374 * deleting the dentry - d_delete will try to mark the dentry negative if
375 * possible, giving a successful _negative_ lookup, while d_drop will
376 * just make the cache lookup fail.
378 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
379 * reason (NFS timeouts or autofs deletes).
381 * __d_drop requires dentry->d_lock.
383 void __d_drop(struct dentry
*dentry
)
385 if (!d_unhashed(dentry
)) {
387 dentry_rcuwalk_barrier(dentry
);
390 EXPORT_SYMBOL(__d_drop
);
392 void d_drop(struct dentry
*dentry
)
394 spin_lock(&dentry
->d_lock
);
396 spin_unlock(&dentry
->d_lock
);
398 EXPORT_SYMBOL(d_drop
);
401 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
402 * @dentry: dentry to drop
404 * This is called when we do a lookup on a placeholder dentry that needed to be
405 * looked up. The dentry should have been hashed in order for it to be found by
406 * the lookup code, but now needs to be unhashed while we do the actual lookup
407 * and clear the DCACHE_NEED_LOOKUP flag.
409 void d_clear_need_lookup(struct dentry
*dentry
)
411 spin_lock(&dentry
->d_lock
);
413 dentry
->d_flags
&= ~DCACHE_NEED_LOOKUP
;
414 spin_unlock(&dentry
->d_lock
);
416 EXPORT_SYMBOL(d_clear_need_lookup
);
419 * Finish off a dentry we've decided to kill.
420 * dentry->d_lock must be held, returns with it unlocked.
421 * If ref is non-zero, then decrement the refcount too.
422 * Returns dentry requiring refcount drop, or NULL if we're done.
424 static inline struct dentry
*dentry_kill(struct dentry
*dentry
, int ref
)
425 __releases(dentry
->d_lock
)
428 struct dentry
*parent
;
430 inode
= dentry
->d_inode
;
431 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
433 spin_unlock(&dentry
->d_lock
);
435 return dentry
; /* try again with same dentry */
440 parent
= dentry
->d_parent
;
441 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
443 spin_unlock(&inode
->i_lock
);
450 * if dentry was on the d_lru list delete it from there.
451 * inform the fs via d_prune that this dentry is about to be
452 * unhashed and destroyed.
454 dentry_lru_prune(dentry
);
455 /* if it was on the hash then remove it */
457 return d_kill(dentry
, parent
);
463 * This is complicated by the fact that we do not want to put
464 * dentries that are no longer on any hash chain on the unused
465 * list: we'd much rather just get rid of them immediately.
467 * However, that implies that we have to traverse the dentry
468 * tree upwards to the parents which might _also_ now be
469 * scheduled for deletion (it may have been only waiting for
470 * its last child to go away).
472 * This tail recursion is done by hand as we don't want to depend
473 * on the compiler to always get this right (gcc generally doesn't).
474 * Real recursion would eat up our stack space.
478 * dput - release a dentry
479 * @dentry: dentry to release
481 * Release a dentry. This will drop the usage count and if appropriate
482 * call the dentry unlink method as well as removing it from the queues and
483 * releasing its resources. If the parent dentries were scheduled for release
484 * they too may now get deleted.
486 void dput(struct dentry
*dentry
)
492 if (dentry
->d_count
== 1)
494 spin_lock(&dentry
->d_lock
);
495 BUG_ON(!dentry
->d_count
);
496 if (dentry
->d_count
> 1) {
498 spin_unlock(&dentry
->d_lock
);
502 if (dentry
->d_flags
& DCACHE_OP_DELETE
) {
503 if (dentry
->d_op
->d_delete(dentry
))
507 /* Unreachable? Get rid of it */
508 if (d_unhashed(dentry
))
512 * If this dentry needs lookup, don't set the referenced flag so that it
513 * is more likely to be cleaned up by the dcache shrinker in case of
516 if (!d_need_lookup(dentry
))
517 dentry
->d_flags
|= DCACHE_REFERENCED
;
518 dentry_lru_add(dentry
);
521 spin_unlock(&dentry
->d_lock
);
525 dentry
= dentry_kill(dentry
, 1);
532 * d_invalidate - invalidate a dentry
533 * @dentry: dentry to invalidate
535 * Try to invalidate the dentry if it turns out to be
536 * possible. If there are other dentries that can be
537 * reached through this one we can't delete it and we
538 * return -EBUSY. On success we return 0.
543 int d_invalidate(struct dentry
* dentry
)
546 * If it's already been dropped, return OK.
548 spin_lock(&dentry
->d_lock
);
549 if (d_unhashed(dentry
)) {
550 spin_unlock(&dentry
->d_lock
);
554 * Check whether to do a partial shrink_dcache
555 * to get rid of unused child entries.
557 if (!list_empty(&dentry
->d_subdirs
)) {
558 spin_unlock(&dentry
->d_lock
);
559 shrink_dcache_parent(dentry
);
560 spin_lock(&dentry
->d_lock
);
564 * Somebody else still using it?
566 * If it's a directory, we can't drop it
567 * for fear of somebody re-populating it
568 * with children (even though dropping it
569 * would make it unreachable from the root,
570 * we might still populate it if it was a
571 * working directory or similar).
572 * We also need to leave mountpoints alone,
575 if (dentry
->d_count
> 1 && dentry
->d_inode
) {
576 if (S_ISDIR(dentry
->d_inode
->i_mode
) || d_mountpoint(dentry
)) {
577 spin_unlock(&dentry
->d_lock
);
583 spin_unlock(&dentry
->d_lock
);
586 EXPORT_SYMBOL(d_invalidate
);
588 /* This must be called with d_lock held */
589 static inline void __dget_dlock(struct dentry
*dentry
)
594 static inline void __dget(struct dentry
*dentry
)
596 spin_lock(&dentry
->d_lock
);
597 __dget_dlock(dentry
);
598 spin_unlock(&dentry
->d_lock
);
601 struct dentry
*dget_parent(struct dentry
*dentry
)
607 * Don't need rcu_dereference because we re-check it was correct under
611 ret
= dentry
->d_parent
;
612 spin_lock(&ret
->d_lock
);
613 if (unlikely(ret
!= dentry
->d_parent
)) {
614 spin_unlock(&ret
->d_lock
);
619 BUG_ON(!ret
->d_count
);
621 spin_unlock(&ret
->d_lock
);
624 EXPORT_SYMBOL(dget_parent
);
627 * d_find_alias - grab a hashed alias of inode
628 * @inode: inode in question
629 * @want_discon: flag, used by d_splice_alias, to request
630 * that only a DISCONNECTED alias be returned.
632 * If inode has a hashed alias, or is a directory and has any alias,
633 * acquire the reference to alias and return it. Otherwise return NULL.
634 * Notice that if inode is a directory there can be only one alias and
635 * it can be unhashed only if it has no children, or if it is the root
638 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
639 * any other hashed alias over that one unless @want_discon is set,
640 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
642 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
644 struct dentry
*alias
, *discon_alias
;
648 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
649 spin_lock(&alias
->d_lock
);
650 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
651 if (IS_ROOT(alias
) &&
652 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
653 discon_alias
= alias
;
654 } else if (!want_discon
) {
656 spin_unlock(&alias
->d_lock
);
660 spin_unlock(&alias
->d_lock
);
663 alias
= discon_alias
;
664 spin_lock(&alias
->d_lock
);
665 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
666 if (IS_ROOT(alias
) &&
667 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
669 spin_unlock(&alias
->d_lock
);
673 spin_unlock(&alias
->d_lock
);
679 struct dentry
*d_find_alias(struct inode
*inode
)
681 struct dentry
*de
= NULL
;
683 if (!list_empty(&inode
->i_dentry
)) {
684 spin_lock(&inode
->i_lock
);
685 de
= __d_find_alias(inode
, 0);
686 spin_unlock(&inode
->i_lock
);
690 EXPORT_SYMBOL(d_find_alias
);
693 * Try to kill dentries associated with this inode.
694 * WARNING: you must own a reference to inode.
