Use dentry_path() to create full path to inode object
[pohmelfs.git] / kernel / cgroup.c
bloba5d3b5325f770f5347c7bdd1dca37baad1572126
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
64 #include <linux/atomic.h>
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
82 static DEFINE_MUTEX(cgroup_mutex);
83 static DEFINE_MUTEX(cgroup_root_mutex);
86 * Generate an array of cgroup subsystem pointers. At boot time, this is
87 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
88 * registered after that. The mutable section of this array is protected by
89 * cgroup_mutex.
91 #define SUBSYS(_x) &_x ## _subsys,
92 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
93 #include <linux/cgroup_subsys.h>
96 #define MAX_CGROUP_ROOT_NAMELEN 64
99 * A cgroupfs_root represents the root of a cgroup hierarchy,
100 * and may be associated with a superblock to form an active
101 * hierarchy
103 struct cgroupfs_root {
104 struct super_block *sb;
107 * The bitmask of subsystems intended to be attached to this
108 * hierarchy
110 unsigned long subsys_bits;
112 /* Unique id for this hierarchy. */
113 int hierarchy_id;
115 /* The bitmask of subsystems currently attached to this hierarchy */
116 unsigned long actual_subsys_bits;
118 /* A list running through the attached subsystems */
119 struct list_head subsys_list;
121 /* The root cgroup for this hierarchy */
122 struct cgroup top_cgroup;
124 /* Tracks how many cgroups are currently defined in hierarchy.*/
125 int number_of_cgroups;
127 /* A list running through the active hierarchies */
128 struct list_head root_list;
130 /* Hierarchy-specific flags */
131 unsigned long flags;
133 /* The path to use for release notifications. */
134 char release_agent_path[PATH_MAX];
136 /* The name for this hierarchy - may be empty */
137 char name[MAX_CGROUP_ROOT_NAMELEN];
141 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
142 * subsystems that are otherwise unattached - it never has more than a
143 * single cgroup, and all tasks are part of that cgroup.
145 static struct cgroupfs_root rootnode;
148 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
149 * cgroup_subsys->use_id != 0.
151 #define CSS_ID_MAX (65535)
152 struct css_id {
154 * The css to which this ID points. This pointer is set to valid value
155 * after cgroup is populated. If cgroup is removed, this will be NULL.
156 * This pointer is expected to be RCU-safe because destroy()
157 * is called after synchronize_rcu(). But for safe use, css_is_removed()
158 * css_tryget() should be used for avoiding race.
160 struct cgroup_subsys_state __rcu *css;
162 * ID of this css.
164 unsigned short id;
166 * Depth in hierarchy which this ID belongs to.
168 unsigned short depth;
170 * ID is freed by RCU. (and lookup routine is RCU safe.)
172 struct rcu_head rcu_head;
174 * Hierarchy of CSS ID belongs to.
176 unsigned short stack[0]; /* Array of Length (depth+1) */
180 * cgroup_event represents events which userspace want to receive.
182 struct cgroup_event {
184 * Cgroup which the event belongs to.
186 struct cgroup *cgrp;
188 * Control file which the event associated.
190 struct cftype *cft;
192 * eventfd to signal userspace about the event.
194 struct eventfd_ctx *eventfd;
196 * Each of these stored in a list by the cgroup.
198 struct list_head list;
200 * All fields below needed to unregister event when
201 * userspace closes eventfd.
203 poll_table pt;
204 wait_queue_head_t *wqh;
205 wait_queue_t wait;
206 struct work_struct remove;
209 /* The list of hierarchy roots */
211 static LIST_HEAD(roots);
212 static int root_count;
214 static DEFINE_IDA(hierarchy_ida);
215 static int next_hierarchy_id;
216 static DEFINE_SPINLOCK(hierarchy_id_lock);
218 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
219 #define dummytop (&rootnode.top_cgroup)
221 /* This flag indicates whether tasks in the fork and exit paths should
222 * check for fork/exit handlers to call. This avoids us having to do
223 * extra work in the fork/exit path if none of the subsystems need to
224 * be called.
226 static int need_forkexit_callback __read_mostly;
228 #ifdef CONFIG_PROVE_LOCKING
229 int cgroup_lock_is_held(void)
231 return lockdep_is_held(&cgroup_mutex);
233 #else /* #ifdef CONFIG_PROVE_LOCKING */
234 int cgroup_lock_is_held(void)
236 return mutex_is_locked(&cgroup_mutex);
238 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
240 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
242 /* convenient tests for these bits */
243 inline int cgroup_is_removed(const struct cgroup *cgrp)
245 return test_bit(CGRP_REMOVED, &cgrp->flags);
248 /* bits in struct cgroupfs_root flags field */
249 enum {
250 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
253 static int cgroup_is_releasable(const struct cgroup *cgrp)
255 const int bits =
256 (1 << CGRP_RELEASABLE) |
257 (1 << CGRP_NOTIFY_ON_RELEASE);
258 return (cgrp->flags & bits) == bits;
261 static int notify_on_release(const struct cgroup *cgrp)
263 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
266 static int clone_children(const struct cgroup *cgrp)
268 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
272 * for_each_subsys() allows you to iterate on each subsystem attached to
273 * an active hierarchy
275 #define for_each_subsys(_root, _ss) \
276 list_for_each_entry(_ss, &_root->subsys_list, sibling)
278 /* for_each_active_root() allows you to iterate across the active hierarchies */
279 #define for_each_active_root(_root) \
280 list_for_each_entry(_root, &roots, root_list)
282 /* the list of cgroups eligible for automatic release. Protected by
283 * release_list_lock */
284 static LIST_HEAD(release_list);
285 static DEFINE_RAW_SPINLOCK(release_list_lock);
286 static void cgroup_release_agent(struct work_struct *work);
287 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
288 static void check_for_release(struct cgroup *cgrp);
290 /* Link structure for associating css_set objects with cgroups */
291 struct cg_cgroup_link {
293 * List running through cg_cgroup_links associated with a
294 * cgroup, anchored on cgroup->css_sets
296 struct list_head cgrp_link_list;
297 struct cgroup *cgrp;
299 * List running through cg_cgroup_links pointing at a
300 * single css_set object, anchored on css_set->cg_links
302 struct list_head cg_link_list;
303 struct css_set *cg;
306 /* The default css_set - used by init and its children prior to any
307 * hierarchies being mounted. It contains a pointer to the root state
308 * for each subsystem. Also used to anchor the list of css_sets. Not
309 * reference-counted, to improve performance when child cgroups
310 * haven't been created.
313 static struct css_set init_css_set;
314 static struct cg_cgroup_link init_css_set_link;
316 static int cgroup_init_idr(struct cgroup_subsys *ss,
317 struct cgroup_subsys_state *css);
319 /* css_set_lock protects the list of css_set objects, and the
320 * chain of tasks off each css_set. Nests outside task->alloc_lock
321 * due to cgroup_iter_start() */
322 static DEFINE_RWLOCK(css_set_lock);
323 static int css_set_count;
326 * hash table for cgroup groups. This improves the performance to find
327 * an existing css_set. This hash doesn't (currently) take into
328 * account cgroups in empty hierarchies.
330 #define CSS_SET_HASH_BITS 7
331 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
332 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
334 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
336 int i;
337 int index;
338 unsigned long tmp = 0UL;
340 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
341 tmp += (unsigned long)css[i];
342 tmp = (tmp >> 16) ^ tmp;
344 index = hash_long(tmp, CSS_SET_HASH_BITS);
346 return &css_set_table[index];
349 /* We don't maintain the lists running through each css_set to its
350 * task until after the first call to cgroup_iter_start(). This
351 * reduces the fork()/exit() overhead for people who have cgroups
352 * compiled into their kernel but not actually in use */
353 static int use_task_css_set_links __read_mostly;
355 static void __put_css_set(struct css_set *cg, int taskexit)
357 struct cg_cgroup_link *link;
358 struct cg_cgroup_link *saved_link;
360 * Ensure that the refcount doesn't hit zero while any readers
361 * can see it. Similar to atomic_dec_and_lock(), but for an
362 * rwlock
364 if (atomic_add_unless(&cg->refcount, -1, 1))
365 return;
366 write_lock(&css_set_lock);
367 if (!atomic_dec_and_test(&cg->refcount)) {
368 write_unlock(&css_set_lock);
369 return;
372 /* This css_set is dead. unlink it and release cgroup refcounts */
373 hlist_del(&cg->hlist);
374 css_set_count--;
376 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
377 cg_link_list) {
378 struct cgroup *cgrp = link->cgrp;
379 list_del(&link->cg_link_list);
380 list_del(&link->cgrp_link_list);
381 if (atomic_dec_and_test(&cgrp->count) &&
382 notify_on_release(cgrp)) {
383 if (taskexit)
384 set_bit(CGRP_RELEASABLE, &cgrp->flags);
385 check_for_release(cgrp);
388 kfree(link);
391 write_unlock(&css_set_lock);
392 kfree_rcu(cg, rcu_head);
396 * refcounted get/put for css_set objects
398 static inline void get_css_set(struct css_set *cg)
400 atomic_inc(&cg->refcount);
403 static inline void put_css_set(struct css_set *cg)
405 __put_css_set(cg, 0);
408 static inline void put_css_set_taskexit(struct css_set *cg)
410 __put_css_set(cg, 1);
414 * compare_css_sets - helper function for find_existing_css_set().
415 * @cg: candidate css_set being tested
416 * @old_cg: existing css_set for a task
417 * @new_cgrp: cgroup that's being entered by the task
418 * @template: desired set of css pointers in css_set (pre-calculated)
420 * Returns true if "cg" matches "old_cg" except for the hierarchy
421 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
423 static bool compare_css_sets(struct css_set *cg,
424 struct css_set *old_cg,
425 struct cgroup *new_cgrp,
426 struct cgroup_subsys_state *template[])
428 struct list_head *l1, *l2;
430 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
431 /* Not all subsystems matched */
432 return false;
436 * Compare cgroup pointers in order to distinguish between
437 * different cgroups in heirarchies with no subsystems. We
438 * could get by with just this check alone (and skip the
439 * memcmp above) but on most setups the memcmp check will
440 * avoid the need for this more expensive check on almost all
441 * candidates.
444 l1 = &cg->cg_links;
445 l2 = &old_cg->cg_links;
446 while (1) {
447 struct cg_cgroup_link *cgl1, *cgl2;
448 struct cgroup *cg1, *cg2;
450 l1 = l1->next;
451 l2 = l2->next;
452 /* See if we reached the end - both lists are equal length. */
453 if (l1 == &cg->cg_links) {
454 BUG_ON(l2 != &old_cg->cg_links);
455 break;
456 } else {
457 BUG_ON(l2 == &old_cg->cg_links);
459 /* Locate the cgroups associated with these links. */
460 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
461 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
462 cg1 = cgl1->cgrp;
463 cg2 = cgl2->cgrp;
464 /* Hierarchies should be linked in the same order. */
465 BUG_ON(cg1->root != cg2->root);
468 * If this hierarchy is the hierarchy of the cgroup
469 * that's changing, then we need to check that this
470 * css_set points to the new cgroup; if it's any other
471 * hierarchy, then this css_set should point to the
472 * same cgroup as the old css_set.
474 if (cg1->root == new_cgrp->root) {
475 if (cg1 != new_cgrp)
476 return false;
477 } else {
478 if (cg1 != cg2)
479 return false;
482 return true;
486 * find_existing_css_set() is a helper for
487 * find_css_set(), and checks to see whether an existing
488 * css_set is suitable.
490 * oldcg: the cgroup group that we're using before the cgroup
491 * transition
493 * cgrp: the cgroup that we're moving into
495 * template: location in which to build the desired set of subsystem
496 * state objects for the new cgroup group
498 static struct css_set *find_existing_css_set(
499 struct css_set *oldcg,
500 struct cgroup *cgrp,
501 struct cgroup_subsys_state *template[])
503 int i;
504 struct cgroupfs_root *root = cgrp->root;
505 struct hlist_head *hhead;
506 struct hlist_node *node;
507 struct css_set *cg;
510 * Build the set of subsystem state objects that we want to see in the
511 * new css_set. while subsystems can change globally, the entries here
512 * won't change, so no need for locking.
514 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
515 if (root->subsys_bits & (1UL << i)) {
516 /* Subsystem is in this hierarchy. So we want
517 * the subsystem state from the new
518 * cgroup */
519 template[i] = cgrp->subsys[i];
520 } else {
521 /* Subsystem is not in this hierarchy, so we
522 * don't want to change the subsystem state */
523 template[i] = oldcg->subsys[i];
527 hhead = css_set_hash(template);
528 hlist_for_each_entry(cg, node, hhead, hlist) {
529 if (!compare_css_sets(cg, oldcg, cgrp, template))
530 continue;
532 /* This css_set matches what we need */
533 return cg;
536 /* No existing cgroup group matched */
537 return NULL;
540 static void free_cg_links(struct list_head *tmp)
542 struct cg_cgroup_link *link;
543 struct cg_cgroup_link *saved_link;
545 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
546 list_del(&link->cgrp_link_list);
547 kfree(link);
552 * allocate_cg_links() allocates "count" cg_cgroup_link structures
553 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
554 * success or a negative error
556 static int allocate_cg_links(int count, struct list_head *tmp)
558 struct cg_cgroup_link *link;
559 int i;
560 INIT_LIST_HEAD(tmp);
561 for (i = 0; i < count; i++) {
562 link = kmalloc(sizeof(*link), GFP_KERNEL);
563 if (!link) {
564 free_cg_links(tmp);
565 return -ENOMEM;
567 list_add(&link->cgrp_link_list, tmp);
569 return 0;
573 * link_css_set - a helper function to link a css_set to a cgroup
574 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
575 * @cg: the css_set to be linked
576 * @cgrp: the destination cgroup
578 static void link_css_set(struct list_head *tmp_cg_links,
579 struct css_set *cg, struct cgroup *cgrp)
581 struct cg_cgroup_link *link;
583 BUG_ON(list_empty(tmp_cg_links));
584 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
585 cgrp_link_list);
586 link->cg = cg;
587 link->cgrp = cgrp;
588 atomic_inc(&cgrp->count);
589 list_move(&link->cgrp_link_list, &cgrp->css_sets);
591 * Always add links to the tail of the list so that the list
592 * is sorted by order of hierarchy creation
594 list_add_tail(&link->cg_link_list, &cg->cg_links);
598 * find_css_set() takes an existing cgroup group and a
599 * cgroup object, and returns a css_set object that's
600 * equivalent to the old group, but with the given cgroup
601 * substituted into the appropriate hierarchy. Must be called with
602 * cgroup_mutex held
604 static struct css_set *find_css_set(
605 struct css_set *oldcg, struct cgroup *cgrp)
607 struct css_set *res;
608 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
610 struct list_head tmp_cg_links;
612 struct hlist_head *hhead;
613 struct cg_cgroup_link *link;
615 /* First see if we already have a cgroup group that matches
616 * the desired set */
617 read_lock(&css_set_lock);
618 res = find_existing_css_set(oldcg, cgrp, template);
619 if (res)
620 get_css_set(res);
621 read_unlock(&css_set_lock);
623 if (res)
624 return res;
626 res = kmalloc(sizeof(*res), GFP_KERNEL);
627 if (!res)
628 return NULL;
630 /* Allocate all the cg_cgroup_link objects that we'll need */
631 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
632 kfree(res);
633 return NULL;
636 atomic_set(&res->refcount, 1);
637 INIT_LIST_HEAD(&res->cg_links);
638 INIT_LIST_HEAD(&res->tasks);
639 INIT_HLIST_NODE(&res->hlist);
641 /* Copy the set of subsystem state objects generated in
642 * find_existing_css_set() */
643 memcpy(res->subsys, template, sizeof(res->subsys));
645 write_lock(&css_set_lock);
646 /* Add reference counts and links from the new css_set. */
647 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
648 struct cgroup *c = link->cgrp;
649 if (c->root == cgrp->root)
650 c = cgrp;
651 link_css_set(&tmp_cg_links, res, c);
654 BUG_ON(!list_empty(&tmp_cg_links));
656 css_set_count++;
658 /* Add this cgroup group to the hash table */
659 hhead = css_set_hash(res->subsys);
660 hlist_add_head(&res->hlist, hhead);
662 write_unlock(&css_set_lock);
664 return res;
668 * Return the cgroup for "task" from the given hierarchy. Must be
669 * called with cgroup_mutex held.
671 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
672 struct cgroupfs_root *root)
674 struct css_set *css;
675 struct cgroup *res = NULL;
677 BUG_ON(!mutex_is_locked(&cgroup_mutex));
678 read_lock(&css_set_lock);
680 * No need to lock the task - since we hold cgroup_mutex the
681 * task can't change groups, so the only thing that can happen
682 * is that it exits and its css is set back to init_css_set.
684 css = task->cgroups;
685 if (css == &init_css_set) {
686 res = &root->top_cgroup;
687 } else {
688 struct cg_cgroup_link *link;
689 list_for_each_entry(link, &css->cg_links, cg_link_list) {
690 struct cgroup *c = link->cgrp;
691 if (c->root == root) {
692 res = c;
693 break;
697 read_unlock(&css_set_lock);
698 BUG_ON(!res);
699 return res;
703 * There is one global cgroup mutex. We also require taking
704 * task_lock() when dereferencing a task's cgroup subsys pointers.
705 * See "The task_lock() exception", at the end of this comment.
707 * A task must hold cgroup_mutex to modify cgroups.
709 * Any task can increment and decrement the count field without lock.
710 * So in general, code holding cgroup_mutex can't rely on the count
711 * field not changing. However, if the count goes to zero, then only
712 * cgroup_attach_task() can increment it again. Because a count of zero
713 * means that no tasks are currently attached, therefore there is no
714 * way a task attached to that cgroup can fork (the other way to
715 * increment the count). So code holding cgroup_mutex can safely
716 * assume that if the count is zero, it will stay zero. Similarly, if
717 * a task holds cgroup_mutex on a cgroup with zero count, it
718 * knows that the cgroup won't be removed, as cgroup_rmdir()
719 * needs that mutex.
721 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
722 * (usually) take cgroup_mutex. These are the two most performance
723 * critical pieces of code here. The exception occurs on cgroup_exit(),
724 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
725 * is taken, and if the cgroup count is zero, a usermode call made
726 * to the release agent with the name of the cgroup (path relative to
727 * the root of cgroup file system) as the argument.
