Use dentry_path() to create full path to inode object
[pohmelfs.git] / kernel / time / timekeeping.c
blob0c6358186401b8bd40d169fd42f82b6260802dca
1 /*
2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
9 */
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
28 /* The shift value of the current clocksource. */
29 int shift;
31 /* Number of clock cycles in one NTP interval. */
32 cycle_t cycle_interval;
33 /* Number of clock shifted nano seconds in one NTP interval. */
34 u64 xtime_interval;
35 /* shifted nano seconds left over when rounding cycle_interval */
36 s64 xtime_remainder;
37 /* Raw nano seconds accumulated per NTP interval. */
38 u32 raw_interval;
40 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
41 u64 xtime_nsec;
42 /* Difference between accumulated time and NTP time in ntp
43 * shifted nano seconds. */
44 s64 ntp_error;
45 /* Shift conversion between clock shifted nano seconds and
46 * ntp shifted nano seconds. */
47 int ntp_error_shift;
48 /* NTP adjusted clock multiplier */
49 u32 mult;
52 static struct timekeeper timekeeper;
54 /**
55 * timekeeper_setup_internals - Set up internals to use clocksource clock.
57 * @clock: Pointer to clocksource.
59 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
60 * pair and interval request.
62 * Unless you're the timekeeping code, you should not be using this!
64 static void timekeeper_setup_internals(struct clocksource *clock)
66 cycle_t interval;
67 u64 tmp, ntpinterval;
69 timekeeper.clock = clock;
70 clock->cycle_last = clock->read(clock);
72 /* Do the ns -> cycle conversion first, using original mult */
73 tmp = NTP_INTERVAL_LENGTH;
74 tmp <<= clock->shift;
75 ntpinterval = tmp;
76 tmp += clock->mult/2;
77 do_div(tmp, clock->mult);
78 if (tmp == 0)
79 tmp = 1;
81 interval = (cycle_t) tmp;
82 timekeeper.cycle_interval = interval;
84 /* Go back from cycles -> shifted ns */
85 timekeeper.xtime_interval = (u64) interval * clock->mult;
86 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
87 timekeeper.raw_interval =
88 ((u64) interval * clock->mult) >> clock->shift;
90 timekeeper.xtime_nsec = 0;
91 timekeeper.shift = clock->shift;
93 timekeeper.ntp_error = 0;
94 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
97 * The timekeeper keeps its own mult values for the currently
98 * active clocksource. These value will be adjusted via NTP
99 * to counteract clock drifting.
101 timekeeper.mult = clock->mult;
104 /* Timekeeper helper functions. */
105 static inline s64 timekeeping_get_ns(void)
107 cycle_t cycle_now, cycle_delta;
108 struct clocksource *clock;
110 /* read clocksource: */
111 clock = timekeeper.clock;
112 cycle_now = clock->read(clock);
114 /* calculate the delta since the last update_wall_time: */
115 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
117 /* return delta convert to nanoseconds using ntp adjusted mult. */
118 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
119 timekeeper.shift);
122 static inline s64 timekeeping_get_ns_raw(void)
124 cycle_t cycle_now, cycle_delta;
125 struct clocksource *clock;
127 /* read clocksource: */
128 clock = timekeeper.clock;
129 cycle_now = clock->read(clock);
131 /* calculate the delta since the last update_wall_time: */
132 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
134 /* return delta convert to nanoseconds. */
135 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
139 * This read-write spinlock protects us from races in SMP while
140 * playing with xtime.
142 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
146 * The current time
147 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
148 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
149 * at zero at system boot time, so wall_to_monotonic will be negative,
150 * however, we will ALWAYS keep the tv_nsec part positive so we can use
151 * the usual normalization.
153 * wall_to_monotonic is moved after resume from suspend for the monotonic
154 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
155 * to get the real boot based time offset.
157 * - wall_to_monotonic is no longer the boot time, getboottime must be
158 * used instead.