696 void d_prune_aliases(struct inode
*inode
)
698 struct dentry
*dentry
;
700 spin_lock(&inode
->i_lock
);
701 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
702 spin_lock(&dentry
->d_lock
);
703 if (!dentry
->d_count
) {
704 __dget_dlock(dentry
);
706 spin_unlock(&dentry
->d_lock
);
707 spin_unlock(&inode
->i_lock
);
711 spin_unlock(&dentry
->d_lock
);
713 spin_unlock(&inode
->i_lock
);
715 EXPORT_SYMBOL(d_prune_aliases
);
718 * Try to throw away a dentry - free the inode, dput the parent.
719 * Requires dentry->d_lock is held, and dentry->d_count == 0.
720 * Releases dentry->d_lock.
722 * This may fail if locks cannot be acquired no problem, just try again.
724 static void try_prune_one_dentry(struct dentry
*dentry
)
725 __releases(dentry
->d_lock
)
727 struct dentry
*parent
;
729 parent
= dentry_kill(dentry
, 0);
731 * If dentry_kill returns NULL, we have nothing more to do.
732 * if it returns the same dentry, trylocks failed. In either
733 * case, just loop again.
735 * Otherwise, we need to prune ancestors too. This is necessary
736 * to prevent quadratic behavior of shrink_dcache_parent(), but
737 * is also expected to be beneficial in reducing dentry cache
742 if (parent
== dentry
)
745 /* Prune ancestors. */
748 spin_lock(&dentry
->d_lock
);
749 if (dentry
->d_count
> 1) {
751 spin_unlock(&dentry
->d_lock
);
754 dentry
= dentry_kill(dentry
, 1);
758 static void shrink_dentry_list(struct list_head
*list
)
760 struct dentry
*dentry
;
764 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
765 if (&dentry
->d_lru
== list
)
767 spin_lock(&dentry
->d_lock
);
768 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
769 spin_unlock(&dentry
->d_lock
);
774 * We found an inuse dentry which was not removed from
775 * the LRU because of laziness during lookup. Do not free
776 * it - just keep it off the LRU list.
778 if (dentry
->d_count
) {
779 dentry_lru_del(dentry
);
780 spin_unlock(&dentry
->d_lock
);
786 try_prune_one_dentry(dentry
);
794 * prune_dcache_sb - shrink the dcache
796 * @count: number of entries to try to free
798 * Attempt to shrink the superblock dcache LRU by @count entries. This is
799 * done when we need more memory an called from the superblock shrinker
802 * This function may fail to free any resources if all the dentries are in
805 void prune_dcache_sb(struct super_block
*sb
, int count
)
807 struct dentry
*dentry
;
808 LIST_HEAD(referenced
);
812 spin_lock(&dcache_lru_lock
);
813 while (!list_empty(&sb
->s_dentry_lru
)) {
814 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
815 struct dentry
, d_lru
);
816 BUG_ON(dentry
->d_sb
!= sb
);
818 if (!spin_trylock(&dentry
->d_lock
)) {
819 spin_unlock(&dcache_lru_lock
);
824 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
825 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
826 list_move(&dentry
->d_lru
, &referenced
);
827 spin_unlock(&dentry
->d_lock
);
829 list_move_tail(&dentry
->d_lru
, &tmp
);
830 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
831 spin_unlock(&dentry
->d_lock
);
835 cond_resched_lock(&dcache_lru_lock
);
837 if (!list_empty(&referenced
))
838 list_splice(&referenced
, &sb
->s_dentry_lru
);
839 spin_unlock(&dcache_lru_lock
);
841 shrink_dentry_list(&tmp
);
845 * shrink_dcache_sb - shrink dcache for a superblock
848 * Shrink the dcache for the specified super block. This is used to free
849 * the dcache before unmounting a file system.
851 void shrink_dcache_sb(struct super_block
*sb
)
855 spin_lock(&dcache_lru_lock
);
856 while (!list_empty(&sb
->s_dentry_lru
)) {
857 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
858 spin_unlock(&dcache_lru_lock
);
859 shrink_dentry_list(&tmp
);
860 spin_lock(&dcache_lru_lock
);
862 spin_unlock(&dcache_lru_lock
);
864 EXPORT_SYMBOL(shrink_dcache_sb
);
867 * destroy a single subtree of dentries for unmount
868 * - see the comments on shrink_dcache_for_umount() for a description of the
871 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
873 struct dentry
*parent
;
875 BUG_ON(!IS_ROOT(dentry
));
878 /* descend to the first leaf in the current subtree */
879 while (!list_empty(&dentry
->d_subdirs
))
880 dentry
= list_entry(dentry
->d_subdirs
.next
,
881 struct dentry
, d_u
.d_child
);
883 /* consume the dentries from this leaf up through its parents
884 * until we find one with children or run out altogether */
889 * remove the dentry from the lru, and inform
890 * the fs that this dentry is about to be
891 * unhashed and destroyed.
893 dentry_lru_prune(dentry
);
896 if (dentry
->d_count
!= 0) {
898 "BUG: Dentry %p{i=%lx,n=%s}"
900 " [unmount of %s %s]\n",
903 dentry
->d_inode
->i_ino
: 0UL,
906 dentry
->d_sb
->s_type
->name
,
911 if (IS_ROOT(dentry
)) {
913 list_del(&dentry
->d_u
.d_child
);
915 parent
= dentry
->d_parent
;
917 list_del(&dentry
->d_u
.d_child
);
920 inode
= dentry
->d_inode
;
922 dentry
->d_inode
= NULL
;
923 list_del_init(&dentry
->d_alias
);
924 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
925 dentry
->d_op
->d_iput(dentry
, inode
);
932 /* finished when we fall off the top of the tree,
933 * otherwise we ascend to the parent and move to the
934 * next sibling if there is one */
938 } while (list_empty(&dentry
->d_subdirs
));
940 dentry
= list_entry(dentry
->d_subdirs
.next
,
941 struct dentry
, d_u
.d_child
);
946 * destroy the dentries attached to a superblock on unmounting
947 * - we don't need to use dentry->d_lock because:
948 * - the superblock is detached from all mountings and open files, so the
949 * dentry trees will not be rearranged by the VFS
950 * - s_umount is write-locked, so the memory pressure shrinker will ignore
951 * any dentries belonging to this superblock that it comes across
952 * - the filesystem itself is no longer permitted to rearrange the dentries
955 void shrink_dcache_for_umount(struct super_block
*sb
)
957 struct dentry
*dentry
;
959 if (down_read_trylock(&sb
->s_umount
))
965 shrink_dcache_for_umount_subtree(dentry
);
967 while (!hlist_bl_empty(&sb
->s_anon
)) {
968 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
969 shrink_dcache_for_umount_subtree(dentry
);
974 * This tries to ascend one level of parenthood, but
975 * we can race with renaming, so we need to re-check
976 * the parenthood after dropping the lock and check
977 * that the sequence number still matches.
979 static struct dentry
*try_to_ascend(struct dentry
*old
, int locked
, unsigned seq
)
981 struct dentry
*new = old
->d_parent
;
984 spin_unlock(&old
->d_lock
);
985 spin_lock(&new->d_lock
);
988 * might go back up the wrong parent if we have had a rename
991 if (new != old
->d_parent
||
992 (old
->d_flags
& DCACHE_DISCONNECTED
) ||
993 (!locked
&& read_seqretry(&rename_lock
, seq
))) {
994 spin_unlock(&new->d_lock
);
1003 * Search for at least 1 mount point in the dentry's subdirs.
1004 * We descend to the next level whenever the d_subdirs
1005 * list is non-empty and continue searching.
1009 * have_submounts - check for mounts over a dentry
1010 * @parent: dentry to check.