729 * A cgroup can only be deleted if both its 'count' of using tasks
730 * is zero, and its list of 'children' cgroups is empty. Since all
731 * tasks in the system use _some_ cgroup, and since there is always at
732 * least one task in the system (init, pid == 1), therefore, top_cgroup
733 * always has either children cgroups and/or using tasks. So we don't
734 * need a special hack to ensure that top_cgroup cannot be deleted.
736 * The task_lock() exception
738 * The need for this exception arises from the action of
739 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
740 * another. It does so using cgroup_mutex, however there are
741 * several performance critical places that need to reference
742 * task->cgroup without the expense of grabbing a system global
743 * mutex. Therefore except as noted below, when dereferencing or, as
744 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
745 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
746 * the task_struct routinely used for such matters.
748 * P.S. One more locking exception. RCU is used to guard the
749 * update of a tasks cgroup pointer by cgroup_attach_task()
753 * cgroup_lock - lock out any changes to cgroup structures
756 void cgroup_lock(void)
758 mutex_lock(&cgroup_mutex);
760 EXPORT_SYMBOL_GPL(cgroup_lock);
763 * cgroup_unlock - release lock on cgroup changes
765 * Undo the lock taken in a previous cgroup_lock() call.
767 void cgroup_unlock(void)
769 mutex_unlock(&cgroup_mutex);
771 EXPORT_SYMBOL_GPL(cgroup_unlock);
774 * A couple of forward declarations required, due to cyclic reference loop:
775 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
776 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
777 * -> cgroup_mkdir.
780 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
781 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
782 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
783 static int cgroup_populate_dir(struct cgroup *cgrp);
784 static const struct inode_operations cgroup_dir_inode_operations;
785 static const struct file_operations proc_cgroupstats_operations;
787 static struct backing_dev_info cgroup_backing_dev_info = {
788 .name = "cgroup",
789 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
792 static int alloc_css_id(struct cgroup_subsys *ss,
793 struct cgroup *parent, struct cgroup *child);
795 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
797 struct inode *inode = new_inode(sb);
799 if (inode) {
800 inode->i_ino = get_next_ino();
801 inode->i_mode = mode;
802 inode->i_uid = current_fsuid();
803 inode->i_gid = current_fsgid();
804 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
805 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
807 return inode;
811 * Call subsys's pre_destroy handler.
812 * This is called before css refcnt check.
814 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
816 struct cgroup_subsys *ss;
817 int ret = 0;
819 for_each_subsys(cgrp->root, ss)
820 if (ss->pre_destroy) {
821 ret = ss->pre_destroy(ss, cgrp);
822 if (ret)
823 break;
826 return ret;
829 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
831 /* is dentry a directory ? if so, kfree() associated cgroup */
832 if (S_ISDIR(inode->i_mode)) {
833 struct cgroup *cgrp = dentry->d_fsdata;
834 struct cgroup_subsys *ss;
835 BUG_ON(!(cgroup_is_removed(cgrp)));
836 /* It's possible for external users to be holding css
837 * reference counts on a cgroup; css_put() needs to
838 * be able to access the cgroup after decrementing
839 * the reference count in order to know if it needs to
840 * queue the cgroup to be handled by the release
841 * agent */
842 synchronize_rcu();
844 mutex_lock(&cgroup_mutex);
846 * Release the subsystem state objects.
848 for_each_subsys(cgrp->root, ss)
849 ss->destroy(ss, cgrp);
851 cgrp->root->number_of_cgroups--;
852 mutex_unlock(&cgroup_mutex);
855 * Drop the active superblock reference that we took when we
856 * created the cgroup
858 deactivate_super(cgrp->root->sb);
861 * if we're getting rid of the cgroup, refcount should ensure
862 * that there are no pidlists left.
864 BUG_ON(!list_empty(&cgrp->pidlists));
866 kfree_rcu(cgrp, rcu_head);
868 iput(inode);
871 static int cgroup_delete(const struct dentry *d)
873 return 1;
876 static void remove_dir(struct dentry *d)
878 struct dentry *parent = dget(d->d_parent);
880 d_delete(d);
881 simple_rmdir(parent->d_inode, d);
882 dput(parent);
885 static void cgroup_clear_directory(struct dentry *dentry)
887 struct list_head *node;
889 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
890 spin_lock(&dentry->d_lock);
891 node = dentry->d_subdirs.next;
892 while (node != &dentry->d_subdirs) {
893 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
895 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
896 list_del_init(node);
897 if (d->d_inode) {
898 /* This should never be called on a cgroup
899 * directory with child cgroups */
900 BUG_ON(d->d_inode->i_mode & S_IFDIR);
901 dget_dlock(d);
902 spin_unlock(&d->d_lock);
903 spin_unlock(&dentry->d_lock);
904 d_delete(d);
905 simple_unlink(dentry->d_inode, d);
906 dput(d);
907 spin_lock(&dentry->d_lock);
908 } else
909 spin_unlock(&d->d_lock);
910 node = dentry->d_subdirs.next;
912 spin_unlock(&dentry->d_lock);
916 * NOTE : the dentry must have been dget()'ed
918 static void cgroup_d_remove_dir(struct dentry *dentry)
920 struct dentry *parent;
922 cgroup_clear_directory(dentry);
924 parent = dentry->d_parent;
925 spin_lock(&parent->d_lock);
926 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
927 list_del_init(&dentry->d_u.d_child);
928 spin_unlock(&dentry->d_lock);
929 spin_unlock(&parent->d_lock);
930 remove_dir(dentry);
934 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
935 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
936 * reference to css->refcnt. In general, this refcnt is expected to goes down
937 * to zero, soon.
939 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
941 static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
943 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
945 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
946 wake_up_all(&cgroup_rmdir_waitq);
949 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
951 css_get(css);
954 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
956 cgroup_wakeup_rmdir_waiter(css->cgroup);
957 css_put(css);
961 * Call with cgroup_mutex held. Drops reference counts on modules, including
962 * any duplicate ones that parse_cgroupfs_options took. If this function
963 * returns an error, no reference counts are touched.
965 static int rebind_subsystems(struct cgroupfs_root *root,
966 unsigned long final_bits)
968 unsigned long added_bits, removed_bits;
969 struct cgroup *cgrp = &root->top_cgroup;
970 int i;
972 BUG_ON(!mutex_is_locked(&cgroup_mutex));
973 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
975 removed_bits = root->actual_subsys_bits & ~final_bits;
976 added_bits = final_bits & ~root->actual_subsys_bits;
977 /* Check that any added subsystems are currently free */
978 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
979 unsigned long bit = 1UL << i;
980 struct cgroup_subsys *ss = subsys[i];
981 if (!(bit & added_bits))
982 continue;
984 * Nobody should tell us to do a subsys that doesn't exist:
985 * parse_cgroupfs_options should catch that case and refcounts
986 * ensure that subsystems won't disappear once selected.
988 BUG_ON(ss == NULL);
989 if (ss->root != &rootnode) {
990 /* Subsystem isn't free */
991 return -EBUSY;
995 /* Currently we don't handle adding/removing subsystems when
996 * any child cgroups exist. This is theoretically supportable
997 * but involves complex error handling, so it's being left until
998 * later */
999 if (root->number_of_cgroups > 1)
1000 return -EBUSY;
1002 /* Process each subsystem */
1003 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1004 struct cgroup_subsys *ss = subsys[i];
1005 unsigned long bit = 1UL << i;
1006 if (bit & added_bits) {
1007 /* We're binding this subsystem to this hierarchy */
1008 BUG_ON(ss == NULL);
1009 BUG_ON(cgrp->subsys[i]);
1010 BUG_ON(!dummytop->subsys[i]);
1011 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1012 mutex_lock(&ss->hierarchy_mutex);
1013 cgrp->subsys[i] = dummytop->subsys[i];
1014 cgrp->subsys[i]->cgroup = cgrp;
1015 list_move(&ss->sibling, &root->subsys_list);
1016 ss->root = root;
1017 if (ss->bind)
1018 ss->bind(ss, cgrp);
1019 mutex_unlock(&ss->hierarchy_mutex);
1020 /* refcount was already taken, and we're keeping it */
1021 } else if (bit & removed_bits) {
1022 /* We're removing this subsystem */
1023 BUG_ON(ss == NULL);
1024 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1025 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1026 mutex_lock(&ss->hierarchy_mutex);
1027 if (ss->bind)
1028 ss->bind(ss, dummytop);
1029 dummytop->subsys[i]->cgroup = dummytop;
1030 cgrp->subsys[i] = NULL;
1031 subsys[i]->root = &rootnode;
1032 list_move(&ss->sibling, &rootnode.subsys_list);
1033 mutex_unlock(&ss->hierarchy_mutex);
1034 /* subsystem is now free - drop reference on module */
1035 module_put(ss->module);
1036 } else if (bit & final_bits) {
1037 /* Subsystem state should already exist */
1038 BUG_ON(ss == NULL);
1039 BUG_ON(!cgrp->subsys[i]);
1041 * a refcount was taken, but we already had one, so
1042 * drop the extra reference.
1044 module_put(ss->module);
1045 #ifdef CONFIG_MODULE_UNLOAD
1046 BUG_ON(ss->module && !module_refcount(ss->module));
1047 #endif
1048 } else {
1049 /* Subsystem state shouldn't exist */
1050 BUG_ON(cgrp->subsys[i]);
1053 root->subsys_bits = root->actual_subsys_bits = final_bits;
1054 synchronize_rcu();
1056 return 0;
1059 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1061 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1062 struct cgroup_subsys *ss;
1064 mutex_lock(&cgroup_root_mutex);
1065 for_each_subsys(root, ss)
1066 seq_printf(seq, ",%s", ss->name);
1067 if (test_bit(ROOT_NOPREFIX, &root->flags))
1068 seq_puts(seq, ",noprefix");
1069 if (strlen(root->release_agent_path))
1070 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1071 if (clone_children(&root->top_cgroup))
1072 seq_puts(seq, ",clone_children");
1073 if (strlen(root->name))
1074 seq_printf(seq, ",name=%s", root->name);
1075 mutex_unlock(&cgroup_root_mutex);
1076 return 0;
1079 struct cgroup_sb_opts {
1080 unsigned long subsys_bits;
1081 unsigned long flags;
1082 char *release_agent;
1083 bool clone_children;
1084 char *name;
1085 /* User explicitly requested empty subsystem */
1086 bool none;
1088 struct cgroupfs_root *new_root;
1093 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1094 * with cgroup_mutex held to protect the subsys[] array. This function takes
1095 * refcounts on subsystems to be used, unless it returns error, in which case
1096 * no refcounts are taken.
1098 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1100 char *token, *o = data;
1101 bool all_ss = false, one_ss = false;
1102 unsigned long mask = (unsigned long)-1;
1103 int i;
1104 bool module_pin_failed = false;
1106 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1108 #ifdef CONFIG_CPUSETS
1109 mask = ~(1UL << cpuset_subsys_id);
1110 #endif
1112 memset(opts, 0, sizeof(*opts));
1114 while ((token = strsep(&o, ",")) != NULL) {
1115 if (!*token)
1116 return -EINVAL;
1117 if (!strcmp(token, "none")) {
1118 /* Explicitly have no subsystems */
1119 opts->none = true;
1120 continue;
1122 if (!strcmp(token, "all")) {
1123 /* Mutually exclusive option 'all' + subsystem name */
1124 if (one_ss)
1125 return -EINVAL;
1126 all_ss = true;
1127 continue;
1129 if (!strcmp(token, "noprefix")) {
1130 set_bit(ROOT_NOPREFIX, &opts->flags);
1131 continue;
1133 if (!strcmp(token, "clone_children")) {
1134 opts->clone_children = true;
1135 continue;
1137 if (!strncmp(token, "release_agent=", 14)) {
1138 /* Specifying two release agents is forbidden */
1139 if (opts->release_agent)
1140 return -EINVAL;
1141 opts->release_agent =
1142 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1143 if (!opts->release_agent)
1144 return -ENOMEM;
1145 continue;
1147 if (!strncmp(token, "name=", 5)) {
1148 const char *name = token + 5;
1149 /* Can't specify an empty name */
1150 if (!strlen(name))
1151 return -EINVAL;
1152 /* Must match [\w.-]+ */
1153 for (i = 0; i < strlen(name); i++) {
1154 char c = name[i];
1155 if (isalnum(c))
1156 continue;
1157 if ((c == '.') || (c == '-') || (c == '_'))
1158 continue;
1159 return -EINVAL;
1161 /* Specifying two names is forbidden */
1162 if (opts->name)
1163 return -EINVAL;
1164 opts->name = kstrndup(name,
1165 MAX_CGROUP_ROOT_NAMELEN - 1,
1166 GFP_KERNEL);
1167 if (!opts->name)
1168 return -ENOMEM;
1170 continue;
1173 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1174 struct cgroup_subsys *ss = subsys[i];
1175 if (ss == NULL)
1176 continue;
1177 if (strcmp(token, ss->name))
1178 continue;
1179 if (ss->disabled)
1180 continue;
1182 /* Mutually exclusive option 'all' + subsystem name */
1183 if (all_ss)
1184 return -EINVAL;
1185 set_bit(i, &opts->subsys_bits);
1186 one_ss = true;
1188 break;
1190 if (i == CGROUP_SUBSYS_COUNT)
1191 return -ENOENT;
1195 * If the 'all' option was specified select all the subsystems,
1196 * otherwise if 'none', 'name=' and a subsystem name options
1197 * were not specified, let's default to 'all'
1199 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1200 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1201 struct cgroup_subsys *ss = subsys[i];
1202 if (ss == NULL)
1203 continue;
1204 if (ss->disabled)
1205 continue;
1206 set_bit(i, &opts->subsys_bits);
1210 /* Consistency checks */
1213 * Option noprefix was introduced just for backward compatibility
1214 * with the old cpuset, so we allow noprefix only if mounting just
1215 * the cpuset subsystem.
1217 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1218 (opts->subsys_bits & mask))
1219 return -EINVAL;
1222 /* Can't specify "none" and some subsystems */
1223 if (opts->subsys_bits && opts->none)
1224 return -EINVAL;
1227 * We either have to specify by name or by subsystems. (So all
1228 * empty hierarchies must have a name).
1230 if (!opts->subsys_bits && !opts->name)
1231 return -EINVAL;
1234 * Grab references on all the modules we'll need, so the subsystems
1235 * don't dance around before rebind_subsystems attaches them. This may
1236 * take duplicate reference counts on a subsystem that's already used,
1237 * but rebind_subsystems handles this case.
1239 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1240 unsigned long bit = 1UL << i;
1242 if (!(bit & opts->subsys_bits))
1243 continue;
1244 if (!try_module_get(subsys[i]->module)) {
1245 module_pin_failed = true;
1246 break;
1249 if (module_pin_failed) {
1251 * oops, one of the modules was going away. this means that we
1252 * raced with a module_delete call, and to the user this is
1253 * essentially a "subsystem doesn't exist" case.
