Use dentry_path() to create full path to inode object
[pohmelfs.git] / kernel / trace / ring_buffer.c
blobf5b7b5c1195beaf806f19d59e0ce7114c0e36add
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
23 #include <asm/local.h>
24 #include "trace.h"
27 * The ring buffer header is special. We must manually up keep it.
29 int ring_buffer_print_entry_header(struct trace_seq *s)
31 int ret;
33 ret = trace_seq_printf(s, "# compressed entry header\n");
34 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
35 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
36 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
37 ret = trace_seq_printf(s, "\n");
38 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
39 RINGBUF_TYPE_PADDING);
40 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
41 RINGBUF_TYPE_TIME_EXTEND);
42 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
43 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
45 return ret;
49 * The ring buffer is made up of a list of pages. A separate list of pages is
50 * allocated for each CPU. A writer may only write to a buffer that is
51 * associated with the CPU it is currently executing on. A reader may read
52 * from any per cpu buffer.
54 * The reader is special. For each per cpu buffer, the reader has its own
55 * reader page. When a reader has read the entire reader page, this reader
56 * page is swapped with another page in the ring buffer.
58 * Now, as long as the writer is off the reader page, the reader can do what
59 * ever it wants with that page. The writer will never write to that page
60 * again (as long as it is out of the ring buffer).
62 * Here's some silly ASCII art.
64 * +------+
65 * |reader| RING BUFFER
66 * |page |
67 * +------+ +---+ +---+ +---+
68 * | |-->| |-->| |
69 * +---+ +---+ +---+
70 * ^ |
71 * | |
72 * +---------------+
75 * +------+
76 * |reader| RING BUFFER
77 * |page |------------------v
78 * +------+ +---+ +---+ +---+
79 * | |-->| |-->| |
80 * +---+ +---+ +---+
81 * ^ |
82 * | |
83 * +---------------+
86 * +------+
87 * |reader| RING BUFFER
88 * |page |------------------v
89 * +------+ +---+ +---+ +---+
90 * ^ | |-->| |-->| |
91 * | +---+ +---+ +---+
92 * | |
93 * | |
94 * +------------------------------+
97 * +------+
98 * |buffer| RING BUFFER
99 * |page |------------------v
100 * +------+ +---+ +---+ +---+
101 * ^ | | | |-->| |
102 * | New +---+ +---+ +---+
103 * | Reader------^ |
104 * | page |
105 * +------------------------------+
108 * After we make this swap, the reader can hand this page off to the splice
109 * code and be done with it. It can even allocate a new page if it needs to
110 * and swap that into the ring buffer.
112 * We will be using cmpxchg soon to make all this lockless.
117 * A fast way to enable or disable all ring buffers is to
118 * call tracing_on or tracing_off. Turning off the ring buffers
119 * prevents all ring buffers from being recorded to.
120 * Turning this switch on, makes it OK to write to the
121 * ring buffer, if the ring buffer is enabled itself.
123 * There's three layers that must be on in order to write
124 * to the ring buffer.
126 * 1) This global flag must be set.
127 * 2) The ring buffer must be enabled for recording.
128 * 3) The per cpu buffer must be enabled for recording.
130 * In case of an anomaly, this global flag has a bit set that
131 * will permantly disable all ring buffers.
135 * Global flag to disable all recording to ring buffers
136 * This has two bits: ON, DISABLED
138 * ON DISABLED
139 * ---- ----------
140 * 0 0 : ring buffers are off
141 * 1 0 : ring buffers are on
142 * X 1 : ring buffers are permanently disabled
145 enum {
146 RB_BUFFERS_ON_BIT = 0,
147 RB_BUFFERS_DISABLED_BIT = 1,
150 enum {
151 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
152 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
155 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
157 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
160 * tracing_on - enable all tracing buffers
162 * This function enables all tracing buffers that may have been
163 * disabled with tracing_off.
165 void tracing_on(void)
167 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
169 EXPORT_SYMBOL_GPL(tracing_on);
172 * tracing_off - turn off all tracing buffers
174 * This function stops all tracing buffers from recording data.
175 * It does not disable any overhead the tracers themselves may
176 * be causing. This function simply causes all recording to
177 * the ring buffers to fail.
179 void tracing_off(void)
181 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
183 EXPORT_SYMBOL_GPL(tracing_off);
186 * tracing_off_permanent - permanently disable ring buffers
188 * This function, once called, will disable all ring buffers
189 * permanently.
191 void tracing_off_permanent(void)
193 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
197 * tracing_is_on - show state of ring buffers enabled
199 int tracing_is_on(void)
201 return ring_buffer_flags == RB_BUFFERS_ON;
203 EXPORT_SYMBOL_GPL(tracing_is_on);
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT 4U
207 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
210 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
211 # define RB_FORCE_8BYTE_ALIGNMENT 0
212 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
213 #else
214 # define RB_FORCE_8BYTE_ALIGNMENT 1
215 # define RB_ARCH_ALIGNMENT 8U
216 #endif
218 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
219 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
221 enum {
222 RB_LEN_TIME_EXTEND = 8,
223 RB_LEN_TIME_STAMP = 16,
226 #define skip_time_extend(event) \
227 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
229 static inline int rb_null_event(struct ring_buffer_event *event)
231 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
234 static void rb_event_set_padding(struct ring_buffer_event *event)
236 /* padding has a NULL time_delta */
237 event->type_len = RINGBUF_TYPE_PADDING;
238 event->time_delta = 0;
241 static unsigned
242 rb_event_data_length(struct ring_buffer_event *event)
244 unsigned length;
246 if (event->type_len)
247 length = event->type_len * RB_ALIGNMENT;
248 else
249 length = event->array[0];
250 return length + RB_EVNT_HDR_SIZE;
254 * Return the length of the given event. Will return
255 * the length of the time extend if the event is a
256 * time extend.
258 static inline unsigned
259 rb_event_length(struct ring_buffer_event *event)
261 switch (event->type_len) {
262 case RINGBUF_TYPE_PADDING:
263 if (rb_null_event(event))
264 /* undefined */
265 return -1;
266 return event->array[0] + RB_EVNT_HDR_SIZE;
268 case RINGBUF_TYPE_TIME_EXTEND:
269 return RB_LEN_TIME_EXTEND;
271 case RINGBUF_TYPE_TIME_STAMP:
272 return RB_LEN_TIME_STAMP;
274 case RINGBUF_TYPE_DATA:
275 return rb_event_data_length(event);
276 default:
277 BUG();
279 /* not hit */
280 return 0;
284 * Return total length of time extend and data,
285 * or just the event length for all other events.
287 static inline unsigned
288 rb_event_ts_length(struct ring_buffer_event *event)
290 unsigned len = 0;
292 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
293 /* time extends include the data event after it */
294 len = RB_LEN_TIME_EXTEND;
295 event = skip_time_extend(event);
297 return len + rb_event_length(event);
301 * ring_buffer_event_length - return the length of the event
302 * @event: the event to get the length of
304 * Returns the size of the data load of a data event.
305 * If the event is something other than a data event, it
306 * returns the size of the event itself. With the exception
307 * of a TIME EXTEND, where it still returns the size of the
308 * data load of the data event after it.
310 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
312 unsigned length;
314 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
315 event = skip_time_extend(event);
317 length = rb_event_length(event);
318 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
319 return length;
320 length -= RB_EVNT_HDR_SIZE;
321 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
322 length -= sizeof(event->array[0]);
323 return length;
325 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
327 /* inline for ring buffer fast paths */
328 static void *
329 rb_event_data(struct ring_buffer_event *event)
331 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
332 event = skip_time_extend(event);
333 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
334 /* If length is in len field, then array[0] has the data */
335 if (event->type_len)
336 return (void *)&event->array[0];
337 /* Otherwise length is in array[0] and array[1] has the data */
338 return (void *)&event->array[1];
342 * ring_buffer_event_data - return the data of the event
343 * @event: the event to get the data from
345 void *ring_buffer_event_data(struct ring_buffer_event *event)
347 return rb_event_data(event);
349 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
351 #define for_each_buffer_cpu(buffer, cpu) \
352 for_each_cpu(cpu, buffer->cpumask)
354 #define TS_SHIFT 27
355 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
356 #define TS_DELTA_TEST (~TS_MASK)
358 /* Flag when events were overwritten */
359 #define RB_MISSED_EVENTS (1 << 31)
360 /* Missed count stored at end */
361 #define RB_MISSED_STORED (1 << 30)
363 struct buffer_data_page {
364 u64 time_stamp; /* page time stamp */
365 local_t commit; /* write committed index */
366 unsigned char data[]; /* data of buffer page */
370 * Note, the buffer_page list must be first. The buffer pages
371 * are allocated in cache lines, which means that each buffer
372 * page will be at the beginning of a cache line, and thus
373 * the least significant bits will be zero. We use this to
374 * add flags in the list struct pointers, to make the ring buffer
375 * lockless.
377 struct buffer_page {
378 struct list_head list; /* list of buffer pages */
379 local_t write; /* index for next write */
380 unsigned read; /* index for next read */
381 local_t entries; /* entries on this page */
382 unsigned long real_end; /* real end of data */
383 struct buffer_data_page *page; /* Actual data page */
387 * The buffer page counters, write and entries, must be reset
388 * atomically when crossing page boundaries. To synchronize this
389 * update, two counters are inserted into the number. One is
390 * the actual counter for the write position or count on the page.
392 * The other is a counter of updaters. Before an update happens
393 * the update partition of the counter is incremented. This will
394 * allow the updater to update the counter atomically.
396 * The counter is 20 bits, and the state data is 12.
398 #define RB_WRITE_MASK 0xfffff
399 #define RB_WRITE_INTCNT (1 << 20)
401 static void rb_init_page(struct buffer_data_page *bpage)
403 local_set(&bpage->commit, 0);
407 * ring_buffer_page_len - the size of data on the page.
408 * @page: The page to read
410 * Returns the amount of data on the page, including buffer page header.
412 size_t ring_buffer_page_len(void *page)
414 return local_read(&((struct buffer_data_page *)page)->commit)
415 + BUF_PAGE_HDR_SIZE;
419 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
420 * this issue out.
422 static void free_buffer_page(struct buffer_page *bpage)
424 free_page((unsigned long)bpage->page);
425 kfree(bpage);
429 * We need to fit the time_stamp delta into 27 bits.
