Use dentry_path() to create full path to inode object
[pohmelfs.git] / fs / ext3 / inode.c
blob2d0afeca0b479a9e5f3c80f6a98511a47643235a
1 /*
2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/fs.h>
26 #include <linux/time.h>
27 #include <linux/ext3_jbd.h>
28 #include <linux/jbd.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/mpage.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include <linux/fiemap.h>
39 #include <linux/namei.h>
40 #include <trace/events/ext3.h>
41 #include "xattr.h"
42 #include "acl.h"
44 static int ext3_writepage_trans_blocks(struct inode *inode);
45 static int ext3_block_truncate_page(struct inode *inode, loff_t from);
48 * Test whether an inode is a fast symlink.
50 static int ext3_inode_is_fast_symlink(struct inode *inode)
52 int ea_blocks = EXT3_I(inode)->i_file_acl ?
53 (inode->i_sb->s_blocksize >> 9) : 0;
55 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
59 * The ext3 forget function must perform a revoke if we are freeing data
60 * which has been journaled. Metadata (eg. indirect blocks) must be
61 * revoked in all cases.
63 * "bh" may be NULL: a metadata block may have been freed from memory
64 * but there may still be a record of it in the journal, and that record
65 * still needs to be revoked.
67 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
68 struct buffer_head *bh, ext3_fsblk_t blocknr)
70 int err;
72 might_sleep();
74 trace_ext3_forget(inode, is_metadata, blocknr);
75 BUFFER_TRACE(bh, "enter");
77 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
78 "data mode %lx\n",
79 bh, is_metadata, inode->i_mode,
80 test_opt(inode->i_sb, DATA_FLAGS));
82 /* Never use the revoke function if we are doing full data
83 * journaling: there is no need to, and a V1 superblock won't
84 * support it. Otherwise, only skip the revoke on un-journaled
85 * data blocks. */
87 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
88 (!is_metadata && !ext3_should_journal_data(inode))) {
89 if (bh) {
90 BUFFER_TRACE(bh, "call journal_forget");
91 return ext3_journal_forget(handle, bh);
93 return 0;
97 * data!=journal && (is_metadata || should_journal_data(inode))
99 BUFFER_TRACE(bh, "call ext3_journal_revoke");
100 err = ext3_journal_revoke(handle, blocknr, bh);
101 if (err)
102 ext3_abort(inode->i_sb, __func__,
103 "error %d when attempting revoke", err);
104 BUFFER_TRACE(bh, "exit");
105 return err;
109 * Work out how many blocks we need to proceed with the next chunk of a
110 * truncate transaction.
112 static unsigned long blocks_for_truncate(struct inode *inode)
114 unsigned long needed;
116 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
118 /* Give ourselves just enough room to cope with inodes in which
119 * i_blocks is corrupt: we've seen disk corruptions in the past
120 * which resulted in random data in an inode which looked enough
121 * like a regular file for ext3 to try to delete it. Things
122 * will go a bit crazy if that happens, but at least we should
123 * try not to panic the whole kernel. */
124 if (needed < 2)
125 needed = 2;
127 /* But we need to bound the transaction so we don't overflow the
128 * journal. */
129 if (needed > EXT3_MAX_TRANS_DATA)
130 needed = EXT3_MAX_TRANS_DATA;
132 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
136 * Truncate transactions can be complex and absolutely huge. So we need to
137 * be able to restart the transaction at a conventient checkpoint to make
138 * sure we don't overflow the journal.
140 * start_transaction gets us a new handle for a truncate transaction,
141 * and extend_transaction tries to extend the existing one a bit. If
142 * extend fails, we need to propagate the failure up and restart the
143 * transaction in the top-level truncate loop. --sct
145 static handle_t *start_transaction(struct inode *inode)
147 handle_t *result;
149 result = ext3_journal_start(inode, blocks_for_truncate(inode));
150 if (!IS_ERR(result))
151 return result;
153 ext3_std_error(inode->i_sb, PTR_ERR(result));
154 return result;
158 * Try to extend this transaction for the purposes of truncation.
160 * Returns 0 if we managed to create more room. If we can't create more
161 * room, and the transaction must be restarted we return 1.
163 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
165 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
166 return 0;
167 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
168 return 0;
169 return 1;
173 * Restart the transaction associated with *handle. This does a commit,
174 * so before we call here everything must be consistently dirtied against
175 * this transaction.
177 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
179 int ret;
181 jbd_debug(2, "restarting handle %p\n", handle);
183 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
184 * At this moment, get_block can be called only for blocks inside
185 * i_size since page cache has been already dropped and writes are
186 * blocked by i_mutex. So we can safely drop the truncate_mutex.
188 mutex_unlock(&EXT3_I(inode)->truncate_mutex);
189 ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
190 mutex_lock(&EXT3_I(inode)->truncate_mutex);
191 return ret;
195 * Called at inode eviction from icache
197 void ext3_evict_inode (struct inode *inode)
199 struct ext3_inode_info *ei = EXT3_I(inode);
200 struct ext3_block_alloc_info *rsv;
201 handle_t *handle;
202 int want_delete = 0;
204 trace_ext3_evict_inode(inode);
205 if (!inode->i_nlink && !is_bad_inode(inode)) {
206 dquot_initialize(inode);
207 want_delete = 1;
211 * When journalling data dirty buffers are tracked only in the journal.
212 * So although mm thinks everything is clean and ready for reaping the
213 * inode might still have some pages to write in the running
214 * transaction or waiting to be checkpointed. Thus calling
215 * journal_invalidatepage() (via truncate_inode_pages()) to discard
216 * these buffers can cause data loss. Also even if we did not discard
217 * these buffers, we would have no way to find them after the inode
218 * is reaped and thus user could see stale data if he tries to read
219 * them before the transaction is checkpointed. So be careful and
220 * force everything to disk here... We use ei->i_datasync_tid to
221 * store the newest transaction containing inode's data.
223 * Note that directories do not have this problem because they don't
224 * use page cache.
226 * The s_journal check handles the case when ext3_get_journal() fails
227 * and puts the journal inode.
229 if (inode->i_nlink && ext3_should_journal_data(inode) &&
230 EXT3_SB(inode->i_sb)->s_journal &&
231 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
232 tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
233 journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
235 log_start_commit(journal, commit_tid);
236 log_wait_commit(journal, commit_tid);
237 filemap_write_and_wait(&inode->i_data);
239 truncate_inode_pages(&inode->i_data, 0);
241 ext3_discard_reservation(inode);
242 rsv = ei->i_block_alloc_info;
243 ei->i_block_alloc_info = NULL;
244 if (unlikely(rsv))
245 kfree(rsv);
247 if (!want_delete)
248 goto no_delete;
250 handle = start_transaction(inode);
251 if (IS_ERR(handle)) {
253 * If we're going to skip the normal cleanup, we still need to
254 * make sure that the in-core orphan linked list is properly
255 * cleaned up.
257 ext3_orphan_del(NULL, inode);
258 goto no_delete;
261 if (IS_SYNC(inode))
262 handle->h_sync = 1;
263 inode->i_size = 0;
264 if (inode->i_blocks)
265 ext3_truncate(inode);
267 * Kill off the orphan record created when the inode lost the last
268 * link. Note that ext3_orphan_del() has to be able to cope with the
269 * deletion of a non-existent orphan - ext3_truncate() could
270 * have removed the record.
272 ext3_orphan_del(handle, inode);
273 ei->i_dtime = get_seconds();
276 * One subtle ordering requirement: if anything has gone wrong
277 * (transaction abort, IO errors, whatever), then we can still
278 * do these next steps (the fs will already have been marked as
279 * having errors), but we can't free the inode if the mark_dirty
280 * fails.
282 if (ext3_mark_inode_dirty(handle, inode)) {
283 /* If that failed, just dquot_drop() and be done with that */
284 dquot_drop(inode);
285 end_writeback(inode);
286 } else {
287 ext3_xattr_delete_inode(handle, inode);
288 dquot_free_inode(inode);
289 dquot_drop(inode);
290 end_writeback(inode);
291 ext3_free_inode(handle, inode);
293 ext3_journal_stop(handle);
294 return;
295 no_delete:
296 end_writeback(inode);
297 dquot_drop(inode);
300 typedef struct {
301 __le32 *p;
302 __le32 key;
303 struct buffer_head *bh;
304 } Indirect;
306 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
308 p->key = *(p->p = v);
309 p->bh = bh;
312 static int verify_chain(Indirect *from, Indirect *to)
314 while (from <= to && from->key == *from->p)
315 from++;
316 return (from > to);
320 * ext3_block_to_path - parse the block number into array of offsets
321 * @inode: inode in question (we are only interested in its superblock)
322 * @i_block: block number to be parsed
323 * @offsets: array to store the offsets in
324 * @boundary: set this non-zero if the referred-to block is likely to be
325 * followed (on disk) by an indirect block.
327 * To store the locations of file's data ext3 uses a data structure common
328 * for UNIX filesystems - tree of pointers anchored in the inode, with
329 * data blocks at leaves and indirect blocks in intermediate nodes.
330 * This function translates the block number into path in that tree -
331 * return value is the path length and @offsets[n] is the offset of
332 * pointer to (n+1)th node in the nth one. If @block is out of range
333 * (negative or too large) warning is printed and zero returned.
335 * Note: function doesn't find node addresses, so no IO is needed. All
336 * we need to know is the capacity of indirect blocks (taken from the
337 * inode->i_sb).
341 * Portability note: the last comparison (check that we fit into triple
342 * indirect block) is spelled differently, because otherwise on an
343 * architecture with 32-bit longs and 8Kb pages we might get into trouble
344 * if our filesystem had 8Kb blocks. We might use long long, but that would
345 * kill us on x86. Oh, well, at least the sign propagation does not matter -
346 * i_block would have to be negative in the very beginning, so we would not
347 * get there at all.
350 static int ext3_block_to_path(struct inode *inode,
351 long i_block, int offsets[4], int *boundary)
353 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
354 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
355 const long direct_blocks = EXT3_NDIR_BLOCKS,
356 indirect_blocks = ptrs,
357 double_blocks = (1 << (ptrs_bits * 2));
358 int n = 0;
359 int final = 0;
361 if (i_block < 0) {
362 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
363 } else if (i_block < direct_blocks) {
364 offsets[n++] = i_block;
365 final = direct_blocks;
366 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
367 offsets[n++] = EXT3_IND_BLOCK;
368 offsets[n++] = i_block;
369 final = ptrs;
370 } else if ((i_block -= indirect_blocks) < double_blocks) {
371 offsets[n++] = EXT3_DIND_BLOCK;
372 offsets[n++] = i_block >> ptrs_bits;
373 offsets[n++] = i_block & (ptrs - 1);
374 final = ptrs;
375 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
376 offsets[n++] = EXT3_TIND_BLOCK;
377 offsets[n++] = i_block >> (ptrs_bits * 2);
378 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
379 offsets[n++] = i_block & (ptrs - 1);
380 final = ptrs;
381 } else {
382 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
384 if (boundary)
385 *boundary = final - 1 - (i_block & (ptrs - 1));
386 return n;
390 * ext3_get_branch - read the chain of indirect blocks leading to data
391 * @inode: inode in question
392 * @depth: depth of the chain (1 - direct pointer, etc.)
393 * @offsets: offsets of pointers in inode/indirect blocks
394 * @chain: place to store the result
395 * @err: here we store the error value
397 * Function fills the array of triples <key, p, bh> and returns %NULL
398 * if everything went OK or the pointer to the last filled triple
399 * (incomplete one) otherwise. Upon the return chain[i].key contains
400 * the number of (i+1)-th block in the chain (as it is stored in memory,
401 * i.e. little-endian 32-bit), chain[i].p contains the address of that
402 * number (it points into struct inode for i==0 and into the bh->b_data
403 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
404 * block for i>0 and NULL for i==0. In other words, it holds the block
405 * numbers of the chain, addresses they were taken from (and where we can
406 * verify that chain did not change) and buffer_heads hosting these
407 * numbers.
409 * Function stops when it stumbles upon zero pointer (absent block)
410 * (pointer to last triple returned, *@err == 0)
411 * or when it gets an IO error reading an indirect block
412 * (ditto, *@err == -EIO)
413 * or when it notices that chain had been changed while it was reading
414 * (ditto, *@err == -EAGAIN)
415 * or when it reads all @depth-1 indirect blocks successfully and finds
416 * the whole chain, all way to the data (returns %NULL, *err == 0).
418 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
419 Indirect chain[4], int *err)
421 struct super_block *sb = inode->i_sb;
422 Indirect *p = chain;
423 struct buffer_head *bh;
425 *err = 0;
426 /* i_data is not going away, no lock needed */
427 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
428 if (!p->key)
429 goto no_block;
430 while (--depth) {
431 bh = sb_bread(sb, le32_to_cpu(p->key));
432 if (!bh)
433 goto failure;
434 /* Reader: pointers */
435 if (!verify_chain(chain, p))
436 goto changed;
437 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
438 /* Reader: end */
439 if (!p->key)
440 goto no_block;
442 return NULL;
444 changed:
445 brelse(bh);
446 *err = -EAGAIN;
447 goto no_block;
448 failure:
449 *err = -EIO;
450 no_block:
451 return p;
455 * ext3_find_near - find a place for allocation with sufficient locality
456 * @inode: owner
457 * @ind: descriptor of indirect block.
459 * This function returns the preferred place for block allocation.
460 * It is used when heuristic for sequential allocation fails.
461 * Rules are:
462 * + if there is a block to the left of our position - allocate near it.
463 * + if pointer will live in indirect block - allocate near that block.
464 * + if pointer will live in inode - allocate in the same
465 * cylinder group.