160 static struct timespec xtime __attribute__ ((aligned (16)));
161 static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
162 static struct timespec total_sleep_time;
165 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
167 static struct timespec raw_time;
169 /* flag for if timekeeping is suspended */
170 int __read_mostly timekeeping_suspended;
172 /* must hold xtime_lock */
173 void timekeeping_leap_insert(int leapsecond)
175 xtime.tv_sec += leapsecond;
176 wall_to_monotonic.tv_sec -= leapsecond;
177 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
178 timekeeper.mult);
182 * timekeeping_forward_now - update clock to the current time
184 * Forward the current clock to update its state since the last call to
185 * update_wall_time(). This is useful before significant clock changes,
186 * as it avoids having to deal with this time offset explicitly.
188 static void timekeeping_forward_now(void)
190 cycle_t cycle_now, cycle_delta;
191 struct clocksource *clock;
192 s64 nsec;
194 clock = timekeeper.clock;
195 cycle_now = clock->read(clock);
196 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
197 clock->cycle_last = cycle_now;
199 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
200 timekeeper.shift);
202 /* If arch requires, add in gettimeoffset() */
203 nsec += arch_gettimeoffset();
205 timespec_add_ns(&xtime, nsec);
207 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
208 timespec_add_ns(&raw_time, nsec);
212 * getnstimeofday - Returns the time of day in a timespec
213 * @ts: pointer to the timespec to be set
215 * Returns the time of day in a timespec.
217 void getnstimeofday(struct timespec *ts)
219 unsigned long seq;
220 s64 nsecs;
222 WARN_ON(timekeeping_suspended);
224 do {
225 seq = read_seqbegin(&xtime_lock);
227 *ts = xtime;
228 nsecs = timekeeping_get_ns();
230 /* If arch requires, add in gettimeoffset() */
231 nsecs += arch_gettimeoffset();
233 } while (read_seqretry(&xtime_lock, seq));
235 timespec_add_ns(ts, nsecs);
238 EXPORT_SYMBOL(getnstimeofday);
240 ktime_t ktime_get(void)
242 unsigned int seq;
243 s64 secs, nsecs;
245 WARN_ON(timekeeping_suspended);
247 do {
248 seq = read_seqbegin(&xtime_lock);
249 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
250 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
251 nsecs += timekeeping_get_ns();
252 /* If arch requires, add in gettimeoffset() */
253 nsecs += arch_gettimeoffset();
255 } while (read_seqretry(&xtime_lock, seq));
257 * Use ktime_set/ktime_add_ns to create a proper ktime on
258 * 32-bit architectures without CONFIG_KTIME_SCALAR.
260 return ktime_add_ns(ktime_set(secs, 0), nsecs);
262 EXPORT_SYMBOL_GPL(ktime_get);
265 * ktime_get_ts - get the monotonic clock in timespec format
266 * @ts: pointer to timespec variable
268 * The function calculates the monotonic clock from the realtime
269 * clock and the wall_to_monotonic offset and stores the result
270 * in normalized timespec format in the variable pointed to by @ts.
272 void ktime_get_ts(struct timespec *ts)
274 struct timespec tomono;
275 unsigned int seq;
276 s64 nsecs;
278 WARN_ON(timekeeping_suspended);
280 do {
281 seq = read_seqbegin(&xtime_lock);
282 *ts = xtime;
283 tomono = wall_to_monotonic;
284 nsecs = timekeeping_get_ns();
285 /* If arch requires, add in gettimeoffset() */
286 nsecs += arch_gettimeoffset();
288 } while (read_seqretry(&xtime_lock, seq));
290 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
291 ts->tv_nsec + tomono.tv_nsec + nsecs);
293 EXPORT_SYMBOL_GPL(ktime_get_ts);
295 #ifdef CONFIG_NTP_PPS
298 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
299 * @ts_raw: pointer to the timespec to be set to raw monotonic time
300 * @ts_real: pointer to the timespec to be set to the time of day
302 * This function reads both the time of day and raw monotonic time at the
303 * same time atomically and stores the resulting timestamps in timespec
304 * format.