431 static inline int test_time_stamp(u64 delta)
433 if (delta & TS_DELTA_TEST)
434 return 1;
435 return 0;
438 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
440 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
441 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
443 int ring_buffer_print_page_header(struct trace_seq *s)
445 struct buffer_data_page field;
446 int ret;
448 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
449 "offset:0;\tsize:%u;\tsigned:%u;\n",
450 (unsigned int)sizeof(field.time_stamp),
451 (unsigned int)is_signed_type(u64));
453 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
454 "offset:%u;\tsize:%u;\tsigned:%u;\n",
455 (unsigned int)offsetof(typeof(field), commit),
456 (unsigned int)sizeof(field.commit),
457 (unsigned int)is_signed_type(long));
459 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
460 "offset:%u;\tsize:%u;\tsigned:%u;\n",
461 (unsigned int)offsetof(typeof(field), commit),
463 (unsigned int)is_signed_type(long));
465 ret = trace_seq_printf(s, "\tfield: char data;\t"
466 "offset:%u;\tsize:%u;\tsigned:%u;\n",
467 (unsigned int)offsetof(typeof(field), data),
468 (unsigned int)BUF_PAGE_SIZE,
469 (unsigned int)is_signed_type(char));
471 return ret;
475 * head_page == tail_page && head == tail then buffer is empty.
477 struct ring_buffer_per_cpu {
478 int cpu;
479 atomic_t record_disabled;
480 struct ring_buffer *buffer;
481 raw_spinlock_t reader_lock; /* serialize readers */
482 arch_spinlock_t lock;
483 struct lock_class_key lock_key;
484 struct list_head *pages;
485 struct buffer_page *head_page; /* read from head */
486 struct buffer_page *tail_page; /* write to tail */
487 struct buffer_page *commit_page; /* committed pages */
488 struct buffer_page *reader_page;
489 unsigned long lost_events;
490 unsigned long last_overrun;
491 local_t entries_bytes;
492 local_t commit_overrun;
493 local_t overrun;
494 local_t entries;
495 local_t committing;
496 local_t commits;
497 unsigned long read;
498 unsigned long read_bytes;
499 u64 write_stamp;
500 u64 read_stamp;
503 struct ring_buffer {
504 unsigned pages;
505 unsigned flags;
506 int cpus;
507 atomic_t record_disabled;
508 cpumask_var_t cpumask;
510 struct lock_class_key *reader_lock_key;
512 struct mutex mutex;
514 struct ring_buffer_per_cpu **buffers;
516 #ifdef CONFIG_HOTPLUG_CPU
517 struct notifier_block cpu_notify;
518 #endif
519 u64 (*clock)(void);
522 struct ring_buffer_iter {
523 struct ring_buffer_per_cpu *cpu_buffer;
524 unsigned long head;
525 struct buffer_page *head_page;
526 struct buffer_page *cache_reader_page;
527 unsigned long cache_read;
528 u64 read_stamp;
531 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
532 #define RB_WARN_ON(b, cond) \
533 ({ \
534 int _____ret = unlikely(cond); \
535 if (_____ret) { \
536 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
537 struct ring_buffer_per_cpu *__b = \
538 (void *)b; \
539 atomic_inc(&__b->buffer->record_disabled); \
540 } else \
541 atomic_inc(&b->record_disabled); \
542 WARN_ON(1); \
544 _____ret; \
547 /* Up this if you want to test the TIME_EXTENTS and normalization */
548 #define DEBUG_SHIFT 0
550 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
552 /* shift to debug/test normalization and TIME_EXTENTS */
553 return buffer->clock() << DEBUG_SHIFT;
556 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
558 u64 time;
560 preempt_disable_notrace();
561 time = rb_time_stamp(buffer);
562 preempt_enable_no_resched_notrace();
564 return time;
566 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
568 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
569 int cpu, u64 *ts)
571 /* Just stupid testing the normalize function and deltas */
572 *ts >>= DEBUG_SHIFT;
574 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
577 * Making the ring buffer lockless makes things tricky.
578 * Although writes only happen on the CPU that they are on,
579 * and they only need to worry about interrupts. Reads can
580 * happen on any CPU.
582 * The reader page is always off the ring buffer, but when the
583 * reader finishes with a page, it needs to swap its page with
584 * a new one from the buffer. The reader needs to take from
585 * the head (writes go to the tail). But if a writer is in overwrite
586 * mode and wraps, it must push the head page forward.
588 * Here lies the problem.
590 * The reader must be careful to replace only the head page, and
591 * not another one. As described at the top of the file in the
592 * ASCII art, the reader sets its old page to point to the next
593 * page after head. It then sets the page after head to point to
594 * the old reader page. But if the writer moves the head page
595 * during this operation, the reader could end up with the tail.
597 * We use cmpxchg to help prevent this race. We also do something
598 * special with the page before head. We set the LSB to 1.
600 * When the writer must push the page forward, it will clear the
601 * bit that points to the head page, move the head, and then set
602 * the bit that points to the new head page.
604 * We also don't want an interrupt coming in and moving the head
605 * page on another writer. Thus we use the second LSB to catch
606 * that too. Thus:
608 * head->list->prev->next bit 1 bit 0
609 * ------- -------
610 * Normal page 0 0
611 * Points to head page 0 1
612 * New head page 1 0
614 * Note we can not trust the prev pointer of the head page, because:
616 * +----+ +-----+ +-----+
617 * | |------>| T |---X--->| N |
618 * | |<------| | | |
619 * +----+ +-----+ +-----+
620 * ^ ^ |
621 * | +-----+ | |
622 * +----------| R |----------+ |
623 * | |<-----------+
624 * +-----+
626 * Key: ---X--> HEAD flag set in pointer
627 * T Tail page
628 * R Reader page
629 * N Next page
631 * (see __rb_reserve_next() to see where this happens)
633 * What the above shows is that the reader just swapped out
634 * the reader page with a page in the buffer, but before it
635 * could make the new header point back to the new page added
636 * it was preempted by a writer. The writer moved forward onto
637 * the new page added by the reader and is about to move forward
638 * again.
640 * You can see, it is legitimate for the previous pointer of
641 * the head (or any page) not to point back to itself. But only
642 * temporarially.
645 #define RB_PAGE_NORMAL 0UL
646 #define RB_PAGE_HEAD 1UL
647 #define RB_PAGE_UPDATE 2UL
650 #define RB_FLAG_MASK 3UL
652 /* PAGE_MOVED is not part of the mask */
653 #define RB_PAGE_MOVED 4UL
656 * rb_list_head - remove any bit
658 static struct list_head *rb_list_head(struct list_head *list)
660 unsigned long val = (unsigned long)list;
662 return (struct list_head *)(val & ~RB_FLAG_MASK);
666 * rb_is_head_page - test if the given page is the head page
668 * Because the reader may move the head_page pointer, we can
669 * not trust what the head page is (it may be pointing to
670 * the reader page). But if the next page is a header page,
671 * its flags will be non zero.
673 static inline int
674 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
675 struct buffer_page *page, struct list_head *list)
677 unsigned long val;
679 val = (unsigned long)list->next;
681 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
682 return RB_PAGE_MOVED;
684 return val & RB_FLAG_MASK;
688 * rb_is_reader_page
690 * The unique thing about the reader page, is that, if the
691 * writer is ever on it, the previous pointer never points
692 * back to the reader page.
694 static int rb_is_reader_page(struct buffer_page *page)
696 struct list_head *list = page->list.prev;
698 return rb_list_head(list->next) != &page->list;
702 * rb_set_list_to_head - set a list_head to be pointing to head.
704 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
705 struct list_head *list)
707 unsigned long *ptr;
709 ptr = (unsigned long *)&list->next;
710 *ptr |= RB_PAGE_HEAD;
711 *ptr &= ~RB_PAGE_UPDATE;
715 * rb_head_page_activate - sets up head page
717 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
719 struct buffer_page *head;
721 head = cpu_buffer->head_page;
722 if (!head)
723 return;
726 * Set the previous list pointer to have the HEAD flag.
728 rb_set_list_to_head(cpu_buffer, head->list.prev);
731 static void rb_list_head_clear(struct list_head *list)
733 unsigned long *ptr = (unsigned long *)&list->next;
735 *ptr &= ~RB_FLAG_MASK;
739 * rb_head_page_dactivate - clears head page ptr (for free list)
741 static void
742 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
744 struct list_head *hd;
746 /* Go through the whole list and clear any pointers found. */
747 rb_list_head_clear(cpu_buffer->pages);
749 list_for_each(hd, cpu_buffer->pages)
750 rb_list_head_clear(hd);
753 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
754 struct buffer_page *head,
755 struct buffer_page *prev,
756 int old_flag, int new_flag)
758 struct list_head *list;
759 unsigned long val = (unsigned long)&head->list;
760 unsigned long ret;
762 list = &prev->list;
764 val &= ~RB_FLAG_MASK;
766 ret = cmpxchg((unsigned long *)&list->next,
767 val | old_flag, val | new_flag);
769 /* check if the reader took the page */
770 if ((ret & ~RB_FLAG_MASK) != val)
771 return RB_PAGE_MOVED;
773 return ret & RB_FLAG_MASK;
776 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
777 struct buffer_page *head,
778 struct buffer_page *prev,
779 int old_flag)
781 return rb_head_page_set(cpu_buffer, head, prev,
782 old_flag, RB_PAGE_UPDATE);
785 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
786 struct buffer_page *head,
787 struct buffer_page *prev,
788 int old_flag)
790 return rb_head_page_set(cpu_buffer, head, prev,
791 old_flag, RB_PAGE_HEAD);
794 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
795 struct buffer_page *head,
796 struct buffer_page *prev,
797 int old_flag)
799 return rb_head_page_set(cpu_buffer, head, prev,
800 old_flag, RB_PAGE_NORMAL);
803 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
804 struct buffer_page **bpage)
806 struct list_head *p = rb_list_head((*bpage)->list.next);
808 *bpage = list_entry(p, struct buffer_page, list);
811 static struct buffer_page *
812 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
814 struct buffer_page *head;
815 struct buffer_page *page;
816 struct list_head *list;
817 int i;
819 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
820 return NULL;
822 /* sanity check */
823 list = cpu_buffer->pages;
824 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
825 return NULL;
827 page = head = cpu_buffer->head_page;
829 * It is possible that the writer moves the header behind
830 * where we started, and we miss in one loop.
831 * A second loop should grab the header, but we'll do
832 * three loops just because I'm paranoid.
