1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
5 #ifndef __GENERATING_BOUNDS_H
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
36 #define PAGE_ALLOC_COSTLY_ORDER 3
38 #define MIGRATE_UNMOVABLE 0
39 #define MIGRATE_RECLAIMABLE 1
40 #define MIGRATE_MOVABLE 2
41 #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE 3
43 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
44 #define MIGRATE_TYPES 5
46 #define for_each_migratetype_order(order, type) \
47 for (order = 0; order < MAX_ORDER; order++) \
48 for (type = 0; type < MIGRATE_TYPES; type++)
50 extern int page_group_by_mobility_disabled
;
52 static inline int get_pageblock_migratetype(struct page
*page
)
54 return get_pageblock_flags_group(page
, PB_migrate
, PB_migrate_end
);
58 struct list_head free_list
[MIGRATE_TYPES
];
59 unsigned long nr_free
;
65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66 * So add a wild amount of padding here to ensure that they fall into separate
67 * cachelines. There are very few zone structures in the machine, so space
68 * consumption is not a concern here.
70 #if defined(CONFIG_SMP)
73 } ____cacheline_internodealigned_in_smp
;
74 #define ZONE_PADDING(name) struct zone_padding name;
76 #define ZONE_PADDING(name)
80 /* First 128 byte cacheline (assuming 64 bit words) */
83 NR_INACTIVE_ANON
= NR_LRU_BASE
, /* must match order of LRU_[IN]ACTIVE */
84 NR_ACTIVE_ANON
, /* " " " " " */
85 NR_INACTIVE_FILE
, /* " " " " " */
86 NR_ACTIVE_FILE
, /* " " " " " */
87 NR_UNEVICTABLE
, /* " " " " " */
88 NR_MLOCK
, /* mlock()ed pages found and moved off LRU */
89 NR_ANON_PAGES
, /* Mapped anonymous pages */
90 NR_FILE_MAPPED
, /* pagecache pages mapped into pagetables.
91 only modified from process context */
96 NR_SLAB_UNRECLAIMABLE
,
97 NR_PAGETABLE
, /* used for pagetables */
99 /* Second 128 byte cacheline */
100 NR_UNSTABLE_NFS
, /* NFS unstable pages */
103 NR_VMSCAN_IMMEDIATE
, /* Prioritise for reclaim when writeback ends */
104 NR_WRITEBACK_TEMP
, /* Writeback using temporary buffers */
105 NR_ISOLATED_ANON
, /* Temporary isolated pages from anon lru */
106 NR_ISOLATED_FILE
, /* Temporary isolated pages from file lru */
107 NR_SHMEM
, /* shmem pages (included tmpfs/GEM pages) */
108 NR_DIRTIED
, /* page dirtyings since bootup */
109 NR_WRITTEN
, /* page writings since bootup */
111 NUMA_HIT
, /* allocated in intended node */
112 NUMA_MISS
, /* allocated in non intended node */
113 NUMA_FOREIGN
, /* was intended here, hit elsewhere */
114 NUMA_INTERLEAVE_HIT
, /* interleaver preferred this zone */
115 NUMA_LOCAL
, /* allocation from local node */
116 NUMA_OTHER
, /* allocation from other node */
118 NR_ANON_TRANSPARENT_HUGEPAGES
,
119 NR_VM_ZONE_STAT_ITEMS
};
122 * We do arithmetic on the LRU lists in various places in the code,
123 * so it is important to keep the active lists LRU_ACTIVE higher in
124 * the array than the corresponding inactive lists, and to keep
125 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
127 * This has to be kept in sync with the statistics in zone_stat_item
128 * above and the descriptions in vmstat_text in mm/vmstat.c
135 LRU_INACTIVE_ANON
= LRU_BASE
,
136 LRU_ACTIVE_ANON
= LRU_BASE
+ LRU_ACTIVE
,
137 LRU_INACTIVE_FILE
= LRU_BASE
+ LRU_FILE
,
138 LRU_ACTIVE_FILE
= LRU_BASE
+ LRU_FILE
+ LRU_ACTIVE
,
143 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
145 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
147 static inline int is_file_lru(enum lru_list lru
)
149 return (lru
== LRU_INACTIVE_FILE
|| lru
== LRU_ACTIVE_FILE
);
152 static inline int is_active_lru(enum lru_list lru
)
154 return (lru
== LRU_ACTIVE_ANON
|| lru
== LRU_ACTIVE_FILE
);
157 static inline int is_unevictable_lru(enum lru_list lru
)
159 return (lru
== LRU_UNEVICTABLE
);
163 struct list_head lists
[NR_LRU_LISTS
];
166 /* Mask used at gathering information at once (see memcontrol.c) */
167 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
168 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
169 #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
170 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