1255 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1256 /* drop refcounts only on the ones we took */
1257 unsigned long bit = 1UL << i;
1259 if (!(bit & opts->subsys_bits))
1260 continue;
1261 module_put(subsys[i]->module);
1263 return -ENOENT;
1266 return 0;
1269 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1271 int i;
1272 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1273 unsigned long bit = 1UL << i;
1275 if (!(bit & subsys_bits))
1276 continue;
1277 module_put(subsys[i]->module);
1281 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1283 int ret = 0;
1284 struct cgroupfs_root *root = sb->s_fs_info;
1285 struct cgroup *cgrp = &root->top_cgroup;
1286 struct cgroup_sb_opts opts;
1288 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1289 mutex_lock(&cgroup_mutex);
1290 mutex_lock(&cgroup_root_mutex);
1292 /* See what subsystems are wanted */
1293 ret = parse_cgroupfs_options(data, &opts);
1294 if (ret)
1295 goto out_unlock;
1297 /* Don't allow flags or name to change at remount */
1298 if (opts.flags != root->flags ||
1299 (opts.name && strcmp(opts.name, root->name))) {
1300 ret = -EINVAL;
1301 drop_parsed_module_refcounts(opts.subsys_bits);
1302 goto out_unlock;
1305 ret = rebind_subsystems(root, opts.subsys_bits);
1306 if (ret) {
1307 drop_parsed_module_refcounts(opts.subsys_bits);
1308 goto out_unlock;
1311 /* (re)populate subsystem files */
1312 cgroup_populate_dir(cgrp);
1314 if (opts.release_agent)
1315 strcpy(root->release_agent_path, opts.release_agent);
1316 out_unlock:
1317 kfree(opts.release_agent);
1318 kfree(opts.name);
1319 mutex_unlock(&cgroup_root_mutex);
1320 mutex_unlock(&cgroup_mutex);
1321 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1322 return ret;
1325 static const struct super_operations cgroup_ops = {
1326 .statfs = simple_statfs,
1327 .drop_inode = generic_delete_inode,
1328 .show_options = cgroup_show_options,
1329 .remount_fs = cgroup_remount,
1332 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1334 INIT_LIST_HEAD(&cgrp->sibling);
1335 INIT_LIST_HEAD(&cgrp->children);
1336 INIT_LIST_HEAD(&cgrp->css_sets);
1337 INIT_LIST_HEAD(&cgrp->release_list);
1338 INIT_LIST_HEAD(&cgrp->pidlists);
1339 mutex_init(&cgrp->pidlist_mutex);
1340 INIT_LIST_HEAD(&cgrp->event_list);
1341 spin_lock_init(&cgrp->event_list_lock);
1344 static void init_cgroup_root(struct cgroupfs_root *root)
1346 struct cgroup *cgrp = &root->top_cgroup;
1347 INIT_LIST_HEAD(&root->subsys_list);
1348 INIT_LIST_HEAD(&root->root_list);
1349 root->number_of_cgroups = 1;
1350 cgrp->root = root;
1351 cgrp->top_cgroup = cgrp;
1352 init_cgroup_housekeeping(cgrp);
1355 static bool init_root_id(struct cgroupfs_root *root)
1357 int ret = 0;
1359 do {
1360 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1361 return false;
1362 spin_lock(&hierarchy_id_lock);
1363 /* Try to allocate the next unused ID */
1364 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1365 &root->hierarchy_id);
1366 if (ret == -ENOSPC)
1367 /* Try again starting from 0 */
1368 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1369 if (!ret) {
1370 next_hierarchy_id = root->hierarchy_id + 1;
1371 } else if (ret != -EAGAIN) {
1372 /* Can only get here if the 31-bit IDR is full ... */
1373 BUG_ON(ret);
1375 spin_unlock(&hierarchy_id_lock);
1376 } while (ret);
1377 return true;
1380 static int cgroup_test_super(struct super_block *sb, void *data)
1382 struct cgroup_sb_opts *opts = data;
1383 struct cgroupfs_root *root = sb->s_fs_info;
1385 /* If we asked for a name then it must match */
1386 if (opts->name && strcmp(opts->name, root->name))
1387 return 0;
1390 * If we asked for subsystems (or explicitly for no
1391 * subsystems) then they must match
1393 if ((opts->subsys_bits || opts->none)
1394 && (opts->subsys_bits != root->subsys_bits))
1395 return 0;
1397 return 1;
1400 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1402 struct cgroupfs_root *root;
1404 if (!opts->subsys_bits && !opts->none)
1405 return NULL;
1407 root = kzalloc(sizeof(*root), GFP_KERNEL);
1408 if (!root)
1409 return ERR_PTR(-ENOMEM);
1411 if (!init_root_id(root)) {
1412 kfree(root);
1413 return ERR_PTR(-ENOMEM);
1415 init_cgroup_root(root);
1417 root->subsys_bits = opts->subsys_bits;
1418 root->flags = opts->flags;
1419 if (opts->release_agent)
1420 strcpy(root->release_agent_path, opts->release_agent);
1421 if (opts->name)
1422 strcpy(root->name, opts->name);
1423 if (opts->clone_children)
1424 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1425 return root;
1428 static void cgroup_drop_root(struct cgroupfs_root *root)
1430 if (!root)
1431 return;
1433 BUG_ON(!root->hierarchy_id);
1434 spin_lock(&hierarchy_id_lock);
1435 ida_remove(&hierarchy_ida, root->hierarchy_id);
1436 spin_unlock(&hierarchy_id_lock);
1437 kfree(root);
1440 static int cgroup_set_super(struct super_block *sb, void *data)
1442 int ret;
1443 struct cgroup_sb_opts *opts = data;
1445 /* If we don't have a new root, we can't set up a new sb */
1446 if (!opts->new_root)
1447 return -EINVAL;
1449 BUG_ON(!opts->subsys_bits && !opts->none);
1451 ret = set_anon_super(sb, NULL);
1452 if (ret)
1453 return ret;
1455 sb->s_fs_info = opts->new_root;
1456 opts->new_root->sb = sb;
1458 sb->s_blocksize = PAGE_CACHE_SIZE;
1459 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1460 sb->s_magic = CGROUP_SUPER_MAGIC;
1461 sb->s_op = &cgroup_ops;
1463 return 0;
1466 static int cgroup_get_rootdir(struct super_block *sb)
1468 static const struct dentry_operations cgroup_dops = {
1469 .d_iput = cgroup_diput,
1470 .d_delete = cgroup_delete,
1473 struct inode *inode =
1474 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1475 struct dentry *dentry;
1477 if (!inode)
1478 return -ENOMEM;
1480 inode->i_fop = &simple_dir_operations;
1481 inode->i_op = &cgroup_dir_inode_operations;
1482 /* directories start off with i_nlink == 2 (for "." entry) */
1483 inc_nlink(inode);
1484 dentry = d_alloc_root(inode);
1485 if (!dentry) {
1486 iput(inode);
1487 return -ENOMEM;
1489 sb->s_root = dentry;
1490 /* for everything else we want ->d_op set */
1491 sb->s_d_op = &cgroup_dops;
1492 return 0;
1495 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1496 int flags, const char *unused_dev_name,
1497 void *data)
1499 struct cgroup_sb_opts opts;
1500 struct cgroupfs_root *root;
1501 int ret = 0;
1502 struct super_block *sb;
1503 struct cgroupfs_root *new_root;
1504 struct inode *inode;
1506 /* First find the desired set of subsystems */
1507 mutex_lock(&cgroup_mutex);
1508 ret = parse_cgroupfs_options(data, &opts);
1509 mutex_unlock(&cgroup_mutex);
1510 if (ret)
1511 goto out_err;
1514 * Allocate a new cgroup root. We may not need it if we're
1515 * reusing an existing hierarchy.
1517 new_root = cgroup_root_from_opts(&opts);
1518 if (IS_ERR(new_root)) {
1519 ret = PTR_ERR(new_root);
1520 goto drop_modules;
1522 opts.new_root = new_root;
1524 /* Locate an existing or new sb for this hierarchy */
1525 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1526 if (IS_ERR(sb)) {
1527 ret = PTR_ERR(sb);
1528 cgroup_drop_root(opts.new_root);
1529 goto drop_modules;
1532 root = sb->s_fs_info;
1533 BUG_ON(!root);
1534 if (root == opts.new_root) {
1535 /* We used the new root structure, so this is a new hierarchy */
1536 struct list_head tmp_cg_links;
1537 struct cgroup *root_cgrp = &root->top_cgroup;
1538 struct cgroupfs_root *existing_root;
1539 const struct cred *cred;
1540 int i;
1542 BUG_ON(sb->s_root != NULL);
1544 ret = cgroup_get_rootdir(sb);
1545 if (ret)
1546 goto drop_new_super;
1547 inode = sb->s_root->d_inode;
1549 mutex_lock(&inode->i_mutex);
1550 mutex_lock(&cgroup_mutex);
1551 mutex_lock(&cgroup_root_mutex);
1553 /* Check for name clashes with existing mounts */
1554 ret = -EBUSY;
1555 if (strlen(root->name))
1556 for_each_active_root(existing_root)
1557 if (!strcmp(existing_root->name, root->name))
1558 goto unlock_drop;
1561 * We're accessing css_set_count without locking
1562 * css_set_lock here, but that's OK - it can only be
1563 * increased by someone holding cgroup_lock, and
1564 * that's us. The worst that can happen is that we
1565 * have some link structures left over
1567 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1568 if (ret)
1569 goto unlock_drop;
1571 ret = rebind_subsystems(root, root->subsys_bits);
1572 if (ret == -EBUSY) {
1573 free_cg_links(&tmp_cg_links);
1574 goto unlock_drop;
1577 * There must be no failure case after here, since rebinding
1578 * takes care of subsystems' refcounts, which are explicitly
1579 * dropped in the failure exit path.
1582 /* EBUSY should be the only error here */
1583 BUG_ON(ret);
1585 list_add(&root->root_list, &roots);
1586 root_count++;
1588 sb->s_root->d_fsdata = root_cgrp;
1589 root->top_cgroup.dentry = sb->s_root;
1591 /* Link the top cgroup in this hierarchy into all
1592 * the css_set objects */
1593 write_lock(&css_set_lock);
1594 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1595 struct hlist_head *hhead = &css_set_table[i];
1596 struct hlist_node *node;
1597 struct css_set *cg;
1599 hlist_for_each_entry(cg, node, hhead, hlist)
1600 link_css_set(&tmp_cg_links, cg, root_cgrp);
1602 write_unlock(&css_set_lock);
1604 free_cg_links(&tmp_cg_links);
1606 BUG_ON(!list_empty(&root_cgrp->sibling));
1607 BUG_ON(!list_empty(&root_cgrp->children));
1608 BUG_ON(root->number_of_cgroups != 1);
1610 cred = override_creds(&init_cred);
1611 cgroup_populate_dir(root_cgrp);
1612 revert_creds(cred);
1613 mutex_unlock(&cgroup_root_mutex);
1614 mutex_unlock(&cgroup_mutex);
1615 mutex_unlock(&inode->i_mutex);
1616 } else {
1618 * We re-used an existing hierarchy - the new root (if
1619 * any) is not needed
1621 cgroup_drop_root(opts.new_root);
1622 /* no subsys rebinding, so refcounts don't change */
1623 drop_parsed_module_refcounts(opts.subsys_bits);
1626 kfree(opts.release_agent);
1627 kfree(opts.name);
1628 return dget(sb->s_root);
1630 unlock_drop:
1631 mutex_unlock(&cgroup_root_mutex);
1632 mutex_unlock(&cgroup_mutex);
1633 mutex_unlock(&inode->i_mutex);
1634 drop_new_super:
1635 deactivate_locked_super(sb);
1636 drop_modules:
1637 drop_parsed_module_refcounts(opts.subsys_bits);
1638 out_err:
1639 kfree(opts.release_agent);
1640 kfree(opts.name);
1641 return ERR_PTR(ret);
1644 static void cgroup_kill_sb(struct super_block *sb) {
1645 struct cgroupfs_root *root = sb->s_fs_info;
1646 struct cgroup *cgrp = &root->top_cgroup;
1647 int ret;
1648 struct cg_cgroup_link *link;
1649 struct cg_cgroup_link *saved_link;
1651 BUG_ON(!root);
1653 BUG_ON(root->number_of_cgroups != 1);
1654 BUG_ON(!list_empty(&cgrp->children));
1655 BUG_ON(!list_empty(&cgrp->sibling));
1657 mutex_lock(&cgroup_mutex);
1658 mutex_lock(&cgroup_root_mutex);
1660 /* Rebind all subsystems back to the default hierarchy */
1661 ret = rebind_subsystems(root, 0);
1662 /* Shouldn't be able to fail ... */
1663 BUG_ON(ret);
1666 * Release all the links from css_sets to this hierarchy's
1667 * root cgroup
1669 write_lock(&css_set_lock);
1671 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1672 cgrp_link_list) {
1673 list_del(&link->cg_link_list);
1674 list_del(&link->cgrp_link_list);
1675 kfree(link);
1677 write_unlock(&css_set_lock);
1679 if (!list_empty(&root->root_list)) {
1680 list_del(&root->root_list);
1681 root_count--;
1684 mutex_unlock(&cgroup_root_mutex);
1685 mutex_unlock(&cgroup_mutex);
1687 kill_litter_super(sb);
1688 cgroup_drop_root(root);
1691 static struct file_system_type cgroup_fs_type = {
1692 .name = "cgroup",
1693 .mount = cgroup_mount,
1694 .kill_sb = cgroup_kill_sb,
1697 static struct kobject *cgroup_kobj;
1699 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1701 return dentry->d_fsdata;
1704 static inline struct cftype *__d_cft(struct dentry *dentry)
1706 return dentry->d_fsdata;
1710 * cgroup_path - generate the path of a cgroup
1711 * @cgrp: the cgroup in question
1712 * @buf: the buffer to write the path into
1713 * @buflen: the length of the buffer
1715 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1716 * reference. Writes path of cgroup into buf. Returns 0 on success,
1717 * -errno on error.
1719 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1721 char *start;
1722 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1723 cgroup_lock_is_held());
1725 if (!dentry || cgrp == dummytop) {
1727 * Inactive subsystems have no dentry for their root
1728 * cgroup
1730 strcpy(buf, "/");
1731 return 0;
1734 start = buf + buflen;
1736 *--start = '\0';
1737 for (;;) {
1738 int len = dentry->d_name.len;
1740 if ((start -= len) < buf)
1741 return -ENAMETOOLONG;
1742 memcpy(start, dentry->d_name.name, len);
1743 cgrp = cgrp->parent;
1744 if (!cgrp)
1745 break;
1747 dentry = rcu_dereference_check(cgrp->dentry,
1748 cgroup_lock_is_held());
1749 if (!cgrp->parent)
1750 continue;
1751 if (--start < buf)
1752 return -ENAMETOOLONG;
1753 *start = '/';
1755 memmove(buf, start, buf + buflen - start);
1756 return 0;
1758 EXPORT_SYMBOL_GPL(cgroup_path);
1761 * Control Group taskset
1763 struct task_and_cgroup {
1764 struct task_struct *task;
1765 struct cgroup *cgrp;
1768 struct cgroup_taskset {
1769 struct task_and_cgroup single;
1770 struct flex_array *tc_array;
1771 int tc_array_len;
1772 int idx;
1773 struct cgroup *cur_cgrp;
1777 * cgroup_taskset_first - reset taskset and return the first task
1778 * @tset: taskset of interest
1780 * @tset iteration is initialized and the first task is returned.
1782 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1784 if (tset->tc_array) {
1785 tset->idx = 0;
1786 return cgroup_taskset_next(tset);
1787 } else {
1788 tset->cur_cgrp = tset->single.cgrp;
1789 return tset->single.task;
1792 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1795 * cgroup_taskset_next - iterate to the next task in taskset
1796 * @tset: taskset of interest
1798 * Return the next task in @tset. Iteration must have been initialized
1799 * with cgroup_taskset_first().
1801 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1803 struct task_and_cgroup *tc;
1805 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1806 return NULL;
1808 tc = flex_array_get(tset->tc_array, tset->idx++);
1809 tset->cur_cgrp = tc->cgrp;
1810 return tc->task;
1812 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1815 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1816 * @tset: taskset of interest
1818 * Return the cgroup for the current (last returned) task of @tset. This
1819 * function must be preceded by either cgroup_taskset_first() or
1820 * cgroup_taskset_next().
1822 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1824 return tset->cur_cgrp;
1826 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1829 * cgroup_taskset_size - return the number of tasks in taskset
1830 * @tset: taskset of interest
1832 int cgroup_taskset_size(struct cgroup_taskset *tset)
1834 return tset->tc_array ? tset->tc_array_len : 1;
1836 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1840 * cgroup_task_migrate - move a task from one cgroup to another.
1842 * 'guarantee' is set if the caller promises that a new css_set for the task
1843 * will already exist. If not set, this function might sleep, and can fail with
1844 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1846 static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1847 struct task_struct *tsk, bool guarantee)
1849 struct css_set *oldcg;
1850 struct css_set *newcg;
1853 * We are synchronized through threadgroup_lock() against PF_EXITING
1854 * setting such that we can't race against cgroup_exit() changing the
1855 * css_set to init_css_set and dropping the old one.
1857 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1858 oldcg = tsk->cgroups;
1860 /* locate or allocate a new css_set for this task. */
1861 if (guarantee) {
1862 /* we know the css_set we want already exists. */
1863 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1864 read_lock(&css_set_lock);
1865 newcg = find_existing_css_set(oldcg, cgrp, template);
1866 BUG_ON(!newcg);
1867 get_css_set(newcg);
1868 read_unlock(&css_set_lock);
1869 } else {
1870 might_sleep();
1871 /* find_css_set will give us newcg already referenced. */
1872 newcg = find_css_set(oldcg, cgrp);
1873 if (!newcg)
1874 return -ENOMEM;
1877 task_lock(tsk);
1878 rcu_assign_pointer(tsk->cgroups, newcg);
1879 task_unlock(tsk);
1881 /* Update the css_set linked lists if we're using them */
1882 write_lock(&css_set_lock);
1883 if (!list_empty(&tsk->cg_list))
1884 list_move(&tsk->cg_list, &newcg->tasks);
1885 write_unlock(&css_set_lock);
1888 * We just gained a reference on oldcg by taking it from the task. As
1889 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1890 * it here; it will be freed under RCU.
1892 put_css_set(oldcg);
1894 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1895 return 0;
1899 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1900 * @cgrp: the cgroup the task is attaching to
1901 * @tsk: the task to be attached
1903 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1904 * @tsk during call.
1906 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1908 int retval;
1909 struct cgroup_subsys *ss, *failed_ss = NULL;
1910 struct cgroup *oldcgrp;
1911 struct cgroupfs_root *root = cgrp->root;
1912 struct cgroup_taskset tset = { };
1914 /* @tsk either already exited or can't exit until the end */
1915 if (tsk->flags & PF_EXITING)
1916 return -ESRCH;
1918 /* Nothing to do if the task is already in that cgroup */
1919 oldcgrp = task_cgroup_from_root(tsk, root);
1920 if (cgrp == oldcgrp)
1921 return 0;
1923 tset.single.task = tsk;
1924 tset.single.cgrp = oldcgrp;
1926 for_each_subsys(root, ss) {
1927 if (ss->can_attach) {
1928 retval = ss->can_attach(ss, cgrp, &tset);
1929 if (retval) {
1931 * Remember on which subsystem the can_attach()
1932 * failed, so that we only call cancel_attach()
1933 * against the subsystems whose can_attach()
1934 * succeeded. (See below)
1936 failed_ss = ss;
1937 goto out;
1942 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
1943 if (retval)
1944 goto out;
1946 for_each_subsys(root, ss) {
1947 if (ss->attach)
1948 ss->attach(ss, cgrp, &tset);
1951 synchronize_rcu();
1954 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1955 * is no longer empty.
1957 cgroup_wakeup_rmdir_waiter(cgrp);
1958 out:
1959 if (retval) {
1960 for_each_subsys(root, ss) {
1961 if (ss == failed_ss)
1963 * This subsystem was the one that failed the
1964 * can_attach() check earlier, so we don't need
1965 * to call cancel_attach() against it or any
1966 * remaining subsystems.
1968 break;
1969 if (ss->cancel_attach)
1970 ss->cancel_attach(ss, cgrp, &tset);
1973 return retval;
1977 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1978 * @from: attach to all cgroups of a given task
1979 * @tsk: the task to be attached
1981 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1983 struct cgroupfs_root *root;
1984 int retval = 0;
1986 cgroup_lock();
1987 for_each_active_root(root) {
1988 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1990 retval = cgroup_attach_task(from_cg, tsk);
1991 if (retval)
1992 break;
1994 cgroup_unlock();
1996 return retval;
1998 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2001 * cgroup_attach_proc works in two stages, the first of which prefetches all
2002 * new css_sets needed (to make sure we have enough memory before committing
2003 * to the move) and stores them in a list of entries of the following type.