834 for (i = 0; i < 3; i++) {
835 do {
836 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
837 cpu_buffer->head_page = page;
838 return page;
840 rb_inc_page(cpu_buffer, &page);
841 } while (page != head);
844 RB_WARN_ON(cpu_buffer, 1);
846 return NULL;
849 static int rb_head_page_replace(struct buffer_page *old,
850 struct buffer_page *new)
852 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
853 unsigned long val;
854 unsigned long ret;
856 val = *ptr & ~RB_FLAG_MASK;
857 val |= RB_PAGE_HEAD;
859 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
861 return ret == val;
865 * rb_tail_page_update - move the tail page forward
867 * Returns 1 if moved tail page, 0 if someone else did.
869 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
870 struct buffer_page *tail_page,
871 struct buffer_page *next_page)
873 struct buffer_page *old_tail;
874 unsigned long old_entries;
875 unsigned long old_write;
876 int ret = 0;
879 * The tail page now needs to be moved forward.
881 * We need to reset the tail page, but without messing
882 * with possible erasing of data brought in by interrupts
883 * that have moved the tail page and are currently on it.
885 * We add a counter to the write field to denote this.
887 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
888 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
891 * Just make sure we have seen our old_write and synchronize
892 * with any interrupts that come in.
894 barrier();
897 * If the tail page is still the same as what we think
898 * it is, then it is up to us to update the tail
899 * pointer.
901 if (tail_page == cpu_buffer->tail_page) {
902 /* Zero the write counter */
903 unsigned long val = old_write & ~RB_WRITE_MASK;
904 unsigned long eval = old_entries & ~RB_WRITE_MASK;
907 * This will only succeed if an interrupt did
908 * not come in and change it. In which case, we
909 * do not want to modify it.
911 * We add (void) to let the compiler know that we do not care
912 * about the return value of these functions. We use the
913 * cmpxchg to only update if an interrupt did not already
914 * do it for us. If the cmpxchg fails, we don't care.
916 (void)local_cmpxchg(&next_page->write, old_write, val);
917 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
920 * No need to worry about races with clearing out the commit.
921 * it only can increment when a commit takes place. But that
922 * only happens in the outer most nested commit.
924 local_set(&next_page->page->commit, 0);
926 old_tail = cmpxchg(&cpu_buffer->tail_page,
927 tail_page, next_page);
929 if (old_tail == tail_page)
930 ret = 1;
933 return ret;
936 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
937 struct buffer_page *bpage)
939 unsigned long val = (unsigned long)bpage;
941 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
942 return 1;
944 return 0;
948 * rb_check_list - make sure a pointer to a list has the last bits zero
950 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
951 struct list_head *list)
953 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
954 return 1;
955 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
956 return 1;
957 return 0;
961 * check_pages - integrity check of buffer pages
962 * @cpu_buffer: CPU buffer with pages to test
964 * As a safety measure we check to make sure the data pages have not
965 * been corrupted.
967 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
969 struct list_head *head = cpu_buffer->pages;
970 struct buffer_page *bpage, *tmp;
972 rb_head_page_deactivate(cpu_buffer);
974 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
975 return -1;
976 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
977 return -1;
979 if (rb_check_list(cpu_buffer, head))
980 return -1;
982 list_for_each_entry_safe(bpage, tmp, head, list) {
983 if (RB_WARN_ON(cpu_buffer,
984 bpage->list.next->prev != &bpage->list))
985 return -1;
986 if (RB_WARN_ON(cpu_buffer,
987 bpage->list.prev->next != &bpage->list))
988 return -1;
989 if (rb_check_list(cpu_buffer, &bpage->list))
990 return -1;
993 rb_head_page_activate(cpu_buffer);
995 return 0;
998 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
999 unsigned nr_pages)
1001 struct buffer_page *bpage, *tmp;
1002 LIST_HEAD(pages);
1003 unsigned i;
1005 WARN_ON(!nr_pages);
1007 for (i = 0; i < nr_pages; i++) {
1008 struct page *page;
1010 * __GFP_NORETRY flag makes sure that the allocation fails
1011 * gracefully without invoking oom-killer and the system is
1012 * not destabilized.
1014 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1015 GFP_KERNEL | __GFP_NORETRY,
1016 cpu_to_node(cpu_buffer->cpu));
1017 if (!bpage)
1018 goto free_pages;
1020 rb_check_bpage(cpu_buffer, bpage);
1022 list_add(&bpage->list, &pages);
1024 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
1025 GFP_KERNEL | __GFP_NORETRY, 0);
1026 if (!page)
1027 goto free_pages;
1028 bpage->page = page_address(page);
1029 rb_init_page(bpage->page);
1033 * The ring buffer page list is a circular list that does not
1034 * start and end with a list head. All page list items point to
1035 * other pages.
1037 cpu_buffer->pages = pages.next;
1038 list_del(&pages);
1040 rb_check_pages(cpu_buffer);
1042 return 0;
1044 free_pages:
1045 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1046 list_del_init(&bpage->list);
1047 free_buffer_page(bpage);
1049 return -ENOMEM;
1052 static struct ring_buffer_per_cpu *
1053 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1055 struct ring_buffer_per_cpu *cpu_buffer;
1056 struct buffer_page *bpage;
1057 struct page *page;
1058 int ret;
1060 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1061 GFP_KERNEL, cpu_to_node(cpu));
1062 if (!cpu_buffer)
1063 return NULL;
1065 cpu_buffer->cpu = cpu;
1066 cpu_buffer->buffer = buffer;
1067 raw_spin_lock_init(&cpu_buffer->reader_lock);
1068 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1069 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1071 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1072 GFP_KERNEL, cpu_to_node(cpu));
1073 if (!bpage)
1074 goto fail_free_buffer;
1076 rb_check_bpage(cpu_buffer, bpage);
1078 cpu_buffer->reader_page = bpage;
1079 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1080 if (!page)
1081 goto fail_free_reader;
1082 bpage->page = page_address(page);
1083 rb_init_page(bpage->page);
1085 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1087 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1088 if (ret < 0)
1089 goto fail_free_reader;
1091 cpu_buffer->head_page
1092 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1093 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1095 rb_head_page_activate(cpu_buffer);
1097 return cpu_buffer;
1099 fail_free_reader:
1100 free_buffer_page(cpu_buffer->reader_page);
1102 fail_free_buffer:
1103 kfree(cpu_buffer);
1104 return NULL;
1107 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1109 struct list_head *head = cpu_buffer->pages;
1110 struct buffer_page *bpage, *tmp;
1112 free_buffer_page(cpu_buffer->reader_page);
1114 rb_head_page_deactivate(cpu_buffer);
1116 if (head) {
1117 list_for_each_entry_safe(bpage, tmp, head, list) {
1118 list_del_init(&bpage->list);
1119 free_buffer_page(bpage);
1121 bpage = list_entry(head, struct buffer_page, list);
1122 free_buffer_page(bpage);
1125 kfree(cpu_buffer);
1128 #ifdef CONFIG_HOTPLUG_CPU
1129 static int rb_cpu_notify(struct notifier_block *self,
1130 unsigned long action, void *hcpu);
1131 #endif
1134 * ring_buffer_alloc - allocate a new ring_buffer
1135 * @size: the size in bytes per cpu that is needed.
1136 * @flags: attributes to set for the ring buffer.
1138 * Currently the only flag that is available is the RB_FL_OVERWRITE
1139 * flag. This flag means that the buffer will overwrite old data
1140 * when the buffer wraps. If this flag is not set, the buffer will
1141 * drop data when the tail hits the head.
1143 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1144 struct lock_class_key *key)
1146 struct ring_buffer *buffer;
1147 int bsize;
1148 int cpu;
1150 /* keep it in its own cache line */
1151 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1152 GFP_KERNEL);
1153 if (!buffer)
1154 return NULL;
1156 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1157 goto fail_free_buffer;
1159 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1160 buffer->flags = flags;
1161 buffer->clock = trace_clock_local;
1162 buffer->reader_lock_key = key;
1164 /* need at least two pages */
1165 if (buffer->pages < 2)
1166 buffer->pages = 2;
1169 * In case of non-hotplug cpu, if the ring-buffer is allocated
1170 * in early initcall, it will not be notified of secondary cpus.
1171 * In that off case, we need to allocate for all possible cpus.
1173 #ifdef CONFIG_HOTPLUG_CPU
1174 get_online_cpus();
1175 cpumask_copy(buffer->cpumask, cpu_online_mask);
1176 #else
1177 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1178 #endif
1179 buffer->cpus = nr_cpu_ids;
1181 bsize = sizeof(void *) * nr_cpu_ids;
1182 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1183 GFP_KERNEL);
1184 if (!buffer->buffers)
1185 goto fail_free_cpumask;
1187 for_each_buffer_cpu(buffer, cpu) {
1188 buffer->buffers[cpu] =
1189 rb_allocate_cpu_buffer(buffer, cpu);
1190 if (!buffer->buffers[cpu])
1191 goto fail_free_buffers;
1194 #ifdef CONFIG_HOTPLUG_CPU
1195 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1196 buffer->cpu_notify.priority = 0;
1197 register_cpu_notifier(&buffer->cpu_notify);
1198 #endif
1200 put_online_cpus();
1201 mutex_init(&buffer->mutex);
1203 return buffer;
1205 fail_free_buffers:
1206 for_each_buffer_cpu(buffer, cpu) {
1207 if (buffer->buffers[cpu])
1208 rb_free_cpu_buffer(buffer->buffers[cpu]);
1210 kfree(buffer->buffers);
1212 fail_free_cpumask:
1213 free_cpumask_var(buffer->cpumask);
1214 put_online_cpus();
1216 fail_free_buffer:
1217 kfree(buffer);
1218 return NULL;
1220 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1223 * ring_buffer_free - free a ring buffer.
1224 * @buffer: the buffer to free.