467 * In the latter case we colour the starting block by the callers PID to
468 * prevent it from clashing with concurrent allocations for a different inode
469 * in the same block group. The PID is used here so that functionally related
470 * files will be close-by on-disk.
472 * Caller must make sure that @ind is valid and will stay that way.
474 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
476 struct ext3_inode_info *ei = EXT3_I(inode);
477 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
478 __le32 *p;
479 ext3_fsblk_t bg_start;
480 ext3_grpblk_t colour;
482 /* Try to find previous block */
483 for (p = ind->p - 1; p >= start; p--) {
484 if (*p)
485 return le32_to_cpu(*p);
488 /* No such thing, so let's try location of indirect block */
489 if (ind->bh)
490 return ind->bh->b_blocknr;
493 * It is going to be referred to from the inode itself? OK, just put it
494 * into the same cylinder group then.
496 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
497 colour = (current->pid % 16) *
498 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
499 return bg_start + colour;
503 * ext3_find_goal - find a preferred place for allocation.
504 * @inode: owner
505 * @block: block we want
506 * @partial: pointer to the last triple within a chain
508 * Normally this function find the preferred place for block allocation,
509 * returns it.
512 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
513 Indirect *partial)
515 struct ext3_block_alloc_info *block_i;
517 block_i = EXT3_I(inode)->i_block_alloc_info;
520 * try the heuristic for sequential allocation,
521 * failing that at least try to get decent locality.
523 if (block_i && (block == block_i->last_alloc_logical_block + 1)
524 && (block_i->last_alloc_physical_block != 0)) {
525 return block_i->last_alloc_physical_block + 1;
528 return ext3_find_near(inode, partial);
532 * ext3_blks_to_allocate - Look up the block map and count the number
533 * of direct blocks need to be allocated for the given branch.
535 * @branch: chain of indirect blocks
536 * @k: number of blocks need for indirect blocks
537 * @blks: number of data blocks to be mapped.
538 * @blocks_to_boundary: the offset in the indirect block
540 * return the total number of blocks to be allocate, including the
541 * direct and indirect blocks.
543 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
544 int blocks_to_boundary)
546 unsigned long count = 0;
549 * Simple case, [t,d]Indirect block(s) has not allocated yet
550 * then it's clear blocks on that path have not allocated
552 if (k > 0) {
553 /* right now we don't handle cross boundary allocation */
554 if (blks < blocks_to_boundary + 1)
555 count += blks;
556 else
557 count += blocks_to_boundary + 1;
558 return count;
561 count++;
562 while (count < blks && count <= blocks_to_boundary &&
563 le32_to_cpu(*(branch[0].p + count)) == 0) {
564 count++;
566 return count;
570 * ext3_alloc_blocks - multiple allocate blocks needed for a branch
571 * @handle: handle for this transaction
572 * @inode: owner
573 * @goal: preferred place for allocation
574 * @indirect_blks: the number of blocks need to allocate for indirect
575 * blocks
576 * @blks: number of blocks need to allocated for direct blocks
577 * @new_blocks: on return it will store the new block numbers for
578 * the indirect blocks(if needed) and the first direct block,
579 * @err: here we store the error value
581 * return the number of direct blocks allocated
583 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
584 ext3_fsblk_t goal, int indirect_blks, int blks,
585 ext3_fsblk_t new_blocks[4], int *err)
587 int target, i;
588 unsigned long count = 0;
589 int index = 0;
590 ext3_fsblk_t current_block = 0;
591 int ret = 0;
594 * Here we try to allocate the requested multiple blocks at once,
595 * on a best-effort basis.
596 * To build a branch, we should allocate blocks for
597 * the indirect blocks(if not allocated yet), and at least
598 * the first direct block of this branch. That's the
599 * minimum number of blocks need to allocate(required)
601 target = blks + indirect_blks;
603 while (1) {
604 count = target;
605 /* allocating blocks for indirect blocks and direct blocks */
606 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
607 if (*err)
608 goto failed_out;
610 target -= count;
611 /* allocate blocks for indirect blocks */
612 while (index < indirect_blks && count) {
613 new_blocks[index++] = current_block++;
614 count--;
617 if (count > 0)
618 break;
621 /* save the new block number for the first direct block */
622 new_blocks[index] = current_block;
624 /* total number of blocks allocated for direct blocks */
625 ret = count;
626 *err = 0;
627 return ret;
628 failed_out:
629 for (i = 0; i <index; i++)
630 ext3_free_blocks(handle, inode, new_blocks[i], 1);
631 return ret;
635 * ext3_alloc_branch - allocate and set up a chain of blocks.
636 * @handle: handle for this transaction
637 * @inode: owner
638 * @indirect_blks: number of allocated indirect blocks
639 * @blks: number of allocated direct blocks
640 * @goal: preferred place for allocation
641 * @offsets: offsets (in the blocks) to store the pointers to next.
642 * @branch: place to store the chain in.
644 * This function allocates blocks, zeroes out all but the last one,
645 * links them into chain and (if we are synchronous) writes them to disk.
646 * In other words, it prepares a branch that can be spliced onto the
647 * inode. It stores the information about that chain in the branch[], in
648 * the same format as ext3_get_branch() would do. We are calling it after
649 * we had read the existing part of chain and partial points to the last
650 * triple of that (one with zero ->key). Upon the exit we have the same
651 * picture as after the successful ext3_get_block(), except that in one
652 * place chain is disconnected - *branch->p is still zero (we did not
653 * set the last link), but branch->key contains the number that should
654 * be placed into *branch->p to fill that gap.
656 * If allocation fails we free all blocks we've allocated (and forget
657 * their buffer_heads) and return the error value the from failed
658 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
659 * as described above and return 0.
661 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
662 int indirect_blks, int *blks, ext3_fsblk_t goal,
663 int *offsets, Indirect *branch)
665 int blocksize = inode->i_sb->s_blocksize;
666 int i, n = 0;
667 int err = 0;
668 struct buffer_head *bh;
669 int num;
670 ext3_fsblk_t new_blocks[4];
671 ext3_fsblk_t current_block;
673 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
674 *blks, new_blocks, &err);
675 if (err)
676 return err;
678 branch[0].key = cpu_to_le32(new_blocks[0]);
680 * metadata blocks and data blocks are allocated.
682 for (n = 1; n <= indirect_blks; n++) {
684 * Get buffer_head for parent block, zero it out
685 * and set the pointer to new one, then send
686 * parent to disk.
688 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
689 branch[n].bh = bh;
690 lock_buffer(bh);
691 BUFFER_TRACE(bh, "call get_create_access");
692 err = ext3_journal_get_create_access(handle, bh);
693 if (err) {
694 unlock_buffer(bh);
695 brelse(bh);
696 goto failed;
699 memset(bh->b_data, 0, blocksize);
700 branch[n].p = (__le32 *) bh->b_data + offsets[n];
701 branch[n].key = cpu_to_le32(new_blocks[n]);
702 *branch[n].p = branch[n].key;
703 if ( n == indirect_blks) {
704 current_block = new_blocks[n];
706 * End of chain, update the last new metablock of
707 * the chain to point to the new allocated
708 * data blocks numbers
710 for (i=1; i < num; i++)
711 *(branch[n].p + i) = cpu_to_le32(++current_block);
713 BUFFER_TRACE(bh, "marking uptodate");
714 set_buffer_uptodate(bh);
715 unlock_buffer(bh);
717 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
718 err = ext3_journal_dirty_metadata(handle, bh);
719 if (err)
720 goto failed;
722 *blks = num;
723 return err;
724 failed:
725 /* Allocation failed, free what we already allocated */
726 for (i = 1; i <= n ; i++) {
727 BUFFER_TRACE(branch[i].bh, "call journal_forget");
728 ext3_journal_forget(handle, branch[i].bh);
730 for (i = 0; i <indirect_blks; i++)
731 ext3_free_blocks(handle, inode, new_blocks[i], 1);
733 ext3_free_blocks(handle, inode, new_blocks[i], num);
735 return err;
739 * ext3_splice_branch - splice the allocated branch onto inode.
740 * @handle: handle for this transaction
741 * @inode: owner
742 * @block: (logical) number of block we are adding
743 * @where: location of missing link
744 * @num: number of indirect blocks we are adding
745 * @blks: number of direct blocks we are adding
747 * This function fills the missing link and does all housekeeping needed in
748 * inode (->i_blocks, etc.). In case of success we end up with the full
749 * chain to new block and return 0.
751 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
752 long block, Indirect *where, int num, int blks)
754 int i;
755 int err = 0;
756 struct ext3_block_alloc_info *block_i;
757 ext3_fsblk_t current_block;
758 struct ext3_inode_info *ei = EXT3_I(inode);
760 block_i = ei->i_block_alloc_info;
762 * If we're splicing into a [td]indirect block (as opposed to the
763 * inode) then we need to get write access to the [td]indirect block
764 * before the splice.
766 if (where->bh) {
767 BUFFER_TRACE(where->bh, "get_write_access");
768 err = ext3_journal_get_write_access(handle, where->bh);
769 if (err)
770 goto err_out;
772 /* That's it */
774 *where->p = where->key;
777 * Update the host buffer_head or inode to point to more just allocated
778 * direct blocks blocks
780 if (num == 0 && blks > 1) {
781 current_block = le32_to_cpu(where->key) + 1;
782 for (i = 1; i < blks; i++)
783 *(where->p + i ) = cpu_to_le32(current_block++);
787 * update the most recently allocated logical & physical block
788 * in i_block_alloc_info, to assist find the proper goal block for next
789 * allocation
791 if (block_i) {
792 block_i->last_alloc_logical_block = block + blks - 1;
793 block_i->last_alloc_physical_block =
794 le32_to_cpu(where[num].key) + blks - 1;
797 /* We are done with atomic stuff, now do the rest of housekeeping */
799 inode->i_ctime = CURRENT_TIME_SEC;
800 ext3_mark_inode_dirty(handle, inode);
801 /* ext3_mark_inode_dirty already updated i_sync_tid */
802 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
804 /* had we spliced it onto indirect block? */
805 if (where->bh) {
807 * If we spliced it onto an indirect block, we haven't
808 * altered the inode. Note however that if it is being spliced
809 * onto an indirect block at the very end of the file (the
810 * file is growing) then we *will* alter the inode to reflect
811 * the new i_size. But that is not done here - it is done in
812 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
814 jbd_debug(5, "splicing indirect only\n");
815 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
816 err = ext3_journal_dirty_metadata(handle, where->bh);
817 if (err)
818 goto err_out;
819 } else {
821 * OK, we spliced it into the inode itself on a direct block.
822 * Inode was dirtied above.
824 jbd_debug(5, "splicing direct\n");
826 return err;
828 err_out:
829 for (i = 1; i <= num; i++) {
830 BUFFER_TRACE(where[i].bh, "call journal_forget");
831 ext3_journal_forget(handle, where[i].bh);
832 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
834 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
836 return err;
840 * Allocation strategy is simple: if we have to allocate something, we will
841 * have to go the whole way to leaf. So let's do it before attaching anything
842 * to tree, set linkage between the newborn blocks, write them if sync is
843 * required, recheck the path, free and repeat if check fails, otherwise
844 * set the last missing link (that will protect us from any truncate-generated
845 * removals - all blocks on the path are immune now) and possibly force the
846 * write on the parent block.
847 * That has a nice additional property: no special recovery from the failed
848 * allocations is needed - we simply release blocks and do not touch anything
849 * reachable from inode.
851 * `handle' can be NULL if create == 0.
853 * The BKL may not be held on entry here. Be sure to take it early.
854 * return > 0, # of blocks mapped or allocated.
855 * return = 0, if plain lookup failed.
856 * return < 0, error case.
858 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
859 sector_t iblock, unsigned long maxblocks,
860 struct buffer_head *bh_result,
861 int create)
863 int err = -EIO;
864 int offsets[4];
865 Indirect chain[4];
866 Indirect *partial;
867 ext3_fsblk_t goal;
868 int indirect_blks;
869 int blocks_to_boundary = 0;
870 int depth;
871 struct ext3_inode_info *ei = EXT3_I(inode);
872 int count = 0;
873 ext3_fsblk_t first_block = 0;
876 trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
877 J_ASSERT(handle != NULL || create == 0);
878 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
880 if (depth == 0)
881 goto out;
883 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
885 /* Simplest case - block found, no allocation needed */
886 if (!partial) {
887 first_block = le32_to_cpu(chain[depth - 1].key);
888 clear_buffer_new(bh_result);
889 count++;
890 /*map more blocks*/
891 while (count < maxblocks && count <= blocks_to_boundary) {
892 ext3_fsblk_t blk;
894 if (!verify_chain(chain, chain + depth - 1)) {
896 * Indirect block might be removed by
897 * truncate while we were reading it.
898 * Handling of that case: forget what we've
899 * got now. Flag the err as EAGAIN, so it
900 * will reread.
902 err = -EAGAIN;
903 count = 0;
904 break;
906 blk = le32_to_cpu(*(chain[depth-1].p + count));
908 if (blk == first_block + count)
909 count++;
910 else
911 break;
913 if (err != -EAGAIN)
914 goto got_it;
917 /* Next simple case - plain lookup or failed read of indirect block */
918 if (!create || err == -EIO)
919 goto cleanup;
922 * Block out ext3_truncate while we alter the tree
924 mutex_lock(&ei->truncate_mutex);
927 * If the indirect block is missing while we are reading
928 * the chain(ext3_get_branch() returns -EAGAIN err), or
929 * if the chain has been changed after we grab the semaphore,
930 * (either because another process truncated this branch, or
931 * another get_block allocated this branch) re-grab the chain to see if
932 * the request block has been allocated or not.
934 * Since we already block the truncate/other get_block
935 * at this point, we will have the current copy of the chain when we
936 * splice the branch into the tree.