1012 * Return true if the parent or its subdirectories contain
1015 int have_submounts(struct dentry
*parent
)
1017 struct dentry
*this_parent
;
1018 struct list_head
*next
;
1022 seq
= read_seqbegin(&rename_lock
);
1024 this_parent
= parent
;
1026 if (d_mountpoint(parent
))
1028 spin_lock(&this_parent
->d_lock
);
1030 next
= this_parent
->d_subdirs
.next
;
1032 while (next
!= &this_parent
->d_subdirs
) {
1033 struct list_head
*tmp
= next
;
1034 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1037 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1038 /* Have we found a mount point ? */
1039 if (d_mountpoint(dentry
)) {
1040 spin_unlock(&dentry
->d_lock
);
1041 spin_unlock(&this_parent
->d_lock
);
1044 if (!list_empty(&dentry
->d_subdirs
)) {
1045 spin_unlock(&this_parent
->d_lock
);
1046 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1047 this_parent
= dentry
;
1048 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1051 spin_unlock(&dentry
->d_lock
);
1054 * All done at this level ... ascend and resume the search.
1056 if (this_parent
!= parent
) {
1057 struct dentry
*child
= this_parent
;
1058 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1061 next
= child
->d_u
.d_child
.next
;
1064 spin_unlock(&this_parent
->d_lock
);
1065 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1068 write_sequnlock(&rename_lock
);
1069 return 0; /* No mount points found in tree */
1071 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1074 write_sequnlock(&rename_lock
);
1079 write_seqlock(&rename_lock
);
1082 EXPORT_SYMBOL(have_submounts
);
1085 * Search the dentry child list for the specified parent,
1086 * and move any unused dentries to the end of the unused
1087 * list for prune_dcache(). We descend to the next level
1088 * whenever the d_subdirs list is non-empty and continue
1091 * It returns zero iff there are no unused children,
1092 * otherwise it returns the number of children moved to
1093 * the end of the unused list. This may not be the total
1094 * number of unused children, because select_parent can
1095 * drop the lock and return early due to latency
1098 static int select_parent(struct dentry
*parent
, struct list_head
*dispose
)
1100 struct dentry
*this_parent
;
1101 struct list_head
*next
;
1106 seq
= read_seqbegin(&rename_lock
);
1108 this_parent
= parent
;
1109 spin_lock(&this_parent
->d_lock
);
1111 next
= this_parent
->d_subdirs
.next
;
1113 while (next
!= &this_parent
->d_subdirs
) {
1114 struct list_head
*tmp
= next
;
1115 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1118 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1121 * move only zero ref count dentries to the dispose list.
1123 * Those which are presently on the shrink list, being processed
1124 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1125 * loop in shrink_dcache_parent() might not make any progress
1128 if (dentry
->d_count
) {
1129 dentry_lru_del(dentry
);
1130 } else if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
)) {
1131 dentry_lru_move_list(dentry
, dispose
);
1132 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
1136 * We can return to the caller if we have found some (this
1137 * ensures forward progress). We'll be coming back to find
1140 if (found
&& need_resched()) {
1141 spin_unlock(&dentry
->d_lock
);
1146 * Descend a level if the d_subdirs list is non-empty.
1148 if (!list_empty(&dentry
->d_subdirs
)) {
1149 spin_unlock(&this_parent
->d_lock
);
1150 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1151 this_parent
= dentry
;
1152 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1156 spin_unlock(&dentry
->d_lock
);
1159 * All done at this level ... ascend and resume the search.
1161 if (this_parent
!= parent
) {
1162 struct dentry
*child
= this_parent
;
1163 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1166 next
= child
->d_u
.d_child
.next
;
1170 spin_unlock(&this_parent
->d_lock
);
1171 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1174 write_sequnlock(&rename_lock
);
1181 write_seqlock(&rename_lock
);
1186 * shrink_dcache_parent - prune dcache
1187 * @parent: parent of entries to prune
1189 * Prune the dcache to remove unused children of the parent dentry.
1191 void shrink_dcache_parent(struct dentry
* parent
)
1196 while ((found
= select_parent(parent
, &dispose
)) != 0)
1197 shrink_dentry_list(&dispose
);
1199 EXPORT_SYMBOL(shrink_dcache_parent
);
1202 * __d_alloc - allocate a dcache entry
1203 * @sb: filesystem it will belong to
1204 * @name: qstr of the name
1206 * Allocates a dentry. It returns %NULL if there is insufficient memory
1207 * available. On a success the dentry is returned. The name passed in is
1208 * copied and the copy passed in may be reused after this call.
1211 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1213 struct dentry
*dentry
;
1216 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1220 if (name
->len
> DNAME_INLINE_LEN
-1) {
1221 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1223 kmem_cache_free(dentry_cache
, dentry
);
1227 dname
= dentry
->d_iname
;
1229 dentry
->d_name
.name
= dname
;
1231 dentry
->d_name
.len
= name
->len
;
1232 dentry
->d_name
.hash
= name
->hash
;
1233 memcpy(dname
, name
->name
, name
->len
);
1234 dname
[name
->len
] = 0;
1236 dentry
->d_count
= 1;
1237 dentry
->d_flags
= 0;
1238 spin_lock_init(&dentry
->d_lock
);
1239 seqcount_init(&dentry
->d_seq
);
1240 dentry
->d_inode
= NULL
;
1241 dentry
->d_parent
= dentry
;
1243 dentry
->d_op
= NULL
;
1244 dentry
->d_fsdata
= NULL
;
1245 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1246 INIT_LIST_HEAD(&dentry
->d_lru
);
1247 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1248 INIT_LIST_HEAD(&dentry
->d_alias
);
1249 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1250 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1252 this_cpu_inc(nr_dentry
);
1258 * d_alloc - allocate a dcache entry
1259 * @parent: parent of entry to allocate
1260 * @name: qstr of the name
1262 * Allocates a dentry. It returns %NULL if there is insufficient memory
1263 * available. On a success the dentry is returned. The name passed in is
1264 * copied and the copy passed in may be reused after this call.
1266 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1268 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1272 spin_lock(&parent
->d_lock
);
1274 * don't need child lock because it is not subject
1275 * to concurrency here
1277 __dget_dlock(parent
);
1278 dentry
->d_parent
= parent
;
1279 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1280 spin_unlock(&parent
->d_lock
);
1284 EXPORT_SYMBOL(d_alloc
);
1286 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1288 struct dentry
*dentry
= __d_alloc(sb
, name
);
1290 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
1293 EXPORT_SYMBOL(d_alloc_pseudo
);
1295 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1300 q
.len
= strlen(name
);
1301 q
.hash
= full_name_hash(q
.name
, q
.len
);
1302 return d_alloc(parent
, &q
);
1304 EXPORT_SYMBOL(d_alloc_name
);
1306 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1308 WARN_ON_ONCE(dentry
->d_op
);
1309 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1311 DCACHE_OP_REVALIDATE
|
1312 DCACHE_OP_DELETE
));
1317 dentry
->d_flags
|= DCACHE_OP_HASH
;
1319 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1320 if (op
->d_revalidate
)
1321 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1323 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1325 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1328 EXPORT_SYMBOL(d_set_d_op
);
1330 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1332 spin_lock(&dentry
->d_lock
);
1334 if (unlikely(IS_AUTOMOUNT(inode
)))
1335 dentry
->d_flags
|= DCACHE_NEED_AUTOMOUNT
;
1336 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1338 dentry
->d_inode
= inode
;
1339 dentry_rcuwalk_barrier(dentry
);
1340 spin_unlock(&dentry
->d_lock
);
1341 fsnotify_d_instantiate(dentry
, inode
);
1345 * d_instantiate - fill in inode information for a dentry
1346 * @entry: dentry to complete
1347 * @inode: inode to attach to this dentry
1349 * Fill in inode information in the entry.
1351 * This turns negative dentries into productive full members
1354 * NOTE! This assumes that the inode count has been incremented
1355 * (or otherwise set) by the caller to indicate that it is now
1356 * in use by the dcache.
1359 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1361 BUG_ON(!list_empty(&entry
->d_alias
));
1363 spin_lock(&inode
->i_lock
);
1364 __d_instantiate(entry
, inode
);
1366 spin_unlock(&inode
->i_lock
);
1367 security_d_instantiate(entry
, inode
);
1369 EXPORT_SYMBOL(d_instantiate
);
1372 * d_instantiate_unique - instantiate a non-aliased dentry
1373 * @entry: dentry to instantiate
1374 * @inode: inode to attach to this dentry
1376 * Fill in inode information in the entry. On success, it returns NULL.