172 /* Isolate inactive pages */
173 #define ISOLATE_INACTIVE ((__force isolate_mode_t)0x1)
174 /* Isolate active pages */
175 #define ISOLATE_ACTIVE ((__force isolate_mode_t)0x2)
176 /* Isolate clean file */
177 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x4)
178 /* Isolate unmapped file */
179 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x8)
180 /* Isolate for asynchronous migration */
181 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x10)
183 /* LRU Isolation modes. */
184 typedef unsigned __bitwise__ isolate_mode_t
;
186 enum zone_watermarks
{
193 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
194 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
195 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
197 struct per_cpu_pages
{
198 int count
; /* number of pages in the list */
199 int high
; /* high watermark, emptying needed */
200 int batch
; /* chunk size for buddy add/remove */
202 /* Lists of pages, one per migrate type stored on the pcp-lists */
203 struct list_head lists
[MIGRATE_PCPTYPES
];
206 struct per_cpu_pageset
{
207 struct per_cpu_pages pcp
;
213 s8 vm_stat_diff
[NR_VM_ZONE_STAT_ITEMS
];
217 #endif /* !__GENERATING_BOUNDS.H */
220 #ifdef CONFIG_ZONE_DMA
222 * ZONE_DMA is used when there are devices that are not able
223 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
224 * carve out the portion of memory that is needed for these devices.
225 * The range is arch specific.
230 * ---------------------------
231 * parisc, ia64, sparc <4G
234 * alpha Unlimited or 0-16MB.
236 * i386, x86_64 and multiple other arches
241 #ifdef CONFIG_ZONE_DMA32
243 * x86_64 needs two ZONE_DMAs because it supports devices that are
244 * only able to do DMA to the lower 16M but also 32 bit devices that
245 * can only do DMA areas below 4G.
250 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
251 * performed on pages in ZONE_NORMAL if the DMA devices support
252 * transfers to all addressable memory.
255 #ifdef CONFIG_HIGHMEM
257 * A memory area that is only addressable by the kernel through
258 * mapping portions into its own address space. This is for example
259 * used by i386 to allow the kernel to address the memory beyond
260 * 900MB. The kernel will set up special mappings (page
261 * table entries on i386) for each page that the kernel needs to
270 #ifndef __GENERATING_BOUNDS_H
273 * When a memory allocation must conform to specific limitations (such
274 * as being suitable for DMA) the caller will pass in hints to the
275 * allocator in the gfp_mask, in the zone modifier bits. These bits
276 * are used to select a priority ordered list of memory zones which
277 * match the requested limits. See gfp_zone() in include/linux/gfp.h
281 #define ZONES_SHIFT 0
282 #elif MAX_NR_ZONES <= 2
283 #define ZONES_SHIFT 1
284 #elif MAX_NR_ZONES <= 4
285 #define ZONES_SHIFT 2
287 #error ZONES_SHIFT -- too many zones configured adjust calculation
290 struct zone_reclaim_stat
{
292 * The pageout code in vmscan.c keeps track of how many of the
293 * mem/swap backed and file backed pages are refeferenced.
294 * The higher the rotated/scanned ratio, the more valuable
297 * The anon LRU stats live in [0], file LRU stats in [1]
299 unsigned long recent_rotated
[2];
300 unsigned long recent_scanned
[2];
304 /* Fields commonly accessed by the page allocator */
306 /* zone watermarks, access with *_wmark_pages(zone) macros */
307 unsigned long watermark
[NR_WMARK
];
310 * When free pages are below this point, additional steps are taken
311 * when reading the number of free pages to avoid per-cpu counter
312 * drift allowing watermarks to be breached
314 unsigned long percpu_drift_mark
;
317 * We don't know if the memory that we're going to allocate will be freeable
318 * or/and it will be released eventually, so to avoid totally wasting several
319 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
320 * to run OOM on the lower zones despite there's tons of freeable ram
321 * on the higher zones). This array is recalculated at runtime if the
322 * sysctl_lowmem_reserve_ratio sysctl changes.