938 if (err == -EAGAIN || !verify_chain(chain, partial)) {
939 while (partial > chain) {
940 brelse(partial->bh);
941 partial--;
943 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
944 if (!partial) {
945 count++;
946 mutex_unlock(&ei->truncate_mutex);
947 if (err)
948 goto cleanup;
949 clear_buffer_new(bh_result);
950 goto got_it;
955 * Okay, we need to do block allocation. Lazily initialize the block
956 * allocation info here if necessary
958 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
959 ext3_init_block_alloc_info(inode);
961 goal = ext3_find_goal(inode, iblock, partial);
963 /* the number of blocks need to allocate for [d,t]indirect blocks */
964 indirect_blks = (chain + depth) - partial - 1;
967 * Next look up the indirect map to count the totoal number of
968 * direct blocks to allocate for this branch.
970 count = ext3_blks_to_allocate(partial, indirect_blks,
971 maxblocks, blocks_to_boundary);
972 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
973 offsets + (partial - chain), partial);
976 * The ext3_splice_branch call will free and forget any buffers
977 * on the new chain if there is a failure, but that risks using
978 * up transaction credits, especially for bitmaps where the
979 * credits cannot be returned. Can we handle this somehow? We
980 * may need to return -EAGAIN upwards in the worst case. --sct
982 if (!err)
983 err = ext3_splice_branch(handle, inode, iblock,
984 partial, indirect_blks, count);
985 mutex_unlock(&ei->truncate_mutex);
986 if (err)
987 goto cleanup;
989 set_buffer_new(bh_result);
990 got_it:
991 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
992 if (count > blocks_to_boundary)
993 set_buffer_boundary(bh_result);
994 err = count;
995 /* Clean up and exit */
996 partial = chain + depth - 1; /* the whole chain */
997 cleanup:
998 while (partial > chain) {
999 BUFFER_TRACE(partial->bh, "call brelse");
1000 brelse(partial->bh);
1001 partial--;
1003 BUFFER_TRACE(bh_result, "returned");
1004 out:
1005 trace_ext3_get_blocks_exit(inode, iblock,
1006 depth ? le32_to_cpu(chain[depth-1].key) : 0,
1007 count, err);
1008 return err;
1011 /* Maximum number of blocks we map for direct IO at once. */
1012 #define DIO_MAX_BLOCKS 4096
1014 * Number of credits we need for writing DIO_MAX_BLOCKS:
1015 * We need sb + group descriptor + bitmap + inode -> 4
1016 * For B blocks with A block pointers per block we need:
1017 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1018 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1020 #define DIO_CREDITS 25
1022 static int ext3_get_block(struct inode *inode, sector_t iblock,
1023 struct buffer_head *bh_result, int create)
1025 handle_t *handle = ext3_journal_current_handle();
1026 int ret = 0, started = 0;
1027 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1029 if (create && !handle) { /* Direct IO write... */
1030 if (max_blocks > DIO_MAX_BLOCKS)
1031 max_blocks = DIO_MAX_BLOCKS;
1032 handle = ext3_journal_start(inode, DIO_CREDITS +
1033 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
1034 if (IS_ERR(handle)) {
1035 ret = PTR_ERR(handle);
1036 goto out;
1038 started = 1;
1041 ret = ext3_get_blocks_handle(handle, inode, iblock,
1042 max_blocks, bh_result, create);
1043 if (ret > 0) {
1044 bh_result->b_size = (ret << inode->i_blkbits);
1045 ret = 0;
1047 if (started)
1048 ext3_journal_stop(handle);
1049 out:
1050 return ret;
1053 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1054 u64 start, u64 len)
1056 return generic_block_fiemap(inode, fieinfo, start, len,
1057 ext3_get_block);
1061 * `handle' can be NULL if create is zero
1063 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1064 long block, int create, int *errp)
1066 struct buffer_head dummy;
1067 int fatal = 0, err;
1069 J_ASSERT(handle != NULL || create == 0);
1071 dummy.b_state = 0;
1072 dummy.b_blocknr = -1000;
1073 buffer_trace_init(&dummy.b_history);
1074 err = ext3_get_blocks_handle(handle, inode, block, 1,
1075 &dummy, create);
1077 * ext3_get_blocks_handle() returns number of blocks
1078 * mapped. 0 in case of a HOLE.
1080 if (err > 0) {
1081 if (err > 1)
1082 WARN_ON(1);
1083 err = 0;
1085 *errp = err;
1086 if (!err && buffer_mapped(&dummy)) {
1087 struct buffer_head *bh;
1088 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1089 if (!bh) {
1090 *errp = -EIO;
1091 goto err;
1093 if (buffer_new(&dummy)) {
1094 J_ASSERT(create != 0);
1095 J_ASSERT(handle != NULL);
1098 * Now that we do not always journal data, we should
1099 * keep in mind whether this should always journal the
1100 * new buffer as metadata. For now, regular file
1101 * writes use ext3_get_block instead, so it's not a
1102 * problem.
1104 lock_buffer(bh);
1105 BUFFER_TRACE(bh, "call get_create_access");
1106 fatal = ext3_journal_get_create_access(handle, bh);
1107 if (!fatal && !buffer_uptodate(bh)) {
1108 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1109 set_buffer_uptodate(bh);
1111 unlock_buffer(bh);
1112 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1113 err = ext3_journal_dirty_metadata(handle, bh);
1114 if (!fatal)
1115 fatal = err;
1116 } else {
1117 BUFFER_TRACE(bh, "not a new buffer");
1119 if (fatal) {
1120 *errp = fatal;
1121 brelse(bh);
1122 bh = NULL;
1124 return bh;
1126 err:
1127 return NULL;
1130 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1131 int block, int create, int *err)
1133 struct buffer_head * bh;
1135 bh = ext3_getblk(handle, inode, block, create, err);
1136 if (!bh)
1137 return bh;
1138 if (bh_uptodate_or_lock(bh))
1139 return bh;
1140 get_bh(bh);
1141 bh->b_end_io = end_buffer_read_sync;
1142 submit_bh(READ | REQ_META | REQ_PRIO, bh);
1143 wait_on_buffer(bh);
1144 if (buffer_uptodate(bh))
1145 return bh;
1146 put_bh(bh);
1147 *err = -EIO;
1148 return NULL;
1151 static int walk_page_buffers( handle_t *handle,
1152 struct buffer_head *head,
1153 unsigned from,
1154 unsigned to,
1155 int *partial,
1156 int (*fn)( handle_t *handle,
1157 struct buffer_head *bh))
1159 struct buffer_head *bh;
1160 unsigned block_start, block_end;
1161 unsigned blocksize = head->b_size;
1162 int err, ret = 0;
1163 struct buffer_head *next;
1165 for ( bh = head, block_start = 0;
1166 ret == 0 && (bh != head || !block_start);
1167 block_start = block_end, bh = next)
1169 next = bh->b_this_page;
1170 block_end = block_start + blocksize;
1171 if (block_end <= from || block_start >= to) {
1172 if (partial && !buffer_uptodate(bh))
1173 *partial = 1;
1174 continue;
1176 err = (*fn)(handle, bh);
1177 if (!ret)
1178 ret = err;
1180 return ret;
1184 * To preserve ordering, it is essential that the hole instantiation and
1185 * the data write be encapsulated in a single transaction. We cannot
1186 * close off a transaction and start a new one between the ext3_get_block()
1187 * and the commit_write(). So doing the journal_start at the start of
1188 * prepare_write() is the right place.
1190 * Also, this function can nest inside ext3_writepage() ->
1191 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1192 * has generated enough buffer credits to do the whole page. So we won't
1193 * block on the journal in that case, which is good, because the caller may
1194 * be PF_MEMALLOC.
1196 * By accident, ext3 can be reentered when a transaction is open via
1197 * quota file writes. If we were to commit the transaction while thus
1198 * reentered, there can be a deadlock - we would be holding a quota
1199 * lock, and the commit would never complete if another thread had a
1200 * transaction open and was blocking on the quota lock - a ranking
1201 * violation.
1203 * So what we do is to rely on the fact that journal_stop/journal_start
1204 * will _not_ run commit under these circumstances because handle->h_ref
1205 * is elevated. We'll still have enough credits for the tiny quotafile
1206 * write.
1208 static int do_journal_get_write_access(handle_t *handle,
1209 struct buffer_head *bh)
1211 int dirty = buffer_dirty(bh);
1212 int ret;
1214 if (!buffer_mapped(bh) || buffer_freed(bh))
1215 return 0;
1217 * __block_prepare_write() could have dirtied some buffers. Clean
1218 * the dirty bit as jbd2_journal_get_write_access() could complain
1219 * otherwise about fs integrity issues. Setting of the dirty bit
1220 * by __block_prepare_write() isn't a real problem here as we clear
1221 * the bit before releasing a page lock and thus writeback cannot
1222 * ever write the buffer.
1224 if (dirty)
1225 clear_buffer_dirty(bh);
1226 ret = ext3_journal_get_write_access(handle, bh);
1227 if (!ret && dirty)
1228 ret = ext3_journal_dirty_metadata(handle, bh);
1229 return ret;
1233 * Truncate blocks that were not used by write. We have to truncate the
1234 * pagecache as well so that corresponding buffers get properly unmapped.
1236 static void ext3_truncate_failed_write(struct inode *inode)
1238 truncate_inode_pages(inode->i_mapping, inode->i_size);
1239 ext3_truncate(inode);
1243 * Truncate blocks that were not used by direct IO write. We have to zero out
1244 * the last file block as well because direct IO might have written to it.
1246 static void ext3_truncate_failed_direct_write(struct inode *inode)
1248 ext3_block_truncate_page(inode, inode->i_size);
1249 ext3_truncate(inode);
1252 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1253 loff_t pos, unsigned len, unsigned flags,
1254 struct page **pagep, void **fsdata)
1256 struct inode *inode = mapping->host;
1257 int ret;
1258 handle_t *handle;
1259 int retries = 0;
1260 struct page *page;
1261 pgoff_t index;
1262 unsigned from, to;
1263 /* Reserve one block more for addition to orphan list in case
1264 * we allocate blocks but write fails for some reason */
1265 int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1267 trace_ext3_write_begin(inode, pos, len, flags);
1269 index = pos >> PAGE_CACHE_SHIFT;
1270 from = pos & (PAGE_CACHE_SIZE - 1);
1271 to = from + len;
1273 retry:
1274 page = grab_cache_page_write_begin(mapping, index, flags);
1275 if (!page)
1276 return -ENOMEM;
1277 *pagep = page;
1279 handle = ext3_journal_start(inode, needed_blocks);
1280 if (IS_ERR(handle)) {
1281 unlock_page(page);
1282 page_cache_release(page);
1283 ret = PTR_ERR(handle);
1284 goto out;
1286 ret = __block_write_begin(page, pos, len, ext3_get_block);
1287 if (ret)
1288 goto write_begin_failed;
1290 if (ext3_should_journal_data(inode)) {
1291 ret = walk_page_buffers(handle, page_buffers(page),
1292 from, to, NULL, do_journal_get_write_access);
1294 write_begin_failed:
1295 if (ret) {
1297 * block_write_begin may have instantiated a few blocks
1298 * outside i_size. Trim these off again. Don't need
1299 * i_size_read because we hold i_mutex.
1301 * Add inode to orphan list in case we crash before truncate
1302 * finishes. Do this only if ext3_can_truncate() agrees so
1303 * that orphan processing code is happy.
1305 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1306 ext3_orphan_add(handle, inode);
1307 ext3_journal_stop(handle);
1308 unlock_page(page);
1309 page_cache_release(page);
1310 if (pos + len > inode->i_size)
1311 ext3_truncate_failed_write(inode);
1313 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1314 goto retry;
1315 out:
1316 return ret;
1320 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1322 int err = journal_dirty_data(handle, bh);
1323 if (err)
1324 ext3_journal_abort_handle(__func__, __func__,
1325 bh, handle, err);
1326 return err;
1329 /* For ordered writepage and write_end functions */
1330 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1333 * Write could have mapped the buffer but it didn't copy the data in
1334 * yet. So avoid filing such buffer into a transaction.
1336 if (buffer_mapped(bh) && buffer_uptodate(bh))
1337 return ext3_journal_dirty_data(handle, bh);
1338 return 0;
1341 /* For write_end() in data=journal mode */
1342 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1344 if (!buffer_mapped(bh) || buffer_freed(bh))
1345 return 0;
1346 set_buffer_uptodate(bh);
1347 return ext3_journal_dirty_metadata(handle, bh);
1351 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1352 * for the whole page but later we failed to copy the data in. Update inode
1353 * size according to what we managed to copy. The rest is going to be
1354 * truncated in write_end function.
1356 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1358 /* What matters to us is i_disksize. We don't write i_size anywhere */
1359 if (pos + copied > inode->i_size)
1360 i_size_write(inode, pos + copied);
1361 if (pos + copied > EXT3_I(inode)->i_disksize) {
1362 EXT3_I(inode)->i_disksize = pos + copied;
1363 mark_inode_dirty(inode);
1368 * We need to pick up the new inode size which generic_commit_write gave us
1369 * `file' can be NULL - eg, when called from page_symlink().
1371 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1372 * buffers are managed internally.
1374 static int ext3_ordered_write_end(struct file *file,
1375 struct address_space *mapping,
1376 loff_t pos, unsigned len, unsigned copied,
1377 struct page *page, void *fsdata)
1379 handle_t *handle = ext3_journal_current_handle();
1380 struct inode *inode = file->f_mapping->host;
1381 unsigned from, to;
1382 int ret = 0, ret2;
1384 trace_ext3_ordered_write_end(inode, pos, len, copied);
1385 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1387 from = pos & (PAGE_CACHE_SIZE - 1);
1388 to = from + copied;
1389 ret = walk_page_buffers(handle, page_buffers(page),
1390 from, to, NULL, journal_dirty_data_fn);
1392 if (ret == 0)
1393 update_file_sizes(inode, pos, copied);
1395 * There may be allocated blocks outside of i_size because
1396 * we failed to copy some data. Prepare for truncate.