1226 void
1227 ring_buffer_free(struct ring_buffer *buffer)
1229 int cpu;
1231 get_online_cpus();
1233 #ifdef CONFIG_HOTPLUG_CPU
1234 unregister_cpu_notifier(&buffer->cpu_notify);
1235 #endif
1237 for_each_buffer_cpu(buffer, cpu)
1238 rb_free_cpu_buffer(buffer->buffers[cpu]);
1240 put_online_cpus();
1242 kfree(buffer->buffers);
1243 free_cpumask_var(buffer->cpumask);
1245 kfree(buffer);
1247 EXPORT_SYMBOL_GPL(ring_buffer_free);
1249 void ring_buffer_set_clock(struct ring_buffer *buffer,
1250 u64 (*clock)(void))
1252 buffer->clock = clock;
1255 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1257 static void
1258 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1260 struct buffer_page *bpage;
1261 struct list_head *p;
1262 unsigned i;
1264 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1265 rb_head_page_deactivate(cpu_buffer);
1267 for (i = 0; i < nr_pages; i++) {
1268 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1269 goto out;
1270 p = cpu_buffer->pages->next;
1271 bpage = list_entry(p, struct buffer_page, list);
1272 list_del_init(&bpage->list);
1273 free_buffer_page(bpage);
1275 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1276 goto out;
1278 rb_reset_cpu(cpu_buffer);
1279 rb_check_pages(cpu_buffer);
1281 out:
1282 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1285 static void
1286 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1287 struct list_head *pages, unsigned nr_pages)
1289 struct buffer_page *bpage;
1290 struct list_head *p;
1291 unsigned i;
1293 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1294 rb_head_page_deactivate(cpu_buffer);
1296 for (i = 0; i < nr_pages; i++) {
1297 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1298 goto out;
1299 p = pages->next;
1300 bpage = list_entry(p, struct buffer_page, list);
1301 list_del_init(&bpage->list);
1302 list_add_tail(&bpage->list, cpu_buffer->pages);
1304 rb_reset_cpu(cpu_buffer);
1305 rb_check_pages(cpu_buffer);
1307 out:
1308 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1312 * ring_buffer_resize - resize the ring buffer
1313 * @buffer: the buffer to resize.
1314 * @size: the new size.
1316 * Minimum size is 2 * BUF_PAGE_SIZE.
1318 * Returns -1 on failure.
1320 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1322 struct ring_buffer_per_cpu *cpu_buffer;
1323 unsigned nr_pages, rm_pages, new_pages;
1324 struct buffer_page *bpage, *tmp;
1325 unsigned long buffer_size;
1326 LIST_HEAD(pages);
1327 int i, cpu;
1330 * Always succeed at resizing a non-existent buffer:
1332 if (!buffer)
1333 return size;
1335 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1336 size *= BUF_PAGE_SIZE;
1337 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1339 /* we need a minimum of two pages */
1340 if (size < BUF_PAGE_SIZE * 2)
1341 size = BUF_PAGE_SIZE * 2;
1343 if (size == buffer_size)
1344 return size;
1346 atomic_inc(&buffer->record_disabled);
1348 /* Make sure all writers are done with this buffer. */
1349 synchronize_sched();
1351 mutex_lock(&buffer->mutex);
1352 get_online_cpus();
1354 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1356 if (size < buffer_size) {
1358 /* easy case, just free pages */
1359 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1360 goto out_fail;
1362 rm_pages = buffer->pages - nr_pages;
1364 for_each_buffer_cpu(buffer, cpu) {
1365 cpu_buffer = buffer->buffers[cpu];
1366 rb_remove_pages(cpu_buffer, rm_pages);
1368 goto out;
1372 * This is a bit more difficult. We only want to add pages
1373 * when we can allocate enough for all CPUs. We do this
1374 * by allocating all the pages and storing them on a local
1375 * link list. If we succeed in our allocation, then we
1376 * add these pages to the cpu_buffers. Otherwise we just free
1377 * them all and return -ENOMEM;
1379 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1380 goto out_fail;
1382 new_pages = nr_pages - buffer->pages;
1384 for_each_buffer_cpu(buffer, cpu) {
1385 for (i = 0; i < new_pages; i++) {
1386 struct page *page;
1388 * __GFP_NORETRY flag makes sure that the allocation
1389 * fails gracefully without invoking oom-killer and
1390 * the system is not destabilized.
1392 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1393 cache_line_size()),
1394 GFP_KERNEL | __GFP_NORETRY,
1395 cpu_to_node(cpu));
1396 if (!bpage)
1397 goto free_pages;
1398 list_add(&bpage->list, &pages);
1399 page = alloc_pages_node(cpu_to_node(cpu),
1400 GFP_KERNEL | __GFP_NORETRY, 0);
1401 if (!page)
1402 goto free_pages;
1403 bpage->page = page_address(page);
1404 rb_init_page(bpage->page);
1408 for_each_buffer_cpu(buffer, cpu) {
1409 cpu_buffer = buffer->buffers[cpu];
1410 rb_insert_pages(cpu_buffer, &pages, new_pages);
1413 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1414 goto out_fail;
1416 out:
1417 buffer->pages = nr_pages;
1418 put_online_cpus();
1419 mutex_unlock(&buffer->mutex);
1421 atomic_dec(&buffer->record_disabled);
1423 return size;
1425 free_pages:
1426 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1427 list_del_init(&bpage->list);
1428 free_buffer_page(bpage);
1430 put_online_cpus();
1431 mutex_unlock(&buffer->mutex);
1432 atomic_dec(&buffer->record_disabled);
1433 return -ENOMEM;
1436 * Something went totally wrong, and we are too paranoid
1437 * to even clean up the mess.
1439 out_fail:
1440 put_online_cpus();
1441 mutex_unlock(&buffer->mutex);
1442 atomic_dec(&buffer->record_disabled);
1443 return -1;
1445 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1447 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1449 mutex_lock(&buffer->mutex);
1450 if (val)
1451 buffer->flags |= RB_FL_OVERWRITE;
1452 else
1453 buffer->flags &= ~RB_FL_OVERWRITE;
1454 mutex_unlock(&buffer->mutex);
1456 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1458 static inline void *
1459 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1461 return bpage->data + index;
1464 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1466 return bpage->page->data + index;
1469 static inline struct ring_buffer_event *
1470 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1472 return __rb_page_index(cpu_buffer->reader_page,
1473 cpu_buffer->reader_page->read);
1476 static inline struct ring_buffer_event *
1477 rb_iter_head_event(struct ring_buffer_iter *iter)
1479 return __rb_page_index(iter->head_page, iter->head);
1482 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1484 return local_read(&bpage->write) & RB_WRITE_MASK;
1487 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1489 return local_read(&bpage->page->commit);
1492 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1494 return local_read(&bpage->entries) & RB_WRITE_MASK;
1497 /* Size is determined by what has been committed */
1498 static inline unsigned rb_page_size(struct buffer_page *bpage)
1500 return rb_page_commit(bpage);
1503 static inline unsigned
1504 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1506 return rb_page_commit(cpu_buffer->commit_page);
1509 static inline unsigned
1510 rb_event_index(struct ring_buffer_event *event)
1512 unsigned long addr = (unsigned long)event;
1514 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1517 static inline int
1518 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1519 struct ring_buffer_event *event)
1521 unsigned long addr = (unsigned long)event;
1522 unsigned long index;
1524 index = rb_event_index(event);
1525 addr &= PAGE_MASK;
1527 return cpu_buffer->commit_page->page == (void *)addr &&
1528 rb_commit_index(cpu_buffer) == index;
1531 static void
1532 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1534 unsigned long max_count;
1537 * We only race with interrupts and NMIs on this CPU.
1538 * If we own the commit event, then we can commit
1539 * all others that interrupted us, since the interruptions
1540 * are in stack format (they finish before they come
1541 * back to us). This allows us to do a simple loop to
1542 * assign the commit to the tail.
1544 again:
1545 max_count = cpu_buffer->buffer->pages * 100;
1547 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1548 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1549 return;
1550 if (RB_WARN_ON(cpu_buffer,
1551 rb_is_reader_page(cpu_buffer->tail_page)))
1552 return;
1553 local_set(&cpu_buffer->commit_page->page->commit,
1554 rb_page_write(cpu_buffer->commit_page));
1555 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1556 cpu_buffer->write_stamp =
1557 cpu_buffer->commit_page->page->time_stamp;
1558 /* add barrier to keep gcc from optimizing too much */
1559 barrier();
1561 while (rb_commit_index(cpu_buffer) !=
1562 rb_page_write(cpu_buffer->commit_page)) {
1564 local_set(&cpu_buffer->commit_page->page->commit,
1565 rb_page_write(cpu_buffer->commit_page));
1566 RB_WARN_ON(cpu_buffer,
1567 local_read(&cpu_buffer->commit_page->page->commit) &
1568 ~RB_WRITE_MASK);
1569 barrier();
1572 /* again, keep gcc from optimizing */
1573 barrier();
1576 * If an interrupt came in just after the first while loop
1577 * and pushed the tail page forward, we will be left with
1578 * a dangling commit that will never go forward.
1580 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1581 goto again;
1584 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1586 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1587 cpu_buffer->reader_page->read = 0;
1590 static void rb_inc_iter(struct ring_buffer_iter *iter)
1592 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1595 * The iterator could be on the reader page (it starts there).
1596 * But the head could have moved, since the reader was
1597 * found. Check for this case and assign the iterator
1598 * to the head page instead of next.
1600 if (iter->head_page == cpu_buffer->reader_page)
1601 iter->head_page = rb_set_head_page(cpu_buffer);
1602 else
1603 rb_inc_page(cpu_buffer, &iter->head_page);
1605 iter->read_stamp = iter->head_page->page->time_stamp;
1606 iter->head = 0;
1609 /* Slow path, do not inline */
1610 static noinline struct ring_buffer_event *
1611 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1613 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1615 /* Not the first event on the page? */
1616 if (rb_event_index(event)) {
1617 event->time_delta = delta & TS_MASK;
1618 event->array[0] = delta >> TS_SHIFT;
1619 } else {
1620 /* nope, just zero it */
1621 event->time_delta = 0;
1622 event->array[0] = 0;
1625 return skip_time_extend(event);
1629 * ring_buffer_update_event - update event type and data
1630 * @event: the even to update
1631 * @type: the type of event
1632 * @length: the size of the event field in the ring buffer
1634 * Update the type and data fields of the event. The length
1635 * is the actual size that is written to the ring buffer,
1636 * and with this, we can determine what to place into the
1637 * data field.
1639 static void
1640 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1641 struct ring_buffer_event *event, unsigned length,
1642 int add_timestamp, u64 delta)
1644 /* Only a commit updates the timestamp */
1645 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1646 delta = 0;
1649 * If we need to add a timestamp, then we
1650 * add it to the start of the resevered space.