2004 * TODO: possible optimization: use css_set->rcu_head for chaining instead
2006 struct cg_list_entry {
2007 struct css_set *cg;
2008 struct list_head links;
2011 static bool css_set_check_fetched(struct cgroup *cgrp,
2012 struct task_struct *tsk, struct css_set *cg,
2013 struct list_head *newcg_list)
2015 struct css_set *newcg;
2016 struct cg_list_entry *cg_entry;
2017 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
2019 read_lock(&css_set_lock);
2020 newcg = find_existing_css_set(cg, cgrp, template);
2021 read_unlock(&css_set_lock);
2023 /* doesn't exist at all? */
2024 if (!newcg)
2025 return false;
2026 /* see if it's already in the list */
2027 list_for_each_entry(cg_entry, newcg_list, links)
2028 if (cg_entry->cg == newcg)
2029 return true;
2031 /* not found */
2032 return false;
2036 * Find the new css_set and store it in the list in preparation for moving the
2037 * given task to the given cgroup. Returns 0 or -ENOMEM.
2039 static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
2040 struct list_head *newcg_list)
2042 struct css_set *newcg;
2043 struct cg_list_entry *cg_entry;
2045 /* ensure a new css_set will exist for this thread */
2046 newcg = find_css_set(cg, cgrp);
2047 if (!newcg)
2048 return -ENOMEM;
2049 /* add it to the list */
2050 cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
2051 if (!cg_entry) {
2052 put_css_set(newcg);
2053 return -ENOMEM;
2055 cg_entry->cg = newcg;
2056 list_add(&cg_entry->links, newcg_list);
2057 return 0;
2061 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2062 * @cgrp: the cgroup to attach to
2063 * @leader: the threadgroup leader task_struct of the group to be attached
2065 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2066 * task_lock of each thread in leader's threadgroup individually in turn.
2068 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2070 int retval, i, group_size;
2071 struct cgroup_subsys *ss, *failed_ss = NULL;
2072 /* guaranteed to be initialized later, but the compiler needs this */
2073 struct css_set *oldcg;
2074 struct cgroupfs_root *root = cgrp->root;
2075 /* threadgroup list cursor and array */
2076 struct task_struct *tsk;
2077 struct task_and_cgroup *tc;
2078 struct flex_array *group;
2079 struct cgroup_taskset tset = { };
2081 * we need to make sure we have css_sets for all the tasks we're
2082 * going to move -before- we actually start moving them, so that in
2083 * case we get an ENOMEM we can bail out before making any changes.
2085 struct list_head newcg_list;
2086 struct cg_list_entry *cg_entry, *temp_nobe;
2089 * step 0: in order to do expensive, possibly blocking operations for
2090 * every thread, we cannot iterate the thread group list, since it needs
2091 * rcu or tasklist locked. instead, build an array of all threads in the
2092 * group - group_rwsem prevents new threads from appearing, and if
2093 * threads exit, this will just be an over-estimate.
2095 group_size = get_nr_threads(leader);
2096 /* flex_array supports very large thread-groups better than kmalloc. */
2097 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2098 if (!group)
2099 return -ENOMEM;
2100 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2101 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2102 if (retval)
2103 goto out_free_group_list;
2105 /* prevent changes to the threadgroup list while we take a snapshot. */
2106 read_lock(&tasklist_lock);
2107 if (!thread_group_leader(leader)) {
2109 * a race with de_thread from another thread's exec() may strip
2110 * us of our leadership, making while_each_thread unsafe to use
2111 * on this task. if this happens, there is no choice but to
2112 * throw this task away and try again (from cgroup_procs_write);
2113 * this is "double-double-toil-and-trouble-check locking".
2115 read_unlock(&tasklist_lock);
2116 retval = -EAGAIN;
2117 goto out_free_group_list;
2120 tsk = leader;
2121 i = 0;
2122 do {
2123 struct task_and_cgroup ent;
2125 /* @tsk either already exited or can't exit until the end */
2126 if (tsk->flags & PF_EXITING)
2127 continue;
2129 /* as per above, nr_threads may decrease, but not increase. */
2130 BUG_ON(i >= group_size);
2132 * saying GFP_ATOMIC has no effect here because we did prealloc
2133 * earlier, but it's good form to communicate our expectations.
2135 ent.task = tsk;
2136 ent.cgrp = task_cgroup_from_root(tsk, root);
2137 /* nothing to do if this task is already in the cgroup */
2138 if (ent.cgrp == cgrp)
2139 continue;
2140 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2141 BUG_ON(retval != 0);
2142 i++;
2143 } while_each_thread(leader, tsk);
2144 /* remember the number of threads in the array for later. */
2145 group_size = i;
2146 tset.tc_array = group;
2147 tset.tc_array_len = group_size;
2148 read_unlock(&tasklist_lock);
2150 /* methods shouldn't be called if no task is actually migrating */
2151 retval = 0;
2152 if (!group_size)
2153 goto out_free_group_list;
2156 * step 1: check that we can legitimately attach to the cgroup.
2158 for_each_subsys(root, ss) {
2159 if (ss->can_attach) {
2160 retval = ss->can_attach(ss, cgrp, &tset);
2161 if (retval) {
2162 failed_ss = ss;
2163 goto out_cancel_attach;
2169 * step 2: make sure css_sets exist for all threads to be migrated.
2170 * we use find_css_set, which allocates a new one if necessary.
2172 INIT_LIST_HEAD(&newcg_list);
2173 for (i = 0; i < group_size; i++) {
2174 tc = flex_array_get(group, i);
2175 oldcg = tc->task->cgroups;
2177 /* if we don't already have it in the list get a new one */
2178 if (!css_set_check_fetched(cgrp, tc->task, oldcg,
2179 &newcg_list)) {
2180 retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
2181 if (retval)
2182 goto out_list_teardown;
2187 * step 3: now that we're guaranteed success wrt the css_sets,
2188 * proceed to move all tasks to the new cgroup. There are no
2189 * failure cases after here, so this is the commit point.
2191 for (i = 0; i < group_size; i++) {
2192 tc = flex_array_get(group, i);
2193 retval = cgroup_task_migrate(cgrp, tc->cgrp, tc->task, true);
2194 BUG_ON(retval);
2196 /* nothing is sensitive to fork() after this point. */
2199 * step 4: do subsystem attach callbacks.
2201 for_each_subsys(root, ss) {
2202 if (ss->attach)
2203 ss->attach(ss, cgrp, &tset);
2207 * step 5: success! and cleanup
2209 synchronize_rcu();
2210 cgroup_wakeup_rmdir_waiter(cgrp);
2211 retval = 0;
2212 out_list_teardown:
2213 /* clean up the list of prefetched css_sets. */
2214 list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
2215 list_del(&cg_entry->links);
2216 put_css_set(cg_entry->cg);
2217 kfree(cg_entry);
2219 out_cancel_attach:
2220 /* same deal as in cgroup_attach_task */
2221 if (retval) {
2222 for_each_subsys(root, ss) {
2223 if (ss == failed_ss)
2224 break;
2225 if (ss->cancel_attach)
2226 ss->cancel_attach(ss, cgrp, &tset);
2229 out_free_group_list:
2230 flex_array_free(group);
2231 return retval;
2235 * Find the task_struct of the task to attach by vpid and pass it along to the
2236 * function to attach either it or all tasks in its threadgroup. Will lock
2237 * cgroup_mutex and threadgroup; may take task_lock of task.
2239 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2241 struct task_struct *tsk;
2242 const struct cred *cred = current_cred(), *tcred;
2243 int ret;
2245 if (!cgroup_lock_live_group(cgrp))
2246 return -ENODEV;
2248 if (pid) {
2249 rcu_read_lock();
2250 tsk = find_task_by_vpid(pid);
2251 if (!tsk) {
2252 rcu_read_unlock();
2253 cgroup_unlock();
2254 return -ESRCH;
2256 if (threadgroup) {
2258 * RCU protects this access, since tsk was found in the
2259 * tid map. a race with de_thread may cause group_leader
2260 * to stop being the leader, but cgroup_attach_proc will
2261 * detect it later.
2263 tsk = tsk->group_leader;
2266 * even if we're attaching all tasks in the thread group, we
2267 * only need to check permissions on one of them.
2269 tcred = __task_cred(tsk);
2270 if (cred->euid &&
2271 cred->euid != tcred->uid &&
2272 cred->euid != tcred->suid) {
2273 rcu_read_unlock();
2274 cgroup_unlock();
2275 return -EACCES;
2277 get_task_struct(tsk);
2278 rcu_read_unlock();
2279 } else {
2280 if (threadgroup)
2281 tsk = current->group_leader;
2282 else
2283 tsk = current;
2284 get_task_struct(tsk);
2287 threadgroup_lock(tsk);
2289 if (threadgroup)
2290 ret = cgroup_attach_proc(cgrp, tsk);
2291 else
2292 ret = cgroup_attach_task(cgrp, tsk);
2294 threadgroup_unlock(tsk);
2296 put_task_struct(tsk);
2297 cgroup_unlock();
2298 return ret;
2301 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2303 return attach_task_by_pid(cgrp, pid, false);
2306 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2308 int ret;
2309 do {
2311 * attach_proc fails with -EAGAIN if threadgroup leadership
2312 * changes in the middle of the operation, in which case we need
2313 * to find the task_struct for the new leader and start over.
2315 ret = attach_task_by_pid(cgrp, tgid, true);
2316 } while (ret == -EAGAIN);
2317 return ret;
2321 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2322 * @cgrp: the cgroup to be checked for liveness
2324 * On success, returns true; the lock should be later released with
2325 * cgroup_unlock(). On failure returns false with no lock held.
2327 bool cgroup_lock_live_group(struct cgroup *cgrp)
2329 mutex_lock(&cgroup_mutex);
2330 if (cgroup_is_removed(cgrp)) {
2331 mutex_unlock(&cgroup_mutex);
2332 return false;
2334 return true;
2336 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2338 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2339 const char *buffer)
2341 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2342 if (strlen(buffer) >= PATH_MAX)
2343 return -EINVAL;
2344 if (!cgroup_lock_live_group(cgrp))
2345 return -ENODEV;
2346 mutex_lock(&cgroup_root_mutex);
2347 strcpy(cgrp->root->release_agent_path, buffer);
2348 mutex_unlock(&cgroup_root_mutex);
2349 cgroup_unlock();
2350 return 0;
2353 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2354 struct seq_file *seq)
2356 if (!cgroup_lock_live_group(cgrp))
2357 return -ENODEV;
2358 seq_puts(seq, cgrp->root->release_agent_path);
2359 seq_putc(seq, '\n');
2360 cgroup_unlock();
2361 return 0;
2364 /* A buffer size big enough for numbers or short strings */
2365 #define CGROUP_LOCAL_BUFFER_SIZE 64
2367 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2368 struct file *file,
2369 const char __user *userbuf,
2370 size_t nbytes, loff_t *unused_ppos)
2372 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2373 int retval = 0;
2374 char *end;
2376 if (!nbytes)
2377 return -EINVAL;
2378 if (nbytes >= sizeof(buffer))
2379 return -E2BIG;
2380 if (copy_from_user(buffer, userbuf, nbytes))
2381 return -EFAULT;
2383 buffer[nbytes] = 0; /* nul-terminate */
2384 if (cft->write_u64) {
2385 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2386 if (*end)
2387 return -EINVAL;
2388 retval = cft->write_u64(cgrp, cft, val);
2389 } else {
2390 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2391 if (*end)
2392 return -EINVAL;
2393 retval = cft->write_s64(cgrp, cft, val);
2395 if (!retval)
2396 retval = nbytes;
2397 return retval;
2400 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2401 struct file *file,
2402 const char __user *userbuf,
2403 size_t nbytes, loff_t *unused_ppos)
2405 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2406 int retval = 0;
2407 size_t max_bytes = cft->max_write_len;
2408 char *buffer = local_buffer;
2410 if (!max_bytes)
2411 max_bytes = sizeof(local_buffer) - 1;
2412 if (nbytes >= max_bytes)
2413 return -E2BIG;
2414 /* Allocate a dynamic buffer if we need one */
2415 if (nbytes >= sizeof(local_buffer)) {
2416 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2417 if (buffer == NULL)
2418 return -ENOMEM;
2420 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2421 retval = -EFAULT;
2422 goto out;
2425 buffer[nbytes] = 0; /* nul-terminate */
2426 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2427 if (!retval)
2428 retval = nbytes;
2429 out:
2430 if (buffer != local_buffer)
2431 kfree(buffer);
2432 return retval;
2435 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2436 size_t nbytes, loff_t *ppos)
2438 struct cftype *cft = __d_cft(file->f_dentry);
2439 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2441 if (cgroup_is_removed(cgrp))
2442 return -ENODEV;
2443 if (cft->write)
2444 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2445 if (cft->write_u64 || cft->write_s64)
2446 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2447 if (cft->write_string)
2448 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2449 if (cft->trigger) {
2450 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2451 return ret ? ret : nbytes;
2453 return -EINVAL;
2456 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2457 struct file *file,
2458 char __user *buf, size_t nbytes,
2459 loff_t *ppos)
2461 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2462 u64 val = cft->read_u64(cgrp, cft);
2463 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2465 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2468 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2469 struct file *file,
2470 char __user *buf, size_t nbytes,
2471 loff_t *ppos)
2473 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2474 s64 val = cft->read_s64(cgrp, cft);
2475 int len = sprintf(tmp, "%lld\n", (long long) val);
2477 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2480 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2481 size_t nbytes, loff_t *ppos)
2483 struct cftype *cft = __d_cft(file->f_dentry);
2484 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2486 if (cgroup_is_removed(cgrp))
2487 return -ENODEV;
2489 if (cft->read)
2490 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2491 if (cft->read_u64)
2492 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2493 if (cft->read_s64)
2494 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2495 return -EINVAL;
2499 * seqfile ops/methods for returning structured data. Currently just
2500 * supports string->u64 maps, but can be extended in future.
2503 struct cgroup_seqfile_state {
2504 struct cftype *cft;
2505 struct cgroup *cgroup;
2508 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2510 struct seq_file *sf = cb->state;
2511 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2514 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2516 struct cgroup_seqfile_state *state = m->private;
2517 struct cftype *cft = state->cft;
2518 if (cft->read_map) {
2519 struct cgroup_map_cb cb = {
2520 .fill = cgroup_map_add,
2521 .state = m,
2523 return cft->read_map(state->cgroup, cft, &cb);
2525 return cft->read_seq_string(state->cgroup, cft, m);
2528 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2530 struct seq_file *seq = file->private_data;
2531 kfree(seq->private);
2532 return single_release(inode, file);
2535 static const struct file_operations cgroup_seqfile_operations = {
2536 .read = seq_read,
2537 .write = cgroup_file_write,
2538 .llseek = seq_lseek,
2539 .release = cgroup_seqfile_release,
2542 static int cgroup_file_open(struct inode *inode, struct file *file)
2544 int err;
2545 struct cftype *cft;
2547 err = generic_file_open(inode, file);
2548 if (err)
2549 return err;
2550 cft = __d_cft(file->f_dentry);
2552 if (cft->read_map || cft->read_seq_string) {
2553 struct cgroup_seqfile_state *state =
2554 kzalloc(sizeof(*state), GFP_USER);
2555 if (!state)
2556 return -ENOMEM;
2557 state->cft = cft;
2558 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2559 file->f_op = &cgroup_seqfile_operations;
2560 err = single_open(file, cgroup_seqfile_show, state);
2561 if (err < 0)
2562 kfree(state);
2563 } else if (cft->open)
2564 err = cft->open(inode, file);
2565 else
2566 err = 0;
2568 return err;
2571 static int cgroup_file_release(struct inode *inode, struct file *file)
2573 struct cftype *cft = __d_cft(file->f_dentry);
2574 if (cft->release)
2575 return cft->release(inode, file);
2576 return 0;
2580 * cgroup_rename - Only allow simple rename of directories in place.
2582 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2583 struct inode *new_dir, struct dentry *new_dentry)
2585 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2586 return -ENOTDIR;
2587 if (new_dentry->d_inode)
2588 return -EEXIST;
2589 if (old_dir != new_dir)
2590 return -EIO;
2591 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2594 static const struct file_operations cgroup_file_operations = {
2595 .read = cgroup_file_read,
2596 .write = cgroup_file_write,
2597 .llseek = generic_file_llseek,
2598 .open = cgroup_file_open,
2599 .release = cgroup_file_release,
2602 static const struct inode_operations cgroup_dir_inode_operations = {
2603 .lookup = cgroup_lookup,
2604 .mkdir = cgroup_mkdir,
2605 .rmdir = cgroup_rmdir,
2606 .rename = cgroup_rename,
2609 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2611 if (dentry->d_name.len > NAME_MAX)
2612 return ERR_PTR(-ENAMETOOLONG);
2613 d_add(dentry, NULL);
2614 return NULL;
2618 * Check if a file is a control file
2620 static inline struct cftype *__file_cft(struct file *file)
2622 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2623 return ERR_PTR(-EINVAL);
2624 return __d_cft(file->f_dentry);
2627 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2628 struct super_block *sb)
2630 struct inode *inode;
2632 if (!dentry)
2633 return -ENOENT;
2634 if (dentry->d_inode)
2635 return -EEXIST;
2637 inode = cgroup_new_inode(mode, sb);
2638 if (!inode)
2639 return -ENOMEM;
2641 if (S_ISDIR(mode)) {
2642 inode->i_op = &cgroup_dir_inode_operations;
2643 inode->i_fop = &simple_dir_operations;
2645 /* start off with i_nlink == 2 (for "." entry) */
2646 inc_nlink(inode);
2648 /* start with the directory inode held, so that we can
2649 * populate it without racing with another mkdir */
2650 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2651 } else if (S_ISREG(mode)) {
2652 inode->i_size = 0;
2653 inode->i_fop = &cgroup_file_operations;
2655 d_instantiate(dentry, inode);
2656 dget(dentry); /* Extra count - pin the dentry in core */
2657 return 0;
2661 * cgroup_create_dir - create a directory for an object.
2662 * @cgrp: the cgroup we create the directory for. It must have a valid
2663 * ->parent field. And we are going to fill its ->dentry field.
2664 * @dentry: dentry of the new cgroup
2665 * @mode: mode to set on new directory.