324 unsigned long lowmem_reserve
[MAX_NR_ZONES
];
327 * This is a per-zone reserve of pages that should not be
328 * considered dirtyable memory.
330 unsigned long dirty_balance_reserve
;
335 * zone reclaim becomes active if more unmapped pages exist.
337 unsigned long min_unmapped_pages
;
338 unsigned long min_slab_pages
;
340 struct per_cpu_pageset __percpu
*pageset
;
342 * free areas of different sizes
345 int all_unreclaimable
; /* All pages pinned */
346 #ifdef CONFIG_MEMORY_HOTPLUG
347 /* see spanned/present_pages for more description */
348 seqlock_t span_seqlock
;
350 struct free_area free_area
[MAX_ORDER
];
352 #ifndef CONFIG_SPARSEMEM
354 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
355 * In SPARSEMEM, this map is stored in struct mem_section
357 unsigned long *pageblock_flags
;
358 #endif /* CONFIG_SPARSEMEM */
360 #ifdef CONFIG_COMPACTION
362 * On compaction failure, 1<<compact_defer_shift compactions
363 * are skipped before trying again. The number attempted since
364 * last failure is tracked with compact_considered.
366 unsigned int compact_considered
;
367 unsigned int compact_defer_shift
;
372 /* Fields commonly accessed by the page reclaim scanner */
374 struct lruvec lruvec
;
376 struct zone_reclaim_stat reclaim_stat
;
378 unsigned long pages_scanned
; /* since last reclaim */
379 unsigned long flags
; /* zone flags, see below */
381 /* Zone statistics */
382 atomic_long_t vm_stat
[NR_VM_ZONE_STAT_ITEMS
];
385 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
386 * this zone's LRU. Maintained by the pageout code.
388 unsigned int inactive_ratio
;
392 /* Rarely used or read-mostly fields */
395 * wait_table -- the array holding the hash table
396 * wait_table_hash_nr_entries -- the size of the hash table array
397 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
399 * The purpose of all these is to keep track of the people
400 * waiting for a page to become available and make them
401 * runnable again when possible. The trouble is that this
402 * consumes a lot of space, especially when so few things
403 * wait on pages at a given time. So instead of using
404 * per-page waitqueues, we use a waitqueue hash table.
406 * The bucket discipline is to sleep on the same queue when
407 * colliding and wake all in that wait queue when removing.
408 * When something wakes, it must check to be sure its page is
409 * truly available, a la thundering herd. The cost of a
410 * collision is great, but given the expected load of the
411 * table, they should be so rare as to be outweighed by the
412 * benefits from the saved space.
414 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
415 * primary users of these fields, and in mm/page_alloc.c
416 * free_area_init_core() performs the initialization of them.
418 wait_queue_head_t
* wait_table
;
419 unsigned long wait_table_hash_nr_entries
;
420 unsigned long wait_table_bits
;
423 * Discontig memory support fields.
425 struct pglist_data
*zone_pgdat
;
426 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
427 unsigned long zone_start_pfn
;
430 * zone_start_pfn, spanned_pages and present_pages are all
431 * protected by span_seqlock. It is a seqlock because it has
432 * to be read outside of zone->lock, and it is done in the main
433 * allocator path. But, it is written quite infrequently.
435 * The lock is declared along with zone->lock because it is
436 * frequently read in proximity to zone->lock. It's good to
437 * give them a chance of being in the same cacheline.