1398 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1399 ext3_orphan_add(handle, inode);
1400 ret2 = ext3_journal_stop(handle);
1401 if (!ret)
1402 ret = ret2;
1403 unlock_page(page);
1404 page_cache_release(page);
1406 if (pos + len > inode->i_size)
1407 ext3_truncate_failed_write(inode);
1408 return ret ? ret : copied;
1411 static int ext3_writeback_write_end(struct file *file,
1412 struct address_space *mapping,
1413 loff_t pos, unsigned len, unsigned copied,
1414 struct page *page, void *fsdata)
1416 handle_t *handle = ext3_journal_current_handle();
1417 struct inode *inode = file->f_mapping->host;
1418 int ret;
1420 trace_ext3_writeback_write_end(inode, pos, len, copied);
1421 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1422 update_file_sizes(inode, pos, copied);
1424 * There may be allocated blocks outside of i_size because
1425 * we failed to copy some data. Prepare for truncate.
1427 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1428 ext3_orphan_add(handle, inode);
1429 ret = ext3_journal_stop(handle);
1430 unlock_page(page);
1431 page_cache_release(page);
1433 if (pos + len > inode->i_size)
1434 ext3_truncate_failed_write(inode);
1435 return ret ? ret : copied;
1438 static int ext3_journalled_write_end(struct file *file,
1439 struct address_space *mapping,
1440 loff_t pos, unsigned len, unsigned copied,
1441 struct page *page, void *fsdata)
1443 handle_t *handle = ext3_journal_current_handle();
1444 struct inode *inode = mapping->host;
1445 struct ext3_inode_info *ei = EXT3_I(inode);
1446 int ret = 0, ret2;
1447 int partial = 0;
1448 unsigned from, to;
1450 trace_ext3_journalled_write_end(inode, pos, len, copied);
1451 from = pos & (PAGE_CACHE_SIZE - 1);
1452 to = from + len;
1454 if (copied < len) {
1455 if (!PageUptodate(page))
1456 copied = 0;
1457 page_zero_new_buffers(page, from + copied, to);
1458 to = from + copied;
1461 ret = walk_page_buffers(handle, page_buffers(page), from,
1462 to, &partial, write_end_fn);
1463 if (!partial)
1464 SetPageUptodate(page);
1466 if (pos + copied > inode->i_size)
1467 i_size_write(inode, pos + copied);
1469 * There may be allocated blocks outside of i_size because
1470 * we failed to copy some data. Prepare for truncate.
1472 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1473 ext3_orphan_add(handle, inode);
1474 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1475 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
1476 if (inode->i_size > ei->i_disksize) {
1477 ei->i_disksize = inode->i_size;
1478 ret2 = ext3_mark_inode_dirty(handle, inode);
1479 if (!ret)
1480 ret = ret2;
1483 ret2 = ext3_journal_stop(handle);
1484 if (!ret)
1485 ret = ret2;
1486 unlock_page(page);
1487 page_cache_release(page);
1489 if (pos + len > inode->i_size)
1490 ext3_truncate_failed_write(inode);
1491 return ret ? ret : copied;
1495 * bmap() is special. It gets used by applications such as lilo and by
1496 * the swapper to find the on-disk block of a specific piece of data.
1498 * Naturally, this is dangerous if the block concerned is still in the
1499 * journal. If somebody makes a swapfile on an ext3 data-journaling
1500 * filesystem and enables swap, then they may get a nasty shock when the
1501 * data getting swapped to that swapfile suddenly gets overwritten by
1502 * the original zero's written out previously to the journal and
1503 * awaiting writeback in the kernel's buffer cache.
1505 * So, if we see any bmap calls here on a modified, data-journaled file,
1506 * take extra steps to flush any blocks which might be in the cache.
1508 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1510 struct inode *inode = mapping->host;
1511 journal_t *journal;
1512 int err;
1514 if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1516 * This is a REALLY heavyweight approach, but the use of
1517 * bmap on dirty files is expected to be extremely rare:
1518 * only if we run lilo or swapon on a freshly made file
1519 * do we expect this to happen.
1521 * (bmap requires CAP_SYS_RAWIO so this does not
1522 * represent an unprivileged user DOS attack --- we'd be
1523 * in trouble if mortal users could trigger this path at
1524 * will.)
1526 * NB. EXT3_STATE_JDATA is not set on files other than
1527 * regular files. If somebody wants to bmap a directory
1528 * or symlink and gets confused because the buffer
1529 * hasn't yet been flushed to disk, they deserve
1530 * everything they get.
1533 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1534 journal = EXT3_JOURNAL(inode);
1535 journal_lock_updates(journal);
1536 err = journal_flush(journal);
1537 journal_unlock_updates(journal);
1539 if (err)
1540 return 0;
1543 return generic_block_bmap(mapping,block,ext3_get_block);
1546 static int bget_one(handle_t *handle, struct buffer_head *bh)
1548 get_bh(bh);
1549 return 0;
1552 static int bput_one(handle_t *handle, struct buffer_head *bh)
1554 put_bh(bh);
1555 return 0;
1558 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1560 return !buffer_mapped(bh);
1564 * Note that we always start a transaction even if we're not journalling
1565 * data. This is to preserve ordering: any hole instantiation within
1566 * __block_write_full_page -> ext3_get_block() should be journalled
1567 * along with the data so we don't crash and then get metadata which
1568 * refers to old data.
1570 * In all journalling modes block_write_full_page() will start the I/O.
1572 * Problem:
1574 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1575 * ext3_writepage()
1577 * Similar for:
1579 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1581 * Same applies to ext3_get_block(). We will deadlock on various things like
1582 * lock_journal and i_truncate_mutex.
1584 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1585 * allocations fail.
1587 * 16May01: If we're reentered then journal_current_handle() will be
1588 * non-zero. We simply *return*.
1590 * 1 July 2001: @@@ FIXME:
1591 * In journalled data mode, a data buffer may be metadata against the
1592 * current transaction. But the same file is part of a shared mapping
1593 * and someone does a writepage() on it.
1595 * We will move the buffer onto the async_data list, but *after* it has
1596 * been dirtied. So there's a small window where we have dirty data on
1597 * BJ_Metadata.
1599 * Note that this only applies to the last partial page in the file. The
1600 * bit which block_write_full_page() uses prepare/commit for. (That's
1601 * broken code anyway: it's wrong for msync()).
1603 * It's a rare case: affects the final partial page, for journalled data
1604 * where the file is subject to bith write() and writepage() in the same
1605 * transction. To fix it we'll need a custom block_write_full_page().
1606 * We'll probably need that anyway for journalling writepage() output.
1608 * We don't honour synchronous mounts for writepage(). That would be
1609 * disastrous. Any write() or metadata operation will sync the fs for
1610 * us.
1612 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1613 * we don't need to open a transaction here.
1615 static int ext3_ordered_writepage(struct page *page,
1616 struct writeback_control *wbc)
1618 struct inode *inode = page->mapping->host;
1619 struct buffer_head *page_bufs;
1620 handle_t *handle = NULL;
1621 int ret = 0;
1622 int err;
1624 J_ASSERT(PageLocked(page));
1626 * We don't want to warn for emergency remount. The condition is
1627 * ordered to avoid dereferencing inode->i_sb in non-error case to
1628 * avoid slow-downs.
1630 WARN_ON_ONCE(IS_RDONLY(inode) &&
1631 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1634 * We give up here if we're reentered, because it might be for a
1635 * different filesystem.
1637 if (ext3_journal_current_handle())
1638 goto out_fail;
1640 trace_ext3_ordered_writepage(page);
1641 if (!page_has_buffers(page)) {
1642 create_empty_buffers(page, inode->i_sb->s_blocksize,
1643 (1 << BH_Dirty)|(1 << BH_Uptodate));
1644 page_bufs = page_buffers(page);
1645 } else {
1646 page_bufs = page_buffers(page);
1647 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1648 NULL, buffer_unmapped)) {
1649 /* Provide NULL get_block() to catch bugs if buffers
1650 * weren't really mapped */
1651 return block_write_full_page(page, NULL, wbc);
1654 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1656 if (IS_ERR(handle)) {
1657 ret = PTR_ERR(handle);
1658 goto out_fail;
1661 walk_page_buffers(handle, page_bufs, 0,
1662 PAGE_CACHE_SIZE, NULL, bget_one);
1664 ret = block_write_full_page(page, ext3_get_block, wbc);
1667 * The page can become unlocked at any point now, and
1668 * truncate can then come in and change things. So we
1669 * can't touch *page from now on. But *page_bufs is
1670 * safe due to elevated refcount.
1674 * And attach them to the current transaction. But only if
1675 * block_write_full_page() succeeded. Otherwise they are unmapped,
1676 * and generally junk.
1678 if (ret == 0) {
1679 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1680 NULL, journal_dirty_data_fn);
1681 if (!ret)
1682 ret = err;
1684 walk_page_buffers(handle, page_bufs, 0,
1685 PAGE_CACHE_SIZE, NULL, bput_one);
1686 err = ext3_journal_stop(handle);
1687 if (!ret)
1688 ret = err;
1689 return ret;
1691 out_fail:
1692 redirty_page_for_writepage(wbc, page);
1693 unlock_page(page);
1694 return ret;
1697 static int ext3_writeback_writepage(struct page *page,
1698 struct writeback_control *wbc)
1700 struct inode *inode = page->mapping->host;
1701 handle_t *handle = NULL;
1702 int ret = 0;
1703 int err;
1705 J_ASSERT(PageLocked(page));
1707 * We don't want to warn for emergency remount. The condition is
1708 * ordered to avoid dereferencing inode->i_sb in non-error case to
1709 * avoid slow-downs.
1711 WARN_ON_ONCE(IS_RDONLY(inode) &&
1712 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1714 if (ext3_journal_current_handle())
1715 goto out_fail;
1717 trace_ext3_writeback_writepage(page);
1718 if (page_has_buffers(page)) {
1719 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1720 PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1721 /* Provide NULL get_block() to catch bugs if buffers
1722 * weren't really mapped */
1723 return block_write_full_page(page, NULL, wbc);
1727 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1728 if (IS_ERR(handle)) {
1729 ret = PTR_ERR(handle);
1730 goto out_fail;
1733 ret = block_write_full_page(page, ext3_get_block, wbc);
1735 err = ext3_journal_stop(handle);
1736 if (!ret)
1737 ret = err;
1738 return ret;
1740 out_fail:
1741 redirty_page_for_writepage(wbc, page);
1742 unlock_page(page);
1743 return ret;
1746 static int ext3_journalled_writepage(struct page *page,
1747 struct writeback_control *wbc)
1749 struct inode *inode = page->mapping->host;
1750 handle_t *handle = NULL;
1751 int ret = 0;
1752 int err;
1754 J_ASSERT(PageLocked(page));
1756 * We don't want to warn for emergency remount. The condition is
1757 * ordered to avoid dereferencing inode->i_sb in non-error case to
1758 * avoid slow-downs.
1760 WARN_ON_ONCE(IS_RDONLY(inode) &&
1761 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1763 if (ext3_journal_current_handle())
1764 goto no_write;
1766 trace_ext3_journalled_writepage(page);
1767 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1768 if (IS_ERR(handle)) {
1769 ret = PTR_ERR(handle);
1770 goto no_write;
1773 if (!page_has_buffers(page) || PageChecked(page)) {
1775 * It's mmapped pagecache. Add buffers and journal it. There
1776 * doesn't seem much point in redirtying the page here.
1778 ClearPageChecked(page);
1779 ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1780 ext3_get_block);
1781 if (ret != 0) {
1782 ext3_journal_stop(handle);
1783 goto out_unlock;
1785 ret = walk_page_buffers(handle, page_buffers(page), 0,
1786 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1788 err = walk_page_buffers(handle, page_buffers(page), 0,
1789 PAGE_CACHE_SIZE, NULL, write_end_fn);
1790 if (ret == 0)
1791 ret = err;
1792 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1793 atomic_set(&EXT3_I(inode)->i_datasync_tid,
1794 handle->h_transaction->t_tid);
1795 unlock_page(page);
1796 } else {
1798 * It may be a page full of checkpoint-mode buffers. We don't
1799 * really know unless we go poke around in the buffer_heads.
1800 * But block_write_full_page will do the right thing.
1802 ret = block_write_full_page(page, ext3_get_block, wbc);
1804 err = ext3_journal_stop(handle);
1805 if (!ret)
1806 ret = err;
1807 out:
1808 return ret;
1810 no_write:
1811 redirty_page_for_writepage(wbc, page);
1812 out_unlock:
1813 unlock_page(page);
1814 goto out;
1817 static int ext3_readpage(struct file *file, struct page *page)
1819 trace_ext3_readpage(page);
1820 return mpage_readpage(page, ext3_get_block);
1823 static int
1824 ext3_readpages(struct file *file, struct address_space *mapping,
1825 struct list_head *pages, unsigned nr_pages)
1827 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1830 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1832 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1834 trace_ext3_invalidatepage(page, offset);
1837 * If it's a full truncate we just forget about the pending dirtying
1839 if (offset == 0)
1840 ClearPageChecked(page);
1842 journal_invalidatepage(journal, page, offset);
1845 static int ext3_releasepage(struct page *page, gfp_t wait)
1847 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1849 trace_ext3_releasepage(page);
1850 WARN_ON(PageChecked(page));
1851 if (!page_has_buffers(page))
1852 return 0;
1853 return journal_try_to_free_buffers(journal, page, wait);
1857 * If the O_DIRECT write will extend the file then add this inode to the
1858 * orphan list. So recovery will truncate it back to the original size
1859 * if the machine crashes during the write.