2667 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2668 umode_t mode)
2670 struct dentry *parent;
2671 int error = 0;
2673 parent = cgrp->parent->dentry;
2674 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2675 if (!error) {
2676 dentry->d_fsdata = cgrp;
2677 inc_nlink(parent->d_inode);
2678 rcu_assign_pointer(cgrp->dentry, dentry);
2679 dget(dentry);
2681 dput(dentry);
2683 return error;
2687 * cgroup_file_mode - deduce file mode of a control file
2688 * @cft: the control file in question
2690 * returns cft->mode if ->mode is not 0
2691 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2692 * returns S_IRUGO if it has only a read handler
2693 * returns S_IWUSR if it has only a write hander
2695 static umode_t cgroup_file_mode(const struct cftype *cft)
2697 umode_t mode = 0;
2699 if (cft->mode)
2700 return cft->mode;
2702 if (cft->read || cft->read_u64 || cft->read_s64 ||
2703 cft->read_map || cft->read_seq_string)
2704 mode |= S_IRUGO;
2706 if (cft->write || cft->write_u64 || cft->write_s64 ||
2707 cft->write_string || cft->trigger)
2708 mode |= S_IWUSR;
2710 return mode;
2713 int cgroup_add_file(struct cgroup *cgrp,
2714 struct cgroup_subsys *subsys,
2715 const struct cftype *cft)
2717 struct dentry *dir = cgrp->dentry;
2718 struct dentry *dentry;
2719 int error;
2720 umode_t mode;
2722 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2723 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2724 strcpy(name, subsys->name);
2725 strcat(name, ".");
2727 strcat(name, cft->name);
2728 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2729 dentry = lookup_one_len(name, dir, strlen(name));
2730 if (!IS_ERR(dentry)) {
2731 mode = cgroup_file_mode(cft);
2732 error = cgroup_create_file(dentry, mode | S_IFREG,
2733 cgrp->root->sb);
2734 if (!error)
2735 dentry->d_fsdata = (void *)cft;
2736 dput(dentry);
2737 } else
2738 error = PTR_ERR(dentry);
2739 return error;
2741 EXPORT_SYMBOL_GPL(cgroup_add_file);
2743 int cgroup_add_files(struct cgroup *cgrp,
2744 struct cgroup_subsys *subsys,
2745 const struct cftype cft[],
2746 int count)
2748 int i, err;
2749 for (i = 0; i < count; i++) {
2750 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2751 if (err)
2752 return err;
2754 return 0;
2756 EXPORT_SYMBOL_GPL(cgroup_add_files);
2759 * cgroup_task_count - count the number of tasks in a cgroup.
2760 * @cgrp: the cgroup in question
2762 * Return the number of tasks in the cgroup.
2764 int cgroup_task_count(const struct cgroup *cgrp)
2766 int count = 0;
2767 struct cg_cgroup_link *link;
2769 read_lock(&css_set_lock);
2770 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2771 count += atomic_read(&link->cg->refcount);
2773 read_unlock(&css_set_lock);
2774 return count;
2778 * Advance a list_head iterator. The iterator should be positioned at
2779 * the start of a css_set
2781 static void cgroup_advance_iter(struct cgroup *cgrp,
2782 struct cgroup_iter *it)
2784 struct list_head *l = it->cg_link;
2785 struct cg_cgroup_link *link;
2786 struct css_set *cg;
2788 /* Advance to the next non-empty css_set */
2789 do {
2790 l = l->next;
2791 if (l == &cgrp->css_sets) {
2792 it->cg_link = NULL;
2793 return;
2795 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2796 cg = link->cg;
2797 } while (list_empty(&cg->tasks));
2798 it->cg_link = l;
2799 it->task = cg->tasks.next;
2803 * To reduce the fork() overhead for systems that are not actually
2804 * using their cgroups capability, we don't maintain the lists running
2805 * through each css_set to its tasks until we see the list actually
2806 * used - in other words after the first call to cgroup_iter_start().
2808 * The tasklist_lock is not held here, as do_each_thread() and
2809 * while_each_thread() are protected by RCU.
2811 static void cgroup_enable_task_cg_lists(void)
2813 struct task_struct *p, *g;
2814 write_lock(&css_set_lock);
2815 use_task_css_set_links = 1;
2816 do_each_thread(g, p) {
2817 task_lock(p);
2819 * We should check if the process is exiting, otherwise
2820 * it will race with cgroup_exit() in that the list
2821 * entry won't be deleted though the process has exited.
2823 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2824 list_add(&p->cg_list, &p->cgroups->tasks);
2825 task_unlock(p);
2826 } while_each_thread(g, p);
2827 write_unlock(&css_set_lock);
2830 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2831 __acquires(css_set_lock)
2834 * The first time anyone tries to iterate across a cgroup,
2835 * we need to enable the list linking each css_set to its
2836 * tasks, and fix up all existing tasks.
2838 if (!use_task_css_set_links)
2839 cgroup_enable_task_cg_lists();
2841 read_lock(&css_set_lock);
2842 it->cg_link = &cgrp->css_sets;
2843 cgroup_advance_iter(cgrp, it);
2846 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2847 struct cgroup_iter *it)
2849 struct task_struct *res;
2850 struct list_head *l = it->task;
2851 struct cg_cgroup_link *link;
2853 /* If the iterator cg is NULL, we have no tasks */
2854 if (!it->cg_link)
2855 return NULL;
2856 res = list_entry(l, struct task_struct, cg_list);
2857 /* Advance iterator to find next entry */
2858 l = l->next;
2859 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2860 if (l == &link->cg->tasks) {
2861 /* We reached the end of this task list - move on to
2862 * the next cg_cgroup_link */
2863 cgroup_advance_iter(cgrp, it);
2864 } else {
2865 it->task = l;
2867 return res;
2870 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2871 __releases(css_set_lock)
2873 read_unlock(&css_set_lock);
2876 static inline int started_after_time(struct task_struct *t1,
2877 struct timespec *time,
2878 struct task_struct *t2)
2880 int start_diff = timespec_compare(&t1->start_time, time);
2881 if (start_diff > 0) {
2882 return 1;
2883 } else if (start_diff < 0) {
2884 return 0;
2885 } else {
2887 * Arbitrarily, if two processes started at the same
2888 * time, we'll say that the lower pointer value
2889 * started first. Note that t2 may have exited by now
2890 * so this may not be a valid pointer any longer, but
2891 * that's fine - it still serves to distinguish
2892 * between two tasks started (effectively) simultaneously.
2894 return t1 > t2;
2899 * This function is a callback from heap_insert() and is used to order
2900 * the heap.
2901 * In this case we order the heap in descending task start time.
2903 static inline int started_after(void *p1, void *p2)
2905 struct task_struct *t1 = p1;
2906 struct task_struct *t2 = p2;
2907 return started_after_time(t1, &t2->start_time, t2);
2911 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2912 * @scan: struct cgroup_scanner containing arguments for the scan
2914 * Arguments include pointers to callback functions test_task() and
2915 * process_task().
2916 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2917 * and if it returns true, call process_task() for it also.
2918 * The test_task pointer may be NULL, meaning always true (select all tasks).
2919 * Effectively duplicates cgroup_iter_{start,next,end}()
2920 * but does not lock css_set_lock for the call to process_task().
2921 * The struct cgroup_scanner may be embedded in any structure of the caller's
2922 * creation.
2923 * It is guaranteed that process_task() will act on every task that
2924 * is a member of the cgroup for the duration of this call. This
2925 * function may or may not call process_task() for tasks that exit
2926 * or move to a different cgroup during the call, or are forked or
2927 * move into the cgroup during the call.
2929 * Note that test_task() may be called with locks held, and may in some
2930 * situations be called multiple times for the same task, so it should
2931 * be cheap.
2932 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2933 * pre-allocated and will be used for heap operations (and its "gt" member will
2934 * be overwritten), else a temporary heap will be used (allocation of which
2935 * may cause this function to fail).
2937 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2939 int retval, i;
2940 struct cgroup_iter it;
2941 struct task_struct *p, *dropped;
2942 /* Never dereference latest_task, since it's not refcounted */
2943 struct task_struct *latest_task = NULL;
2944 struct ptr_heap tmp_heap;
2945 struct ptr_heap *heap;
2946 struct timespec latest_time = { 0, 0 };
2948 if (scan->heap) {
2949 /* The caller supplied our heap and pre-allocated its memory */
2950 heap = scan->heap;
2951 heap->gt = &started_after;
2952 } else {
2953 /* We need to allocate our own heap memory */
2954 heap = &tmp_heap;
2955 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2956 if (retval)
2957 /* cannot allocate the heap */
2958 return retval;
2961 again:
2963 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2964 * to determine which are of interest, and using the scanner's
2965 * "process_task" callback to process any of them that need an update.
2966 * Since we don't want to hold any locks during the task updates,
2967 * gather tasks to be processed in a heap structure.
2968 * The heap is sorted by descending task start time.
2969 * If the statically-sized heap fills up, we overflow tasks that
2970 * started later, and in future iterations only consider tasks that
2971 * started after the latest task in the previous pass. This
2972 * guarantees forward progress and that we don't miss any tasks.
2974 heap->size = 0;
2975 cgroup_iter_start(scan->cg, &it);
2976 while ((p = cgroup_iter_next(scan->cg, &it))) {
2978 * Only affect tasks that qualify per the caller's callback,
2979 * if he provided one
2981 if (scan->test_task && !scan->test_task(p, scan))
2982 continue;
2984 * Only process tasks that started after the last task
2985 * we processed
2987 if (!started_after_time(p, &latest_time, latest_task))
2988 continue;
2989 dropped = heap_insert(heap, p);
2990 if (dropped == NULL) {
2992 * The new task was inserted; the heap wasn't
2993 * previously full
2995 get_task_struct(p);
2996 } else if (dropped != p) {
2998 * The new task was inserted, and pushed out a
2999 * different task
3001 get_task_struct(p);
3002 put_task_struct(dropped);
3005 * Else the new task was newer than anything already in
3006 * the heap and wasn't inserted
3009 cgroup_iter_end(scan->cg, &it);
3011 if (heap->size) {
3012 for (i = 0; i < heap->size; i++) {
3013 struct task_struct *q = heap->ptrs[i];
3014 if (i == 0) {
3015 latest_time = q->start_time;
3016 latest_task = q;
3018 /* Process the task per the caller's callback */
3019 scan->process_task(q, scan);
3020 put_task_struct(q);
3023 * If we had to process any tasks at all, scan again
3024 * in case some of them were in the middle of forking
3025 * children that didn't get processed.
3026 * Not the most efficient way to do it, but it avoids
3027 * having to take callback_mutex in the fork path
3029 goto again;
3031 if (heap == &tmp_heap)
3032 heap_free(&tmp_heap);
3033 return 0;
3037 * Stuff for reading the 'tasks'/'procs' files.
3039 * Reading this file can return large amounts of data if a cgroup has
3040 * *lots* of attached tasks. So it may need several calls to read(),
3041 * but we cannot guarantee that the information we produce is correct
3042 * unless we produce it entirely atomically.
3047 * The following two functions "fix" the issue where there are more pids
3048 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3049 * TODO: replace with a kernel-wide solution to this problem
3051 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3052 static void *pidlist_allocate(int count)
3054 if (PIDLIST_TOO_LARGE(count))
3055 return vmalloc(count * sizeof(pid_t));
3056 else
3057 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3059 static void pidlist_free(void *p)
3061 if (is_vmalloc_addr(p))
3062 vfree(p);
3063 else
3064 kfree(p);
3066 static void *pidlist_resize(void *p, int newcount)
3068 void *newlist;
3069 /* note: if new alloc fails, old p will still be valid either way */
3070 if (is_vmalloc_addr(p)) {
3071 newlist = vmalloc(newcount * sizeof(pid_t));
3072 if (!newlist)
3073 return NULL;
3074 memcpy(newlist, p, newcount * sizeof(pid_t));
3075 vfree(p);
3076 } else {
3077 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3079 return newlist;
3083 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3084 * If the new stripped list is sufficiently smaller and there's enough memory
3085 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3086 * number of unique elements.
3088 /* is the size difference enough that we should re-allocate the array? */
3089 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3090 static int pidlist_uniq(pid_t **p, int length)
3092 int src, dest = 1;
3093 pid_t *list = *p;
3094 pid_t *newlist;
3097 * we presume the 0th element is unique, so i starts at 1. trivial
3098 * edge cases first; no work needs to be done for either
3100 if (length == 0 || length == 1)
3101 return length;
3102 /* src and dest walk down the list; dest counts unique elements */
3103 for (src = 1; src < length; src++) {
3104 /* find next unique element */
3105 while (list[src] == list[src-1]) {
3106 src++;
3107 if (src == length)
3108 goto after;
3110 /* dest always points to where the next unique element goes */
3111 list[dest] = list[src];
3112 dest++;
3114 after:
3116 * if the length difference is large enough, we want to allocate a
3117 * smaller buffer to save memory. if this fails due to out of memory,
3118 * we'll just stay with what we've got.
3120 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3121 newlist = pidlist_resize(list, dest);
3122 if (newlist)
3123 *p = newlist;
3125 return dest;
3128 static int cmppid(const void *a, const void *b)
3130 return *(pid_t *)a - *(pid_t *)b;
3134 * find the appropriate pidlist for our purpose (given procs vs tasks)
3135 * returns with the lock on that pidlist already held, and takes care
3136 * of the use count, or returns NULL with no locks held if we're out of
3137 * memory.
3139 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3140 enum cgroup_filetype type)
3142 struct cgroup_pidlist *l;
3143 /* don't need task_nsproxy() if we're looking at ourself */
3144 struct pid_namespace *ns = current->nsproxy->pid_ns;
3147 * We can't drop the pidlist_mutex before taking the l->mutex in case
3148 * the last ref-holder is trying to remove l from the list at the same
3149 * time. Holding the pidlist_mutex precludes somebody taking whichever
3150 * list we find out from under us - compare release_pid_array().
3152 mutex_lock(&cgrp->pidlist_mutex);
3153 list_for_each_entry(l, &cgrp->pidlists, links) {
3154 if (l->key.type == type && l->key.ns == ns) {
3155 /* make sure l doesn't vanish out from under us */
3156 down_write(&l->mutex);
3157 mutex_unlock(&cgrp->pidlist_mutex);
3158 return l;
3161 /* entry not found; create a new one */
3162 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3163 if (!l) {
3164 mutex_unlock(&cgrp->pidlist_mutex);
3165 return l;
3167 init_rwsem(&l->mutex);
3168 down_write(&l->mutex);
3169 l->key.type = type;
3170 l->key.ns = get_pid_ns(ns);
3171 l->use_count = 0; /* don't increment here */
3172 l->list = NULL;
3173 l->owner = cgrp;
3174 list_add(&l->links, &cgrp->pidlists);
3175 mutex_unlock(&cgrp->pidlist_mutex);
3176 return l;
3180 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3182 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3183 struct cgroup_pidlist **lp)
3185 pid_t *array;
3186 int length;
3187 int pid, n = 0; /* used for populating the array */
3188 struct cgroup_iter it;
3189 struct task_struct *tsk;
3190 struct cgroup_pidlist *l;
3193 * If cgroup gets more users after we read count, we won't have
3194 * enough space - tough. This race is indistinguishable to the
3195 * caller from the case that the additional cgroup users didn't
3196 * show up until sometime later on.
3198 length = cgroup_task_count(cgrp);
3199 array = pidlist_allocate(length);
3200 if (!array)
3201 return -ENOMEM;
3202 /* now, populate the array */
3203 cgroup_iter_start(cgrp, &it);
3204 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3205 if (unlikely(n == length))
3206 break;
3207 /* get tgid or pid for procs or tasks file respectively */
3208 if (type == CGROUP_FILE_PROCS)
3209 pid = task_tgid_vnr(tsk);
3210 else
3211 pid = task_pid_vnr(tsk);
3212 if (pid > 0) /* make sure to only use valid results */
3213 array[n++] = pid;
3215 cgroup_iter_end(cgrp, &it);
3216 length = n;
3217 /* now sort & (if procs) strip out duplicates */
3218 sort(array, length, sizeof(pid_t), cmppid, NULL);
3219 if (type == CGROUP_FILE_PROCS)
3220 length = pidlist_uniq(&array, length);
3221 l = cgroup_pidlist_find(cgrp, type);
3222 if (!l) {
3223 pidlist_free(array);
3224 return -ENOMEM;
3226 /* store array, freeing old if necessary - lock already held */
3227 pidlist_free(l->list);
3228 l->list = array;
3229 l->length = length;
3230 l->use_count++;
3231 up_write(&l->mutex);
3232 *lp = l;
3233 return 0;
3237 * cgroupstats_build - build and fill cgroupstats
3238 * @stats: cgroupstats to fill information into
3239 * @dentry: A dentry entry belonging to the cgroup for which stats have
3240 * been requested.
3242 * Build and fill cgroupstats so that taskstats can export it to user
3243 * space.
3245 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3247 int ret = -EINVAL;
3248 struct cgroup *cgrp;
3249 struct cgroup_iter it;
3250 struct task_struct *tsk;
3253 * Validate dentry by checking the superblock operations,
3254 * and make sure it's a directory.
3256 if (dentry->d_sb->s_op != &cgroup_ops ||
3257 !S_ISDIR(dentry->d_inode->i_mode))
3258 goto err;
3260 ret = 0;
3261 cgrp = dentry->d_fsdata;
3263 cgroup_iter_start(cgrp, &it);
3264 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3265 switch (tsk->state) {
3266 case TASK_RUNNING:
3267 stats->nr_running++;
3268 break;
3269 case TASK_INTERRUPTIBLE:
3270 stats->nr_sleeping++;
3271 break;
3272 case TASK_UNINTERRUPTIBLE:
3273 stats->nr_uninterruptible++;
3274 break;
3275 case TASK_STOPPED:
3276 stats->nr_stopped++;
3277 break;
3278 default:
3279 if (delayacct_is_task_waiting_on_io(tsk))
3280 stats->nr_io_wait++;
3281 break;
3284 cgroup_iter_end(cgrp, &it);
3286 err:
3287 return ret;
3292 * seq_file methods for the tasks/procs files. The seq_file position is the
3293 * next pid to display; the seq_file iterator is a pointer to the pid
3294 * in the cgroup->l->list array.