1377 * If an unhashed alias of "entry" already exists, then we return the
1378 * aliased dentry instead and drop one reference to inode.
1380 * Note that in order to avoid conflicts with rename() etc, the caller
1381 * had better be holding the parent directory semaphore.
1383 * This also assumes that the inode count has been incremented
1384 * (or otherwise set) by the caller to indicate that it is now
1385 * in use by the dcache.
1387 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1388 struct inode
*inode
)
1390 struct dentry
*alias
;
1391 int len
= entry
->d_name
.len
;
1392 const char *name
= entry
->d_name
.name
;
1393 unsigned int hash
= entry
->d_name
.hash
;
1396 __d_instantiate(entry
, NULL
);
1400 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1401 struct qstr
*qstr
= &alias
->d_name
;
1404 * Don't need alias->d_lock here, because aliases with
1405 * d_parent == entry->d_parent are not subject to name or
1406 * parent changes, because the parent inode i_mutex is held.
1408 if (qstr
->hash
!= hash
)
1410 if (alias
->d_parent
!= entry
->d_parent
)
1412 if (dentry_cmp(qstr
->name
, qstr
->len
, name
, len
))
1418 __d_instantiate(entry
, inode
);
1422 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1424 struct dentry
*result
;
1426 BUG_ON(!list_empty(&entry
->d_alias
));
1429 spin_lock(&inode
->i_lock
);
1430 result
= __d_instantiate_unique(entry
, inode
);
1432 spin_unlock(&inode
->i_lock
);
1435 security_d_instantiate(entry
, inode
);
1439 BUG_ON(!d_unhashed(result
));
1444 EXPORT_SYMBOL(d_instantiate_unique
);
1447 * d_alloc_root - allocate root dentry
1448 * @root_inode: inode to allocate the root for
1450 * Allocate a root ("/") dentry for the inode given. The inode is
1451 * instantiated and returned. %NULL is returned if there is insufficient
1452 * memory or the inode passed is %NULL.
1455 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1457 struct dentry
*res
= NULL
;
1460 static const struct qstr name
= { .name
= "/", .len
= 1 };
1462 res
= __d_alloc(root_inode
->i_sb
, &name
);
1464 d_instantiate(res
, root_inode
);
1468 EXPORT_SYMBOL(d_alloc_root
);
1470 struct dentry
*d_make_root(struct inode
*root_inode
)
1472 struct dentry
*res
= NULL
;
1475 static const struct qstr name
= { .name
= "/", .len
= 1 };
1477 res
= __d_alloc(root_inode
->i_sb
, &name
);
1479 d_instantiate(res
, root_inode
);
1485 EXPORT_SYMBOL(d_make_root
);
1487 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1489 struct dentry
*alias
;
1491 if (list_empty(&inode
->i_dentry
))
1493 alias
= list_first_entry(&inode
->i_dentry
, struct dentry
, d_alias
);
1499 * d_find_any_alias - find any alias for a given inode
1500 * @inode: inode to find an alias for
1502 * If any aliases exist for the given inode, take and return a
1503 * reference for one of them. If no aliases exist, return %NULL.
1505 struct dentry
*d_find_any_alias(struct inode
*inode
)
1509 spin_lock(&inode
->i_lock
);
1510 de
= __d_find_any_alias(inode
);
1511 spin_unlock(&inode
->i_lock
);
1514 EXPORT_SYMBOL(d_find_any_alias
);
1517 * d_obtain_alias - find or allocate a dentry for a given inode
1518 * @inode: inode to allocate the dentry for
1520 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1521 * similar open by handle operations. The returned dentry may be anonymous,
1522 * or may have a full name (if the inode was already in the cache).
1524 * When called on a directory inode, we must ensure that the inode only ever
1525 * has one dentry. If a dentry is found, that is returned instead of
1526 * allocating a new one.
1528 * On successful return, the reference to the inode has been transferred
1529 * to the dentry. In case of an error the reference on the inode is released.
1530 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1531 * be passed in and will be the error will be propagate to the return value,
1532 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1534 struct dentry
*d_obtain_alias(struct inode
*inode
)
1536 static const struct qstr anonstring
= { .name
= "" };
1541 return ERR_PTR(-ESTALE
);
1543 return ERR_CAST(inode
);
1545 res
= d_find_any_alias(inode
);
1549 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1551 res
= ERR_PTR(-ENOMEM
);
1555 spin_lock(&inode
->i_lock
);
1556 res
= __d_find_any_alias(inode
);
1558 spin_unlock(&inode
->i_lock
);
1563 /* attach a disconnected dentry */
1564 spin_lock(&tmp
->d_lock
);
1565 tmp
->d_inode
= inode
;
1566 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1567 list_add(&tmp
->d_alias
, &inode
->i_dentry
);
1568 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1569 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1570 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1571 spin_unlock(&tmp
->d_lock
);
1572 spin_unlock(&inode
->i_lock
);
1573 security_d_instantiate(tmp
, inode
);
1578 if (res
&& !IS_ERR(res
))
1579 security_d_instantiate(res
, inode
);
1583 EXPORT_SYMBOL(d_obtain_alias
);
1586 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1587 * @inode: the inode which may have a disconnected dentry
1588 * @dentry: a negative dentry which we want to point to the inode.
1590 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1591 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1592 * and return it, else simply d_add the inode to the dentry and return NULL.
1594 * This is needed in the lookup routine of any filesystem that is exportable
1595 * (via knfsd) so that we can build dcache paths to directories effectively.
1597 * If a dentry was found and moved, then it is returned. Otherwise NULL
1598 * is returned. This matches the expected return value of ->lookup.
1601 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1603 struct dentry
*new = NULL
;
1606 return ERR_CAST(inode
);
1608 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1609 spin_lock(&inode
->i_lock
);
1610 new = __d_find_alias(inode
, 1);
1612 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1613 spin_unlock(&inode
->i_lock
);
1614 security_d_instantiate(new, inode
);
1615 d_move(new, dentry
);
1618 /* already taking inode->i_lock, so d_add() by hand */
1619 __d_instantiate(dentry
, inode
);
1620 spin_unlock(&inode
->i_lock
);
1621 security_d_instantiate(dentry
, inode
);
1625 d_add(dentry
, inode
);
1628 EXPORT_SYMBOL(d_splice_alias
);
1631 * d_add_ci - lookup or allocate new dentry with case-exact name
1632 * @inode: the inode case-insensitive lookup has found
1633 * @dentry: the negative dentry that was passed to the parent's lookup func
1634 * @name: the case-exact name to be associated with the returned dentry
1636 * This is to avoid filling the dcache with case-insensitive names to the
1637 * same inode, only the actual correct case is stored in the dcache for
1638 * case-insensitive filesystems.
1640 * For a case-insensitive lookup match and if the the case-exact dentry
1641 * already exists in in the dcache, use it and return it.
1643 * If no entry exists with the exact case name, allocate new dentry with
1644 * the exact case, and return the spliced entry.
1646 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1650 struct dentry
*found
;
1654 * First check if a dentry matching the name already exists,
1655 * if not go ahead and create it now.
1657 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1659 new = d_alloc(dentry
->d_parent
, name
);
1665 found
= d_splice_alias(inode
, new);
1674 * If a matching dentry exists, and it's not negative use it.
1676 * Decrement the reference count to balance the iget() done
1679 if (found
->d_inode
) {
1680 if (unlikely(found
->d_inode
!= inode
)) {
1681 /* This can't happen because bad inodes are unhashed. */
1682 BUG_ON(!is_bad_inode(inode
));
1683 BUG_ON(!is_bad_inode(found
->d_inode
));
1690 * We are going to instantiate this dentry, unhash it and clear the
1691 * lookup flag so we can do that.
1693 if (unlikely(d_need_lookup(found
)))
1694 d_clear_need_lookup(found
);
1697 * Negative dentry: instantiate it unless the inode is a directory and
1698 * already has a dentry.