1652 if (unlikely(add_timestamp)) {
1653 event = rb_add_time_stamp(event, delta);
1654 length -= RB_LEN_TIME_EXTEND;
1655 delta = 0;
1658 event->time_delta = delta;
1659 length -= RB_EVNT_HDR_SIZE;
1660 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1661 event->type_len = 0;
1662 event->array[0] = length;
1663 } else
1664 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1668 * rb_handle_head_page - writer hit the head page
1670 * Returns: +1 to retry page
1671 * 0 to continue
1672 * -1 on error
1674 static int
1675 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1676 struct buffer_page *tail_page,
1677 struct buffer_page *next_page)
1679 struct buffer_page *new_head;
1680 int entries;
1681 int type;
1682 int ret;
1684 entries = rb_page_entries(next_page);
1687 * The hard part is here. We need to move the head
1688 * forward, and protect against both readers on
1689 * other CPUs and writers coming in via interrupts.
1691 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1692 RB_PAGE_HEAD);
1695 * type can be one of four:
1696 * NORMAL - an interrupt already moved it for us
1697 * HEAD - we are the first to get here.
1698 * UPDATE - we are the interrupt interrupting
1699 * a current move.
1700 * MOVED - a reader on another CPU moved the next
1701 * pointer to its reader page. Give up
1702 * and try again.
1705 switch (type) {
1706 case RB_PAGE_HEAD:
1708 * We changed the head to UPDATE, thus
1709 * it is our responsibility to update
1710 * the counters.
1712 local_add(entries, &cpu_buffer->overrun);
1713 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1716 * The entries will be zeroed out when we move the
1717 * tail page.
1720 /* still more to do */
1721 break;
1723 case RB_PAGE_UPDATE:
1725 * This is an interrupt that interrupt the
1726 * previous update. Still more to do.
1728 break;
1729 case RB_PAGE_NORMAL:
1731 * An interrupt came in before the update
1732 * and processed this for us.
1733 * Nothing left to do.
1735 return 1;
1736 case RB_PAGE_MOVED:
1738 * The reader is on another CPU and just did
1739 * a swap with our next_page.
1740 * Try again.
1742 return 1;
1743 default:
1744 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1745 return -1;
1749 * Now that we are here, the old head pointer is
1750 * set to UPDATE. This will keep the reader from
1751 * swapping the head page with the reader page.
1752 * The reader (on another CPU) will spin till
1753 * we are finished.
1755 * We just need to protect against interrupts
1756 * doing the job. We will set the next pointer
1757 * to HEAD. After that, we set the old pointer
1758 * to NORMAL, but only if it was HEAD before.
1759 * otherwise we are an interrupt, and only
1760 * want the outer most commit to reset it.
1762 new_head = next_page;
1763 rb_inc_page(cpu_buffer, &new_head);
1765 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1766 RB_PAGE_NORMAL);
1769 * Valid returns are:
1770 * HEAD - an interrupt came in and already set it.
1771 * NORMAL - One of two things:
1772 * 1) We really set it.
1773 * 2) A bunch of interrupts came in and moved
1774 * the page forward again.
1776 switch (ret) {
1777 case RB_PAGE_HEAD:
1778 case RB_PAGE_NORMAL:
1779 /* OK */
1780 break;
1781 default:
1782 RB_WARN_ON(cpu_buffer, 1);
1783 return -1;
1787 * It is possible that an interrupt came in,
1788 * set the head up, then more interrupts came in
1789 * and moved it again. When we get back here,
1790 * the page would have been set to NORMAL but we
1791 * just set it back to HEAD.
1793 * How do you detect this? Well, if that happened
1794 * the tail page would have moved.
1796 if (ret == RB_PAGE_NORMAL) {
1798 * If the tail had moved passed next, then we need
1799 * to reset the pointer.
1801 if (cpu_buffer->tail_page != tail_page &&
1802 cpu_buffer->tail_page != next_page)
1803 rb_head_page_set_normal(cpu_buffer, new_head,
1804 next_page,
1805 RB_PAGE_HEAD);
1809 * If this was the outer most commit (the one that
1810 * changed the original pointer from HEAD to UPDATE),
1811 * then it is up to us to reset it to NORMAL.
1813 if (type == RB_PAGE_HEAD) {
1814 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1815 tail_page,
1816 RB_PAGE_UPDATE);
1817 if (RB_WARN_ON(cpu_buffer,
1818 ret != RB_PAGE_UPDATE))
1819 return -1;
1822 return 0;
1825 static unsigned rb_calculate_event_length(unsigned length)
1827 struct ring_buffer_event event; /* Used only for sizeof array */
1829 /* zero length can cause confusions */
1830 if (!length)
1831 length = 1;
1833 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1834 length += sizeof(event.array[0]);
1836 length += RB_EVNT_HDR_SIZE;
1837 length = ALIGN(length, RB_ARCH_ALIGNMENT);
1839 return length;
1842 static inline void
1843 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1844 struct buffer_page *tail_page,
1845 unsigned long tail, unsigned long length)
1847 struct ring_buffer_event *event;
1850 * Only the event that crossed the page boundary
1851 * must fill the old tail_page with padding.
1853 if (tail >= BUF_PAGE_SIZE) {
1855 * If the page was filled, then we still need
1856 * to update the real_end. Reset it to zero
1857 * and the reader will ignore it.
1859 if (tail == BUF_PAGE_SIZE)
1860 tail_page->real_end = 0;
1862 local_sub(length, &tail_page->write);
1863 return;
1866 event = __rb_page_index(tail_page, tail);
1867 kmemcheck_annotate_bitfield(event, bitfield);
1869 /* account for padding bytes */
1870 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
1873 * Save the original length to the meta data.
1874 * This will be used by the reader to add lost event
1875 * counter.
1877 tail_page->real_end = tail;
1880 * If this event is bigger than the minimum size, then
1881 * we need to be careful that we don't subtract the
1882 * write counter enough to allow another writer to slip
1883 * in on this page.
1884 * We put in a discarded commit instead, to make sure
1885 * that this space is not used again.
1887 * If we are less than the minimum size, we don't need to
1888 * worry about it.
1890 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1891 /* No room for any events */
1893 /* Mark the rest of the page with padding */
1894 rb_event_set_padding(event);
1896 /* Set the write back to the previous setting */
1897 local_sub(length, &tail_page->write);
1898 return;
1901 /* Put in a discarded event */
1902 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1903 event->type_len = RINGBUF_TYPE_PADDING;
1904 /* time delta must be non zero */
1905 event->time_delta = 1;
1907 /* Set write to end of buffer */
1908 length = (tail + length) - BUF_PAGE_SIZE;
1909 local_sub(length, &tail_page->write);
1913 * This is the slow path, force gcc not to inline it.
1915 static noinline struct ring_buffer_event *
1916 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1917 unsigned long length, unsigned long tail,
1918 struct buffer_page *tail_page, u64 ts)
1920 struct buffer_page *commit_page = cpu_buffer->commit_page;
1921 struct ring_buffer *buffer = cpu_buffer->buffer;
1922 struct buffer_page *next_page;
1923 int ret;
1925 next_page = tail_page;
1927 rb_inc_page(cpu_buffer, &next_page);
1930 * If for some reason, we had an interrupt storm that made
1931 * it all the way around the buffer, bail, and warn
1932 * about it.
1934 if (unlikely(next_page == commit_page)) {
1935 local_inc(&cpu_buffer->commit_overrun);
1936 goto out_reset;
1940 * This is where the fun begins!
1942 * We are fighting against races between a reader that
1943 * could be on another CPU trying to swap its reader
1944 * page with the buffer head.
1946 * We are also fighting against interrupts coming in and
1947 * moving the head or tail on us as well.
1949 * If the next page is the head page then we have filled
1950 * the buffer, unless the commit page is still on the
1951 * reader page.
1953 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1956 * If the commit is not on the reader page, then
1957 * move the header page.
1959 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1961 * If we are not in overwrite mode,
1962 * this is easy, just stop here.
1964 if (!(buffer->flags & RB_FL_OVERWRITE))
1965 goto out_reset;
1967 ret = rb_handle_head_page(cpu_buffer,
1968 tail_page,
1969 next_page);
1970 if (ret < 0)
1971 goto out_reset;
1972 if (ret)
1973 goto out_again;
1974 } else {
1976 * We need to be careful here too. The
1977 * commit page could still be on the reader
1978 * page. We could have a small buffer, and
1979 * have filled up the buffer with events
1980 * from interrupts and such, and wrapped.
1982 * Note, if the tail page is also the on the
1983 * reader_page, we let it move out.
1985 if (unlikely((cpu_buffer->commit_page !=
1986 cpu_buffer->tail_page) &&
1987 (cpu_buffer->commit_page ==
1988 cpu_buffer->reader_page))) {
1989 local_inc(&cpu_buffer->commit_overrun);
1990 goto out_reset;
1995 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1996 if (ret) {
1998 * Nested commits always have zero deltas, so
1999 * just reread the time stamp
2001 ts = rb_time_stamp(buffer);
2002 next_page->page->time_stamp = ts;
2005 out_again:
2007 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2009 /* fail and let the caller try again */
2010 return ERR_PTR(-EAGAIN);
2012 out_reset:
2013 /* reset write */
2014 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2016 return NULL;
2019 static struct ring_buffer_event *
2020 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2021 unsigned long length, u64 ts,
2022 u64 delta, int add_timestamp)
2024 struct buffer_page *tail_page;
2025 struct ring_buffer_event *event;
2026 unsigned long tail, write;
2029 * If the time delta since the last event is too big to
2030 * hold in the time field of the event, then we append a
2031 * TIME EXTEND event ahead of the data event.
2033 if (unlikely(add_timestamp))
2034 length += RB_LEN_TIME_EXTEND;
2036 tail_page = cpu_buffer->tail_page;
2037 write = local_add_return(length, &tail_page->write);
2039 /* set write to only the index of the write */
2040 write &= RB_WRITE_MASK;
2041 tail = write - length;
2043 /* See if we shot pass the end of this buffer page */
2044 if (unlikely(write > BUF_PAGE_SIZE))
2045 return rb_move_tail(cpu_buffer, length, tail,
2046 tail_page, ts);
2048 /* We reserved something on the buffer */
2050 event = __rb_page_index(tail_page, tail);
2051 kmemcheck_annotate_bitfield(event, bitfield);
2052 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2054 local_inc(&tail_page->entries);
2057 * If this is the first commit on the page, then update
2058 * its timestamp.