1861 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1862 * crashes then stale disk data _may_ be exposed inside the file. But current
1863 * VFS code falls back into buffered path in that case so we are safe.
1865 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1866 const struct iovec *iov, loff_t offset,
1867 unsigned long nr_segs)
1869 struct file *file = iocb->ki_filp;
1870 struct inode *inode = file->f_mapping->host;
1871 struct ext3_inode_info *ei = EXT3_I(inode);
1872 handle_t *handle;
1873 ssize_t ret;
1874 int orphan = 0;
1875 size_t count = iov_length(iov, nr_segs);
1876 int retries = 0;
1878 trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
1880 if (rw == WRITE) {
1881 loff_t final_size = offset + count;
1883 if (final_size > inode->i_size) {
1884 /* Credits for sb + inode write */
1885 handle = ext3_journal_start(inode, 2);
1886 if (IS_ERR(handle)) {
1887 ret = PTR_ERR(handle);
1888 goto out;
1890 ret = ext3_orphan_add(handle, inode);
1891 if (ret) {
1892 ext3_journal_stop(handle);
1893 goto out;
1895 orphan = 1;
1896 ei->i_disksize = inode->i_size;
1897 ext3_journal_stop(handle);
1901 retry:
1902 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
1903 ext3_get_block);
1905 * In case of error extending write may have instantiated a few
1906 * blocks outside i_size. Trim these off again.
1908 if (unlikely((rw & WRITE) && ret < 0)) {
1909 loff_t isize = i_size_read(inode);
1910 loff_t end = offset + iov_length(iov, nr_segs);
1912 if (end > isize)
1913 ext3_truncate_failed_direct_write(inode);
1915 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1916 goto retry;
1918 if (orphan) {
1919 int err;
1921 /* Credits for sb + inode write */
1922 handle = ext3_journal_start(inode, 2);
1923 if (IS_ERR(handle)) {
1924 /* This is really bad luck. We've written the data
1925 * but cannot extend i_size. Truncate allocated blocks
1926 * and pretend the write failed... */
1927 ext3_truncate_failed_direct_write(inode);
1928 ret = PTR_ERR(handle);
1929 goto out;
1931 if (inode->i_nlink)
1932 ext3_orphan_del(handle, inode);
1933 if (ret > 0) {
1934 loff_t end = offset + ret;
1935 if (end > inode->i_size) {
1936 ei->i_disksize = end;
1937 i_size_write(inode, end);
1939 * We're going to return a positive `ret'
1940 * here due to non-zero-length I/O, so there's
1941 * no way of reporting error returns from
1942 * ext3_mark_inode_dirty() to userspace. So
1943 * ignore it.
1945 ext3_mark_inode_dirty(handle, inode);
1948 err = ext3_journal_stop(handle);
1949 if (ret == 0)
1950 ret = err;
1952 out:
1953 trace_ext3_direct_IO_exit(inode, offset,
1954 iov_length(iov, nr_segs), rw, ret);
1955 return ret;
1959 * Pages can be marked dirty completely asynchronously from ext3's journalling
1960 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1961 * much here because ->set_page_dirty is called under VFS locks. The page is
1962 * not necessarily locked.
1964 * We cannot just dirty the page and leave attached buffers clean, because the
1965 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1966 * or jbddirty because all the journalling code will explode.
1968 * So what we do is to mark the page "pending dirty" and next time writepage
1969 * is called, propagate that into the buffers appropriately.
1971 static int ext3_journalled_set_page_dirty(struct page *page)
1973 SetPageChecked(page);
1974 return __set_page_dirty_nobuffers(page);
1977 static const struct address_space_operations ext3_ordered_aops = {
1978 .readpage = ext3_readpage,
1979 .readpages = ext3_readpages,
1980 .writepage = ext3_ordered_writepage,
1981 .write_begin = ext3_write_begin,
1982 .write_end = ext3_ordered_write_end,
1983 .bmap = ext3_bmap,
1984 .invalidatepage = ext3_invalidatepage,
1985 .releasepage = ext3_releasepage,
1986 .direct_IO = ext3_direct_IO,
1987 .migratepage = buffer_migrate_page,
1988 .is_partially_uptodate = block_is_partially_uptodate,
1989 .error_remove_page = generic_error_remove_page,
1992 static const struct address_space_operations ext3_writeback_aops = {
1993 .readpage = ext3_readpage,
1994 .readpages = ext3_readpages,
1995 .writepage = ext3_writeback_writepage,
1996 .write_begin = ext3_write_begin,
1997 .write_end = ext3_writeback_write_end,
1998 .bmap = ext3_bmap,
1999 .invalidatepage = ext3_invalidatepage,
2000 .releasepage = ext3_releasepage,
2001 .direct_IO = ext3_direct_IO,
2002 .migratepage = buffer_migrate_page,
2003 .is_partially_uptodate = block_is_partially_uptodate,
2004 .error_remove_page = generic_error_remove_page,
2007 static const struct address_space_operations ext3_journalled_aops = {
2008 .readpage = ext3_readpage,
2009 .readpages = ext3_readpages,
2010 .writepage = ext3_journalled_writepage,
2011 .write_begin = ext3_write_begin,
2012 .write_end = ext3_journalled_write_end,
2013 .set_page_dirty = ext3_journalled_set_page_dirty,
2014 .bmap = ext3_bmap,
2015 .invalidatepage = ext3_invalidatepage,
2016 .releasepage = ext3_releasepage,
2017 .is_partially_uptodate = block_is_partially_uptodate,
2018 .error_remove_page = generic_error_remove_page,
2021 void ext3_set_aops(struct inode *inode)
2023 if (ext3_should_order_data(inode))
2024 inode->i_mapping->a_ops = &ext3_ordered_aops;
2025 else if (ext3_should_writeback_data(inode))
2026 inode->i_mapping->a_ops = &ext3_writeback_aops;
2027 else
2028 inode->i_mapping->a_ops = &ext3_journalled_aops;
2032 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
2033 * up to the end of the block which corresponds to `from'.
2034 * This required during truncate. We need to physically zero the tail end
2035 * of that block so it doesn't yield old data if the file is later grown.
2037 static int ext3_block_truncate_page(struct inode *inode, loff_t from)
2039 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2040 unsigned offset = from & (PAGE_CACHE_SIZE - 1);
2041 unsigned blocksize, iblock, length, pos;
2042 struct page *page;
2043 handle_t *handle = NULL;
2044 struct buffer_head *bh;
2045 int err = 0;
2047 /* Truncated on block boundary - nothing to do */
2048 blocksize = inode->i_sb->s_blocksize;
2049 if ((from & (blocksize - 1)) == 0)
2050 return 0;
2052 page = grab_cache_page(inode->i_mapping, index);
2053 if (!page)
2054 return -ENOMEM;
2055 length = blocksize - (offset & (blocksize - 1));
2056 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2058 if (!page_has_buffers(page))
2059 create_empty_buffers(page, blocksize, 0);
2061 /* Find the buffer that contains "offset" */
2062 bh = page_buffers(page);
2063 pos = blocksize;
2064 while (offset >= pos) {
2065 bh = bh->b_this_page;
2066 iblock++;
2067 pos += blocksize;
2070 err = 0;
2071 if (buffer_freed(bh)) {
2072 BUFFER_TRACE(bh, "freed: skip");
2073 goto unlock;
2076 if (!buffer_mapped(bh)) {
2077 BUFFER_TRACE(bh, "unmapped");
2078 ext3_get_block(inode, iblock, bh, 0);
2079 /* unmapped? It's a hole - nothing to do */
2080 if (!buffer_mapped(bh)) {
2081 BUFFER_TRACE(bh, "still unmapped");
2082 goto unlock;
2086 /* Ok, it's mapped. Make sure it's up-to-date */
2087 if (PageUptodate(page))
2088 set_buffer_uptodate(bh);
2090 if (!bh_uptodate_or_lock(bh)) {
2091 err = bh_submit_read(bh);
2092 /* Uhhuh. Read error. Complain and punt. */
2093 if (err)
2094 goto unlock;
2097 /* data=writeback mode doesn't need transaction to zero-out data */
2098 if (!ext3_should_writeback_data(inode)) {
2099 /* We journal at most one block */
2100 handle = ext3_journal_start(inode, 1);
2101 if (IS_ERR(handle)) {
2102 clear_highpage(page);
2103 flush_dcache_page(page);
2104 err = PTR_ERR(handle);
2105 goto unlock;
2109 if (ext3_should_journal_data(inode)) {
2110 BUFFER_TRACE(bh, "get write access");
2111 err = ext3_journal_get_write_access(handle, bh);
2112 if (err)
2113 goto stop;
2116 zero_user(page, offset, length);
2117 BUFFER_TRACE(bh, "zeroed end of block");
2119 err = 0;
2120 if (ext3_should_journal_data(inode)) {
2121 err = ext3_journal_dirty_metadata(handle, bh);
2122 } else {
2123 if (ext3_should_order_data(inode))
2124 err = ext3_journal_dirty_data(handle, bh);
2125 mark_buffer_dirty(bh);
2127 stop:
2128 if (handle)
2129 ext3_journal_stop(handle);
2131 unlock:
2132 unlock_page(page);
2133 page_cache_release(page);
2134 return err;
2138 * Probably it should be a library function... search for first non-zero word
2139 * or memcmp with zero_page, whatever is better for particular architecture.
2140 * Linus?
2142 static inline int all_zeroes(__le32 *p, __le32 *q)
2144 while (p < q)
2145 if (*p++)
2146 return 0;
2147 return 1;
2151 * ext3_find_shared - find the indirect blocks for partial truncation.
2152 * @inode: inode in question
2153 * @depth: depth of the affected branch
2154 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2155 * @chain: place to store the pointers to partial indirect blocks
2156 * @top: place to the (detached) top of branch
2158 * This is a helper function used by ext3_truncate().
2160 * When we do truncate() we may have to clean the ends of several
2161 * indirect blocks but leave the blocks themselves alive. Block is
2162 * partially truncated if some data below the new i_size is referred
2163 * from it (and it is on the path to the first completely truncated
2164 * data block, indeed). We have to free the top of that path along
2165 * with everything to the right of the path. Since no allocation
2166 * past the truncation point is possible until ext3_truncate()
2167 * finishes, we may safely do the latter, but top of branch may
2168 * require special attention - pageout below the truncation point
2169 * might try to populate it.
2171 * We atomically detach the top of branch from the tree, store the
2172 * block number of its root in *@top, pointers to buffer_heads of
2173 * partially truncated blocks - in @chain[].bh and pointers to
2174 * their last elements that should not be removed - in
2175 * @chain[].p. Return value is the pointer to last filled element
2176 * of @chain.
2178 * The work left to caller to do the actual freeing of subtrees:
2179 * a) free the subtree starting from *@top
2180 * b) free the subtrees whose roots are stored in
2181 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2182 * c) free the subtrees growing from the inode past the @chain[0].
2183 * (no partially truncated stuff there). */
2185 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2186 int offsets[4], Indirect chain[4], __le32 *top)
2188 Indirect *partial, *p;
2189 int k, err;
2191 *top = 0;
2192 /* Make k index the deepest non-null offset + 1 */
2193 for (k = depth; k > 1 && !offsets[k-1]; k--)
2195 partial = ext3_get_branch(inode, k, offsets, chain, &err);
2196 /* Writer: pointers */
2197 if (!partial)
2198 partial = chain + k-1;
2200 * If the branch acquired continuation since we've looked at it -
2201 * fine, it should all survive and (new) top doesn't belong to us.
2203 if (!partial->key && *partial->p)
2204 /* Writer: end */
2205 goto no_top;
2206 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2209 * OK, we've found the last block that must survive. The rest of our
2210 * branch should be detached before unlocking. However, if that rest
2211 * of branch is all ours and does not grow immediately from the inode
2212 * it's easier to cheat and just decrement partial->p.
2214 if (p == chain + k - 1 && p > chain) {
2215 p->p--;
2216 } else {
2217 *top = *p->p;
2218 /* Nope, don't do this in ext3. Must leave the tree intact */
2219 #if 0
2220 *p->p = 0;
2221 #endif
2223 /* Writer: end */
2225 while(partial > p) {
2226 brelse(partial->bh);
2227 partial--;
2229 no_top:
2230 return partial;
2234 * Zero a number of block pointers in either an inode or an indirect block.
2235 * If we restart the transaction we must again get write access to the
2236 * indirect block for further modification.
2238 * We release `count' blocks on disk, but (last - first) may be greater
2239 * than `count' because there can be holes in there.
2241 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2242 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2243 unsigned long count, __le32 *first, __le32 *last)
2245 __le32 *p;
2246 if (try_to_extend_transaction(handle, inode)) {
2247 if (bh) {
2248 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2249 if (ext3_journal_dirty_metadata(handle, bh))
2250 return;
2252 ext3_mark_inode_dirty(handle, inode);
2253 truncate_restart_transaction(handle, inode);
2254 if (bh) {
2255 BUFFER_TRACE(bh, "retaking write access");
2256 if (ext3_journal_get_write_access(handle, bh))
2257 return;
2262 * Any buffers which are on the journal will be in memory. We find
2263 * them on the hash table so journal_revoke() will run journal_forget()
2264 * on them. We've already detached each block from the file, so
2265 * bforget() in journal_forget() should be safe.
2267 * AKPM: turn on bforget in journal_forget()!!!