306 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
308 unsigned long seq;
309 s64 nsecs_raw, nsecs_real;
311 WARN_ON_ONCE(timekeeping_suspended);
313 do {
314 u32 arch_offset;
316 seq = read_seqbegin(&xtime_lock);
318 *ts_raw = raw_time;
319 *ts_real = xtime;
321 nsecs_raw = timekeeping_get_ns_raw();
322 nsecs_real = timekeeping_get_ns();
324 /* If arch requires, add in gettimeoffset() */
325 arch_offset = arch_gettimeoffset();
326 nsecs_raw += arch_offset;
327 nsecs_real += arch_offset;
329 } while (read_seqretry(&xtime_lock, seq));
331 timespec_add_ns(ts_raw, nsecs_raw);
332 timespec_add_ns(ts_real, nsecs_real);
334 EXPORT_SYMBOL(getnstime_raw_and_real);
336 #endif /* CONFIG_NTP_PPS */
339 * do_gettimeofday - Returns the time of day in a timeval
340 * @tv: pointer to the timeval to be set
342 * NOTE: Users should be converted to using getnstimeofday()
344 void do_gettimeofday(struct timeval *tv)
346 struct timespec now;
348 getnstimeofday(&now);
349 tv->tv_sec = now.tv_sec;
350 tv->tv_usec = now.tv_nsec/1000;
353 EXPORT_SYMBOL(do_gettimeofday);
355 * do_settimeofday - Sets the time of day
356 * @tv: pointer to the timespec variable containing the new time
358 * Sets the time of day to the new time and update NTP and notify hrtimers
360 int do_settimeofday(const struct timespec *tv)
362 struct timespec ts_delta;
363 unsigned long flags;
365 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
366 return -EINVAL;
368 write_seqlock_irqsave(&xtime_lock, flags);
370 timekeeping_forward_now();
372 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
373 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
374 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
376 xtime = *tv;
378 timekeeper.ntp_error = 0;
379 ntp_clear();
381 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
382 timekeeper.mult);
384 write_sequnlock_irqrestore(&xtime_lock, flags);
386 /* signal hrtimers about time change */
387 clock_was_set();
389 return 0;
392 EXPORT_SYMBOL(do_settimeofday);
396 * timekeeping_inject_offset - Adds or subtracts from the current time.
397 * @tv: pointer to the timespec variable containing the offset
399 * Adds or subtracts an offset value from the current time.
401 int timekeeping_inject_offset(struct timespec *ts)
403 unsigned long flags;
405 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
406 return -EINVAL;
408 write_seqlock_irqsave(&xtime_lock, flags);
410 timekeeping_forward_now();
412 xtime = timespec_add(xtime, *ts);
413 wall_to_monotonic = timespec_sub(wall_to_monotonic, *ts);
415 timekeeper.ntp_error = 0;
416 ntp_clear();
418 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
419 timekeeper.mult);
421 write_sequnlock_irqrestore(&xtime_lock, flags);
423 /* signal hrtimers about time change */
424 clock_was_set();
426 return 0;
428 EXPORT_SYMBOL(timekeeping_inject_offset);
431 * change_clocksource - Swaps clocksources if a new one is available
433 * Accumulates current time interval and initializes new clocksource
435 static int change_clocksource(void *data)
437 struct clocksource *new, *old;
439 new = (struct clocksource *) data;
441 timekeeping_forward_now();
442 if (!new->enable || new->enable(new) == 0) {
443 old = timekeeper.clock;
444 timekeeper_setup_internals(new);
445 if (old->disable)
446 old->disable(old);
448 return 0;
452 * timekeeping_notify - Install a new clock source
453 * @clock: pointer to the clock source
455 * This function is called from clocksource.c after a new, better clock
456 * source has been registered. The caller holds the clocksource_mutex.
458 void timekeeping_notify(struct clocksource *clock)
460 if (timekeeper.clock == clock)
461 return;
462 stop_machine(change_clocksource, clock, NULL);
463 tick_clock_notify();
467 * ktime_get_real - get the real (wall-) time in ktime_t format
469 * returns the time in ktime_t format
471 ktime_t ktime_get_real(void)
473 struct timespec now;
475 getnstimeofday(&now);
477 return timespec_to_ktime(now);
479 EXPORT_SYMBOL_GPL(ktime_get_real);
482 * getrawmonotonic - Returns the raw monotonic time in a timespec
483 * @ts: pointer to the timespec to be set
485 * Returns the raw monotonic time (completely un-modified by ntp)
487 void getrawmonotonic(struct timespec *ts)
489 unsigned long seq;
490 s64 nsecs;
492 do {
493 seq = read_seqbegin(&xtime_lock);
494 nsecs = timekeeping_get_ns_raw();
495 *ts = raw_time;
497 } while (read_seqretry(&xtime_lock, seq));
499 timespec_add_ns(ts, nsecs);
501 EXPORT_SYMBOL(getrawmonotonic);
505 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
507 int timekeeping_valid_for_hres(void)
509 unsigned long seq;
510 int ret;
512 do {
513 seq = read_seqbegin(&xtime_lock);
515 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
517 } while (read_seqretry(&xtime_lock, seq));
519 return ret;
523 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
525 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
526 * ensure that the clocksource does not change!