2060 if (!tail)
2061 tail_page->page->time_stamp = ts;
2063 /* account for these added bytes */
2064 local_add(length, &cpu_buffer->entries_bytes);
2066 return event;
2069 static inline int
2070 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2071 struct ring_buffer_event *event)
2073 unsigned long new_index, old_index;
2074 struct buffer_page *bpage;
2075 unsigned long index;
2076 unsigned long addr;
2078 new_index = rb_event_index(event);
2079 old_index = new_index + rb_event_ts_length(event);
2080 addr = (unsigned long)event;
2081 addr &= PAGE_MASK;
2083 bpage = cpu_buffer->tail_page;
2085 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2086 unsigned long write_mask =
2087 local_read(&bpage->write) & ~RB_WRITE_MASK;
2088 unsigned long event_length = rb_event_length(event);
2090 * This is on the tail page. It is possible that
2091 * a write could come in and move the tail page
2092 * and write to the next page. That is fine
2093 * because we just shorten what is on this page.
2095 old_index += write_mask;
2096 new_index += write_mask;
2097 index = local_cmpxchg(&bpage->write, old_index, new_index);
2098 if (index == old_index) {
2099 /* update counters */
2100 local_sub(event_length, &cpu_buffer->entries_bytes);
2101 return 1;
2105 /* could not discard */
2106 return 0;
2109 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2111 local_inc(&cpu_buffer->committing);
2112 local_inc(&cpu_buffer->commits);
2115 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2117 unsigned long commits;
2119 if (RB_WARN_ON(cpu_buffer,
2120 !local_read(&cpu_buffer->committing)))
2121 return;
2123 again:
2124 commits = local_read(&cpu_buffer->commits);
2125 /* synchronize with interrupts */
2126 barrier();
2127 if (local_read(&cpu_buffer->committing) == 1)
2128 rb_set_commit_to_write(cpu_buffer);
2130 local_dec(&cpu_buffer->committing);
2132 /* synchronize with interrupts */
2133 barrier();
2136 * Need to account for interrupts coming in between the
2137 * updating of the commit page and the clearing of the
2138 * committing counter.
2140 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2141 !local_read(&cpu_buffer->committing)) {
2142 local_inc(&cpu_buffer->committing);
2143 goto again;
2147 static struct ring_buffer_event *
2148 rb_reserve_next_event(struct ring_buffer *buffer,
2149 struct ring_buffer_per_cpu *cpu_buffer,
2150 unsigned long length)
2152 struct ring_buffer_event *event;
2153 u64 ts, delta;
2154 int nr_loops = 0;
2155 int add_timestamp;
2156 u64 diff;
2158 rb_start_commit(cpu_buffer);
2160 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2162 * Due to the ability to swap a cpu buffer from a buffer
2163 * it is possible it was swapped before we committed.
2164 * (committing stops a swap). We check for it here and
2165 * if it happened, we have to fail the write.
2167 barrier();
2168 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2169 local_dec(&cpu_buffer->committing);
2170 local_dec(&cpu_buffer->commits);
2171 return NULL;
2173 #endif
2175 length = rb_calculate_event_length(length);
2176 again:
2177 add_timestamp = 0;
2178 delta = 0;
2181 * We allow for interrupts to reenter here and do a trace.
2182 * If one does, it will cause this original code to loop
2183 * back here. Even with heavy interrupts happening, this
2184 * should only happen a few times in a row. If this happens
2185 * 1000 times in a row, there must be either an interrupt
2186 * storm or we have something buggy.
2187 * Bail!
2189 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2190 goto out_fail;
2192 ts = rb_time_stamp(cpu_buffer->buffer);
2193 diff = ts - cpu_buffer->write_stamp;
2195 /* make sure this diff is calculated here */
2196 barrier();
2198 /* Did the write stamp get updated already? */
2199 if (likely(ts >= cpu_buffer->write_stamp)) {
2200 delta = diff;
2201 if (unlikely(test_time_stamp(delta))) {
2202 int local_clock_stable = 1;
2203 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2204 local_clock_stable = sched_clock_stable;
2205 #endif
2206 WARN_ONCE(delta > (1ULL << 59),
2207 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2208 (unsigned long long)delta,
2209 (unsigned long long)ts,
2210 (unsigned long long)cpu_buffer->write_stamp,
2211 local_clock_stable ? "" :
2212 "If you just came from a suspend/resume,\n"
2213 "please switch to the trace global clock:\n"
2214 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2215 add_timestamp = 1;
2219 event = __rb_reserve_next(cpu_buffer, length, ts,
2220 delta, add_timestamp);
2221 if (unlikely(PTR_ERR(event) == -EAGAIN))
2222 goto again;
2224 if (!event)
2225 goto out_fail;
2227 return event;
2229 out_fail:
2230 rb_end_commit(cpu_buffer);
2231 return NULL;
2234 #ifdef CONFIG_TRACING
2236 #define TRACE_RECURSIVE_DEPTH 16
2238 /* Keep this code out of the fast path cache */
2239 static noinline void trace_recursive_fail(void)
2241 /* Disable all tracing before we do anything else */
2242 tracing_off_permanent();
2244 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2245 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2246 trace_recursion_buffer(),
2247 hardirq_count() >> HARDIRQ_SHIFT,
2248 softirq_count() >> SOFTIRQ_SHIFT,
2249 in_nmi());
2251 WARN_ON_ONCE(1);
2254 static inline int trace_recursive_lock(void)
2256 trace_recursion_inc();
2258 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2259 return 0;
2261 trace_recursive_fail();
2263 return -1;
2266 static inline void trace_recursive_unlock(void)
2268 WARN_ON_ONCE(!trace_recursion_buffer());
2270 trace_recursion_dec();
2273 #else
2275 #define trace_recursive_lock() (0)
2276 #define trace_recursive_unlock() do { } while (0)
2278 #endif
2281 * ring_buffer_lock_reserve - reserve a part of the buffer
2282 * @buffer: the ring buffer to reserve from
2283 * @length: the length of the data to reserve (excluding event header)
2285 * Returns a reseverd event on the ring buffer to copy directly to.
2286 * The user of this interface will need to get the body to write into
2287 * and can use the ring_buffer_event_data() interface.
2289 * The length is the length of the data needed, not the event length
2290 * which also includes the event header.
2292 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2293 * If NULL is returned, then nothing has been allocated or locked.
2295 struct ring_buffer_event *
2296 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2298 struct ring_buffer_per_cpu *cpu_buffer;
2299 struct ring_buffer_event *event;
2300 int cpu;
2302 if (ring_buffer_flags != RB_BUFFERS_ON)
2303 return NULL;
2305 /* If we are tracing schedule, we don't want to recurse */
2306 preempt_disable_notrace();
2308 if (atomic_read(&buffer->record_disabled))
2309 goto out_nocheck;
2311 if (trace_recursive_lock())
2312 goto out_nocheck;
2314 cpu = raw_smp_processor_id();
2316 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2317 goto out;
2319 cpu_buffer = buffer->buffers[cpu];
2321 if (atomic_read(&cpu_buffer->record_disabled))
2322 goto out;
2324 if (length > BUF_MAX_DATA_SIZE)
2325 goto out;
2327 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2328 if (!event)
2329 goto out;
2331 return event;
2333 out:
2334 trace_recursive_unlock();
2336 out_nocheck:
2337 preempt_enable_notrace();
2338 return NULL;
2340 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2342 static void
2343 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2344 struct ring_buffer_event *event)
2346 u64 delta;
2349 * The event first in the commit queue updates the
2350 * time stamp.
2352 if (rb_event_is_commit(cpu_buffer, event)) {
2354 * A commit event that is first on a page
2355 * updates the write timestamp with the page stamp
2357 if (!rb_event_index(event))
2358 cpu_buffer->write_stamp =
2359 cpu_buffer->commit_page->page->time_stamp;
2360 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2361 delta = event->array[0];
2362 delta <<= TS_SHIFT;
2363 delta += event->time_delta;
2364 cpu_buffer->write_stamp += delta;
2365 } else
2366 cpu_buffer->write_stamp += event->time_delta;
2370 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2371 struct ring_buffer_event *event)
2373 local_inc(&cpu_buffer->entries);
2374 rb_update_write_stamp(cpu_buffer, event);
2375 rb_end_commit(cpu_buffer);
2379 * ring_buffer_unlock_commit - commit a reserved
2380 * @buffer: The buffer to commit to
2381 * @event: The event pointer to commit.
2383 * This commits the data to the ring buffer, and releases any locks held.
2385 * Must be paired with ring_buffer_lock_reserve.
2387 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2388 struct ring_buffer_event *event)
2390 struct ring_buffer_per_cpu *cpu_buffer;
2391 int cpu = raw_smp_processor_id();
2393 cpu_buffer = buffer->buffers[cpu];
2395 rb_commit(cpu_buffer, event);
2397 trace_recursive_unlock();
2399 preempt_enable_notrace();
2401 return 0;
2403 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2405 static inline void rb_event_discard(struct ring_buffer_event *event)
2407 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2408 event = skip_time_extend(event);
2410 /* array[0] holds the actual length for the discarded event */
2411 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2412 event->type_len = RINGBUF_TYPE_PADDING;
2413 /* time delta must be non zero */
2414 if (!event->time_delta)
2415 event->time_delta = 1;
2419 * Decrement the entries to the page that an event is on.
2420 * The event does not even need to exist, only the pointer
2421 * to the page it is on. This may only be called before the commit
2422 * takes place.
2424 static inline void
2425 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2426 struct ring_buffer_event *event)
2428 unsigned long addr = (unsigned long)event;
2429 struct buffer_page *bpage = cpu_buffer->commit_page;
2430 struct buffer_page *start;
2432 addr &= PAGE_MASK;
2434 /* Do the likely case first */
2435 if (likely(bpage->page == (void *)addr)) {
2436 local_dec(&bpage->entries);
2437 return;
2441 * Because the commit page may be on the reader page we
2442 * start with the next page and check the end loop there.
2444 rb_inc_page(cpu_buffer, &bpage);
2445 start = bpage;
2446 do {
2447 if (bpage->page == (void *)addr) {
2448 local_dec(&bpage->entries);
2449 return;
2451 rb_inc_page(cpu_buffer, &bpage);
2452 } while (bpage != start);
2454 /* commit not part of this buffer?? */
2455 RB_WARN_ON(cpu_buffer, 1);
2459 * ring_buffer_commit_discard - discard an event that has not been committed
2460 * @buffer: the ring buffer
2461 * @event: non committed event to discard
2463 * Sometimes an event that is in the ring buffer needs to be ignored.
2464 * This function lets the user discard an event in the ring buffer
2465 * and then that event will not be read later.