439 unsigned long spanned_pages
; /* total size, including holes */
440 unsigned long present_pages
; /* amount of memory (excluding holes) */
443 * rarely used fields:
446 } ____cacheline_internodealigned_in_smp
;
449 ZONE_RECLAIM_LOCKED
, /* prevents concurrent reclaim */
450 ZONE_OOM_LOCKED
, /* zone is in OOM killer zonelist */
451 ZONE_CONGESTED
, /* zone has many dirty pages backed by
456 static inline void zone_set_flag(struct zone
*zone
, zone_flags_t flag
)
458 set_bit(flag
, &zone
->flags
);
461 static inline int zone_test_and_set_flag(struct zone
*zone
, zone_flags_t flag
)
463 return test_and_set_bit(flag
, &zone
->flags
);
466 static inline void zone_clear_flag(struct zone
*zone
, zone_flags_t flag
)
468 clear_bit(flag
, &zone
->flags
);
471 static inline int zone_is_reclaim_congested(const struct zone
*zone
)
473 return test_bit(ZONE_CONGESTED
, &zone
->flags
);
476 static inline int zone_is_reclaim_locked(const struct zone
*zone
)
478 return test_bit(ZONE_RECLAIM_LOCKED
, &zone
->flags
);
481 static inline int zone_is_oom_locked(const struct zone
*zone
)
483 return test_bit(ZONE_OOM_LOCKED
, &zone
->flags
);
487 * The "priority" of VM scanning is how much of the queues we will scan in one
488 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
489 * queues ("queue_length >> 12") during an aging round.
491 #define DEF_PRIORITY 12
493 /* Maximum number of zones on a zonelist */
494 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
499 * The NUMA zonelists are doubled because we need zonelists that restrict the
500 * allocations to a single node for GFP_THISNODE.
502 * [0] : Zonelist with fallback
503 * [1] : No fallback (GFP_THISNODE)
505 #define MAX_ZONELISTS 2
509 * We cache key information from each zonelist for smaller cache
510 * footprint when scanning for free pages in get_page_from_freelist().
512 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
513 * up short of free memory since the last time (last_fullzone_zap)
514 * we zero'd fullzones.
515 * 2) The array z_to_n[] maps each zone in the zonelist to its node
516 * id, so that we can efficiently evaluate whether that node is
517 * set in the current tasks mems_allowed.
519 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
520 * indexed by a zones offset in the zonelist zones[] array.
522 * The get_page_from_freelist() routine does two scans. During the
523 * first scan, we skip zones whose corresponding bit in 'fullzones'
524 * is set or whose corresponding node in current->mems_allowed (which
525 * comes from cpusets) is not set. During the second scan, we bypass
526 * this zonelist_cache, to ensure we look methodically at each zone.
528 * Once per second, we zero out (zap) fullzones, forcing us to
529 * reconsider nodes that might have regained more free memory.
530 * The field last_full_zap is the time we last zapped fullzones.
532 * This mechanism reduces the amount of time we waste repeatedly
533 * reexaming zones for free memory when they just came up low on
534 * memory momentarilly ago.
536 * The zonelist_cache struct members logically belong in struct
537 * zonelist. However, the mempolicy zonelists constructed for
538 * MPOL_BIND are intentionally variable length (and usually much
539 * shorter). A general purpose mechanism for handling structs with
540 * multiple variable length members is more mechanism than we want
541 * here. We resort to some special case hackery instead.
543 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
544 * part because they are shorter), so we put the fixed length stuff
545 * at the front of the zonelist struct, ending in a variable length
546 * zones[], as is needed by MPOL_BIND.
548 * Then we put the optional zonelist cache on the end of the zonelist
549 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
550 * the fixed length portion at the front of the struct. This pointer
551 * both enables us to find the zonelist cache, and in the case of
552 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
553 * to know that the zonelist cache is not there.
555 * The end result is that struct zonelists come in two flavors:
556 * 1) The full, fixed length version, shown below, and
557 * 2) The custom zonelists for MPOL_BIND.
558 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
560 * Even though there may be multiple CPU cores on a node modifying
561 * fullzones or last_full_zap in the same zonelist_cache at the same
562 * time, we don't lock it. This is just hint data - if it is wrong now
563 * and then, the allocator will still function, perhaps a bit slower.