3297 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3300 * Initially we receive a position value that corresponds to
3301 * one more than the last pid shown (or 0 on the first call or
3302 * after a seek to the start). Use a binary-search to find the
3303 * next pid to display, if any
3305 struct cgroup_pidlist *l = s->private;
3306 int index = 0, pid = *pos;
3307 int *iter;
3309 down_read(&l->mutex);
3310 if (pid) {
3311 int end = l->length;
3313 while (index < end) {
3314 int mid = (index + end) / 2;
3315 if (l->list[mid] == pid) {
3316 index = mid;
3317 break;
3318 } else if (l->list[mid] <= pid)
3319 index = mid + 1;
3320 else
3321 end = mid;
3324 /* If we're off the end of the array, we're done */
3325 if (index >= l->length)
3326 return NULL;
3327 /* Update the abstract position to be the actual pid that we found */
3328 iter = l->list + index;
3329 *pos = *iter;
3330 return iter;
3333 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3335 struct cgroup_pidlist *l = s->private;
3336 up_read(&l->mutex);
3339 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3341 struct cgroup_pidlist *l = s->private;
3342 pid_t *p = v;
3343 pid_t *end = l->list + l->length;
3345 * Advance to the next pid in the array. If this goes off the
3346 * end, we're done
3348 p++;
3349 if (p >= end) {
3350 return NULL;
3351 } else {
3352 *pos = *p;
3353 return p;
3357 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3359 return seq_printf(s, "%d\n", *(int *)v);
3363 * seq_operations functions for iterating on pidlists through seq_file -
3364 * independent of whether it's tasks or procs
3366 static const struct seq_operations cgroup_pidlist_seq_operations = {
3367 .start = cgroup_pidlist_start,
3368 .stop = cgroup_pidlist_stop,
3369 .next = cgroup_pidlist_next,
3370 .show = cgroup_pidlist_show,
3373 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3376 * the case where we're the last user of this particular pidlist will
3377 * have us remove it from the cgroup's list, which entails taking the
3378 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3379 * pidlist_mutex, we have to take pidlist_mutex first.
3381 mutex_lock(&l->owner->pidlist_mutex);
3382 down_write(&l->mutex);
3383 BUG_ON(!l->use_count);
3384 if (!--l->use_count) {
3385 /* we're the last user if refcount is 0; remove and free */
3386 list_del(&l->links);
3387 mutex_unlock(&l->owner->pidlist_mutex);
3388 pidlist_free(l->list);
3389 put_pid_ns(l->key.ns);
3390 up_write(&l->mutex);
3391 kfree(l);
3392 return;
3394 mutex_unlock(&l->owner->pidlist_mutex);
3395 up_write(&l->mutex);
3398 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3400 struct cgroup_pidlist *l;
3401 if (!(file->f_mode & FMODE_READ))
3402 return 0;
3404 * the seq_file will only be initialized if the file was opened for
3405 * reading; hence we check if it's not null only in that case.
3407 l = ((struct seq_file *)file->private_data)->private;
3408 cgroup_release_pid_array(l);
3409 return seq_release(inode, file);
3412 static const struct file_operations cgroup_pidlist_operations = {
3413 .read = seq_read,
3414 .llseek = seq_lseek,
3415 .write = cgroup_file_write,
3416 .release = cgroup_pidlist_release,
3420 * The following functions handle opens on a file that displays a pidlist
3421 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3422 * in the cgroup.
3424 /* helper function for the two below it */
3425 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3427 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3428 struct cgroup_pidlist *l;
3429 int retval;
3431 /* Nothing to do for write-only files */
3432 if (!(file->f_mode & FMODE_READ))
3433 return 0;
3435 /* have the array populated */
3436 retval = pidlist_array_load(cgrp, type, &l);
3437 if (retval)
3438 return retval;
3439 /* configure file information */
3440 file->f_op = &cgroup_pidlist_operations;
3442 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3443 if (retval) {
3444 cgroup_release_pid_array(l);
3445 return retval;
3447 ((struct seq_file *)file->private_data)->private = l;
3448 return 0;
3450 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3452 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3454 static int cgroup_procs_open(struct inode *unused, struct file *file)
3456 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3459 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3460 struct cftype *cft)
3462 return notify_on_release(cgrp);
3465 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3466 struct cftype *cft,
3467 u64 val)
3469 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3470 if (val)
3471 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3472 else
3473 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3474 return 0;
3478 * Unregister event and free resources.
3480 * Gets called from workqueue.
3482 static void cgroup_event_remove(struct work_struct *work)
3484 struct cgroup_event *event = container_of(work, struct cgroup_event,
3485 remove);
3486 struct cgroup *cgrp = event->cgrp;
3488 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3490 eventfd_ctx_put(event->eventfd);
3491 kfree(event);
3492 dput(cgrp->dentry);
3496 * Gets called on POLLHUP on eventfd when user closes it.
3498 * Called with wqh->lock held and interrupts disabled.
3500 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3501 int sync, void *key)
3503 struct cgroup_event *event = container_of(wait,
3504 struct cgroup_event, wait);
3505 struct cgroup *cgrp = event->cgrp;
3506 unsigned long flags = (unsigned long)key;
3508 if (flags & POLLHUP) {
3509 __remove_wait_queue(event->wqh, &event->wait);
3510 spin_lock(&cgrp->event_list_lock);
3511 list_del(&event->list);
3512 spin_unlock(&cgrp->event_list_lock);
3514 * We are in atomic context, but cgroup_event_remove() may
3515 * sleep, so we have to call it in workqueue.
3517 schedule_work(&event->remove);
3520 return 0;
3523 static void cgroup_event_ptable_queue_proc(struct file *file,
3524 wait_queue_head_t *wqh, poll_table *pt)
3526 struct cgroup_event *event = container_of(pt,
3527 struct cgroup_event, pt);
3529 event->wqh = wqh;
3530 add_wait_queue(wqh, &event->wait);
3534 * Parse input and register new cgroup event handler.
3536 * Input must be in format '<event_fd> <control_fd> <args>'.
3537 * Interpretation of args is defined by control file implementation.
3539 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3540 const char *buffer)
3542 struct cgroup_event *event = NULL;
3543 unsigned int efd, cfd;
3544 struct file *efile = NULL;
3545 struct file *cfile = NULL;
3546 char *endp;
3547 int ret;
3549 efd = simple_strtoul(buffer, &endp, 10);
3550 if (*endp != ' ')
3551 return -EINVAL;
3552 buffer = endp + 1;
3554 cfd = simple_strtoul(buffer, &endp, 10);
3555 if ((*endp != ' ') && (*endp != '\0'))
3556 return -EINVAL;
3557 buffer = endp + 1;
3559 event = kzalloc(sizeof(*event), GFP_KERNEL);
3560 if (!event)
3561 return -ENOMEM;
3562 event->cgrp = cgrp;
3563 INIT_LIST_HEAD(&event->list);
3564 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3565 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3566 INIT_WORK(&event->remove, cgroup_event_remove);
3568 efile = eventfd_fget(efd);
3569 if (IS_ERR(efile)) {
3570 ret = PTR_ERR(efile);
3571 goto fail;
3574 event->eventfd = eventfd_ctx_fileget(efile);
3575 if (IS_ERR(event->eventfd)) {
3576 ret = PTR_ERR(event->eventfd);
3577 goto fail;
3580 cfile = fget(cfd);
3581 if (!cfile) {
3582 ret = -EBADF;
3583 goto fail;
3586 /* the process need read permission on control file */
3587 /* AV: shouldn't we check that it's been opened for read instead? */
3588 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3589 if (ret < 0)
3590 goto fail;
3592 event->cft = __file_cft(cfile);
3593 if (IS_ERR(event->cft)) {
3594 ret = PTR_ERR(event->cft);
3595 goto fail;
3598 if (!event->cft->register_event || !event->cft->unregister_event) {
3599 ret = -EINVAL;
3600 goto fail;
3603 ret = event->cft->register_event(cgrp, event->cft,
3604 event->eventfd, buffer);
3605 if (ret)
3606 goto fail;
3608 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3609 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3610 ret = 0;
3611 goto fail;
3615 * Events should be removed after rmdir of cgroup directory, but before
3616 * destroying subsystem state objects. Let's take reference to cgroup
3617 * directory dentry to do that.
3619 dget(cgrp->dentry);
3621 spin_lock(&cgrp->event_list_lock);
3622 list_add(&event->list, &cgrp->event_list);
3623 spin_unlock(&cgrp->event_list_lock);
3625 fput(cfile);
3626 fput(efile);
3628 return 0;
3630 fail:
3631 if (cfile)
3632 fput(cfile);
3634 if (event && event->eventfd && !IS_ERR(event->eventfd))
3635 eventfd_ctx_put(event->eventfd);
3637 if (!IS_ERR_OR_NULL(efile))
3638 fput(efile);
3640 kfree(event);
3642 return ret;
3645 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3646 struct cftype *cft)
3648 return clone_children(cgrp);
3651 static int cgroup_clone_children_write(struct cgroup *cgrp,
3652 struct cftype *cft,
3653 u64 val)
3655 if (val)
3656 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3657 else
3658 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3659 return 0;
3663 * for the common functions, 'private' gives the type of file
3665 /* for hysterical raisins, we can't put this on the older files */
3666 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3667 static struct cftype files[] = {
3669 .name = "tasks",
3670 .open = cgroup_tasks_open,
3671 .write_u64 = cgroup_tasks_write,
3672 .release = cgroup_pidlist_release,
3673 .mode = S_IRUGO | S_IWUSR,
3676 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3677 .open = cgroup_procs_open,
3678 .write_u64 = cgroup_procs_write,
3679 .release = cgroup_pidlist_release,
3680 .mode = S_IRUGO | S_IWUSR,
3683 .name = "notify_on_release",
3684 .read_u64 = cgroup_read_notify_on_release,
3685 .write_u64 = cgroup_write_notify_on_release,
3688 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3689 .write_string = cgroup_write_event_control,
3690 .mode = S_IWUGO,
3693 .name = "cgroup.clone_children",
3694 .read_u64 = cgroup_clone_children_read,
3695 .write_u64 = cgroup_clone_children_write,
3699 static struct cftype cft_release_agent = {
3700 .name = "release_agent",
3701 .read_seq_string = cgroup_release_agent_show,
3702 .write_string = cgroup_release_agent_write,
3703 .max_write_len = PATH_MAX,
3706 static int cgroup_populate_dir(struct cgroup *cgrp)
3708 int err;
3709 struct cgroup_subsys *ss;
3711 /* First clear out any existing files */
3712 cgroup_clear_directory(cgrp->dentry);
3714 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3715 if (err < 0)
3716 return err;
3718 if (cgrp == cgrp->top_cgroup) {
3719 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3720 return err;
3723 for_each_subsys(cgrp->root, ss) {
3724 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3725 return err;
3727 /* This cgroup is ready now */
3728 for_each_subsys(cgrp->root, ss) {
3729 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3731 * Update id->css pointer and make this css visible from
3732 * CSS ID functions. This pointer will be dereferened
3733 * from RCU-read-side without locks.
3735 if (css->id)
3736 rcu_assign_pointer(css->id->css, css);
3739 return 0;
3742 static void init_cgroup_css(struct cgroup_subsys_state *css,
3743 struct cgroup_subsys *ss,
3744 struct cgroup *cgrp)
3746 css->cgroup = cgrp;
3747 atomic_set(&css->refcnt, 1);
3748 css->flags = 0;
3749 css->id = NULL;
3750 if (cgrp == dummytop)
3751 set_bit(CSS_ROOT, &css->flags);
3752 BUG_ON(cgrp->subsys[ss->subsys_id]);
3753 cgrp->subsys[ss->subsys_id] = css;
3756 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3758 /* We need to take each hierarchy_mutex in a consistent order */
3759 int i;
3762 * No worry about a race with rebind_subsystems that might mess up the
3763 * locking order, since both parties are under cgroup_mutex.
3765 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3766 struct cgroup_subsys *ss = subsys[i];
3767 if (ss == NULL)
3768 continue;
3769 if (ss->root == root)
3770 mutex_lock(&ss->hierarchy_mutex);
3774 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3776 int i;
3778 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3779 struct cgroup_subsys *ss = subsys[i];
3780 if (ss == NULL)
3781 continue;
3782 if (ss->root == root)
3783 mutex_unlock(&ss->hierarchy_mutex);
3788 * cgroup_create - create a cgroup
3789 * @parent: cgroup that will be parent of the new cgroup
3790 * @dentry: dentry of the new cgroup
3791 * @mode: mode to set on new inode
3793 * Must be called with the mutex on the parent inode held
3795 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3796 umode_t mode)
3798 struct cgroup *cgrp;
3799 struct cgroupfs_root *root = parent->root;
3800 int err = 0;
3801 struct cgroup_subsys *ss;
3802 struct super_block *sb = root->sb;
3804 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3805 if (!cgrp)
3806 return -ENOMEM;
3808 /* Grab a reference on the superblock so the hierarchy doesn't
3809 * get deleted on unmount if there are child cgroups. This
3810 * can be done outside cgroup_mutex, since the sb can't
3811 * disappear while someone has an open control file on the
3812 * fs */
3813 atomic_inc(&sb->s_active);
3815 mutex_lock(&cgroup_mutex);
3817 init_cgroup_housekeeping(cgrp);
3819 cgrp->parent = parent;
3820 cgrp->root = parent->root;
3821 cgrp->top_cgroup = parent->top_cgroup;
3823 if (notify_on_release(parent))
3824 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3826 if (clone_children(parent))
3827 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3829 for_each_subsys(root, ss) {
3830 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3832 if (IS_ERR(css)) {
3833 err = PTR_ERR(css);
3834 goto err_destroy;
3836 init_cgroup_css(css, ss, cgrp);
3837 if (ss->use_id) {
3838 err = alloc_css_id(ss, parent, cgrp);
3839 if (err)
3840 goto err_destroy;
3842 /* At error, ->destroy() callback has to free assigned ID. */
3843 if (clone_children(parent) && ss->post_clone)
3844 ss->post_clone(ss, cgrp);
3847 cgroup_lock_hierarchy(root);
3848 list_add(&cgrp->sibling, &cgrp->parent->children);
3849 cgroup_unlock_hierarchy(root);
3850 root->number_of_cgroups++;
3852 err = cgroup_create_dir(cgrp, dentry, mode);
3853 if (err < 0)
3854 goto err_remove;
3856 /* The cgroup directory was pre-locked for us */
3857 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3859 err = cgroup_populate_dir(cgrp);
3860 /* If err < 0, we have a half-filled directory - oh well ;) */
3862 mutex_unlock(&cgroup_mutex);
3863 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3865 return 0;
3867 err_remove:
3869 cgroup_lock_hierarchy(root);
3870 list_del(&cgrp->sibling);
3871 cgroup_unlock_hierarchy(root);
3872 root->number_of_cgroups--;
3874 err_destroy:
3876 for_each_subsys(root, ss) {
3877 if (cgrp->subsys[ss->subsys_id])
3878 ss->destroy(ss, cgrp);
3881 mutex_unlock(&cgroup_mutex);
3883 /* Release the reference count that we took on the superblock */
3884 deactivate_super(sb);
3886 kfree(cgrp);
3887 return err;
3890 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3892 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3894 /* the vfs holds inode->i_mutex already */
3895 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3898 static int cgroup_has_css_refs(struct cgroup *cgrp)
3900 /* Check the reference count on each subsystem. Since we
3901 * already established that there are no tasks in the
3902 * cgroup, if the css refcount is also 1, then there should
3903 * be no outstanding references, so the subsystem is safe to
3904 * destroy. We scan across all subsystems rather than using
3905 * the per-hierarchy linked list of mounted subsystems since
3906 * we can be called via check_for_release() with no
3907 * synchronization other than RCU, and the subsystem linked
3908 * list isn't RCU-safe */
3909 int i;
3911 * We won't need to lock the subsys array, because the subsystems
3912 * we're concerned about aren't going anywhere since our cgroup root
3913 * has a reference on them.
3915 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3916 struct cgroup_subsys *ss = subsys[i];
3917 struct cgroup_subsys_state *css;
3918 /* Skip subsystems not present or not in this hierarchy */
3919 if (ss == NULL || ss->root != cgrp->root)
3920 continue;
3921 css = cgrp->subsys[ss->subsys_id];
3922 /* When called from check_for_release() it's possible
3923 * that by this point the cgroup has been removed
3924 * and the css deleted. But a false-positive doesn't
3925 * matter, since it can only happen if the cgroup
3926 * has been deleted and hence no longer needs the
3927 * release agent to be called anyway. */
3928 if (css && (atomic_read(&css->refcnt) > 1))
3929 return 1;
3931 return 0;
3935 * Atomically mark all (or else none) of the cgroup's CSS objects as
3936 * CSS_REMOVED. Return true on success, or false if the cgroup has
3937 * busy subsystems. Call with cgroup_mutex held
3940 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3942 struct cgroup_subsys *ss;
3943 unsigned long flags;
3944 bool failed = false;
3945 local_irq_save(flags);
3946 for_each_subsys(cgrp->root, ss) {
3947 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3948 int refcnt;
3949 while (1) {
3950 /* We can only remove a CSS with a refcnt==1 */
3951 refcnt = atomic_read(&css->refcnt);
3952 if (refcnt > 1) {
3953 failed = true;
3954 goto done;
3956 BUG_ON(!refcnt);
3958 * Drop the refcnt to 0 while we check other
3959 * subsystems. This will cause any racing
3960 * css_tryget() to spin until we set the
3961 * CSS_REMOVED bits or abort
3963 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3964 break;
3965 cpu_relax();
3968 done:
3969 for_each_subsys(cgrp->root, ss) {
3970 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3971 if (failed) {
3973 * Restore old refcnt if we previously managed
3974 * to clear it from 1 to 0
3976 if (!atomic_read(&css->refcnt))
3977 atomic_set(&css->refcnt, 1);
3978 } else {
3979 /* Commit the fact that the CSS is removed */
3980 set_bit(CSS_REMOVED, &css->flags);
3983 local_irq_restore(flags);
3984 return !failed;
3987 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3989 struct cgroup *cgrp = dentry->d_fsdata;
3990 struct dentry *d;
3991 struct cgroup *parent;
3992 DEFINE_WAIT(wait);
3993 struct cgroup_event *event, *tmp;
3994 int ret;
3996 /* the vfs holds both inode->i_mutex already */
3997 again:
3998 mutex_lock(&cgroup_mutex);
3999 if (atomic_read(&cgrp->count) != 0) {
4000 mutex_unlock(&cgroup_mutex);
4001 return -EBUSY;
4003 if (!list_empty(&cgrp->children)) {
4004 mutex_unlock(&cgroup_mutex);
4005 return -EBUSY;
4007 mutex_unlock(&cgroup_mutex);
4010 * In general, subsystem has no css->refcnt after pre_destroy(). But
4011 * in racy cases, subsystem may have to get css->refcnt after
4012 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4013 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4014 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4015 * and subsystem's reference count handling. Please see css_get/put
4016 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4018 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4021 * Call pre_destroy handlers of subsys. Notify subsystems
4022 * that rmdir() request comes.