2269 for (p = first; p < last; p++) {
2270 u32 nr = le32_to_cpu(*p);
2271 if (nr) {
2272 struct buffer_head *bh;
2274 *p = 0;
2275 bh = sb_find_get_block(inode->i_sb, nr);
2276 ext3_forget(handle, 0, inode, bh, nr);
2280 ext3_free_blocks(handle, inode, block_to_free, count);
2284 * ext3_free_data - free a list of data blocks
2285 * @handle: handle for this transaction
2286 * @inode: inode we are dealing with
2287 * @this_bh: indirect buffer_head which contains *@first and *@last
2288 * @first: array of block numbers
2289 * @last: points immediately past the end of array
2291 * We are freeing all blocks referred from that array (numbers are stored as
2292 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2294 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2295 * blocks are contiguous then releasing them at one time will only affect one
2296 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2297 * actually use a lot of journal space.
2299 * @this_bh will be %NULL if @first and @last point into the inode's direct
2300 * block pointers.
2302 static void ext3_free_data(handle_t *handle, struct inode *inode,
2303 struct buffer_head *this_bh,
2304 __le32 *first, __le32 *last)
2306 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
2307 unsigned long count = 0; /* Number of blocks in the run */
2308 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2309 corresponding to
2310 block_to_free */
2311 ext3_fsblk_t nr; /* Current block # */
2312 __le32 *p; /* Pointer into inode/ind
2313 for current block */
2314 int err;
2316 if (this_bh) { /* For indirect block */
2317 BUFFER_TRACE(this_bh, "get_write_access");
2318 err = ext3_journal_get_write_access(handle, this_bh);
2319 /* Important: if we can't update the indirect pointers
2320 * to the blocks, we can't free them. */
2321 if (err)
2322 return;
2325 for (p = first; p < last; p++) {
2326 nr = le32_to_cpu(*p);
2327 if (nr) {
2328 /* accumulate blocks to free if they're contiguous */
2329 if (count == 0) {
2330 block_to_free = nr;
2331 block_to_free_p = p;
2332 count = 1;
2333 } else if (nr == block_to_free + count) {
2334 count++;
2335 } else {
2336 ext3_clear_blocks(handle, inode, this_bh,
2337 block_to_free,
2338 count, block_to_free_p, p);
2339 block_to_free = nr;
2340 block_to_free_p = p;
2341 count = 1;
2346 if (count > 0)
2347 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2348 count, block_to_free_p, p);
2350 if (this_bh) {
2351 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2354 * The buffer head should have an attached journal head at this
2355 * point. However, if the data is corrupted and an indirect
2356 * block pointed to itself, it would have been detached when
2357 * the block was cleared. Check for this instead of OOPSing.
2359 if (bh2jh(this_bh))
2360 ext3_journal_dirty_metadata(handle, this_bh);
2361 else
2362 ext3_error(inode->i_sb, "ext3_free_data",
2363 "circular indirect block detected, "
2364 "inode=%lu, block=%llu",
2365 inode->i_ino,
2366 (unsigned long long)this_bh->b_blocknr);
2371 * ext3_free_branches - free an array of branches
2372 * @handle: JBD handle for this transaction
2373 * @inode: inode we are dealing with
2374 * @parent_bh: the buffer_head which contains *@first and *@last
2375 * @first: array of block numbers
2376 * @last: pointer immediately past the end of array
2377 * @depth: depth of the branches to free
2379 * We are freeing all blocks referred from these branches (numbers are
2380 * stored as little-endian 32-bit) and updating @inode->i_blocks
2381 * appropriately.
2383 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2384 struct buffer_head *parent_bh,
2385 __le32 *first, __le32 *last, int depth)
2387 ext3_fsblk_t nr;
2388 __le32 *p;
2390 if (is_handle_aborted(handle))
2391 return;
2393 if (depth--) {
2394 struct buffer_head *bh;
2395 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2396 p = last;
2397 while (--p >= first) {
2398 nr = le32_to_cpu(*p);
2399 if (!nr)
2400 continue; /* A hole */
2402 /* Go read the buffer for the next level down */
2403 bh = sb_bread(inode->i_sb, nr);
2406 * A read failure? Report error and clear slot
2407 * (should be rare).
2409 if (!bh) {
2410 ext3_error(inode->i_sb, "ext3_free_branches",
2411 "Read failure, inode=%lu, block="E3FSBLK,
2412 inode->i_ino, nr);
2413 continue;
2416 /* This zaps the entire block. Bottom up. */
2417 BUFFER_TRACE(bh, "free child branches");
2418 ext3_free_branches(handle, inode, bh,
2419 (__le32*)bh->b_data,
2420 (__le32*)bh->b_data + addr_per_block,
2421 depth);
2424 * Everything below this this pointer has been
2425 * released. Now let this top-of-subtree go.
2427 * We want the freeing of this indirect block to be
2428 * atomic in the journal with the updating of the
2429 * bitmap block which owns it. So make some room in
2430 * the journal.
2432 * We zero the parent pointer *after* freeing its
2433 * pointee in the bitmaps, so if extend_transaction()
2434 * for some reason fails to put the bitmap changes and
2435 * the release into the same transaction, recovery
2436 * will merely complain about releasing a free block,
2437 * rather than leaking blocks.
2439 if (is_handle_aborted(handle))
2440 return;
2441 if (try_to_extend_transaction(handle, inode)) {
2442 ext3_mark_inode_dirty(handle, inode);
2443 truncate_restart_transaction(handle, inode);
2447 * We've probably journalled the indirect block several
2448 * times during the truncate. But it's no longer
2449 * needed and we now drop it from the transaction via
2450 * journal_revoke().
2452 * That's easy if it's exclusively part of this
2453 * transaction. But if it's part of the committing
2454 * transaction then journal_forget() will simply
2455 * brelse() it. That means that if the underlying
2456 * block is reallocated in ext3_get_block(),
2457 * unmap_underlying_metadata() will find this block
2458 * and will try to get rid of it. damn, damn. Thus
2459 * we don't allow a block to be reallocated until
2460 * a transaction freeing it has fully committed.
2462 * We also have to make sure journal replay after a
2463 * crash does not overwrite non-journaled data blocks
2464 * with old metadata when the block got reallocated for
2465 * data. Thus we have to store a revoke record for a
2466 * block in the same transaction in which we free the
2467 * block.
2469 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2471 ext3_free_blocks(handle, inode, nr, 1);
2473 if (parent_bh) {
2475 * The block which we have just freed is
2476 * pointed to by an indirect block: journal it
2478 BUFFER_TRACE(parent_bh, "get_write_access");
2479 if (!ext3_journal_get_write_access(handle,
2480 parent_bh)){
2481 *p = 0;
2482 BUFFER_TRACE(parent_bh,
2483 "call ext3_journal_dirty_metadata");
2484 ext3_journal_dirty_metadata(handle,
2485 parent_bh);
2489 } else {
2490 /* We have reached the bottom of the tree. */
2491 BUFFER_TRACE(parent_bh, "free data blocks");
2492 ext3_free_data(handle, inode, parent_bh, first, last);
2496 int ext3_can_truncate(struct inode *inode)
2498 if (S_ISREG(inode->i_mode))
2499 return 1;
2500 if (S_ISDIR(inode->i_mode))
2501 return 1;
2502 if (S_ISLNK(inode->i_mode))
2503 return !ext3_inode_is_fast_symlink(inode);
2504 return 0;
2508 * ext3_truncate()
2510 * We block out ext3_get_block() block instantiations across the entire
2511 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2512 * simultaneously on behalf of the same inode.
2514 * As we work through the truncate and commit bits of it to the journal there
2515 * is one core, guiding principle: the file's tree must always be consistent on
2516 * disk. We must be able to restart the truncate after a crash.
2518 * The file's tree may be transiently inconsistent in memory (although it
2519 * probably isn't), but whenever we close off and commit a journal transaction,
2520 * the contents of (the filesystem + the journal) must be consistent and
2521 * restartable. It's pretty simple, really: bottom up, right to left (although
2522 * left-to-right works OK too).
2524 * Note that at recovery time, journal replay occurs *before* the restart of
2525 * truncate against the orphan inode list.
2527 * The committed inode has the new, desired i_size (which is the same as
2528 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2529 * that this inode's truncate did not complete and it will again call
2530 * ext3_truncate() to have another go. So there will be instantiated blocks
2531 * to the right of the truncation point in a crashed ext3 filesystem. But
2532 * that's fine - as long as they are linked from the inode, the post-crash
2533 * ext3_truncate() run will find them and release them.
2535 void ext3_truncate(struct inode *inode)
2537 handle_t *handle;
2538 struct ext3_inode_info *ei = EXT3_I(inode);
2539 __le32 *i_data = ei->i_data;
2540 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2541 int offsets[4];
2542 Indirect chain[4];
2543 Indirect *partial;
2544 __le32 nr = 0;
2545 int n;
2546 long last_block;
2547 unsigned blocksize = inode->i_sb->s_blocksize;
2549 trace_ext3_truncate_enter(inode);
2551 if (!ext3_can_truncate(inode))
2552 goto out_notrans;
2554 if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2555 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2557 handle = start_transaction(inode);
2558 if (IS_ERR(handle))
2559 goto out_notrans;
2561 last_block = (inode->i_size + blocksize-1)
2562 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2563 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2564 if (n == 0)
2565 goto out_stop; /* error */
2568 * OK. This truncate is going to happen. We add the inode to the
2569 * orphan list, so that if this truncate spans multiple transactions,
2570 * and we crash, we will resume the truncate when the filesystem
2571 * recovers. It also marks the inode dirty, to catch the new size.
2573 * Implication: the file must always be in a sane, consistent
2574 * truncatable state while each transaction commits.
2576 if (ext3_orphan_add(handle, inode))
2577 goto out_stop;
2580 * The orphan list entry will now protect us from any crash which
2581 * occurs before the truncate completes, so it is now safe to propagate
2582 * the new, shorter inode size (held for now in i_size) into the
2583 * on-disk inode. We do this via i_disksize, which is the value which
2584 * ext3 *really* writes onto the disk inode.
2586 ei->i_disksize = inode->i_size;
2589 * From here we block out all ext3_get_block() callers who want to
2590 * modify the block allocation tree.
2592 mutex_lock(&ei->truncate_mutex);
2594 if (n == 1) { /* direct blocks */
2595 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2596 i_data + EXT3_NDIR_BLOCKS);
2597 goto do_indirects;
2600 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2601 /* Kill the top of shared branch (not detached) */
2602 if (nr) {
2603 if (partial == chain) {
2604 /* Shared branch grows from the inode */
2605 ext3_free_branches(handle, inode, NULL,
2606 &nr, &nr+1, (chain+n-1) - partial);
2607 *partial->p = 0;
2609 * We mark the inode dirty prior to restart,
2610 * and prior to stop. No need for it here.
2612 } else {
2613 /* Shared branch grows from an indirect block */
2614 ext3_free_branches(handle, inode, partial->bh,
2615 partial->p,
2616 partial->p+1, (chain+n-1) - partial);
2619 /* Clear the ends of indirect blocks on the shared branch */
2620 while (partial > chain) {
2621 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2622 (__le32*)partial->bh->b_data+addr_per_block,
2623 (chain+n-1) - partial);
2624 BUFFER_TRACE(partial->bh, "call brelse");
2625 brelse (partial->bh);
2626 partial--;
2628 do_indirects:
2629 /* Kill the remaining (whole) subtrees */
2630 switch (offsets[0]) {
2631 default:
2632 nr = i_data[EXT3_IND_BLOCK];
2633 if (nr) {
2634 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2635 i_data[EXT3_IND_BLOCK] = 0;
2637 case EXT3_IND_BLOCK:
2638 nr = i_data[EXT3_DIND_BLOCK];
2639 if (nr) {
2640 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2641 i_data[EXT3_DIND_BLOCK] = 0;
2643 case EXT3_DIND_BLOCK:
2644 nr = i_data[EXT3_TIND_BLOCK];
2645 if (nr) {
2646 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2647 i_data[EXT3_TIND_BLOCK] = 0;
2649 case EXT3_TIND_BLOCK:
2653 ext3_discard_reservation(inode);
2655 mutex_unlock(&ei->truncate_mutex);
2656 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2657 ext3_mark_inode_dirty(handle, inode);
2660 * In a multi-transaction truncate, we only make the final transaction
2661 * synchronous
2663 if (IS_SYNC(inode))
2664 handle->h_sync = 1;
2665 out_stop:
2667 * If this was a simple ftruncate(), and the file will remain alive
2668 * then we need to clear up the orphan record which we created above.
2669 * However, if this was a real unlink then we were called by
2670 * ext3_evict_inode(), and we allow that function to clean up the
2671 * orphan info for us.
2673 if (inode->i_nlink)
2674 ext3_orphan_del(handle, inode);
2676 ext3_journal_stop(handle);
2677 trace_ext3_truncate_exit(inode);
2678 return;
2679 out_notrans:
2681 * Delete the inode from orphan list so that it doesn't stay there
2682 * forever and trigger assertion on umount.
2684 if (inode->i_nlink)
2685 ext3_orphan_del(NULL, inode);
2686 trace_ext3_truncate_exit(inode);
2689 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2690 unsigned long ino, struct ext3_iloc *iloc)
2692 unsigned long block_group;
2693 unsigned long offset;
2694 ext3_fsblk_t block;
2695 struct ext3_group_desc *gdp;
2697 if (!ext3_valid_inum(sb, ino)) {
2699 * This error is already checked for in namei.c unless we are
2700 * looking at an NFS filehandle, in which case no error
2701 * report is needed
2703 return 0;
2706 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2707 gdp = ext3_get_group_desc(sb, block_group, NULL);
2708 if (!gdp)
2709 return 0;
2711 * Figure out the offset within the block group inode table
2713 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2714 EXT3_INODE_SIZE(sb);
2715 block = le32_to_cpu(gdp->bg_inode_table) +
2716 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2718 iloc->block_group = block_group;
2719 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2720 return block;
2724 * ext3_get_inode_loc returns with an extra refcount against the inode's
2725 * underlying buffer_head on success. If 'in_mem' is true, we have all
2726 * data in memory that is needed to recreate the on-disk version of this
2727 * inode.