567 struct zonelist_cache
{
568 unsigned short z_to_n
[MAX_ZONES_PER_ZONELIST
]; /* zone->nid */
569 DECLARE_BITMAP(fullzones
, MAX_ZONES_PER_ZONELIST
); /* zone full? */
570 unsigned long last_full_zap
; /* when last zap'd (jiffies) */
573 #define MAX_ZONELISTS 1
574 struct zonelist_cache
;
578 * This struct contains information about a zone in a zonelist. It is stored
579 * here to avoid dereferences into large structures and lookups of tables
582 struct zone
*zone
; /* Pointer to actual zone */
583 int zone_idx
; /* zone_idx(zoneref->zone) */
587 * One allocation request operates on a zonelist. A zonelist
588 * is a list of zones, the first one is the 'goal' of the
589 * allocation, the other zones are fallback zones, in decreasing
592 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
593 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
595 * To speed the reading of the zonelist, the zonerefs contain the zone index
596 * of the entry being read. Helper functions to access information given
597 * a struct zoneref are
599 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
600 * zonelist_zone_idx() - Return the index of the zone for an entry
601 * zonelist_node_idx() - Return the index of the node for an entry
604 struct zonelist_cache
*zlcache_ptr
; // NULL or &zlcache
605 struct zoneref _zonerefs
[MAX_ZONES_PER_ZONELIST
+ 1];
607 struct zonelist_cache zlcache
; // optional ...
611 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
612 struct node_active_region
{
613 unsigned long start_pfn
;
614 unsigned long end_pfn
;
617 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
619 #ifndef CONFIG_DISCONTIGMEM
620 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
621 extern struct page
*mem_map
;
625 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
626 * (mostly NUMA machines?) to denote a higher-level memory zone than the
629 * On NUMA machines, each NUMA node would have a pg_data_t to describe
630 * it's memory layout.
632 * Memory statistics and page replacement data structures are maintained on a
636 typedef struct pglist_data
{
637 struct zone node_zones
[MAX_NR_ZONES
];
638 struct zonelist node_zonelists
[MAX_ZONELISTS
];
640 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
641 struct page
*node_mem_map
;
642 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
643 struct page_cgroup
*node_page_cgroup
;
646 #ifndef CONFIG_NO_BOOTMEM
647 struct bootmem_data
*bdata
;
649 #ifdef CONFIG_MEMORY_HOTPLUG
651 * Must be held any time you expect node_start_pfn, node_present_pages
652 * or node_spanned_pages stay constant. Holding this will also
653 * guarantee that any pfn_valid() stays that way.
655 * Nests above zone->lock and zone->size_seqlock.
657 spinlock_t node_size_lock
;
659 unsigned long node_start_pfn
;
660 unsigned long node_present_pages
; /* total number of physical pages */
661 unsigned long node_spanned_pages
; /* total size of physical page
662 range, including holes */
664 wait_queue_head_t kswapd_wait
;
665 struct task_struct
*kswapd
;
666 int kswapd_max_order
;
667 enum zone_type classzone_idx
;
670 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
671 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
672 #ifdef CONFIG_FLAT_NODE_MEM_MAP
673 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
675 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
677 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
679 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
681 #define node_end_pfn(nid) ({\
682 pg_data_t *__pgdat = NODE_DATA(nid);\
683 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
686 #include <linux/memory_hotplug.h>
688 extern struct mutex zonelists_mutex
;
689 void build_all_zonelists(void *data
);
690 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
);
691 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
692 int classzone_idx
, int alloc_flags
);
693 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
694 int classzone_idx
, int alloc_flags
);
695 enum memmap_context
{
699 extern int init_currently_empty_zone(struct zone
*zone
, unsigned long start_pfn
,
701 enum memmap_context context
);
703 #ifdef CONFIG_HAVE_MEMORY_PRESENT
704 void memory_present(int nid
, unsigned long start
, unsigned long end
);
706 static inline void memory_present(int nid
, unsigned long start
, unsigned long end
) {}
709 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
710 int local_memory_node(int node_id
);
712 static inline int local_memory_node(int node_id
) { return node_id
; };
715 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
716 unsigned long __init
node_memmap_size_bytes(int, unsigned long, unsigned long);