4024 ret = cgroup_call_pre_destroy(cgrp);
4025 if (ret) {
4026 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4027 return ret;
4030 mutex_lock(&cgroup_mutex);
4031 parent = cgrp->parent;
4032 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4033 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4034 mutex_unlock(&cgroup_mutex);
4035 return -EBUSY;
4037 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
4038 if (!cgroup_clear_css_refs(cgrp)) {
4039 mutex_unlock(&cgroup_mutex);
4041 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4042 * prepare_to_wait(), we need to check this flag.
4044 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4045 schedule();
4046 finish_wait(&cgroup_rmdir_waitq, &wait);
4047 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4048 if (signal_pending(current))
4049 return -EINTR;
4050 goto again;
4052 /* NO css_tryget() can success after here. */
4053 finish_wait(&cgroup_rmdir_waitq, &wait);
4054 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4056 raw_spin_lock(&release_list_lock);
4057 set_bit(CGRP_REMOVED, &cgrp->flags);
4058 if (!list_empty(&cgrp->release_list))
4059 list_del_init(&cgrp->release_list);
4060 raw_spin_unlock(&release_list_lock);
4062 cgroup_lock_hierarchy(cgrp->root);
4063 /* delete this cgroup from parent->children */
4064 list_del_init(&cgrp->sibling);
4065 cgroup_unlock_hierarchy(cgrp->root);
4067 d = dget(cgrp->dentry);
4069 cgroup_d_remove_dir(d);
4070 dput(d);
4072 set_bit(CGRP_RELEASABLE, &parent->flags);
4073 check_for_release(parent);
4076 * Unregister events and notify userspace.
4077 * Notify userspace about cgroup removing only after rmdir of cgroup
4078 * directory to avoid race between userspace and kernelspace
4080 spin_lock(&cgrp->event_list_lock);
4081 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4082 list_del(&event->list);
4083 remove_wait_queue(event->wqh, &event->wait);
4084 eventfd_signal(event->eventfd, 1);
4085 schedule_work(&event->remove);
4087 spin_unlock(&cgrp->event_list_lock);
4089 mutex_unlock(&cgroup_mutex);
4090 return 0;
4093 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4095 struct cgroup_subsys_state *css;
4097 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4099 /* Create the top cgroup state for this subsystem */
4100 list_add(&ss->sibling, &rootnode.subsys_list);
4101 ss->root = &rootnode;
4102 css = ss->create(ss, dummytop);
4103 /* We don't handle early failures gracefully */
4104 BUG_ON(IS_ERR(css));
4105 init_cgroup_css(css, ss, dummytop);
4107 /* Update the init_css_set to contain a subsys
4108 * pointer to this state - since the subsystem is
4109 * newly registered, all tasks and hence the
4110 * init_css_set is in the subsystem's top cgroup. */
4111 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4113 need_forkexit_callback |= ss->fork || ss->exit;
4115 /* At system boot, before all subsystems have been
4116 * registered, no tasks have been forked, so we don't
4117 * need to invoke fork callbacks here. */
4118 BUG_ON(!list_empty(&init_task.tasks));
4120 mutex_init(&ss->hierarchy_mutex);
4121 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4122 ss->active = 1;
4124 /* this function shouldn't be used with modular subsystems, since they
4125 * need to register a subsys_id, among other things */
4126 BUG_ON(ss->module);
4130 * cgroup_load_subsys: load and register a modular subsystem at runtime
4131 * @ss: the subsystem to load
4133 * This function should be called in a modular subsystem's initcall. If the
4134 * subsystem is built as a module, it will be assigned a new subsys_id and set
4135 * up for use. If the subsystem is built-in anyway, work is delegated to the
4136 * simpler cgroup_init_subsys.
4138 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4140 int i;
4141 struct cgroup_subsys_state *css;
4143 /* check name and function validity */
4144 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4145 ss->create == NULL || ss->destroy == NULL)
4146 return -EINVAL;
4149 * we don't support callbacks in modular subsystems. this check is
4150 * before the ss->module check for consistency; a subsystem that could
4151 * be a module should still have no callbacks even if the user isn't
4152 * compiling it as one.
4154 if (ss->fork || ss->exit)
4155 return -EINVAL;
4158 * an optionally modular subsystem is built-in: we want to do nothing,
4159 * since cgroup_init_subsys will have already taken care of it.
4161 if (ss->module == NULL) {
4162 /* a few sanity checks */
4163 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4164 BUG_ON(subsys[ss->subsys_id] != ss);
4165 return 0;
4169 * need to register a subsys id before anything else - for example,
4170 * init_cgroup_css needs it.
4172 mutex_lock(&cgroup_mutex);
4173 /* find the first empty slot in the array */
4174 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4175 if (subsys[i] == NULL)
4176 break;
4178 if (i == CGROUP_SUBSYS_COUNT) {
4179 /* maximum number of subsystems already registered! */
4180 mutex_unlock(&cgroup_mutex);
4181 return -EBUSY;
4183 /* assign ourselves the subsys_id */
4184 ss->subsys_id = i;
4185 subsys[i] = ss;
4188 * no ss->create seems to need anything important in the ss struct, so
4189 * this can happen first (i.e. before the rootnode attachment).
4191 css = ss->create(ss, dummytop);
4192 if (IS_ERR(css)) {
4193 /* failure case - need to deassign the subsys[] slot. */
4194 subsys[i] = NULL;
4195 mutex_unlock(&cgroup_mutex);
4196 return PTR_ERR(css);
4199 list_add(&ss->sibling, &rootnode.subsys_list);
4200 ss->root = &rootnode;
4202 /* our new subsystem will be attached to the dummy hierarchy. */
4203 init_cgroup_css(css, ss, dummytop);
4204 /* init_idr must be after init_cgroup_css because it sets css->id. */
4205 if (ss->use_id) {
4206 int ret = cgroup_init_idr(ss, css);
4207 if (ret) {
4208 dummytop->subsys[ss->subsys_id] = NULL;
4209 ss->destroy(ss, dummytop);
4210 subsys[i] = NULL;
4211 mutex_unlock(&cgroup_mutex);
4212 return ret;
4217 * Now we need to entangle the css into the existing css_sets. unlike
4218 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4219 * will need a new pointer to it; done by iterating the css_set_table.
4220 * furthermore, modifying the existing css_sets will corrupt the hash
4221 * table state, so each changed css_set will need its hash recomputed.
4222 * this is all done under the css_set_lock.
4224 write_lock(&css_set_lock);
4225 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4226 struct css_set *cg;
4227 struct hlist_node *node, *tmp;
4228 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4230 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4231 /* skip entries that we already rehashed */
4232 if (cg->subsys[ss->subsys_id])
4233 continue;
4234 /* remove existing entry */
4235 hlist_del(&cg->hlist);
4236 /* set new value */
4237 cg->subsys[ss->subsys_id] = css;
4238 /* recompute hash and restore entry */
4239 new_bucket = css_set_hash(cg->subsys);
4240 hlist_add_head(&cg->hlist, new_bucket);
4243 write_unlock(&css_set_lock);
4245 mutex_init(&ss->hierarchy_mutex);
4246 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4247 ss->active = 1;
4249 /* success! */
4250 mutex_unlock(&cgroup_mutex);
4251 return 0;
4253 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4256 * cgroup_unload_subsys: unload a modular subsystem
4257 * @ss: the subsystem to unload
4259 * This function should be called in a modular subsystem's exitcall. When this
4260 * function is invoked, the refcount on the subsystem's module will be 0, so
4261 * the subsystem will not be attached to any hierarchy.
4263 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4265 struct cg_cgroup_link *link;
4266 struct hlist_head *hhead;
4268 BUG_ON(ss->module == NULL);
4271 * we shouldn't be called if the subsystem is in use, and the use of
4272 * try_module_get in parse_cgroupfs_options should ensure that it
4273 * doesn't start being used while we're killing it off.
4275 BUG_ON(ss->root != &rootnode);
4277 mutex_lock(&cgroup_mutex);
4278 /* deassign the subsys_id */
4279 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4280 subsys[ss->subsys_id] = NULL;
4282 /* remove subsystem from rootnode's list of subsystems */
4283 list_del_init(&ss->sibling);
4286 * disentangle the css from all css_sets attached to the dummytop. as
4287 * in loading, we need to pay our respects to the hashtable gods.
4289 write_lock(&css_set_lock);
4290 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4291 struct css_set *cg = link->cg;
4293 hlist_del(&cg->hlist);
4294 BUG_ON(!cg->subsys[ss->subsys_id]);
4295 cg->subsys[ss->subsys_id] = NULL;
4296 hhead = css_set_hash(cg->subsys);
4297 hlist_add_head(&cg->hlist, hhead);
4299 write_unlock(&css_set_lock);
4302 * remove subsystem's css from the dummytop and free it - need to free
4303 * before marking as null because ss->destroy needs the cgrp->subsys
4304 * pointer to find their state. note that this also takes care of
4305 * freeing the css_id.
4307 ss->destroy(ss, dummytop);
4308 dummytop->subsys[ss->subsys_id] = NULL;
4310 mutex_unlock(&cgroup_mutex);
4312 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4315 * cgroup_init_early - cgroup initialization at system boot
4317 * Initialize cgroups at system boot, and initialize any
4318 * subsystems that request early init.
4320 int __init cgroup_init_early(void)
4322 int i;
4323 atomic_set(&init_css_set.refcount, 1);
4324 INIT_LIST_HEAD(&init_css_set.cg_links);
4325 INIT_LIST_HEAD(&init_css_set.tasks);
4326 INIT_HLIST_NODE(&init_css_set.hlist);
4327 css_set_count = 1;
4328 init_cgroup_root(&rootnode);
4329 root_count = 1;
4330 init_task.cgroups = &init_css_set;
4332 init_css_set_link.cg = &init_css_set;
4333 init_css_set_link.cgrp = dummytop;
4334 list_add(&init_css_set_link.cgrp_link_list,
4335 &rootnode.top_cgroup.css_sets);
4336 list_add(&init_css_set_link.cg_link_list,
4337 &init_css_set.cg_links);
4339 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4340 INIT_HLIST_HEAD(&css_set_table[i]);
4342 /* at bootup time, we don't worry about modular subsystems */
4343 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4344 struct cgroup_subsys *ss = subsys[i];
4346 BUG_ON(!ss->name);
4347 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4348 BUG_ON(!ss->create);
4349 BUG_ON(!ss->destroy);
4350 if (ss->subsys_id != i) {
4351 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4352 ss->name, ss->subsys_id);
4353 BUG();
4356 if (ss->early_init)
4357 cgroup_init_subsys(ss);
4359 return 0;
4363 * cgroup_init - cgroup initialization
4365 * Register cgroup filesystem and /proc file, and initialize
4366 * any subsystems that didn't request early init.
4368 int __init cgroup_init(void)
4370 int err;
4371 int i;
4372 struct hlist_head *hhead;
4374 err = bdi_init(&cgroup_backing_dev_info);
4375 if (err)
4376 return err;
4378 /* at bootup time, we don't worry about modular subsystems */
4379 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4380 struct cgroup_subsys *ss = subsys[i];
4381 if (!ss->early_init)
4382 cgroup_init_subsys(ss);
4383 if (ss->use_id)
4384 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4387 /* Add init_css_set to the hash table */
4388 hhead = css_set_hash(init_css_set.subsys);
4389 hlist_add_head(&init_css_set.hlist, hhead);
4390 BUG_ON(!init_root_id(&rootnode));
4392 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4393 if (!cgroup_kobj) {
4394 err = -ENOMEM;
4395 goto out;
4398 err = register_filesystem(&cgroup_fs_type);
4399 if (err < 0) {
4400 kobject_put(cgroup_kobj);
4401 goto out;
4404 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4406 out:
4407 if (err)
4408 bdi_destroy(&cgroup_backing_dev_info);
4410 return err;
4414 * proc_cgroup_show()
4415 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4416 * - Used for /proc/<pid>/cgroup.
4417 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4418 * doesn't really matter if tsk->cgroup changes after we read it,
4419 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4420 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4421 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4422 * cgroup to top_cgroup.
4425 /* TODO: Use a proper seq_file iterator */
4426 static int proc_cgroup_show(struct seq_file *m, void *v)
4428 struct pid *pid;
4429 struct task_struct *tsk;
4430 char *buf;
4431 int retval;
4432 struct cgroupfs_root *root;
4434 retval = -ENOMEM;
4435 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4436 if (!buf)
4437 goto out;
4439 retval = -ESRCH;
4440 pid = m->private;
4441 tsk = get_pid_task(pid, PIDTYPE_PID);
4442 if (!tsk)
4443 goto out_free;
4445 retval = 0;
4447 mutex_lock(&cgroup_mutex);
4449 for_each_active_root(root) {
4450 struct cgroup_subsys *ss;
4451 struct cgroup *cgrp;
4452 int count = 0;
4454 seq_printf(m, "%d:", root->hierarchy_id);
4455 for_each_subsys(root, ss)
4456 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4457 if (strlen(root->name))
4458 seq_printf(m, "%sname=%s", count ? "," : "",
4459 root->name);
4460 seq_putc(m, ':');
4461 cgrp = task_cgroup_from_root(tsk, root);
4462 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4463 if (retval < 0)
4464 goto out_unlock;
4465 seq_puts(m, buf);
4466 seq_putc(m, '\n');
4469 out_unlock:
4470 mutex_unlock(&cgroup_mutex);
4471 put_task_struct(tsk);
4472 out_free:
4473 kfree(buf);
4474 out:
4475 return retval;
4478 static int cgroup_open(struct inode *inode, struct file *file)
4480 struct pid *pid = PROC_I(inode)->pid;
4481 return single_open(file, proc_cgroup_show, pid);
4484 const struct file_operations proc_cgroup_operations = {
4485 .open = cgroup_open,
4486 .read = seq_read,
4487 .llseek = seq_lseek,
4488 .release = single_release,
4491 /* Display information about each subsystem and each hierarchy */
4492 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4494 int i;
4496 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4498 * ideally we don't want subsystems moving around while we do this.
4499 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4500 * subsys/hierarchy state.
4502 mutex_lock(&cgroup_mutex);
4503 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4504 struct cgroup_subsys *ss = subsys[i];
4505 if (ss == NULL)
4506 continue;
4507 seq_printf(m, "%s\t%d\t%d\t%d\n",
4508 ss->name, ss->root->hierarchy_id,
4509 ss->root->number_of_cgroups, !ss->disabled);
4511 mutex_unlock(&cgroup_mutex);
4512 return 0;
4515 static int cgroupstats_open(struct inode *inode, struct file *file)
4517 return single_open(file, proc_cgroupstats_show, NULL);
4520 static const struct file_operations proc_cgroupstats_operations = {
4521 .open = cgroupstats_open,
4522 .read = seq_read,
4523 .llseek = seq_lseek,
4524 .release = single_release,
4528 * cgroup_fork - attach newly forked task to its parents cgroup.
4529 * @child: pointer to task_struct of forking parent process.
4531 * Description: A task inherits its parent's cgroup at fork().
4533 * A pointer to the shared css_set was automatically copied in
4534 * fork.c by dup_task_struct(). However, we ignore that copy, since
4535 * it was not made under the protection of RCU, cgroup_mutex or
4536 * threadgroup_change_begin(), so it might no longer be a valid
4537 * cgroup pointer. cgroup_attach_task() might have already changed
4538 * current->cgroups, allowing the previously referenced cgroup
4539 * group to be removed and freed.
4541 * Outside the pointer validity we also need to process the css_set
4542 * inheritance between threadgoup_change_begin() and
4543 * threadgoup_change_end(), this way there is no leak in any process
4544 * wide migration performed by cgroup_attach_proc() that could otherwise
4545 * miss a thread because it is too early or too late in the fork stage.
4547 * At the point that cgroup_fork() is called, 'current' is the parent
4548 * task, and the passed argument 'child' points to the child task.
4550 void cgroup_fork(struct task_struct *child)
4553 * We don't need to task_lock() current because current->cgroups
4554 * can't be changed concurrently here. The parent obviously hasn't
4555 * exited and called cgroup_exit(), and we are synchronized against
4556 * cgroup migration through threadgroup_change_begin().
4558 child->cgroups = current->cgroups;
4559 get_css_set(child->cgroups);
4560 INIT_LIST_HEAD(&child->cg_list);
4564 * cgroup_fork_callbacks - run fork callbacks
4565 * @child: the new task
4567 * Called on a new task very soon before adding it to the
4568 * tasklist. No need to take any locks since no-one can
4569 * be operating on this task.
4571 void cgroup_fork_callbacks(struct task_struct *child)
4573 if (need_forkexit_callback) {
4574 int i;
4576 * forkexit callbacks are only supported for builtin
4577 * subsystems, and the builtin section of the subsys array is
4578 * immutable, so we don't need to lock the subsys array here.
4580 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4581 struct cgroup_subsys *ss = subsys[i];
4582 if (ss->fork)
4583 ss->fork(ss, child);
4589 * cgroup_post_fork - called on a new task after adding it to the task list
4590 * @child: the task in question
4592 * Adds the task to the list running through its css_set if necessary.
4593 * Has to be after the task is visible on the task list in case we race
4594 * with the first call to cgroup_iter_start() - to guarantee that the
4595 * new task ends up on its list.
4597 void cgroup_post_fork(struct task_struct *child)
4599 if (use_task_css_set_links) {
4600 write_lock(&css_set_lock);
4601 if (list_empty(&child->cg_list)) {
4603 * It's safe to use child->cgroups without task_lock()
4604 * here because we are protected through
4605 * threadgroup_change_begin() against concurrent
4606 * css_set change in cgroup_task_migrate(). Also
4607 * the task can't exit at that point until
4608 * wake_up_new_task() is called, so we are protected
4609 * against cgroup_exit() setting child->cgroup to
4610 * init_css_set.