528 u64 timekeeping_max_deferment(void)
530 return timekeeper.clock->max_idle_ns;
534 * read_persistent_clock - Return time from the persistent clock.
536 * Weak dummy function for arches that do not yet support it.
537 * Reads the time from the battery backed persistent clock.
538 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
540 * XXX - Do be sure to remove it once all arches implement it.
542 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
544 ts->tv_sec = 0;
545 ts->tv_nsec = 0;
549 * read_boot_clock - Return time of the system start.
551 * Weak dummy function for arches that do not yet support it.
552 * Function to read the exact time the system has been started.
553 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
555 * XXX - Do be sure to remove it once all arches implement it.
557 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
559 ts->tv_sec = 0;
560 ts->tv_nsec = 0;
564 * timekeeping_init - Initializes the clocksource and common timekeeping values
566 void __init timekeeping_init(void)
568 struct clocksource *clock;
569 unsigned long flags;
570 struct timespec now, boot;
572 read_persistent_clock(&now);
573 read_boot_clock(&boot);
575 write_seqlock_irqsave(&xtime_lock, flags);
577 ntp_init();
579 clock = clocksource_default_clock();
580 if (clock->enable)
581 clock->enable(clock);
582 timekeeper_setup_internals(clock);
584 xtime.tv_sec = now.tv_sec;
585 xtime.tv_nsec = now.tv_nsec;
586 raw_time.tv_sec = 0;
587 raw_time.tv_nsec = 0;
588 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
589 boot.tv_sec = xtime.tv_sec;
590 boot.tv_nsec = xtime.tv_nsec;
592 set_normalized_timespec(&wall_to_monotonic,
593 -boot.tv_sec, -boot.tv_nsec);
594 total_sleep_time.tv_sec = 0;
595 total_sleep_time.tv_nsec = 0;
596 write_sequnlock_irqrestore(&xtime_lock, flags);
599 /* time in seconds when suspend began */
600 static struct timespec timekeeping_suspend_time;
603 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
604 * @delta: pointer to a timespec delta value
606 * Takes a timespec offset measuring a suspend interval and properly
607 * adds the sleep offset to the timekeeping variables.
609 static void __timekeeping_inject_sleeptime(struct timespec *delta)
611 if (!timespec_valid(delta)) {
612 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
613 "sleep delta value!\n");
614 return;
617 xtime = timespec_add(xtime, *delta);
618 wall_to_monotonic = timespec_sub(wall_to_monotonic, *delta);
619 total_sleep_time = timespec_add(total_sleep_time, *delta);
624 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
625 * @delta: pointer to a timespec delta value
627 * This hook is for architectures that cannot support read_persistent_clock
628 * because their RTC/persistent clock is only accessible when irqs are enabled.
630 * This function should only be called by rtc_resume(), and allows
631 * a suspend offset to be injected into the timekeeping values.
633 void timekeeping_inject_sleeptime(struct timespec *delta)
635 unsigned long flags;
636 struct timespec ts;
638 /* Make sure we don't set the clock twice */
639 read_persistent_clock(&ts);
640 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
641 return;
643 write_seqlock_irqsave(&xtime_lock, flags);
644 timekeeping_forward_now();
646 __timekeeping_inject_sleeptime(delta);
648 timekeeper.ntp_error = 0;
649 ntp_clear();
650 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
651 timekeeper.mult);
653 write_sequnlock_irqrestore(&xtime_lock, flags);
655 /* signal hrtimers about time change */
656 clock_was_set();
661 * timekeeping_resume - Resumes the generic timekeeping subsystem.