1700 new = d_splice_alias(inode
, found
);
1709 return ERR_PTR(error
);
1711 EXPORT_SYMBOL(d_add_ci
);
1714 * __d_lookup_rcu - search for a dentry (racy, store-free)
1715 * @parent: parent dentry
1716 * @name: qstr of name we wish to find
1717 * @seq: returns d_seq value at the point where the dentry was found
1718 * @inode: returns dentry->d_inode when the inode was found valid.
1719 * Returns: dentry, or NULL
1721 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1722 * resolution (store-free path walking) design described in
1723 * Documentation/filesystems/path-lookup.txt.
1725 * This is not to be used outside core vfs.
1727 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1728 * held, and rcu_read_lock held. The returned dentry must not be stored into
1729 * without taking d_lock and checking d_seq sequence count against @seq
1732 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1735 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1736 * the returned dentry, so long as its parent's seqlock is checked after the
1737 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1738 * is formed, giving integrity down the path walk.
1740 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
1741 const struct qstr
*name
,
1742 unsigned *seqp
, struct inode
**inode
)
1744 unsigned int len
= name
->len
;
1745 unsigned int hash
= name
->hash
;
1746 const unsigned char *str
= name
->name
;
1747 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1748 struct hlist_bl_node
*node
;
1749 struct dentry
*dentry
;
1752 * Note: There is significant duplication with __d_lookup_rcu which is
1753 * required to prevent single threaded performance regressions
1754 * especially on architectures where smp_rmb (in seqcounts) are costly.
1755 * Keep the two functions in sync.
1759 * The hash list is protected using RCU.
1761 * Carefully use d_seq when comparing a candidate dentry, to avoid
1762 * races with d_move().
1764 * It is possible that concurrent renames can mess up our list
1765 * walk here and result in missing our dentry, resulting in the
1766 * false-negative result. d_lookup() protects against concurrent
1767 * renames using rename_lock seqlock.
1769 * See Documentation/filesystems/path-lookup.txt for more details.
1771 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1777 if (dentry
->d_name
.hash
!= hash
)
1781 seq
= read_seqcount_begin(&dentry
->d_seq
);
1782 if (dentry
->d_parent
!= parent
)
1784 if (d_unhashed(dentry
))
1786 tlen
= dentry
->d_name
.len
;
1787 tname
= dentry
->d_name
.name
;
1788 i
= dentry
->d_inode
;
1791 * This seqcount check is required to ensure name and
1792 * len are loaded atomically, so as not to walk off the
1793 * edge of memory when walking. If we could load this
1794 * atomically some other way, we could drop this check.
1796 if (read_seqcount_retry(&dentry
->d_seq
, seq
))
1798 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
1799 if (parent
->d_op
->d_compare(parent
, *inode
,
1804 if (dentry_cmp(tname
, tlen
, str
, len
))
1808 * No extra seqcount check is required after the name
1809 * compare. The caller must perform a seqcount check in
1810 * order to do anything useful with the returned dentry
1821 * d_lookup - search for a dentry
1822 * @parent: parent dentry
1823 * @name: qstr of name we wish to find
1824 * Returns: dentry, or NULL
1826 * d_lookup searches the children of the parent dentry for the name in
1827 * question. If the dentry is found its reference count is incremented and the
1828 * dentry is returned. The caller must use dput to free the entry when it has
1829 * finished using it. %NULL is returned if the dentry does not exist.
1831 struct dentry
*d_lookup(struct dentry
*parent
, struct qstr
*name
)
1833 struct dentry
*dentry
;
1837 seq
= read_seqbegin(&rename_lock
);
1838 dentry
= __d_lookup(parent
, name
);
1841 } while (read_seqretry(&rename_lock
, seq
));
1844 EXPORT_SYMBOL(d_lookup
);
1847 * __d_lookup - search for a dentry (racy)
1848 * @parent: parent dentry
1849 * @name: qstr of name we wish to find
1850 * Returns: dentry, or NULL
1852 * __d_lookup is like d_lookup, however it may (rarely) return a
1853 * false-negative result due to unrelated rename activity.
1855 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1856 * however it must be used carefully, eg. with a following d_lookup in
1857 * the case of failure.
1859 * __d_lookup callers must be commented.
1861 struct dentry
*__d_lookup(struct dentry
*parent
, struct qstr
*name
)
1863 unsigned int len
= name
->len
;
1864 unsigned int hash
= name
->hash
;
1865 const unsigned char *str
= name
->name
;
1866 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1867 struct hlist_bl_node
*node
;
1868 struct dentry
*found
= NULL
;
1869 struct dentry
*dentry
;
1872 * Note: There is significant duplication with __d_lookup_rcu which is
1873 * required to prevent single threaded performance regressions
1874 * especially on architectures where smp_rmb (in seqcounts) are costly.
1875 * Keep the two functions in sync.
1879 * The hash list is protected using RCU.
1881 * Take d_lock when comparing a candidate dentry, to avoid races
1884 * It is possible that concurrent renames can mess up our list
1885 * walk here and result in missing our dentry, resulting in the
1886 * false-negative result. d_lookup() protects against concurrent
1887 * renames using rename_lock seqlock.
1889 * See Documentation/filesystems/path-lookup.txt for more details.
1893 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1897 if (dentry
->d_name
.hash
!= hash
)
1900 spin_lock(&dentry
->d_lock
);
1901 if (dentry
->d_parent
!= parent
)
1903 if (d_unhashed(dentry
))
1907 * It is safe to compare names since d_move() cannot
1908 * change the qstr (protected by d_lock).
1910 tlen
= dentry
->d_name
.len
;
1911 tname
= dentry
->d_name
.name
;
1912 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1913 if (parent
->d_op
->d_compare(parent
, parent
->d_inode
,
1914 dentry
, dentry
->d_inode
,
1918 if (dentry_cmp(tname
, tlen
, str
, len
))
1924 spin_unlock(&dentry
->d_lock
);
1927 spin_unlock(&dentry
->d_lock
);
1935 * d_hash_and_lookup - hash the qstr then search for a dentry
1936 * @dir: Directory to search in
1937 * @name: qstr of name we wish to find
1939 * On hash failure or on lookup failure NULL is returned.
1941 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1943 struct dentry
*dentry
= NULL
;
1946 * Check for a fs-specific hash function. Note that we must
1947 * calculate the standard hash first, as the d_op->d_hash()
1948 * routine may choose to leave the hash value unchanged.
1950 name
->hash
= full_name_hash(name
->name
, name
->len
);
1951 if (dir
->d_flags
& DCACHE_OP_HASH
) {
1952 if (dir
->d_op
->d_hash(dir
, dir
->d_inode
, name
) < 0)
1955 dentry
= d_lookup(dir
, name
);
1961 * d_validate - verify dentry provided from insecure source (deprecated)
1962 * @dentry: The dentry alleged to be valid child of @dparent
1963 * @dparent: The parent dentry (known to be valid)
1965 * An insecure source has sent us a dentry, here we verify it and dget() it.
1966 * This is used by ncpfs in its readdir implementation.
1967 * Zero is returned in the dentry is invalid.
1969 * This function is slow for big directories, and deprecated, do not use it.
1971 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1973 struct dentry
*child
;
1975 spin_lock(&dparent
->d_lock
);
1976 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
1977 if (dentry
== child
) {
1978 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1979 __dget_dlock(dentry
);
1980 spin_unlock(&dentry
->d_lock
);
1981 spin_unlock(&dparent
->d_lock
);
1985 spin_unlock(&dparent
->d_lock
);
1989 EXPORT_SYMBOL(d_validate
);
1992 * When a file is deleted, we have two options:
1993 * - turn this dentry into a negative dentry
1994 * - unhash this dentry and free it.
1996 * Usually, we want to just turn this into
1997 * a negative dentry, but if anybody else is
1998 * currently using the dentry or the inode
1999 * we can't do that and we fall back on removing
2000 * it from the hash queues and waiting for
2001 * it to be deleted later when it has no users
2005 * d_delete - delete a dentry
2006 * @dentry: The dentry to delete
2008 * Turn the dentry into a negative dentry if possible, otherwise
2009 * remove it from the hash queues so it can be deleted later
2012 void d_delete(struct dentry
* dentry
)
2014 struct inode
*inode
;
2017 * Are we the only user?