720 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
722 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
724 static inline int populated_zone(struct zone
*zone
)
726 return (!!zone
->present_pages
);
729 extern int movable_zone
;
731 static inline int zone_movable_is_highmem(void)
733 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE)
734 return movable_zone
== ZONE_HIGHMEM
;
740 static inline int is_highmem_idx(enum zone_type idx
)
742 #ifdef CONFIG_HIGHMEM
743 return (idx
== ZONE_HIGHMEM
||
744 (idx
== ZONE_MOVABLE
&& zone_movable_is_highmem()));
750 static inline int is_normal_idx(enum zone_type idx
)
752 return (idx
== ZONE_NORMAL
);
756 * is_highmem - helper function to quickly check if a struct zone is a
757 * highmem zone or not. This is an attempt to keep references
758 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
759 * @zone - pointer to struct zone variable
761 static inline int is_highmem(struct zone
*zone
)
763 #ifdef CONFIG_HIGHMEM
764 int zone_off
= (char *)zone
- (char *)zone
->zone_pgdat
->node_zones
;
765 return zone_off
== ZONE_HIGHMEM
* sizeof(*zone
) ||
766 (zone_off
== ZONE_MOVABLE
* sizeof(*zone
) &&
767 zone_movable_is_highmem());
773 static inline int is_normal(struct zone
*zone
)
775 return zone
== zone
->zone_pgdat
->node_zones
+ ZONE_NORMAL
;
778 static inline int is_dma32(struct zone
*zone
)
780 #ifdef CONFIG_ZONE_DMA32
781 return zone
== zone
->zone_pgdat
->node_zones
+ ZONE_DMA32
;
787 static inline int is_dma(struct zone
*zone
)
789 #ifdef CONFIG_ZONE_DMA
790 return zone
== zone
->zone_pgdat
->node_zones
+ ZONE_DMA
;
796 /* These two functions are used to setup the per zone pages min values */
798 int min_free_kbytes_sysctl_handler(struct ctl_table
*, int,
799 void __user
*, size_t *, loff_t
*);
800 extern int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1];
801 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*, int,
802 void __user
*, size_t *, loff_t
*);
803 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*, int,
804 void __user
*, size_t *, loff_t
*);
805 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*, int,
806 void __user
*, size_t *, loff_t
*);
807 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*, int,
808 void __user
*, size_t *, loff_t
*);
810 extern int numa_zonelist_order_handler(struct ctl_table
*, int,
811 void __user
*, size_t *, loff_t
*);
812 extern char numa_zonelist_order
[];
813 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
815 #ifndef CONFIG_NEED_MULTIPLE_NODES
817 extern struct pglist_data contig_page_data
;
818 #define NODE_DATA(nid) (&contig_page_data)
819 #define NODE_MEM_MAP(nid) mem_map
821 #else /* CONFIG_NEED_MULTIPLE_NODES */
823 #include <asm/mmzone.h>
825 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
827 extern struct pglist_data
*first_online_pgdat(void);
828 extern struct pglist_data
*next_online_pgdat(struct pglist_data
*pgdat
);
829 extern struct zone
*next_zone(struct zone
*zone
);
832 * for_each_online_pgdat - helper macro to iterate over all online nodes
833 * @pgdat - pointer to a pg_data_t variable
835 #define for_each_online_pgdat(pgdat) \
836 for (pgdat = first_online_pgdat(); \
838 pgdat = next_online_pgdat(pgdat))
840 * for_each_zone - helper macro to iterate over all memory zones
841 * @zone - pointer to struct zone variable
843 * The user only needs to declare the zone variable, for_each_zone
846 #define for_each_zone(zone) \
847 for (zone = (first_online_pgdat())->node_zones; \
849 zone = next_zone(zone))
851 #define for_each_populated_zone(zone) \
852 for (zone = (first_online_pgdat())->node_zones; \
854 zone = next_zone(zone)) \
855 if (!populated_zone(zone)) \
859 static inline struct zone
*zonelist_zone(struct zoneref
*zoneref
)
861 return zoneref
->zone
;
864 static inline int zonelist_zone_idx(struct zoneref
*zoneref
)
866 return zoneref
->zone_idx
;
869 static inline int zonelist_node_idx(struct zoneref
*zoneref
)
872 /* zone_to_nid not available in this context */
873 return zoneref
->zone
->node
;
876 #endif /* CONFIG_NUMA */
880 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
881 * @z - The cursor used as a starting point for the search
882 * @highest_zoneidx - The zone index of the highest zone to return
883 * @nodes - An optional nodemask to filter the zonelist with
884 * @zone - The first suitable zone found is returned via this parameter
886 * This function returns the next zone at or below a given zone index that is
887 * within the allowed nodemask using a cursor as the starting point for the
888 * search. The zoneref returned is a cursor that represents the current zone
889 * being examined. It should be advanced by one before calling
890 * next_zones_zonelist again.