663 * This is for the generic clocksource timekeeping.
664 * xtime/wall_to_monotonic/jiffies/etc are
665 * still managed by arch specific suspend/resume code.
667 static void timekeeping_resume(void)
669 unsigned long flags;
670 struct timespec ts;
672 read_persistent_clock(&ts);
674 clocksource_resume();
676 write_seqlock_irqsave(&xtime_lock, flags);
678 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
679 ts = timespec_sub(ts, timekeeping_suspend_time);
680 __timekeeping_inject_sleeptime(&ts);
682 /* re-base the last cycle value */
683 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
684 timekeeper.ntp_error = 0;
685 timekeeping_suspended = 0;
686 write_sequnlock_irqrestore(&xtime_lock, flags);
688 touch_softlockup_watchdog();
690 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
692 /* Resume hrtimers */
693 hrtimers_resume();
696 static int timekeeping_suspend(void)
698 unsigned long flags;
699 struct timespec delta, delta_delta;
700 static struct timespec old_delta;
702 read_persistent_clock(&timekeeping_suspend_time);
704 write_seqlock_irqsave(&xtime_lock, flags);
705 timekeeping_forward_now();
706 timekeeping_suspended = 1;
709 * To avoid drift caused by repeated suspend/resumes,
710 * which each can add ~1 second drift error,
711 * try to compensate so the difference in system time
712 * and persistent_clock time stays close to constant.
714 delta = timespec_sub(xtime, timekeeping_suspend_time);
715 delta_delta = timespec_sub(delta, old_delta);
716 if (abs(delta_delta.tv_sec) >= 2) {
718 * if delta_delta is too large, assume time correction
719 * has occured and set old_delta to the current delta.
721 old_delta = delta;
722 } else {
723 /* Otherwise try to adjust old_system to compensate */
724 timekeeping_suspend_time =
725 timespec_add(timekeeping_suspend_time, delta_delta);
727 write_sequnlock_irqrestore(&xtime_lock, flags);
729 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
730 clocksource_suspend();
732 return 0;
735 /* sysfs resume/suspend bits for timekeeping */
736 static struct syscore_ops timekeeping_syscore_ops = {
737 .resume = timekeeping_resume,
738 .suspend = timekeeping_suspend,
741 static int __init timekeeping_init_ops(void)
743 register_syscore_ops(&timekeeping_syscore_ops);
744 return 0;
747 device_initcall(timekeeping_init_ops);
750 * If the error is already larger, we look ahead even further
751 * to compensate for late or lost adjustments.
753 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
754 s64 *offset)
756 s64 tick_error, i;
757 u32 look_ahead, adj;
758 s32 error2, mult;
761 * Use the current error value to determine how much to look ahead.
762 * The larger the error the slower we adjust for it to avoid problems
763 * with losing too many ticks, otherwise we would overadjust and
764 * produce an even larger error. The smaller the adjustment the
765 * faster we try to adjust for it, as lost ticks can do less harm
766 * here. This is tuned so that an error of about 1 msec is adjusted
767 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
769 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
770 error2 = abs(error2);
771 for (look_ahead = 0; error2 > 0; look_ahead++)
772 error2 >>= 2;
775 * Now calculate the error in (1 << look_ahead) ticks, but first
776 * remove the single look ahead already included in the error.
778 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
779 tick_error -= timekeeper.xtime_interval >> 1;
780 error = ((error - tick_error) >> look_ahead) + tick_error;
782 /* Finally calculate the adjustment shift value. */
783 i = *interval;
784 mult = 1;
785 if (error < 0) {
786 error = -error;
787 *interval = -*interval;
788 *offset = -*offset;
789 mult = -1;
791 for (adj = 0; error > i; adj++)
792 error >>= 1;
794 *interval <<= adj;
795 *offset <<= adj;
796 return mult << adj;
800 * Adjust the multiplier to reduce the error value,
801 * this is optimized for the most common adjustments of -1,0,1,
802 * for other values we can do a bit more work.
804 static void timekeeping_adjust(s64 offset)
806 s64 error, interval = timekeeper.cycle_interval;
807 int adj;
810 * The point of this is to check if the error is greater then half
811 * an interval.