2020 spin_lock(&dentry
->d_lock
);
2021 inode
= dentry
->d_inode
;
2022 isdir
= S_ISDIR(inode
->i_mode
);
2023 if (dentry
->d_count
== 1) {
2024 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
2025 spin_unlock(&dentry
->d_lock
);
2029 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2030 dentry_unlink_inode(dentry
);
2031 fsnotify_nameremove(dentry
, isdir
);
2035 if (!d_unhashed(dentry
))
2038 spin_unlock(&dentry
->d_lock
);
2040 fsnotify_nameremove(dentry
, isdir
);
2042 EXPORT_SYMBOL(d_delete
);
2044 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2046 BUG_ON(!d_unhashed(entry
));
2048 entry
->d_flags
|= DCACHE_RCUACCESS
;
2049 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2053 static void _d_rehash(struct dentry
* entry
)
2055 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2059 * d_rehash - add an entry back to the hash
2060 * @entry: dentry to add to the hash
2062 * Adds a dentry to the hash according to its name.
2065 void d_rehash(struct dentry
* entry
)
2067 spin_lock(&entry
->d_lock
);
2069 spin_unlock(&entry
->d_lock
);
2071 EXPORT_SYMBOL(d_rehash
);
2074 * dentry_update_name_case - update case insensitive dentry with a new name
2075 * @dentry: dentry to be updated
2078 * Update a case insensitive dentry with new case of name.
2080 * dentry must have been returned by d_lookup with name @name. Old and new
2081 * name lengths must match (ie. no d_compare which allows mismatched name
2084 * Parent inode i_mutex must be held over d_lookup and into this call (to
2085 * keep renames and concurrent inserts, and readdir(2) away).
2087 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2089 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2090 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2092 spin_lock(&dentry
->d_lock
);
2093 write_seqcount_begin(&dentry
->d_seq
);
2094 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2095 write_seqcount_end(&dentry
->d_seq
);
2096 spin_unlock(&dentry
->d_lock
);
2098 EXPORT_SYMBOL(dentry_update_name_case
);
2100 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2102 if (dname_external(target
)) {
2103 if (dname_external(dentry
)) {
2105 * Both external: swap the pointers
2107 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2110 * dentry:internal, target:external. Steal target's
2111 * storage and make target internal.
2113 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2114 dentry
->d_name
.len
+ 1);
2115 dentry
->d_name
.name
= target
->d_name
.name
;
2116 target
->d_name
.name
= target
->d_iname
;
2119 if (dname_external(dentry
)) {
2121 * dentry:external, target:internal. Give dentry's
2122 * storage to target and make dentry internal
2124 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2125 target
->d_name
.len
+ 1);
2126 target
->d_name
.name
= dentry
->d_name
.name
;
2127 dentry
->d_name
.name
= dentry
->d_iname
;
2130 * Both are internal. Just copy target to dentry
2132 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2133 target
->d_name
.len
+ 1);
2134 dentry
->d_name
.len
= target
->d_name
.len
;
2138 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2141 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2144 * XXXX: do we really need to take target->d_lock?
2146 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2147 spin_lock(&target
->d_parent
->d_lock
);
2149 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2150 spin_lock(&dentry
->d_parent
->d_lock
);
2151 spin_lock_nested(&target
->d_parent
->d_lock
,
2152 DENTRY_D_LOCK_NESTED
);
2154 spin_lock(&target
->d_parent
->d_lock
);
2155 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2156 DENTRY_D_LOCK_NESTED
);
2159 if (target
< dentry
) {
2160 spin_lock_nested(&target
->d_lock
, 2);
2161 spin_lock_nested(&dentry
->d_lock
, 3);
2163 spin_lock_nested(&dentry
->d_lock
, 2);
2164 spin_lock_nested(&target
->d_lock
, 3);
2168 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2169 struct dentry
*target
)
2171 if (target
->d_parent
!= dentry
->d_parent
)
2172 spin_unlock(&dentry
->d_parent
->d_lock
);
2173 if (target
->d_parent
!= target
)
2174 spin_unlock(&target
->d_parent
->d_lock
);
2178 * When switching names, the actual string doesn't strictly have to
2179 * be preserved in the target - because we're dropping the target
2180 * anyway. As such, we can just do a simple memcpy() to copy over
2181 * the new name before we switch.
2183 * Note that we have to be a lot more careful about getting the hash
2184 * switched - we have to switch the hash value properly even if it
2185 * then no longer matches the actual (corrupted) string of the target.
2186 * The hash value has to match the hash queue that the dentry is on..
2189 * __d_move - move a dentry
2190 * @dentry: entry to move
2191 * @target: new dentry
2193 * Update the dcache to reflect the move of a file name. Negative
2194 * dcache entries should not be moved in this way. Caller must hold
2195 * rename_lock, the i_mutex of the source and target directories,
2196 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2198 static void __d_move(struct dentry
* dentry
, struct dentry
* target
)
2200 if (!dentry
->d_inode
)
2201 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2203 BUG_ON(d_ancestor(dentry
, target
));
2204 BUG_ON(d_ancestor(target
, dentry
));
2206 dentry_lock_for_move(dentry
, target
);
2208 write_seqcount_begin(&dentry
->d_seq
);
2209 write_seqcount_begin(&target
->d_seq
);
2211 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2214 * Move the dentry to the target hash queue. Don't bother checking
2215 * for the same hash queue because of how unlikely it is.
2218 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2220 /* Unhash the target: dput() will then get rid of it */
2223 list_del(&dentry
->d_u
.d_child
);
2224 list_del(&target
->d_u
.d_child
);
2226 /* Switch the names.. */
2227 switch_names(dentry
, target
);
2228 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2230 /* ... and switch the parents */
2231 if (IS_ROOT(dentry
)) {
2232 dentry
->d_parent
= target
->d_parent
;
2233 target
->d_parent
= target
;
2234 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2236 swap(dentry
->d_parent
, target
->d_parent
);
2238 /* And add them back to the (new) parent lists */
2239 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2242 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2244 write_seqcount_end(&target
->d_seq
);
2245 write_seqcount_end(&dentry
->d_seq
);
2247 dentry_unlock_parents_for_move(dentry
, target
);
2248 spin_unlock(&target
->d_lock
);
2249 fsnotify_d_move(dentry
);
2250 spin_unlock(&dentry
->d_lock
);
2254 * d_move - move a dentry
2255 * @dentry: entry to move
2256 * @target: new dentry
2258 * Update the dcache to reflect the move of a file name. Negative
2259 * dcache entries should not be moved in this way. See the locking
2260 * requirements for __d_move.
2262 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2264 write_seqlock(&rename_lock
);
2265 __d_move(dentry
, target
);
2266 write_sequnlock(&rename_lock
);
2268 EXPORT_SYMBOL(d_move
);
2271 * d_ancestor - search for an ancestor
2272 * @p1: ancestor dentry
2275 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2276 * an ancestor of p2, else NULL.
2278 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2282 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2283 if (p
->d_parent
== p1
)
2290 * This helper attempts to cope with remotely renamed directories
2292 * It assumes that the caller is already holding
2293 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2295 * Note: If ever the locking in lock_rename() changes, then please
2296 * remember to update this too...
2298 static struct dentry
*__d_unalias(struct inode
*inode
,
2299 struct dentry
*dentry
, struct dentry
*alias
)
2301 struct mutex
*m1
= NULL
, *m2
= NULL
;
2304 /* If alias and dentry share a parent, then no extra locks required */
2305 if (alias
->d_parent
== dentry
->d_parent
)
2308 /* See lock_rename() */
2309 ret
= ERR_PTR(-EBUSY
);
2310 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2312 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2313 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2315 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2317 __d_move(alias
, dentry
);
2320 spin_unlock(&inode
->i_lock
);
2329 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2330 * named dentry in place of the dentry to be replaced.
2331 * returns with anon->d_lock held!