2729 static int __ext3_get_inode_loc(struct inode *inode,
2730 struct ext3_iloc *iloc, int in_mem)
2732 ext3_fsblk_t block;
2733 struct buffer_head *bh;
2735 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2736 if (!block)
2737 return -EIO;
2739 bh = sb_getblk(inode->i_sb, block);
2740 if (!bh) {
2741 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2742 "unable to read inode block - "
2743 "inode=%lu, block="E3FSBLK,
2744 inode->i_ino, block);
2745 return -EIO;
2747 if (!buffer_uptodate(bh)) {
2748 lock_buffer(bh);
2751 * If the buffer has the write error flag, we have failed
2752 * to write out another inode in the same block. In this
2753 * case, we don't have to read the block because we may
2754 * read the old inode data successfully.
2756 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2757 set_buffer_uptodate(bh);
2759 if (buffer_uptodate(bh)) {
2760 /* someone brought it uptodate while we waited */
2761 unlock_buffer(bh);
2762 goto has_buffer;
2766 * If we have all information of the inode in memory and this
2767 * is the only valid inode in the block, we need not read the
2768 * block.
2770 if (in_mem) {
2771 struct buffer_head *bitmap_bh;
2772 struct ext3_group_desc *desc;
2773 int inodes_per_buffer;
2774 int inode_offset, i;
2775 int block_group;
2776 int start;
2778 block_group = (inode->i_ino - 1) /
2779 EXT3_INODES_PER_GROUP(inode->i_sb);
2780 inodes_per_buffer = bh->b_size /
2781 EXT3_INODE_SIZE(inode->i_sb);
2782 inode_offset = ((inode->i_ino - 1) %
2783 EXT3_INODES_PER_GROUP(inode->i_sb));
2784 start = inode_offset & ~(inodes_per_buffer - 1);
2786 /* Is the inode bitmap in cache? */
2787 desc = ext3_get_group_desc(inode->i_sb,
2788 block_group, NULL);
2789 if (!desc)
2790 goto make_io;
2792 bitmap_bh = sb_getblk(inode->i_sb,
2793 le32_to_cpu(desc->bg_inode_bitmap));
2794 if (!bitmap_bh)
2795 goto make_io;
2798 * If the inode bitmap isn't in cache then the
2799 * optimisation may end up performing two reads instead
2800 * of one, so skip it.
2802 if (!buffer_uptodate(bitmap_bh)) {
2803 brelse(bitmap_bh);
2804 goto make_io;
2806 for (i = start; i < start + inodes_per_buffer; i++) {
2807 if (i == inode_offset)
2808 continue;
2809 if (ext3_test_bit(i, bitmap_bh->b_data))
2810 break;
2812 brelse(bitmap_bh);
2813 if (i == start + inodes_per_buffer) {
2814 /* all other inodes are free, so skip I/O */
2815 memset(bh->b_data, 0, bh->b_size);
2816 set_buffer_uptodate(bh);
2817 unlock_buffer(bh);
2818 goto has_buffer;
2822 make_io:
2824 * There are other valid inodes in the buffer, this inode
2825 * has in-inode xattrs, or we don't have this inode in memory.
2826 * Read the block from disk.
2828 trace_ext3_load_inode(inode);
2829 get_bh(bh);
2830 bh->b_end_io = end_buffer_read_sync;
2831 submit_bh(READ | REQ_META | REQ_PRIO, bh);
2832 wait_on_buffer(bh);
2833 if (!buffer_uptodate(bh)) {
2834 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2835 "unable to read inode block - "
2836 "inode=%lu, block="E3FSBLK,
2837 inode->i_ino, block);
2838 brelse(bh);
2839 return -EIO;
2842 has_buffer:
2843 iloc->bh = bh;
2844 return 0;
2847 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2849 /* We have all inode data except xattrs in memory here. */
2850 return __ext3_get_inode_loc(inode, iloc,
2851 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2854 void ext3_set_inode_flags(struct inode *inode)
2856 unsigned int flags = EXT3_I(inode)->i_flags;
2858 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2859 if (flags & EXT3_SYNC_FL)
2860 inode->i_flags |= S_SYNC;
2861 if (flags & EXT3_APPEND_FL)
2862 inode->i_flags |= S_APPEND;
2863 if (flags & EXT3_IMMUTABLE_FL)
2864 inode->i_flags |= S_IMMUTABLE;
2865 if (flags & EXT3_NOATIME_FL)
2866 inode->i_flags |= S_NOATIME;
2867 if (flags & EXT3_DIRSYNC_FL)
2868 inode->i_flags |= S_DIRSYNC;
2871 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2872 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2874 unsigned int flags = ei->vfs_inode.i_flags;
2876 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2877 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2878 if (flags & S_SYNC)
2879 ei->i_flags |= EXT3_SYNC_FL;
2880 if (flags & S_APPEND)
2881 ei->i_flags |= EXT3_APPEND_FL;
2882 if (flags & S_IMMUTABLE)
2883 ei->i_flags |= EXT3_IMMUTABLE_FL;
2884 if (flags & S_NOATIME)
2885 ei->i_flags |= EXT3_NOATIME_FL;
2886 if (flags & S_DIRSYNC)
2887 ei->i_flags |= EXT3_DIRSYNC_FL;
2890 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2892 struct ext3_iloc iloc;
2893 struct ext3_inode *raw_inode;
2894 struct ext3_inode_info *ei;
2895 struct buffer_head *bh;
2896 struct inode *inode;
2897 journal_t *journal = EXT3_SB(sb)->s_journal;
2898 transaction_t *transaction;
2899 long ret;
2900 int block;
2902 inode = iget_locked(sb, ino);
2903 if (!inode)
2904 return ERR_PTR(-ENOMEM);
2905 if (!(inode->i_state & I_NEW))
2906 return inode;
2908 ei = EXT3_I(inode);
2909 ei->i_block_alloc_info = NULL;
2911 ret = __ext3_get_inode_loc(inode, &iloc, 0);
2912 if (ret < 0)
2913 goto bad_inode;
2914 bh = iloc.bh;
2915 raw_inode = ext3_raw_inode(&iloc);
2916 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2917 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2918 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2919 if(!(test_opt (inode->i_sb, NO_UID32))) {
2920 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2921 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2923 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
2924 inode->i_size = le32_to_cpu(raw_inode->i_size);
2925 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2926 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2927 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2928 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2930 ei->i_state_flags = 0;
2931 ei->i_dir_start_lookup = 0;
2932 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2933 /* We now have enough fields to check if the inode was active or not.
2934 * This is needed because nfsd might try to access dead inodes
2935 * the test is that same one that e2fsck uses
2936 * NeilBrown 1999oct15
2938 if (inode->i_nlink == 0) {
2939 if (inode->i_mode == 0 ||
2940 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2941 /* this inode is deleted */
2942 brelse (bh);
2943 ret = -ESTALE;
2944 goto bad_inode;
2946 /* The only unlinked inodes we let through here have
2947 * valid i_mode and are being read by the orphan
2948 * recovery code: that's fine, we're about to complete
2949 * the process of deleting those. */
2951 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2952 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2953 #ifdef EXT3_FRAGMENTS
2954 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2955 ei->i_frag_no = raw_inode->i_frag;
2956 ei->i_frag_size = raw_inode->i_fsize;
2957 #endif
2958 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2959 if (!S_ISREG(inode->i_mode)) {
2960 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2961 } else {
2962 inode->i_size |=
2963 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2965 ei->i_disksize = inode->i_size;
2966 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2967 ei->i_block_group = iloc.block_group;
2969 * NOTE! The in-memory inode i_data array is in little-endian order
2970 * even on big-endian machines: we do NOT byteswap the block numbers!
2972 for (block = 0; block < EXT3_N_BLOCKS; block++)
2973 ei->i_data[block] = raw_inode->i_block[block];
2974 INIT_LIST_HEAD(&ei->i_orphan);
2977 * Set transaction id's of transactions that have to be committed
2978 * to finish f[data]sync. We set them to currently running transaction
2979 * as we cannot be sure that the inode or some of its metadata isn't
2980 * part of the transaction - the inode could have been reclaimed and
2981 * now it is reread from disk.
2983 if (journal) {
2984 tid_t tid;
2986 spin_lock(&journal->j_state_lock);
2987 if (journal->j_running_transaction)
2988 transaction = journal->j_running_transaction;
2989 else
2990 transaction = journal->j_committing_transaction;
2991 if (transaction)
2992 tid = transaction->t_tid;
2993 else
2994 tid = journal->j_commit_sequence;
2995 spin_unlock(&journal->j_state_lock);
2996 atomic_set(&ei->i_sync_tid, tid);
2997 atomic_set(&ei->i_datasync_tid, tid);
3000 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
3001 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
3003 * When mke2fs creates big inodes it does not zero out
3004 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
3005 * so ignore those first few inodes.
3007 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3008 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3009 EXT3_INODE_SIZE(inode->i_sb)) {
3010 brelse (bh);
3011 ret = -EIO;
3012 goto bad_inode;
3014 if (ei->i_extra_isize == 0) {
3015 /* The extra space is currently unused. Use it. */
3016 ei->i_extra_isize = sizeof(struct ext3_inode) -
3017 EXT3_GOOD_OLD_INODE_SIZE;
3018 } else {
3019 __le32 *magic = (void *)raw_inode +
3020 EXT3_GOOD_OLD_INODE_SIZE +
3021 ei->i_extra_isize;
3022 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
3023 ext3_set_inode_state(inode, EXT3_STATE_XATTR);
3025 } else
3026 ei->i_extra_isize = 0;
3028 if (S_ISREG(inode->i_mode)) {
3029 inode->i_op = &ext3_file_inode_operations;
3030 inode->i_fop = &ext3_file_operations;
3031 ext3_set_aops(inode);
3032 } else if (S_ISDIR(inode->i_mode)) {
3033 inode->i_op = &ext3_dir_inode_operations;
3034 inode->i_fop = &ext3_dir_operations;
3035 } else if (S_ISLNK(inode->i_mode)) {
3036 if (ext3_inode_is_fast_symlink(inode)) {
3037 inode->i_op = &ext3_fast_symlink_inode_operations;
3038 nd_terminate_link(ei->i_data, inode->i_size,
3039 sizeof(ei->i_data) - 1);
3040 } else {
3041 inode->i_op = &ext3_symlink_inode_operations;
3042 ext3_set_aops(inode);
3044 } else {
3045 inode->i_op = &ext3_special_inode_operations;
3046 if (raw_inode->i_block[0])
3047 init_special_inode(inode, inode->i_mode,
3048 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3049 else
3050 init_special_inode(inode, inode->i_mode,
3051 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3053 brelse (iloc.bh);
3054 ext3_set_inode_flags(inode);
3055 unlock_new_inode(inode);
3056 return inode;
3058 bad_inode:
3059 iget_failed(inode);
3060 return ERR_PTR(ret);
3064 * Post the struct inode info into an on-disk inode location in the
3065 * buffer-cache. This gobbles the caller's reference to the
3066 * buffer_head in the inode location struct.
3068 * The caller must have write access to iloc->bh.
3070 static int ext3_do_update_inode(handle_t *handle,
3071 struct inode *inode,
3072 struct ext3_iloc *iloc)
3074 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
3075 struct ext3_inode_info *ei = EXT3_I(inode);
3076 struct buffer_head *bh = iloc->bh;
3077 int err = 0, rc, block;
3079 again:
3080 /* we can't allow multiple procs in here at once, its a bit racey */
3081 lock_buffer(bh);
3083 /* For fields not not tracking in the in-memory inode,
3084 * initialise them to zero for new inodes. */
3085 if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3086 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3088 ext3_get_inode_flags(ei);
3089 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3090 if(!(test_opt(inode->i_sb, NO_UID32))) {
3091 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3092 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3094 * Fix up interoperability with old kernels. Otherwise, old inodes get
3095 * re-used with the upper 16 bits of the uid/gid intact
3097 if(!ei->i_dtime) {
3098 raw_inode->i_uid_high =
3099 cpu_to_le16(high_16_bits(inode->i_uid));
3100 raw_inode->i_gid_high =
3101 cpu_to_le16(high_16_bits(inode->i_gid));
3102 } else {
3103 raw_inode->i_uid_high = 0;
3104 raw_inode->i_gid_high = 0;
3106 } else {
3107 raw_inode->i_uid_low =
3108 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3109 raw_inode->i_gid_low =
3110 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3111 raw_inode->i_uid_high = 0;
3112 raw_inode->i_gid_high = 0;
3114 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3115 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
3116 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3117 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3118 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3119 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3120 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3121 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3122 #ifdef EXT3_FRAGMENTS
3123 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3124 raw_inode->i_frag = ei->i_frag_no;
3125 raw_inode->i_fsize = ei->i_frag_size;
3126 #endif
3127 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3128 if (!S_ISREG(inode->i_mode)) {
3129 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3130 } else {
3131 raw_inode->i_size_high =
3132 cpu_to_le32(ei->i_disksize >> 32);
3133 if (ei->i_disksize > 0x7fffffffULL) {
3134 struct super_block *sb = inode->i_sb;
3135 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3136 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3137 EXT3_SB(sb)->s_es->s_rev_level ==
3138 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3139 /* If this is the first large file
3140 * created, add a flag to the superblock.