813 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
815 * Note we subtract one in the shift, so that error is really error*2.
816 * This "saves" dividing(shifting) interval twice, but keeps the
817 * (error > interval) comparison as still measuring if error is
818 * larger then half an interval.
820 * Note: It does not "save" on aggravation when reading the code.
822 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
823 if (error > interval) {
825 * We now divide error by 4(via shift), which checks if
826 * the error is greater then twice the interval.
827 * If it is greater, we need a bigadjust, if its smaller,
828 * we can adjust by 1.
830 error >>= 2;
832 * XXX - In update_wall_time, we round up to the next
833 * nanosecond, and store the amount rounded up into
834 * the error. This causes the likely below to be unlikely.
836 * The proper fix is to avoid rounding up by using
837 * the high precision timekeeper.xtime_nsec instead of
838 * xtime.tv_nsec everywhere. Fixing this will take some
839 * time.
841 if (likely(error <= interval))
842 adj = 1;
843 else
844 adj = timekeeping_bigadjust(error, &interval, &offset);
845 } else if (error < -interval) {
846 /* See comment above, this is just switched for the negative */
847 error >>= 2;
848 if (likely(error >= -interval)) {
849 adj = -1;
850 interval = -interval;
851 offset = -offset;
852 } else
853 adj = timekeeping_bigadjust(error, &interval, &offset);
854 } else /* No adjustment needed */
855 return;
857 WARN_ONCE(timekeeper.clock->maxadj &&
858 (timekeeper.mult + adj > timekeeper.clock->mult +
859 timekeeper.clock->maxadj),
860 "Adjusting %s more then 11%% (%ld vs %ld)\n",
861 timekeeper.clock->name, (long)timekeeper.mult + adj,
862 (long)timekeeper.clock->mult +
863 timekeeper.clock->maxadj);
865 * So the following can be confusing.
867 * To keep things simple, lets assume adj == 1 for now.
869 * When adj != 1, remember that the interval and offset values
870 * have been appropriately scaled so the math is the same.
872 * The basic idea here is that we're increasing the multiplier
873 * by one, this causes the xtime_interval to be incremented by
874 * one cycle_interval. This is because:
875 * xtime_interval = cycle_interval * mult
876 * So if mult is being incremented by one:
877 * xtime_interval = cycle_interval * (mult + 1)
878 * Its the same as:
879 * xtime_interval = (cycle_interval * mult) + cycle_interval
880 * Which can be shortened to:
881 * xtime_interval += cycle_interval
883 * So offset stores the non-accumulated cycles. Thus the current
884 * time (in shifted nanoseconds) is:
885 * now = (offset * adj) + xtime_nsec
886 * Now, even though we're adjusting the clock frequency, we have
887 * to keep time consistent. In other words, we can't jump back
888 * in time, and we also want to avoid jumping forward in time.
890 * So given the same offset value, we need the time to be the same
891 * both before and after the freq adjustment.
892 * now = (offset * adj_1) + xtime_nsec_1
893 * now = (offset * adj_2) + xtime_nsec_2
894 * So:
895 * (offset * adj_1) + xtime_nsec_1 =
896 * (offset * adj_2) + xtime_nsec_2
897 * And we know:
898 * adj_2 = adj_1 + 1
899 * So:
900 * (offset * adj_1) + xtime_nsec_1 =
901 * (offset * (adj_1+1)) + xtime_nsec_2
902 * (offset * adj_1) + xtime_nsec_1 =
903 * (offset * adj_1) + offset + xtime_nsec_2
904 * Canceling the sides:
905 * xtime_nsec_1 = offset + xtime_nsec_2
906 * Which gives us:
907 * xtime_nsec_2 = xtime_nsec_1 - offset
908 * Which simplfies to:
909 * xtime_nsec -= offset
911 * XXX - TODO: Doc ntp_error calculation.
913 timekeeper.mult += adj;
914 timekeeper.xtime_interval += interval;
915 timekeeper.xtime_nsec -= offset;
916 timekeeper.ntp_error -= (interval - offset) <<
917 timekeeper.ntp_error_shift;
922 * logarithmic_accumulation - shifted accumulation of cycles
924 * This functions accumulates a shifted interval of cycles into
925 * into a shifted interval nanoseconds. Allows for O(log) accumulation
926 * loop.