2333 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2335 struct dentry
*dparent
, *aparent
;
2337 dentry_lock_for_move(anon
, dentry
);
2339 write_seqcount_begin(&dentry
->d_seq
);
2340 write_seqcount_begin(&anon
->d_seq
);
2342 dparent
= dentry
->d_parent
;
2343 aparent
= anon
->d_parent
;
2345 switch_names(dentry
, anon
);
2346 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2348 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
2349 list_del(&dentry
->d_u
.d_child
);
2350 if (!IS_ROOT(dentry
))
2351 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2353 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
2355 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
2356 list_del(&anon
->d_u
.d_child
);
2358 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
2360 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
2362 write_seqcount_end(&dentry
->d_seq
);
2363 write_seqcount_end(&anon
->d_seq
);
2365 dentry_unlock_parents_for_move(anon
, dentry
);
2366 spin_unlock(&dentry
->d_lock
);
2368 /* anon->d_lock still locked, returns locked */
2369 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
2373 * d_materialise_unique - introduce an inode into the tree
2374 * @dentry: candidate dentry
2375 * @inode: inode to bind to the dentry, to which aliases may be attached
2377 * Introduces an dentry into the tree, substituting an extant disconnected
2378 * root directory alias in its place if there is one. Caller must hold the
2379 * i_mutex of the parent directory.
2381 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2383 struct dentry
*actual
;
2385 BUG_ON(!d_unhashed(dentry
));
2389 __d_instantiate(dentry
, NULL
);
2394 spin_lock(&inode
->i_lock
);
2396 if (S_ISDIR(inode
->i_mode
)) {
2397 struct dentry
*alias
;
2399 /* Does an aliased dentry already exist? */
2400 alias
= __d_find_alias(inode
, 0);
2403 write_seqlock(&rename_lock
);
2405 if (d_ancestor(alias
, dentry
)) {
2406 /* Check for loops */
2407 actual
= ERR_PTR(-ELOOP
);
2408 } else if (IS_ROOT(alias
)) {
2409 /* Is this an anonymous mountpoint that we
2410 * could splice into our tree? */
2411 __d_materialise_dentry(dentry
, alias
);
2412 write_sequnlock(&rename_lock
);
2416 /* Nope, but we must(!) avoid directory
2418 actual
= __d_unalias(inode
, dentry
, alias
);
2420 write_sequnlock(&rename_lock
);
2421 if (IS_ERR(actual
)) {
2422 if (PTR_ERR(actual
) == -ELOOP
)
2423 pr_warn_ratelimited(
2424 "VFS: Lookup of '%s' in %s %s"
2425 " would have caused loop\n",
2426 dentry
->d_name
.name
,
2427 inode
->i_sb
->s_type
->name
,
2435 /* Add a unique reference */
2436 actual
= __d_instantiate_unique(dentry
, inode
);
2440 BUG_ON(!d_unhashed(actual
));
2442 spin_lock(&actual
->d_lock
);
2445 spin_unlock(&actual
->d_lock
);
2446 spin_unlock(&inode
->i_lock
);
2448 if (actual
== dentry
) {
2449 security_d_instantiate(dentry
, inode
);
2456 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2458 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2462 return -ENAMETOOLONG
;
2464 memcpy(*buffer
, str
, namelen
);
2468 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2470 return prepend(buffer
, buflen
, name
->name
, name
->len
);
2474 * prepend_path - Prepend path string to a buffer
2475 * @path: the dentry/vfsmount to report
2476 * @root: root vfsmnt/dentry
2477 * @buffer: pointer to the end of the buffer
2478 * @buflen: pointer to buffer length
2480 * Caller holds the rename_lock.
2482 static int prepend_path(const struct path
*path
,
2483 const struct path
*root
,
2484 char **buffer
, int *buflen
)
2486 struct dentry
*dentry
= path
->dentry
;
2487 struct vfsmount
*vfsmnt
= path
->mnt
;
2488 struct mount
*mnt
= real_mount(vfsmnt
);
2492 br_read_lock(vfsmount_lock
);
2493 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2494 struct dentry
* parent
;
2496 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2498 if (!mnt_has_parent(mnt
))
2500 dentry
= mnt
->mnt_mountpoint
;
2501 mnt
= mnt
->mnt_parent
;
2505 parent
= dentry
->d_parent
;
2507 spin_lock(&dentry
->d_lock
);
2508 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
2509 spin_unlock(&dentry
->d_lock
);
2511 error
= prepend(buffer
, buflen
, "/", 1);
2519 if (!error
&& !slash
)
2520 error
= prepend(buffer
, buflen
, "/", 1);
2523 br_read_unlock(vfsmount_lock
);
2528 * Filesystems needing to implement special "root names"
2529 * should do so with ->d_dname()
2531 if (IS_ROOT(dentry
) &&
2532 (dentry
->d_name
.len
!= 1 || dentry
->d_name
.name
[0] != '/')) {
2533 WARN(1, "Root dentry has weird name <%.*s>\n",
2534 (int) dentry
->d_name
.len
, dentry
->d_name
.name
);
2537 error
= prepend(buffer
, buflen
, "/", 1);
2539 error
= real_mount(vfsmnt
)->mnt_ns
? 1 : 2;
2544 * __d_path - return the path of a dentry
2545 * @path: the dentry/vfsmount to report
2546 * @root: root vfsmnt/dentry
2547 * @buf: buffer to return value in
2548 * @buflen: buffer length
2550 * Convert a dentry into an ASCII path name.
2552 * Returns a pointer into the buffer or an error code if the
2553 * path was too long.
2555 * "buflen" should be positive.
2557 * If the path is not reachable from the supplied root, return %NULL.
2559 char *__d_path(const struct path
*path
,
2560 const struct path
*root
,
2561 char *buf
, int buflen
)
2563 char *res
= buf
+ buflen
;
2566 prepend(&res
, &buflen
, "\0", 1);
2567 write_seqlock(&rename_lock
);
2568 error
= prepend_path(path
, root
, &res
, &buflen
);
2569 write_sequnlock(&rename_lock
);
2572 return ERR_PTR(error
);
2578 char *d_absolute_path(const struct path
*path
,
2579 char *buf
, int buflen
)
2581 struct path root
= {};
2582 char *res
= buf
+ buflen
;
2585 prepend(&res
, &buflen
, "\0", 1);
2586 write_seqlock(&rename_lock
);
2587 error
= prepend_path(path
, &root
, &res
, &buflen
);
2588 write_sequnlock(&rename_lock
);
2593 return ERR_PTR(error
);
2598 * same as __d_path but appends "(deleted)" for unlinked files.
2600 static int path_with_deleted(const struct path
*path
,
2601 const struct path
*root
,
2602 char **buf
, int *buflen
)
2604 prepend(buf
, buflen
, "\0", 1);
2605 if (d_unlinked(path
->dentry
)) {
2606 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2611 return prepend_path(path
, root
, buf
, buflen
);
2614 static int prepend_unreachable(char **buffer
, int *buflen
)
2616 return prepend(buffer
, buflen
, "(unreachable)", 13);
2620 * d_path - return the path of a dentry
2621 * @path: path to report
2622 * @buf: buffer to return value in
2623 * @buflen: buffer length
2625 * Convert a dentry into an ASCII path name. If the entry has been deleted
2626 * the string " (deleted)" is appended. Note that this is ambiguous.
2628 * Returns a pointer into the buffer or an error code if the path was
2629 * too long. Note: Callers should use the returned pointer, not the passed
2630 * in buffer, to use the name! The implementation often starts at an offset
2631 * into the buffer, and may leave 0 bytes at the start.
2633 * "buflen" should be positive.
2635 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2637 char *res
= buf
+ buflen
;
2642 * We have various synthetic filesystems that never get mounted. On
2643 * these filesystems dentries are never used for lookup purposes, and
2644 * thus don't need to be hashed. They also don't need a name until a
2645 * user wants to identify the object in /proc/pid/fd/. The little hack
2646 * below allows us to generate a name for these objects on demand:
2648 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2649 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2651 get_fs_root(current
->fs
, &root
);
2652 write_seqlock(&rename_lock
);
2653 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
2655 res
= ERR_PTR(error
);
2656 write_sequnlock(&rename_lock
);
2660 EXPORT_SYMBOL(d_path
);
2663 * d_path_with_unreachable - return the path of a dentry
2664 * @path: path to report
2665 * @buf: buffer to return value in
2666 * @buflen: buffer length
2668 * The difference from d_path() is that this prepends "(unreachable)"
2669 * to paths which are unreachable from the current process' root.