3142 unlock_buffer(bh);
3143 err = ext3_journal_get_write_access(handle,
3144 EXT3_SB(sb)->s_sbh);
3145 if (err)
3146 goto out_brelse;
3148 ext3_update_dynamic_rev(sb);
3149 EXT3_SET_RO_COMPAT_FEATURE(sb,
3150 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3151 handle->h_sync = 1;
3152 err = ext3_journal_dirty_metadata(handle,
3153 EXT3_SB(sb)->s_sbh);
3154 /* get our lock and start over */
3155 goto again;
3159 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3160 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3161 if (old_valid_dev(inode->i_rdev)) {
3162 raw_inode->i_block[0] =
3163 cpu_to_le32(old_encode_dev(inode->i_rdev));
3164 raw_inode->i_block[1] = 0;
3165 } else {
3166 raw_inode->i_block[0] = 0;
3167 raw_inode->i_block[1] =
3168 cpu_to_le32(new_encode_dev(inode->i_rdev));
3169 raw_inode->i_block[2] = 0;
3171 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3172 raw_inode->i_block[block] = ei->i_data[block];
3174 if (ei->i_extra_isize)
3175 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3177 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3178 unlock_buffer(bh);
3179 rc = ext3_journal_dirty_metadata(handle, bh);
3180 if (!err)
3181 err = rc;
3182 ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3184 atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3185 out_brelse:
3186 brelse (bh);
3187 ext3_std_error(inode->i_sb, err);
3188 return err;
3192 * ext3_write_inode()
3194 * We are called from a few places:
3196 * - Within generic_file_write() for O_SYNC files.
3197 * Here, there will be no transaction running. We wait for any running
3198 * trasnaction to commit.
3200 * - Within sys_sync(), kupdate and such.
3201 * We wait on commit, if tol to.
3203 * - Within prune_icache() (PF_MEMALLOC == true)
3204 * Here we simply return. We can't afford to block kswapd on the
3205 * journal commit.
3207 * In all cases it is actually safe for us to return without doing anything,
3208 * because the inode has been copied into a raw inode buffer in
3209 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3210 * knfsd.
3212 * Note that we are absolutely dependent upon all inode dirtiers doing the
3213 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3214 * which we are interested.
3216 * It would be a bug for them to not do this. The code:
3218 * mark_inode_dirty(inode)
3219 * stuff();
3220 * inode->i_size = expr;
3222 * is in error because a kswapd-driven write_inode() could occur while
3223 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3224 * will no longer be on the superblock's dirty inode list.
3226 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3228 if (current->flags & PF_MEMALLOC)
3229 return 0;
3231 if (ext3_journal_current_handle()) {
3232 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3233 dump_stack();
3234 return -EIO;
3237 if (wbc->sync_mode != WB_SYNC_ALL)
3238 return 0;
3240 return ext3_force_commit(inode->i_sb);
3244 * ext3_setattr()
3246 * Called from notify_change.
3248 * We want to trap VFS attempts to truncate the file as soon as
3249 * possible. In particular, we want to make sure that when the VFS
3250 * shrinks i_size, we put the inode on the orphan list and modify
3251 * i_disksize immediately, so that during the subsequent flushing of
3252 * dirty pages and freeing of disk blocks, we can guarantee that any
3253 * commit will leave the blocks being flushed in an unused state on
3254 * disk. (On recovery, the inode will get truncated and the blocks will
3255 * be freed, so we have a strong guarantee that no future commit will
3256 * leave these blocks visible to the user.)
3258 * Called with inode->sem down.
3260 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3262 struct inode *inode = dentry->d_inode;
3263 int error, rc = 0;
3264 const unsigned int ia_valid = attr->ia_valid;
3266 error = inode_change_ok(inode, attr);
3267 if (error)
3268 return error;
3270 if (is_quota_modification(inode, attr))
3271 dquot_initialize(inode);
3272 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3273 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3274 handle_t *handle;
3276 /* (user+group)*(old+new) structure, inode write (sb,
3277 * inode block, ? - but truncate inode update has it) */
3278 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3279 EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3280 if (IS_ERR(handle)) {
3281 error = PTR_ERR(handle);
3282 goto err_out;
3284 error = dquot_transfer(inode, attr);
3285 if (error) {
3286 ext3_journal_stop(handle);
3287 return error;
3289 /* Update corresponding info in inode so that everything is in
3290 * one transaction */
3291 if (attr->ia_valid & ATTR_UID)
3292 inode->i_uid = attr->ia_uid;
3293 if (attr->ia_valid & ATTR_GID)
3294 inode->i_gid = attr->ia_gid;
3295 error = ext3_mark_inode_dirty(handle, inode);
3296 ext3_journal_stop(handle);
3299 if (attr->ia_valid & ATTR_SIZE)
3300 inode_dio_wait(inode);
3302 if (S_ISREG(inode->i_mode) &&
3303 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3304 handle_t *handle;
3306 handle = ext3_journal_start(inode, 3);
3307 if (IS_ERR(handle)) {
3308 error = PTR_ERR(handle);
3309 goto err_out;
3312 error = ext3_orphan_add(handle, inode);
3313 if (error) {
3314 ext3_journal_stop(handle);
3315 goto err_out;
3317 EXT3_I(inode)->i_disksize = attr->ia_size;
3318 error = ext3_mark_inode_dirty(handle, inode);
3319 ext3_journal_stop(handle);
3320 if (error) {
3321 /* Some hard fs error must have happened. Bail out. */
3322 ext3_orphan_del(NULL, inode);
3323 goto err_out;
3325 rc = ext3_block_truncate_page(inode, attr->ia_size);
3326 if (rc) {
3327 /* Cleanup orphan list and exit */
3328 handle = ext3_journal_start(inode, 3);
3329 if (IS_ERR(handle)) {
3330 ext3_orphan_del(NULL, inode);
3331 goto err_out;
3333 ext3_orphan_del(handle, inode);
3334 ext3_journal_stop(handle);
3335 goto err_out;
3339 if ((attr->ia_valid & ATTR_SIZE) &&
3340 attr->ia_size != i_size_read(inode)) {
3341 truncate_setsize(inode, attr->ia_size);
3342 ext3_truncate(inode);
3345 setattr_copy(inode, attr);
3346 mark_inode_dirty(inode);
3348 if (ia_valid & ATTR_MODE)
3349 rc = ext3_acl_chmod(inode);
3351 err_out:
3352 ext3_std_error(inode->i_sb, error);
3353 if (!error)
3354 error = rc;
3355 return error;
3360 * How many blocks doth make a writepage()?
3362 * With N blocks per page, it may be:
3363 * N data blocks
3364 * 2 indirect block
3365 * 2 dindirect
3366 * 1 tindirect
3367 * N+5 bitmap blocks (from the above)
3368 * N+5 group descriptor summary blocks
3369 * 1 inode block
3370 * 1 superblock.
3371 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3373 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3375 * With ordered or writeback data it's the same, less the N data blocks.
3377 * If the inode's direct blocks can hold an integral number of pages then a
3378 * page cannot straddle two indirect blocks, and we can only touch one indirect
3379 * and dindirect block, and the "5" above becomes "3".
3381 * This still overestimates under most circumstances. If we were to pass the
3382 * start and end offsets in here as well we could do block_to_path() on each
3383 * block and work out the exact number of indirects which are touched. Pah.
3386 static int ext3_writepage_trans_blocks(struct inode *inode)
3388 int bpp = ext3_journal_blocks_per_page(inode);
3389 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3390 int ret;
3392 if (ext3_should_journal_data(inode))
3393 ret = 3 * (bpp + indirects) + 2;
3394 else
3395 ret = 2 * (bpp + indirects) + indirects + 2;
3397 #ifdef CONFIG_QUOTA
3398 /* We know that structure was already allocated during dquot_initialize so
3399 * we will be updating only the data blocks + inodes */
3400 ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3401 #endif
3403 return ret;
3407 * The caller must have previously called ext3_reserve_inode_write().
3408 * Give this, we know that the caller already has write access to iloc->bh.
3410 int ext3_mark_iloc_dirty(handle_t *handle,
3411 struct inode *inode, struct ext3_iloc *iloc)
3413 int err = 0;
3415 /* the do_update_inode consumes one bh->b_count */
3416 get_bh(iloc->bh);
3418 /* ext3_do_update_inode() does journal_dirty_metadata */
3419 err = ext3_do_update_inode(handle, inode, iloc);
3420 put_bh(iloc->bh);
3421 return err;
3425 * On success, We end up with an outstanding reference count against
3426 * iloc->bh. This _must_ be cleaned up later.
3430 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3431 struct ext3_iloc *iloc)
3433 int err = 0;
3434 if (handle) {
3435 err = ext3_get_inode_loc(inode, iloc);
3436 if (!err) {
3437 BUFFER_TRACE(iloc->bh, "get_write_access");
3438 err = ext3_journal_get_write_access(handle, iloc->bh);
3439 if (err) {
3440 brelse(iloc->bh);
3441 iloc->bh = NULL;
3445 ext3_std_error(inode->i_sb, err);
3446 return err;
3450 * What we do here is to mark the in-core inode as clean with respect to inode
3451 * dirtiness (it may still be data-dirty).
3452 * This means that the in-core inode may be reaped by prune_icache
3453 * without having to perform any I/O. This is a very good thing,
3454 * because *any* task may call prune_icache - even ones which
3455 * have a transaction open against a different journal.
3457 * Is this cheating? Not really. Sure, we haven't written the
3458 * inode out, but prune_icache isn't a user-visible syncing function.
3459 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3460 * we start and wait on commits.
3462 * Is this efficient/effective? Well, we're being nice to the system
3463 * by cleaning up our inodes proactively so they can be reaped
3464 * without I/O. But we are potentially leaving up to five seconds'
3465 * worth of inodes floating about which prune_icache wants us to
3466 * write out. One way to fix that would be to get prune_icache()
3467 * to do a write_super() to free up some memory. It has the desired
3468 * effect.
3470 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3472 struct ext3_iloc iloc;
3473 int err;
3475 might_sleep();
3476 trace_ext3_mark_inode_dirty(inode, _RET_IP_);
3477 err = ext3_reserve_inode_write(handle, inode, &iloc);
3478 if (!err)
3479 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3480 return err;
3484 * ext3_dirty_inode() is called from __mark_inode_dirty()
3486 * We're really interested in the case where a file is being extended.
3487 * i_size has been changed by generic_commit_write() and we thus need
3488 * to include the updated inode in the current transaction.
3490 * Also, dquot_alloc_space() will always dirty the inode when blocks
3491 * are allocated to the file.
3493 * If the inode is marked synchronous, we don't honour that here - doing
3494 * so would cause a commit on atime updates, which we don't bother doing.
3495 * We handle synchronous inodes at the highest possible level.
3497 void ext3_dirty_inode(struct inode *inode, int flags)
3499 handle_t *current_handle = ext3_journal_current_handle();
3500 handle_t *handle;
3502 handle = ext3_journal_start(inode, 2);
3503 if (IS_ERR(handle))
3504 goto out;
3505 if (current_handle &&
3506 current_handle->h_transaction != handle->h_transaction) {
3507 /* This task has a transaction open against a different fs */
3508 printk(KERN_EMERG "%s: transactions do not match!\n",
3509 __func__);
3510 } else {
3511 jbd_debug(5, "marking dirty. outer handle=%p\n",
3512 current_handle);
3513 ext3_mark_inode_dirty(handle, inode);
3515 ext3_journal_stop(handle);
3516 out:
3517 return;
3520 #if 0
3522 * Bind an inode's backing buffer_head into this transaction, to prevent
3523 * it from being flushed to disk early. Unlike
3524 * ext3_reserve_inode_write, this leaves behind no bh reference and
3525 * returns no iloc structure, so the caller needs to repeat the iloc
3526 * lookup to mark the inode dirty later.
3528 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3530 struct ext3_iloc iloc;
3532 int err = 0;
3533 if (handle) {
3534 err = ext3_get_inode_loc(inode, &iloc);
3535 if (!err) {
3536 BUFFER_TRACE(iloc.bh, "get_write_access");
3537 err = journal_get_write_access(handle, iloc.bh);
3538 if (!err)
3539 err = ext3_journal_dirty_metadata(handle,
3540 iloc.bh);
3541 brelse(iloc.bh);
3544 ext3_std_error(inode->i_sb, err);
3545 return err;
3547 #endif
3549 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3551 journal_t *journal;
3552 handle_t *handle;
3553 int err;
3556 * We have to be very careful here: changing a data block's
3557 * journaling status dynamically is dangerous. If we write a
3558 * data block to the journal, change the status and then delete
3559 * that block, we risk forgetting to revoke the old log record
3560 * from the journal and so a subsequent replay can corrupt data.
3561 * So, first we make sure that the journal is empty and that
3562 * nobody is changing anything.
3565 journal = EXT3_JOURNAL(inode);
3566 if (is_journal_aborted(journal))
3567 return -EROFS;
3569 journal_lock_updates(journal);
3570 journal_flush(journal);
3573 * OK, there are no updates running now, and all cached data is
3574 * synced to disk. We are now in a completely consistent state
3575 * which doesn't have anything in the journal, and we know that
3576 * no filesystem updates are running, so it is safe to modify
3577 * the inode's in-core data-journaling state flag now.
3580 if (val)
3581 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3582 else
3583 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3584 ext3_set_aops(inode);
3586 journal_unlock_updates(journal);
3588 /* Finally we can mark the inode as dirty. */
3590 handle = ext3_journal_start(inode, 1);
3591 if (IS_ERR(handle))
3592 return PTR_ERR(handle);
3594 err = ext3_mark_inode_dirty(handle, inode);
3595 handle->h_sync = 1;
3596 ext3_journal_stop(handle);
3597 ext3_std_error(inode->i_sb, err);
3599 return err;