928 * Returns the unconsumed cycles.
930 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
932 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
933 u64 raw_nsecs;
935 /* If the offset is smaller then a shifted interval, do nothing */
936 if (offset < timekeeper.cycle_interval<<shift)
937 return offset;
939 /* Accumulate one shifted interval */
940 offset -= timekeeper.cycle_interval << shift;
941 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
943 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
944 while (timekeeper.xtime_nsec >= nsecps) {
945 timekeeper.xtime_nsec -= nsecps;
946 xtime.tv_sec++;
947 second_overflow();
950 /* Accumulate raw time */
951 raw_nsecs = timekeeper.raw_interval << shift;
952 raw_nsecs += raw_time.tv_nsec;
953 if (raw_nsecs >= NSEC_PER_SEC) {
954 u64 raw_secs = raw_nsecs;
955 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
956 raw_time.tv_sec += raw_secs;
958 raw_time.tv_nsec = raw_nsecs;
960 /* Accumulate error between NTP and clock interval */
961 timekeeper.ntp_error += tick_length << shift;
962 timekeeper.ntp_error -=
963 (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
964 (timekeeper.ntp_error_shift + shift);
966 return offset;
971 * update_wall_time - Uses the current clocksource to increment the wall time
973 * Called from the timer interrupt, must hold a write on xtime_lock.
975 static void update_wall_time(void)
977 struct clocksource *clock;
978 cycle_t offset;
979 int shift = 0, maxshift;
981 /* Make sure we're fully resumed: */
982 if (unlikely(timekeeping_suspended))
983 return;
985 clock = timekeeper.clock;
987 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
988 offset = timekeeper.cycle_interval;
989 #else
990 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
991 #endif
992 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
995 * With NO_HZ we may have to accumulate many cycle_intervals
996 * (think "ticks") worth of time at once. To do this efficiently,
997 * we calculate the largest doubling multiple of cycle_intervals
998 * that is smaller then the offset. We then accumulate that
999 * chunk in one go, and then try to consume the next smaller
1000 * doubled multiple.
1002 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1003 shift = max(0, shift);
1004 /* Bound shift to one less then what overflows tick_length */
1005 maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
1006 shift = min(shift, maxshift);
1007 while (offset >= timekeeper.cycle_interval) {
1008 offset = logarithmic_accumulation(offset, shift);
1009 if(offset < timekeeper.cycle_interval<<shift)
1010 shift--;
1013 /* correct the clock when NTP error is too big */
1014 timekeeping_adjust(offset);
1017 * Since in the loop above, we accumulate any amount of time
1018 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1019 * xtime_nsec to be fairly small after the loop. Further, if we're
1020 * slightly speeding the clocksource up in timekeeping_adjust(),
1021 * its possible the required corrective factor to xtime_nsec could
1022 * cause it to underflow.
1024 * Now, we cannot simply roll the accumulated second back, since
1025 * the NTP subsystem has been notified via second_overflow. So
1026 * instead we push xtime_nsec forward by the amount we underflowed,
1027 * and add that amount into the error.
1029 * We'll correct this error next time through this function, when
1030 * xtime_nsec is not as small.
1032 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1033 s64 neg = -(s64)timekeeper.xtime_nsec;
1034 timekeeper.xtime_nsec = 0;
1035 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1040 * Store full nanoseconds into xtime after rounding it up and
1041 * add the remainder to the error difference.
1043 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
1044 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
1045 timekeeper.ntp_error += timekeeper.xtime_nsec <<
1046 timekeeper.ntp_error_shift;
1049 * Finally, make sure that after the rounding
1050 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
1052 if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
1053 xtime.tv_nsec -= NSEC_PER_SEC;
1054 xtime.tv_sec++;
1055 second_overflow();
1058 /* check to see if there is a new clocksource to use */
1059 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
1060 timekeeper.mult);
1064 * getboottime - Return the real time of system boot.
1065 * @ts: pointer to the timespec to be set
1067 * Returns the wall-time of boot in a timespec.