892 struct zoneref
*next_zones_zonelist(struct zoneref
*z
,
893 enum zone_type highest_zoneidx
,
898 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
899 * @zonelist - The zonelist to search for a suitable zone
900 * @highest_zoneidx - The zone index of the highest zone to return
901 * @nodes - An optional nodemask to filter the zonelist with
902 * @zone - The first suitable zone found is returned via this parameter
904 * This function returns the first zone at or below a given zone index that is
905 * within the allowed nodemask. The zoneref returned is a cursor that can be
906 * used to iterate the zonelist with next_zones_zonelist by advancing it by
907 * one before calling.
909 static inline struct zoneref
*first_zones_zonelist(struct zonelist
*zonelist
,
910 enum zone_type highest_zoneidx
,
914 return next_zones_zonelist(zonelist
->_zonerefs
, highest_zoneidx
, nodes
,
919 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
920 * @zone - The current zone in the iterator
921 * @z - The current pointer within zonelist->zones being iterated
922 * @zlist - The zonelist being iterated
923 * @highidx - The zone index of the highest zone to return
924 * @nodemask - Nodemask allowed by the allocator
926 * This iterator iterates though all zones at or below a given zone index and
927 * within a given nodemask
929 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
930 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
932 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
935 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
936 * @zone - The current zone in the iterator
937 * @z - The current pointer within zonelist->zones being iterated
938 * @zlist - The zonelist being iterated
939 * @highidx - The zone index of the highest zone to return
941 * This iterator iterates though all zones at or below a given zone index.
943 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
944 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
946 #ifdef CONFIG_SPARSEMEM
947 #include <asm/sparsemem.h>
950 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
951 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
952 static inline unsigned long early_pfn_to_nid(unsigned long pfn
)
958 #ifdef CONFIG_FLATMEM
959 #define pfn_to_nid(pfn) (0)
962 #ifdef CONFIG_SPARSEMEM
965 * SECTION_SHIFT #bits space required to store a section #
967 * PA_SECTION_SHIFT physical address to/from section number
968 * PFN_SECTION_SHIFT pfn to/from section number
970 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
972 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
973 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
975 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
977 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
978 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
980 #define SECTION_BLOCKFLAGS_BITS \
981 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
983 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
984 #error Allocator MAX_ORDER exceeds SECTION_SIZE
987 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
988 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
990 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
991 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
997 * This is, logically, a pointer to an array of struct
998 * pages. However, it is stored with some other magic.
999 * (see sparse.c::sparse_init_one_section())
1001 * Additionally during early boot we encode node id of
1002 * the location of the section here to guide allocation.
1003 * (see sparse.c::memory_present())
1005 * Making it a UL at least makes someone do a cast
1006 * before using it wrong.
1008 unsigned long section_mem_map
;
1010 /* See declaration of similar field in struct zone */
1011 unsigned long *pageblock_flags
;
1012 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1014 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1015 * section. (see memcontrol.h/page_cgroup.h about this.)
1017 struct page_cgroup
*page_cgroup
;
1022 #ifdef CONFIG_SPARSEMEM_EXTREME
1023 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1025 #define SECTIONS_PER_ROOT 1
1028 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1029 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1030 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1032 #ifdef CONFIG_SPARSEMEM_EXTREME
1033 extern struct mem_section
*mem_section
[NR_SECTION_ROOTS
];
1035 extern struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
];
1038 static inline struct mem_section
*__nr_to_section(unsigned long nr
)
1040 if (!mem_section
[SECTION_NR_TO_ROOT(nr
)])
1042 return &mem_section
[SECTION_NR_TO_ROOT(nr
)][nr
& SECTION_ROOT_MASK
];
1044 extern int __section_nr(struct mem_section
* ms
);
1045 extern unsigned long usemap_size(void);
1048 * We use the lower bits of the mem_map pointer to store
1049 * a little bit of information. There should be at least
1050 * 3 bits here due to 32-bit alignment.