2671 char *d_path_with_unreachable(const struct path
*path
, char *buf
, int buflen
)
2673 char *res
= buf
+ buflen
;
2677 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2678 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2680 get_fs_root(current
->fs
, &root
);
2681 write_seqlock(&rename_lock
);
2682 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
2684 error
= prepend_unreachable(&res
, &buflen
);
2685 write_sequnlock(&rename_lock
);
2688 res
= ERR_PTR(error
);
2694 * Helper function for dentry_operations.d_dname() members
2696 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2697 const char *fmt
, ...)
2703 va_start(args
, fmt
);
2704 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2707 if (sz
> sizeof(temp
) || sz
> buflen
)
2708 return ERR_PTR(-ENAMETOOLONG
);
2710 buffer
+= buflen
- sz
;
2711 return memcpy(buffer
, temp
, sz
);
2715 * Write full pathname from the root of the filesystem into the buffer.
2717 static char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2719 char *end
= buf
+ buflen
;
2722 prepend(&end
, &buflen
, "\0", 1);
2729 while (!IS_ROOT(dentry
)) {
2730 struct dentry
*parent
= dentry
->d_parent
;
2734 spin_lock(&dentry
->d_lock
);
2735 error
= prepend_name(&end
, &buflen
, &dentry
->d_name
);
2736 spin_unlock(&dentry
->d_lock
);
2737 if (error
!= 0 || prepend(&end
, &buflen
, "/", 1) != 0)
2745 return ERR_PTR(-ENAMETOOLONG
);
2748 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
2752 write_seqlock(&rename_lock
);
2753 retval
= __dentry_path(dentry
, buf
, buflen
);
2754 write_sequnlock(&rename_lock
);
2758 EXPORT_SYMBOL(dentry_path_raw
);
2760 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2765 write_seqlock(&rename_lock
);
2766 if (d_unlinked(dentry
)) {
2768 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2772 retval
= __dentry_path(dentry
, buf
, buflen
);
2773 write_sequnlock(&rename_lock
);
2774 if (!IS_ERR(retval
) && p
)
2775 *p
= '/'; /* restore '/' overriden with '\0' */
2778 return ERR_PTR(-ENAMETOOLONG
);
2782 * NOTE! The user-level library version returns a
2783 * character pointer. The kernel system call just
2784 * returns the length of the buffer filled (which
2785 * includes the ending '\0' character), or a negative
2786 * error value. So libc would do something like
2788 * char *getcwd(char * buf, size_t size)
2792 * retval = sys_getcwd(buf, size);
2799 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2802 struct path pwd
, root
;
2803 char *page
= (char *) __get_free_page(GFP_USER
);
2808 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2811 write_seqlock(&rename_lock
);
2812 if (!d_unlinked(pwd
.dentry
)) {
2814 char *cwd
= page
+ PAGE_SIZE
;
2815 int buflen
= PAGE_SIZE
;
2817 prepend(&cwd
, &buflen
, "\0", 1);
2818 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
2819 write_sequnlock(&rename_lock
);
2824 /* Unreachable from current root */
2826 error
= prepend_unreachable(&cwd
, &buflen
);
2832 len
= PAGE_SIZE
+ page
- cwd
;
2835 if (copy_to_user(buf
, cwd
, len
))
2839 write_sequnlock(&rename_lock
);
2845 free_page((unsigned long) page
);
2850 * Test whether new_dentry is a subdirectory of old_dentry.
2852 * Trivially implemented using the dcache structure
2856 * is_subdir - is new dentry a subdirectory of old_dentry
2857 * @new_dentry: new dentry
2858 * @old_dentry: old dentry
2860 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2861 * Returns 0 otherwise.
2862 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2865 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2870 if (new_dentry
== old_dentry
)
2874 /* for restarting inner loop in case of seq retry */
2875 seq
= read_seqbegin(&rename_lock
);
2877 * Need rcu_readlock to protect against the d_parent trashing
2881 if (d_ancestor(old_dentry
, new_dentry
))
2886 } while (read_seqretry(&rename_lock
, seq
));
2891 void d_genocide(struct dentry
*root
)
2893 struct dentry
*this_parent
;
2894 struct list_head
*next
;
2898 seq
= read_seqbegin(&rename_lock
);
2901 spin_lock(&this_parent
->d_lock
);
2903 next
= this_parent
->d_subdirs
.next
;
2905 while (next
!= &this_parent
->d_subdirs
) {
2906 struct list_head
*tmp
= next
;
2907 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2910 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2911 if (d_unhashed(dentry
) || !dentry
->d_inode
) {
2912 spin_unlock(&dentry
->d_lock
);
2915 if (!list_empty(&dentry
->d_subdirs
)) {
2916 spin_unlock(&this_parent
->d_lock
);
2917 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
2918 this_parent
= dentry
;
2919 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
2922 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
2923 dentry
->d_flags
|= DCACHE_GENOCIDE
;
2926 spin_unlock(&dentry
->d_lock
);
2928 if (this_parent
!= root
) {
2929 struct dentry
*child
= this_parent
;
2930 if (!(this_parent
->d_flags
& DCACHE_GENOCIDE
)) {
2931 this_parent
->d_flags
|= DCACHE_GENOCIDE
;
2932 this_parent
->d_count
--;
2934 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
2937 next
= child
->d_u
.d_child
.next
;
2940 spin_unlock(&this_parent
->d_lock
);
2941 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2944 write_sequnlock(&rename_lock
);
2949 write_seqlock(&rename_lock
);
2954 * find_inode_number - check for dentry with name
2955 * @dir: directory to check
2956 * @name: Name to find.
2958 * Check whether a dentry already exists for the given name,
2959 * and return the inode number if it has an inode. Otherwise
2962 * This routine is used to post-process directory listings for
2963 * filesystems using synthetic inode numbers, and is necessary
2964 * to keep getcwd() working.
2967 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2969 struct dentry
* dentry
;
2972 dentry
= d_hash_and_lookup(dir
, name
);
2974 if (dentry
->d_inode
)
2975 ino
= dentry
->d_inode
->i_ino
;
2980 EXPORT_SYMBOL(find_inode_number
);
2982 static __initdata
unsigned long dhash_entries
;
2983 static int __init
set_dhash_entries(char *str
)
2987 dhash_entries
= simple_strtoul(str
, &str
, 0);
2990 __setup("dhash_entries=", set_dhash_entries
);
2992 static void __init
dcache_init_early(void)
2996 /* If hashes are distributed across NUMA nodes, defer
2997 * hash allocation until vmalloc space is available.
3003 alloc_large_system_hash("Dentry cache",
3004 sizeof(struct hlist_bl_head
),
3012 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3013 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3016 static void __init
dcache_init(void)
3021 * A constructor could be added for stable state like the lists,
3022 * but it is probably not worth it because of the cache nature
3025 dentry_cache
= KMEM_CACHE(dentry
,
3026 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3028 /* Hash may have been set up in dcache_init_early */
3033 alloc_large_system_hash("Dentry cache",
3034 sizeof(struct hlist_bl_head
),
3042 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3043 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3046 /* SLAB cache for __getname() consumers */
3047 struct kmem_cache
*names_cachep __read_mostly
;
3048 EXPORT_SYMBOL(names_cachep
);
3050 EXPORT_SYMBOL(d_genocide
);
3052 void __init
vfs_caches_init_early(void)
3054 dcache_init_early();
3058 void __init
vfs_caches_init(unsigned long mempages
)
3060 unsigned long reserve
;
3062 /* Base hash sizes on available memory, with a reserve equal to
3063 150% of current kernel size */
3065 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3066 mempages
-= reserve
;
3068 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3069 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3073 files_init(mempages
);