1069 * This is based on the wall_to_monotonic offset and the total suspend
1070 * time. Calls to settimeofday will affect the value returned (which
1071 * basically means that however wrong your real time clock is at boot time,
1072 * you get the right time here).
1074 void getboottime(struct timespec *ts)
1076 struct timespec boottime = {
1077 .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
1078 .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
1081 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1083 EXPORT_SYMBOL_GPL(getboottime);
1087 * get_monotonic_boottime - Returns monotonic time since boot
1088 * @ts: pointer to the timespec to be set
1090 * Returns the monotonic time since boot in a timespec.
1092 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1093 * includes the time spent in suspend.
1095 void get_monotonic_boottime(struct timespec *ts)
1097 struct timespec tomono, sleep;
1098 unsigned int seq;
1099 s64 nsecs;
1101 WARN_ON(timekeeping_suspended);
1103 do {
1104 seq = read_seqbegin(&xtime_lock);
1105 *ts = xtime;
1106 tomono = wall_to_monotonic;
1107 sleep = total_sleep_time;
1108 nsecs = timekeeping_get_ns();
1110 } while (read_seqretry(&xtime_lock, seq));
1112 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1113 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1115 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1118 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1120 * Returns the monotonic time since boot in a ktime
1122 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1123 * includes the time spent in suspend.
1125 ktime_t ktime_get_boottime(void)
1127 struct timespec ts;
1129 get_monotonic_boottime(&ts);
1130 return timespec_to_ktime(ts);
1132 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1135 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1136 * @ts: pointer to the timespec to be converted
1138 void monotonic_to_bootbased(struct timespec *ts)
1140 *ts = timespec_add(*ts, total_sleep_time);
1142 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1144 unsigned long get_seconds(void)
1146 return xtime.tv_sec;
1148 EXPORT_SYMBOL(get_seconds);
1150 struct timespec __current_kernel_time(void)
1152 return xtime;
1155 struct timespec current_kernel_time(void)
1157 struct timespec now;
1158 unsigned long seq;
1160 do {
1161 seq = read_seqbegin(&xtime_lock);
1163 now = xtime;
1164 } while (read_seqretry(&xtime_lock, seq));
1166 return now;
1168 EXPORT_SYMBOL(current_kernel_time);
1170 struct timespec get_monotonic_coarse(void)
1172 struct timespec now, mono;
1173 unsigned long seq;
1175 do {
1176 seq = read_seqbegin(&xtime_lock);
1178 now = xtime;
1179 mono = wall_to_monotonic;
1180 } while (read_seqretry(&xtime_lock, seq));
1182 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1183 now.tv_nsec + mono.tv_nsec);
1184 return now;
1188 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1189 * without sampling the sequence number in xtime_lock.
1190 * jiffies is defined in the linker script...
1192 void do_timer(unsigned long ticks)
1194 jiffies_64 += ticks;
1195 update_wall_time();
1196 calc_global_load(ticks);
1200 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1201 * and sleep offsets.
1202 * @xtim: pointer to timespec to be set with xtime
1203 * @wtom: pointer to timespec to be set with wall_to_monotonic
1204 * @sleep: pointer to timespec to be set with time in suspend
1206 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1207 struct timespec *wtom, struct timespec *sleep)
1209 unsigned long seq;
1211 do {
1212 seq = read_seqbegin(&xtime_lock);
1213 *xtim = xtime;
1214 *wtom = wall_to_monotonic;
1215 *sleep = total_sleep_time;
1216 } while (read_seqretry(&xtime_lock, seq));
1220 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1222 ktime_t ktime_get_monotonic_offset(void)
1224 unsigned long seq;
1225 struct timespec wtom;
1227 do {
1228 seq = read_seqbegin(&xtime_lock);
1229 wtom = wall_to_monotonic;
1230 } while (read_seqretry(&xtime_lock, seq));
1231 return timespec_to_ktime(wtom);
1235 * xtime_update() - advances the timekeeping infrastructure
1236 * @ticks: number of ticks, that have elapsed since the last call.
1238 * Must be called with interrupts disabled.
1240 void xtime_update(unsigned long ticks)
1242 write_seqlock(&xtime_lock);
1243 do_timer(ticks);
1244 write_sequnlock(&xtime_lock);