1052 #define SECTION_MARKED_PRESENT (1UL<<0)
1053 #define SECTION_HAS_MEM_MAP (1UL<<1)
1054 #define SECTION_MAP_LAST_BIT (1UL<<2)
1055 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1056 #define SECTION_NID_SHIFT 2
1058 static inline struct page
*__section_mem_map_addr(struct mem_section
*section
)
1060 unsigned long map
= section
->section_mem_map
;
1061 map
&= SECTION_MAP_MASK
;
1062 return (struct page
*)map
;
1065 static inline int present_section(struct mem_section
*section
)
1067 return (section
&& (section
->section_mem_map
& SECTION_MARKED_PRESENT
));
1070 static inline int present_section_nr(unsigned long nr
)
1072 return present_section(__nr_to_section(nr
));
1075 static inline int valid_section(struct mem_section
*section
)
1077 return (section
&& (section
->section_mem_map
& SECTION_HAS_MEM_MAP
));
1080 static inline int valid_section_nr(unsigned long nr
)
1082 return valid_section(__nr_to_section(nr
));
1085 static inline struct mem_section
*__pfn_to_section(unsigned long pfn
)
1087 return __nr_to_section(pfn_to_section_nr(pfn
));
1090 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1091 static inline int pfn_valid(unsigned long pfn
)
1093 if (pfn_to_section_nr(pfn
) >= NR_MEM_SECTIONS
)
1095 return valid_section(__nr_to_section(pfn_to_section_nr(pfn
)));
1099 static inline int pfn_present(unsigned long pfn
)
1101 if (pfn_to_section_nr(pfn
) >= NR_MEM_SECTIONS
)
1103 return present_section(__nr_to_section(pfn_to_section_nr(pfn
)));
1107 * These are _only_ used during initialisation, therefore they
1108 * can use __initdata ... They could have names to indicate
1112 #define pfn_to_nid(pfn) \
1114 unsigned long __pfn_to_nid_pfn = (pfn); \
1115 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1118 #define pfn_to_nid(pfn) (0)
1121 #define early_pfn_valid(pfn) pfn_valid(pfn)
1122 void sparse_init(void);
1124 #define sparse_init() do {} while (0)
1125 #define sparse_index_init(_sec, _nid) do {} while (0)
1126 #endif /* CONFIG_SPARSEMEM */
1128 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1129 bool early_pfn_in_nid(unsigned long pfn
, int nid
);
1131 #define early_pfn_in_nid(pfn, nid) (1)
1134 #ifndef early_pfn_valid
1135 #define early_pfn_valid(pfn) (1)
1138 void memory_present(int nid
, unsigned long start
, unsigned long end
);
1139 unsigned long __init
node_memmap_size_bytes(int, unsigned long, unsigned long);
1142 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1143 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1144 * pfn_valid_within() should be used in this case; we optimise this away
1145 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1147 #ifdef CONFIG_HOLES_IN_ZONE
1148 #define pfn_valid_within(pfn) pfn_valid(pfn)
1150 #define pfn_valid_within(pfn) (1)
1153 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1155 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1156 * associated with it or not. In FLATMEM, it is expected that holes always
1157 * have valid memmap as long as there is valid PFNs either side of the hole.
1158 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1161 * However, an ARM, and maybe other embedded architectures in the future
1162 * free memmap backing holes to save memory on the assumption the memmap is
1163 * never used. The page_zone linkages are then broken even though pfn_valid()
1164 * returns true. A walker of the full memmap must then do this additional
1165 * check to ensure the memmap they are looking at is sane by making sure
1166 * the zone and PFN linkages are still valid. This is expensive, but walkers
1167 * of the full memmap are extremely rare.
1169 int memmap_valid_within(unsigned long pfn
,
1170 struct page
*page
, struct zone
*zone
);
1172 static inline int memmap_valid_within(unsigned long pfn
,
1173 struct page
*page
, struct zone
*zone
)
1177 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1179 #endif /* !__GENERATING_BOUNDS.H */
1180 #endif /* !__ASSEMBLY__ */
1181 #endif /* _LINUX_MMZONE_H */