4612 list_add(&child->cg_list, &child->cgroups->tasks);
4614 write_unlock(&css_set_lock);
4618 * cgroup_exit - detach cgroup from exiting task
4619 * @tsk: pointer to task_struct of exiting process
4620 * @run_callback: run exit callbacks?
4622 * Description: Detach cgroup from @tsk and release it.
4624 * Note that cgroups marked notify_on_release force every task in
4625 * them to take the global cgroup_mutex mutex when exiting.
4626 * This could impact scaling on very large systems. Be reluctant to
4627 * use notify_on_release cgroups where very high task exit scaling
4628 * is required on large systems.
4630 * the_top_cgroup_hack:
4632 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4634 * We call cgroup_exit() while the task is still competent to
4635 * handle notify_on_release(), then leave the task attached to the
4636 * root cgroup in each hierarchy for the remainder of its exit.
4638 * To do this properly, we would increment the reference count on
4639 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4640 * code we would add a second cgroup function call, to drop that
4641 * reference. This would just create an unnecessary hot spot on
4642 * the top_cgroup reference count, to no avail.
4644 * Normally, holding a reference to a cgroup without bumping its
4645 * count is unsafe. The cgroup could go away, or someone could
4646 * attach us to a different cgroup, decrementing the count on
4647 * the first cgroup that we never incremented. But in this case,
4648 * top_cgroup isn't going away, and either task has PF_EXITING set,
4649 * which wards off any cgroup_attach_task() attempts, or task is a failed
4650 * fork, never visible to cgroup_attach_task.
4652 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4654 struct css_set *cg;
4655 int i;
4658 * Unlink from the css_set task list if necessary.
4659 * Optimistically check cg_list before taking
4660 * css_set_lock
4662 if (!list_empty(&tsk->cg_list)) {
4663 write_lock(&css_set_lock);
4664 if (!list_empty(&tsk->cg_list))
4665 list_del_init(&tsk->cg_list);
4666 write_unlock(&css_set_lock);
4669 /* Reassign the task to the init_css_set. */
4670 task_lock(tsk);
4671 cg = tsk->cgroups;
4672 tsk->cgroups = &init_css_set;
4674 if (run_callbacks && need_forkexit_callback) {
4676 * modular subsystems can't use callbacks, so no need to lock
4677 * the subsys array
4679 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4680 struct cgroup_subsys *ss = subsys[i];
4681 if (ss->exit) {
4682 struct cgroup *old_cgrp =
4683 rcu_dereference_raw(cg->subsys[i])->cgroup;
4684 struct cgroup *cgrp = task_cgroup(tsk, i);
4685 ss->exit(ss, cgrp, old_cgrp, tsk);
4689 task_unlock(tsk);
4691 if (cg)
4692 put_css_set_taskexit(cg);
4696 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4697 * @cgrp: the cgroup in question
4698 * @task: the task in question
4700 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4701 * hierarchy.
4703 * If we are sending in dummytop, then presumably we are creating
4704 * the top cgroup in the subsystem.
4706 * Called only by the ns (nsproxy) cgroup.
4708 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4710 int ret;
4711 struct cgroup *target;
4713 if (cgrp == dummytop)
4714 return 1;
4716 target = task_cgroup_from_root(task, cgrp->root);
4717 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4718 cgrp = cgrp->parent;
4719 ret = (cgrp == target);
4720 return ret;
4723 static void check_for_release(struct cgroup *cgrp)
4725 /* All of these checks rely on RCU to keep the cgroup
4726 * structure alive */
4727 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4728 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4729 /* Control Group is currently removeable. If it's not
4730 * already queued for a userspace notification, queue
4731 * it now */
4732 int need_schedule_work = 0;
4733 raw_spin_lock(&release_list_lock);
4734 if (!cgroup_is_removed(cgrp) &&
4735 list_empty(&cgrp->release_list)) {
4736 list_add(&cgrp->release_list, &release_list);
4737 need_schedule_work = 1;
4739 raw_spin_unlock(&release_list_lock);
4740 if (need_schedule_work)
4741 schedule_work(&release_agent_work);
4745 /* Caller must verify that the css is not for root cgroup */
4746 void __css_put(struct cgroup_subsys_state *css, int count)
4748 struct cgroup *cgrp = css->cgroup;
4749 int val;
4750 rcu_read_lock();
4751 val = atomic_sub_return(count, &css->refcnt);
4752 if (val == 1) {
4753 if (notify_on_release(cgrp)) {
4754 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4755 check_for_release(cgrp);
4757 cgroup_wakeup_rmdir_waiter(cgrp);
4759 rcu_read_unlock();
4760 WARN_ON_ONCE(val < 1);
4762 EXPORT_SYMBOL_GPL(__css_put);
4765 * Notify userspace when a cgroup is released, by running the
4766 * configured release agent with the name of the cgroup (path
4767 * relative to the root of cgroup file system) as the argument.
4769 * Most likely, this user command will try to rmdir this cgroup.
4771 * This races with the possibility that some other task will be
4772 * attached to this cgroup before it is removed, or that some other
4773 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4774 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4775 * unused, and this cgroup will be reprieved from its death sentence,
4776 * to continue to serve a useful existence. Next time it's released,
4777 * we will get notified again, if it still has 'notify_on_release' set.
4779 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4780 * means only wait until the task is successfully execve()'d. The
4781 * separate release agent task is forked by call_usermodehelper(),
4782 * then control in this thread returns here, without waiting for the
4783 * release agent task. We don't bother to wait because the caller of
4784 * this routine has no use for the exit status of the release agent
4785 * task, so no sense holding our caller up for that.
4787 static void cgroup_release_agent(struct work_struct *work)
4789 BUG_ON(work != &release_agent_work);
4790 mutex_lock(&cgroup_mutex);
4791 raw_spin_lock(&release_list_lock);
4792 while (!list_empty(&release_list)) {
4793 char *argv[3], *envp[3];
4794 int i;
4795 char *pathbuf = NULL, *agentbuf = NULL;
4796 struct cgroup *cgrp = list_entry(release_list.next,
4797 struct cgroup,
4798 release_list);
4799 list_del_init(&cgrp->release_list);
4800 raw_spin_unlock(&release_list_lock);
4801 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4802 if (!pathbuf)
4803 goto continue_free;
4804 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4805 goto continue_free;
4806 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4807 if (!agentbuf)
4808 goto continue_free;
4810 i = 0;
4811 argv[i++] = agentbuf;
4812 argv[i++] = pathbuf;
4813 argv[i] = NULL;
4815 i = 0;
4816 /* minimal command environment */
4817 envp[i++] = "HOME=/";
4818 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4819 envp[i] = NULL;
4821 /* Drop the lock while we invoke the usermode helper,
4822 * since the exec could involve hitting disk and hence
4823 * be a slow process */
4824 mutex_unlock(&cgroup_mutex);
4825 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4826 mutex_lock(&cgroup_mutex);
4827 continue_free:
4828 kfree(pathbuf);
4829 kfree(agentbuf);
4830 raw_spin_lock(&release_list_lock);
4832 raw_spin_unlock(&release_list_lock);
4833 mutex_unlock(&cgroup_mutex);
4836 static int __init cgroup_disable(char *str)
4838 int i;
4839 char *token;
4841 while ((token = strsep(&str, ",")) != NULL) {
4842 if (!*token)
4843 continue;
4845 * cgroup_disable, being at boot time, can't know about module
4846 * subsystems, so we don't worry about them.
4848 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4849 struct cgroup_subsys *ss = subsys[i];
4851 if (!strcmp(token, ss->name)) {
4852 ss->disabled = 1;
4853 printk(KERN_INFO "Disabling %s control group"
4854 " subsystem\n", ss->name);
4855 break;
4859 return 1;
4861 __setup("cgroup_disable=", cgroup_disable);
4864 * Functons for CSS ID.
4868 *To get ID other than 0, this should be called when !cgroup_is_removed().
4870 unsigned short css_id(struct cgroup_subsys_state *css)
4872 struct css_id *cssid;
4875 * This css_id() can return correct value when somone has refcnt
4876 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4877 * it's unchanged until freed.
4879 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4881 if (cssid)
4882 return cssid->id;
4883 return 0;
4885 EXPORT_SYMBOL_GPL(css_id);
4887 unsigned short css_depth(struct cgroup_subsys_state *css)
4889 struct css_id *cssid;
4891 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4893 if (cssid)
4894 return cssid->depth;
4895 return 0;
4897 EXPORT_SYMBOL_GPL(css_depth);
4900 * css_is_ancestor - test "root" css is an ancestor of "child"
4901 * @child: the css to be tested.
4902 * @root: the css supporsed to be an ancestor of the child.
4904 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4905 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4906 * But, considering usual usage, the csses should be valid objects after test.
4907 * Assuming that the caller will do some action to the child if this returns
4908 * returns true, the caller must take "child";s reference count.
4909 * If "child" is valid object and this returns true, "root" is valid, too.
4912 bool css_is_ancestor(struct cgroup_subsys_state *child,
4913 const struct cgroup_subsys_state *root)
4915 struct css_id *child_id;
4916 struct css_id *root_id;
4917 bool ret = true;
4919 rcu_read_lock();
4920 child_id = rcu_dereference(child->id);
4921 root_id = rcu_dereference(root->id);
4922 if (!child_id
4923 || !root_id
4924 || (child_id->depth < root_id->depth)
4925 || (child_id->stack[root_id->depth] != root_id->id))
4926 ret = false;
4927 rcu_read_unlock();
4928 return ret;
4931 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4933 struct css_id *id = css->id;
4934 /* When this is called before css_id initialization, id can be NULL */
4935 if (!id)
4936 return;
4938 BUG_ON(!ss->use_id);
4940 rcu_assign_pointer(id->css, NULL);
4941 rcu_assign_pointer(css->id, NULL);
4942 write_lock(&ss->id_lock);
4943 idr_remove(&ss->idr, id->id);
4944 write_unlock(&ss->id_lock);
4945 kfree_rcu(id, rcu_head);
4947 EXPORT_SYMBOL_GPL(free_css_id);
4950 * This is called by init or create(). Then, calls to this function are
4951 * always serialized (By cgroup_mutex() at create()).
4954 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4956 struct css_id *newid;
4957 int myid, error, size;
4959 BUG_ON(!ss->use_id);
4961 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4962 newid = kzalloc(size, GFP_KERNEL);
4963 if (!newid)
4964 return ERR_PTR(-ENOMEM);
4965 /* get id */
4966 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4967 error = -ENOMEM;
4968 goto err_out;
4970 write_lock(&ss->id_lock);
4971 /* Don't use 0. allocates an ID of 1-65535 */
4972 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4973 write_unlock(&ss->id_lock);
4975 /* Returns error when there are no free spaces for new ID.*/
4976 if (error) {
4977 error = -ENOSPC;
4978 goto err_out;
4980 if (myid > CSS_ID_MAX)
4981 goto remove_idr;
4983 newid->id = myid;
4984 newid->depth = depth;
4985 return newid;
4986 remove_idr:
4987 error = -ENOSPC;
4988 write_lock(&ss->id_lock);
4989 idr_remove(&ss->idr, myid);
4990 write_unlock(&ss->id_lock);
4991 err_out:
4992 kfree(newid);
4993 return ERR_PTR(error);
4997 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4998 struct cgroup_subsys_state *rootcss)
5000 struct css_id *newid;
5002 rwlock_init(&ss->id_lock);
5003 idr_init(&ss->idr);
5005 newid = get_new_cssid(ss, 0);
5006 if (IS_ERR(newid))
5007 return PTR_ERR(newid);
5009 newid->stack[0] = newid->id;
5010 newid->css = rootcss;
5011 rootcss->id = newid;
5012 return 0;
5015 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5016 struct cgroup *child)
5018 int subsys_id, i, depth = 0;
5019 struct cgroup_subsys_state *parent_css, *child_css;
5020 struct css_id *child_id, *parent_id;
5022 subsys_id = ss->subsys_id;
5023 parent_css = parent->subsys[subsys_id];
5024 child_css = child->subsys[subsys_id];
5025 parent_id = parent_css->id;
5026 depth = parent_id->depth + 1;
5028 child_id = get_new_cssid(ss, depth);
5029 if (IS_ERR(child_id))
5030 return PTR_ERR(child_id);
5032 for (i = 0; i < depth; i++)
5033 child_id->stack[i] = parent_id->stack[i];
5034 child_id->stack[depth] = child_id->id;
5036 * child_id->css pointer will be set after this cgroup is available
5037 * see cgroup_populate_dir()
5039 rcu_assign_pointer(child_css->id, child_id);
5041 return 0;
5045 * css_lookup - lookup css by id
5046 * @ss: cgroup subsys to be looked into.
5047 * @id: the id
5049 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5050 * NULL if not. Should be called under rcu_read_lock()
5052 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5054 struct css_id *cssid = NULL;
5056 BUG_ON(!ss->use_id);
5057 cssid = idr_find(&ss->idr, id);
5059 if (unlikely(!cssid))
5060 return NULL;
5062 return rcu_dereference(cssid->css);
5064 EXPORT_SYMBOL_GPL(css_lookup);
5067 * css_get_next - lookup next cgroup under specified hierarchy.
5068 * @ss: pointer to subsystem
5069 * @id: current position of iteration.
5070 * @root: pointer to css. search tree under this.
5071 * @foundid: position of found object.
5073 * Search next css under the specified hierarchy of rootid. Calling under
5074 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5076 struct cgroup_subsys_state *
5077 css_get_next(struct cgroup_subsys *ss, int id,
5078 struct cgroup_subsys_state *root, int *foundid)
5080 struct cgroup_subsys_state *ret = NULL;
5081 struct css_id *tmp;
5082 int tmpid;
5083 int rootid = css_id(root);
5084 int depth = css_depth(root);
5086 if (!rootid)
5087 return NULL;
5089 BUG_ON(!ss->use_id);
5090 /* fill start point for scan */
5091 tmpid = id;
5092 while (1) {
5094 * scan next entry from bitmap(tree), tmpid is updated after
5095 * idr_get_next().
5097 read_lock(&ss->id_lock);
5098 tmp = idr_get_next(&ss->idr, &tmpid);
5099 read_unlock(&ss->id_lock);
5101 if (!tmp)
5102 break;
5103 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5104 ret = rcu_dereference(tmp->css);
5105 if (ret) {
5106 *foundid = tmpid;
5107 break;
5110 /* continue to scan from next id */
5111 tmpid = tmpid + 1;
5113 return ret;
5117 * get corresponding css from file open on cgroupfs directory
5119 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5121 struct cgroup *cgrp;
5122 struct inode *inode;
5123 struct cgroup_subsys_state *css;
5125 inode = f->f_dentry->d_inode;
5126 /* check in cgroup filesystem dir */
5127 if (inode->i_op != &cgroup_dir_inode_operations)
5128 return ERR_PTR(-EBADF);
5130 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5131 return ERR_PTR(-EINVAL);
5133 /* get cgroup */
5134 cgrp = __d_cgrp(f->f_dentry);
5135 css = cgrp->subsys[id];
5136 return css ? css : ERR_PTR(-ENOENT);
5139 #ifdef CONFIG_CGROUP_DEBUG
5140 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
5141 struct cgroup *cont)
5143 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5145 if (!css)
5146 return ERR_PTR(-ENOMEM);
5148 return css;
5151 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
5153 kfree(cont->subsys[debug_subsys_id]);
5156 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5158 return atomic_read(&cont->count);
5161 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5163 return cgroup_task_count(cont);
5166 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5168 return (u64)(unsigned long)current->cgroups;
5171 static u64 current_css_set_refcount_read(struct cgroup *cont,
5172 struct cftype *cft)
5174 u64 count;
5176 rcu_read_lock();
5177 count = atomic_read(&current->cgroups->refcount);
5178 rcu_read_unlock();
5179 return count;
5182 static int current_css_set_cg_links_read(struct cgroup *cont,
5183 struct cftype *cft,
5184 struct seq_file *seq)
5186 struct cg_cgroup_link *link;
5187 struct css_set *cg;
5189 read_lock(&css_set_lock);
5190 rcu_read_lock();
5191 cg = rcu_dereference(current->cgroups);
5192 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5193 struct cgroup *c = link->cgrp;
5194 const char *name;
5196 if (c->dentry)
5197 name = c->dentry->d_name.name;
5198 else
5199 name = "?";
5200 seq_printf(seq, "Root %d group %s\n",
5201 c->root->hierarchy_id, name);
5203 rcu_read_unlock();
5204 read_unlock(&css_set_lock);
5205 return 0;
5208 #define MAX_TASKS_SHOWN_PER_CSS 25
5209 static int cgroup_css_links_read(struct cgroup *cont,
5210 struct cftype *cft,
5211 struct seq_file *seq)
5213 struct cg_cgroup_link *link;
5215 read_lock(&css_set_lock);
5216 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5217 struct css_set *cg = link->cg;
5218 struct task_struct *task;
5219 int count = 0;
5220 seq_printf(seq, "css_set %p\n", cg);
5221 list_for_each_entry(task, &cg->tasks, cg_list) {
5222 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5223 seq_puts(seq, " ...\n");
5224 break;
5225 } else {
5226 seq_printf(seq, " task %d\n",
5227 task_pid_vnr(task));
5231 read_unlock(&css_set_lock);
5232 return 0;
5235 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5237 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5240 static struct cftype debug_files[] = {
5242 .name = "cgroup_refcount",
5243 .read_u64 = cgroup_refcount_read,
5246 .name = "taskcount",
5247 .read_u64 = debug_taskcount_read,
5251 .name = "current_css_set",
5252 .read_u64 = current_css_set_read,
5256 .name = "current_css_set_refcount",
5257 .read_u64 = current_css_set_refcount_read,
5261 .name = "current_css_set_cg_links",
5262 .read_seq_string = current_css_set_cg_links_read,
5266 .name = "cgroup_css_links",
5267 .read_seq_string = cgroup_css_links_read,
5271 .name = "releasable",
5272 .read_u64 = releasable_read,
5276 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5278 return cgroup_add_files(cont, ss, debug_files,
5279 ARRAY_SIZE(debug_files));
5282 struct cgroup_subsys debug_subsys = {
5283 .name = "debug",
5284 .create = debug_create,
5285 .destroy = debug_destroy,
5286 .populate = debug_populate,
5287 .subsys_id = debug_subsys_id,
5289 #endif /* CONFIG_CGROUP_DEBUG */