2467 * This function only works if it is called before the the item has been
2468 * committed. It will try to free the event from the ring buffer
2469 * if another event has not been added behind it.
2471 * If another event has been added behind it, it will set the event
2472 * up as discarded, and perform the commit.
2474 * If this function is called, do not call ring_buffer_unlock_commit on
2475 * the event.
2477 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2478 struct ring_buffer_event *event)
2480 struct ring_buffer_per_cpu *cpu_buffer;
2481 int cpu;
2483 /* The event is discarded regardless */
2484 rb_event_discard(event);
2486 cpu = smp_processor_id();
2487 cpu_buffer = buffer->buffers[cpu];
2490 * This must only be called if the event has not been
2491 * committed yet. Thus we can assume that preemption
2492 * is still disabled.
2494 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2496 rb_decrement_entry(cpu_buffer, event);
2497 if (rb_try_to_discard(cpu_buffer, event))
2498 goto out;
2501 * The commit is still visible by the reader, so we
2502 * must still update the timestamp.
2504 rb_update_write_stamp(cpu_buffer, event);
2505 out:
2506 rb_end_commit(cpu_buffer);
2508 trace_recursive_unlock();
2510 preempt_enable_notrace();
2513 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2516 * ring_buffer_write - write data to the buffer without reserving
2517 * @buffer: The ring buffer to write to.
2518 * @length: The length of the data being written (excluding the event header)
2519 * @data: The data to write to the buffer.
2521 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2522 * one function. If you already have the data to write to the buffer, it
2523 * may be easier to simply call this function.
2525 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2526 * and not the length of the event which would hold the header.
2528 int ring_buffer_write(struct ring_buffer *buffer,
2529 unsigned long length,
2530 void *data)
2532 struct ring_buffer_per_cpu *cpu_buffer;
2533 struct ring_buffer_event *event;
2534 void *body;
2535 int ret = -EBUSY;
2536 int cpu;
2538 if (ring_buffer_flags != RB_BUFFERS_ON)
2539 return -EBUSY;
2541 preempt_disable_notrace();
2543 if (atomic_read(&buffer->record_disabled))
2544 goto out;
2546 cpu = raw_smp_processor_id();
2548 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2549 goto out;
2551 cpu_buffer = buffer->buffers[cpu];
2553 if (atomic_read(&cpu_buffer->record_disabled))
2554 goto out;
2556 if (length > BUF_MAX_DATA_SIZE)
2557 goto out;
2559 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2560 if (!event)
2561 goto out;
2563 body = rb_event_data(event);
2565 memcpy(body, data, length);
2567 rb_commit(cpu_buffer, event);
2569 ret = 0;
2570 out:
2571 preempt_enable_notrace();
2573 return ret;
2575 EXPORT_SYMBOL_GPL(ring_buffer_write);
2577 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2579 struct buffer_page *reader = cpu_buffer->reader_page;
2580 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2581 struct buffer_page *commit = cpu_buffer->commit_page;
2583 /* In case of error, head will be NULL */
2584 if (unlikely(!head))
2585 return 1;
2587 return reader->read == rb_page_commit(reader) &&
2588 (commit == reader ||
2589 (commit == head &&
2590 head->read == rb_page_commit(commit)));
2594 * ring_buffer_record_disable - stop all writes into the buffer
2595 * @buffer: The ring buffer to stop writes to.
2597 * This prevents all writes to the buffer. Any attempt to write
2598 * to the buffer after this will fail and return NULL.
2600 * The caller should call synchronize_sched() after this.
2602 void ring_buffer_record_disable(struct ring_buffer *buffer)
2604 atomic_inc(&buffer->record_disabled);
2606 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2609 * ring_buffer_record_enable - enable writes to the buffer
2610 * @buffer: The ring buffer to enable writes
2612 * Note, multiple disables will need the same number of enables
2613 * to truly enable the writing (much like preempt_disable).
2615 void ring_buffer_record_enable(struct ring_buffer *buffer)
2617 atomic_dec(&buffer->record_disabled);
2619 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2622 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2623 * @buffer: The ring buffer to stop writes to.
2624 * @cpu: The CPU buffer to stop
2626 * This prevents all writes to the buffer. Any attempt to write
2627 * to the buffer after this will fail and return NULL.
2629 * The caller should call synchronize_sched() after this.
2631 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2633 struct ring_buffer_per_cpu *cpu_buffer;
2635 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2636 return;
2638 cpu_buffer = buffer->buffers[cpu];
2639 atomic_inc(&cpu_buffer->record_disabled);
2641 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2644 * ring_buffer_record_enable_cpu - enable writes to the buffer
2645 * @buffer: The ring buffer to enable writes
2646 * @cpu: The CPU to enable.
2648 * Note, multiple disables will need the same number of enables
2649 * to truly enable the writing (much like preempt_disable).
2651 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2653 struct ring_buffer_per_cpu *cpu_buffer;
2655 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2656 return;
2658 cpu_buffer = buffer->buffers[cpu];
2659 atomic_dec(&cpu_buffer->record_disabled);
2661 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2664 * The total entries in the ring buffer is the running counter
2665 * of entries entered into the ring buffer, minus the sum of
2666 * the entries read from the ring buffer and the number of
2667 * entries that were overwritten.
2669 static inline unsigned long
2670 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2672 return local_read(&cpu_buffer->entries) -
2673 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2677 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2678 * @buffer: The ring buffer
2679 * @cpu: The per CPU buffer to read from.
2681 unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2683 unsigned long flags;
2684 struct ring_buffer_per_cpu *cpu_buffer;
2685 struct buffer_page *bpage;
2686 unsigned long ret;
2688 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2689 return 0;
2691 cpu_buffer = buffer->buffers[cpu];
2692 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2694 * if the tail is on reader_page, oldest time stamp is on the reader
2695 * page
2697 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2698 bpage = cpu_buffer->reader_page;
2699 else
2700 bpage = rb_set_head_page(cpu_buffer);
2701 ret = bpage->page->time_stamp;
2702 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2704 return ret;
2706 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2709 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2710 * @buffer: The ring buffer
2711 * @cpu: The per CPU buffer to read from.
2713 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2715 struct ring_buffer_per_cpu *cpu_buffer;
2716 unsigned long ret;
2718 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2719 return 0;
2721 cpu_buffer = buffer->buffers[cpu];
2722 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2724 return ret;
2726 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2729 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2730 * @buffer: The ring buffer
2731 * @cpu: The per CPU buffer to get the entries from.
2733 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2735 struct ring_buffer_per_cpu *cpu_buffer;
2737 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2738 return 0;
2740 cpu_buffer = buffer->buffers[cpu];
2742 return rb_num_of_entries(cpu_buffer);
2744 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2747 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2748 * @buffer: The ring buffer
2749 * @cpu: The per CPU buffer to get the number of overruns from
2751 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2753 struct ring_buffer_per_cpu *cpu_buffer;
2754 unsigned long ret;
2756 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2757 return 0;
2759 cpu_buffer = buffer->buffers[cpu];
2760 ret = local_read(&cpu_buffer->overrun);
2762 return ret;
2764 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2767 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2768 * @buffer: The ring buffer
2769 * @cpu: The per CPU buffer to get the number of overruns from
2771 unsigned long
2772 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2774 struct ring_buffer_per_cpu *cpu_buffer;
2775 unsigned long ret;
2777 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2778 return 0;
2780 cpu_buffer = buffer->buffers[cpu];
2781 ret = local_read(&cpu_buffer->commit_overrun);
2783 return ret;
2785 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2788 * ring_buffer_entries - get the number of entries in a buffer
2789 * @buffer: The ring buffer
2791 * Returns the total number of entries in the ring buffer
2792 * (all CPU entries)
2794 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2796 struct ring_buffer_per_cpu *cpu_buffer;
2797 unsigned long entries = 0;
2798 int cpu;
2800 /* if you care about this being correct, lock the buffer */
2801 for_each_buffer_cpu(buffer, cpu) {
2802 cpu_buffer = buffer->buffers[cpu];
2803 entries += rb_num_of_entries(cpu_buffer);
2806 return entries;
2808 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2811 * ring_buffer_overruns - get the number of overruns in buffer
2812 * @buffer: The ring buffer
2814 * Returns the total number of overruns in the ring buffer
2815 * (all CPU entries)
2817 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2819 struct ring_buffer_per_cpu *cpu_buffer;
2820 unsigned long overruns = 0;
2821 int cpu;
2823 /* if you care about this being correct, lock the buffer */
2824 for_each_buffer_cpu(buffer, cpu) {
2825 cpu_buffer = buffer->buffers[cpu];
2826 overruns += local_read(&cpu_buffer->overrun);
2829 return overruns;
2831 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2833 static void rb_iter_reset(struct ring_buffer_iter *iter)
2835 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2837 /* Iterator usage is expected to have record disabled */
2838 if (list_empty(&cpu_buffer->reader_page->list)) {
2839 iter->head_page = rb_set_head_page(cpu_buffer);
2840 if (unlikely(!iter->head_page))
2841 return;
2842 iter->head = iter->head_page->read;
2843 } else {
2844 iter->head_page = cpu_buffer->reader_page;
2845 iter->head = cpu_buffer->reader_page->read;
2847 if (iter->head)
2848 iter->read_stamp = cpu_buffer->read_stamp;
2849 else
2850 iter->read_stamp = iter->head_page->page->time_stamp;
2851 iter->cache_reader_page = cpu_buffer->reader_page;
2852 iter->cache_read = cpu_buffer->read;
2856 * ring_buffer_iter_reset - reset an iterator
2857 * @iter: The iterator to reset
2859 * Resets the iterator, so that it will start from the beginning
2860 * again.
2862 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2864 struct ring_buffer_per_cpu *cpu_buffer;
2865 unsigned long flags;
2867 if (!iter)
2868 return;
2870 cpu_buffer = iter->cpu_buffer;
2872 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2873 rb_iter_reset(iter);
2874 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2876 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2879 * ring_buffer_iter_empty - check if an iterator has no more to read
2880 * @iter: The iterator to check
2882 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2884 struct ring_buffer_per_cpu *cpu_buffer;
2886 cpu_buffer = iter->cpu_buffer;
2888 return iter->head_page == cpu_buffer->commit_page &&
2889 iter->head == rb_commit_index(cpu_buffer);
2891 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2893 static void
2894 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2895 struct ring_buffer_event *event)
2897 u64 delta;
2899 switch (event->type_len) {
2900 case RINGBUF_TYPE_PADDING:
2901 return;
2903 case RINGBUF_TYPE_TIME_EXTEND:
2904 delta = event->array[0];
2905 delta <<= TS_SHIFT;
2906 delta += event->time_delta;
2907 cpu_buffer->read_stamp += delta;
2908 return;
2910 case RINGBUF_TYPE_TIME_STAMP:
2911 /* FIXME: not implemented */
2912 return;
2914 case RINGBUF_TYPE_DATA:
2915 cpu_buffer->read_stamp += event->time_delta;
2916 return;
2918 default:
2919 BUG();
2921 return;
2924 static void
2925 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2926 struct ring_buffer_event *event)
2928 u64 delta;
2930 switch (event->type_len) {
2931 case RINGBUF_TYPE_PADDING:
2932 return;
2934 case RINGBUF_TYPE_TIME_EXTEND:
2935 delta = event->array[0];
2936 delta <<= TS_SHIFT;
2937 delta += event->time_delta;
2938 iter->read_stamp += delta;
2939 return;
2941 case RINGBUF_TYPE_TIME_STAMP:
2942 /* FIXME: not implemented */
2943 return;
2945 case RINGBUF_TYPE_DATA:
2946 iter->read_stamp += event->time_delta;
2947 return;
2949 default:
2950 BUG();
2952 return;
2955 static struct buffer_page *
2956 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2958 struct buffer_page *reader = NULL;
2959 unsigned long overwrite;
2960 unsigned long flags;
2961 int nr_loops = 0;
2962 int ret;
2964 local_irq_save(flags);
2965 arch_spin_lock(&cpu_buffer->lock);
2967 again:
2969 * This should normally only loop twice. But because the
2970 * start of the reader inserts an empty page, it causes
2971 * a case where we will loop three times. There should be no
2972 * reason to loop four times (that I know of).
2974 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2975 reader = NULL;
2976 goto out;
2979 reader = cpu_buffer->reader_page;
2981 /* If there's more to read, return this page */
2982 if (cpu_buffer->reader_page->read < rb_page_size(reader))
2983 goto out;
2985 /* Never should we have an index greater than the size */
2986 if (RB_WARN_ON(cpu_buffer,
2987 cpu_buffer->reader_page->read > rb_page_size(reader)))
2988 goto out;
2990 /* check if we caught up to the tail */
2991 reader = NULL;
2992 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2993 goto out;
2996 * Reset the reader page to size zero.
2998 local_set(&cpu_buffer->reader_page->write, 0);
2999 local_set(&cpu_buffer->reader_page->entries, 0);
3000 local_set(&cpu_buffer->reader_page->page->commit, 0);
3001 cpu_buffer->reader_page->real_end = 0;
3003 spin:
3005 * Splice the empty reader page into the list around the head.
3007 reader = rb_set_head_page(cpu_buffer);
3008 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3009 cpu_buffer->reader_page->list.prev = reader->list.prev;
3012 * cpu_buffer->pages just needs to point to the buffer, it
3013 * has no specific buffer page to point to. Lets move it out
3014 * of our way so we don't accidentally swap it.
3016 cpu_buffer->pages = reader->list.prev;
3018 /* The reader page will be pointing to the new head */
3019 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3022 * We want to make sure we read the overruns after we set up our
3023 * pointers to the next object. The writer side does a
3024 * cmpxchg to cross pages which acts as the mb on the writer
3025 * side. Note, the reader will constantly fail the swap
3026 * while the writer is updating the pointers, so this
3027 * guarantees that the overwrite recorded here is the one we
3028 * want to compare with the last_overrun.
3030 smp_mb();
3031 overwrite = local_read(&(cpu_buffer->overrun));
3034 * Here's the tricky part.
3036 * We need to move the pointer past the header page.
3037 * But we can only do that if a writer is not currently
3038 * moving it. The page before the header page has the
3039 * flag bit '1' set if it is pointing to the page we want.
3040 * but if the writer is in the process of moving it
3041 * than it will be '2' or already moved '0'.
3044 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3047 * If we did not convert it, then we must try again.
3049 if (!ret)
3050 goto spin;
3053 * Yeah! We succeeded in replacing the page.
3055 * Now make the new head point back to the reader page.
3057 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3058 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3060 /* Finally update the reader page to the new head */
3061 cpu_buffer->reader_page = reader;
3062 rb_reset_reader_page(cpu_buffer);
3064 if (overwrite != cpu_buffer->last_overrun) {
3065 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3066 cpu_buffer->last_overrun = overwrite;
3069 goto again;
3071 out:
3072 arch_spin_unlock(&cpu_buffer->lock);
3073 local_irq_restore(flags);
3075 return reader;
3078 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3080 struct ring_buffer_event *event;
3081 struct buffer_page *reader;
3082 unsigned length;
3084 reader = rb_get_reader_page(cpu_buffer);
3086 /* This function should not be called when buffer is empty */
3087 if (RB_WARN_ON(cpu_buffer, !reader))
3088 return;
3090 event = rb_reader_event(cpu_buffer);
3092 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3093 cpu_buffer->read++;
3095 rb_update_read_stamp(cpu_buffer, event);
3097 length = rb_event_length(event);
3098 cpu_buffer->reader_page->read += length;
3101 static void rb_advance_iter(struct ring_buffer_iter *iter)
3103 struct ring_buffer_per_cpu *cpu_buffer;
3104 struct ring_buffer_event *event;
3105 unsigned length;
3107 cpu_buffer = iter->cpu_buffer;
3110 * Check if we are at the end of the buffer.
3112 if (iter->head >= rb_page_size(iter->head_page)) {
3113 /* discarded commits can make the page empty */
3114 if (iter->head_page == cpu_buffer->commit_page)
3115 return;
3116 rb_inc_iter(iter);
3117 return;
3120 event = rb_iter_head_event(iter);
3122 length = rb_event_length(event);
3125 * This should not be called to advance the header if we are
3126 * at the tail of the buffer.
3128 if (RB_WARN_ON(cpu_buffer,
3129 (iter->head_page == cpu_buffer->commit_page) &&
3130 (iter->head + length > rb_commit_index(cpu_buffer))))
3131 return;
3133 rb_update_iter_read_stamp(iter, event);
3135 iter->head += length;
3137 /* check for end of page padding */
3138 if ((iter->head >= rb_page_size(iter->head_page)) &&
3139 (iter->head_page != cpu_buffer->commit_page))
3140 rb_advance_iter(iter);
3143 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3145 return cpu_buffer->lost_events;
3148 static struct ring_buffer_event *
3149 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3150 unsigned long *lost_events)
3152 struct ring_buffer_event *event;
3153 struct buffer_page *reader;
3154 int nr_loops = 0;
3156 again:
3158 * We repeat when a time extend is encountered.
3159 * Since the time extend is always attached to a data event,
3160 * we should never loop more than once.
3161 * (We never hit the following condition more than twice).
3163 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3164 return NULL;
3166 reader = rb_get_reader_page(cpu_buffer);
3167 if (!reader)
3168 return NULL;
3170 event = rb_reader_event(cpu_buffer);
3172 switch (event->type_len) {
3173 case RINGBUF_TYPE_PADDING:
3174 if (rb_null_event(event))
3175 RB_WARN_ON(cpu_buffer, 1);
3177 * Because the writer could be discarding every
3178 * event it creates (which would probably be bad)
3179 * if we were to go back to "again" then we may never
3180 * catch up, and will trigger the warn on, or lock
3181 * the box. Return the padding, and we will release
3182 * the current locks, and try again.
3184 return event;
3186 case RINGBUF_TYPE_TIME_EXTEND:
3187 /* Internal data, OK to advance */
3188 rb_advance_reader(cpu_buffer);
3189 goto again;
3191 case RINGBUF_TYPE_TIME_STAMP:
3192 /* FIXME: not implemented */
3193 rb_advance_reader(cpu_buffer);
3194 goto again;
3196 case RINGBUF_TYPE_DATA:
3197 if (ts) {
3198 *ts = cpu_buffer->read_stamp + event->time_delta;
3199 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3200 cpu_buffer->cpu, ts);
3202 if (lost_events)
3203 *lost_events = rb_lost_events(cpu_buffer);
3204 return event;
3206 default:
3207 BUG();
3210 return NULL;
3212 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3214 static struct ring_buffer_event *
3215 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3217 struct ring_buffer *buffer;
3218 struct ring_buffer_per_cpu *cpu_buffer;
3219 struct ring_buffer_event *event;
3220 int nr_loops = 0;
3222 cpu_buffer = iter->cpu_buffer;
3223 buffer = cpu_buffer->buffer;
3226 * Check if someone performed a consuming read to
3227 * the buffer. A consuming read invalidates the iterator
3228 * and we need to reset the iterator in this case.
3230 if (unlikely(iter->cache_read != cpu_buffer->read ||
3231 iter->cache_reader_page != cpu_buffer->reader_page))
3232 rb_iter_reset(iter);
3234 again:
3235 if (ring_buffer_iter_empty(iter))
3236 return NULL;
3239 * We repeat when a time extend is encountered.
3240 * Since the time extend is always attached to a data event,
3241 * we should never loop more than once.
3242 * (We never hit the following condition more than twice).
3244 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3245 return NULL;
3247 if (rb_per_cpu_empty(cpu_buffer))
3248 return NULL;
3250 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3251 rb_inc_iter(iter);
3252 goto again;
3255 event = rb_iter_head_event(iter);
3257 switch (event->type_len) {
3258 case RINGBUF_TYPE_PADDING:
3259 if (rb_null_event(event)) {
3260 rb_inc_iter(iter);
3261 goto again;
3263 rb_advance_iter(iter);
3264 return event;
3266 case RINGBUF_TYPE_TIME_EXTEND:
3267 /* Internal data, OK to advance */
3268 rb_advance_iter(iter);
3269 goto again;
3271 case RINGBUF_TYPE_TIME_STAMP:
3272 /* FIXME: not implemented */
3273 rb_advance_iter(iter);
3274 goto again;
3276 case RINGBUF_TYPE_DATA:
3277 if (ts) {
3278 *ts = iter->read_stamp + event->time_delta;
3279 ring_buffer_normalize_time_stamp(buffer,
3280 cpu_buffer->cpu, ts);
3282 return event;
3284 default:
3285 BUG();
3288 return NULL;
3290 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3292 static inline int rb_ok_to_lock(void)
3295 * If an NMI die dumps out the content of the ring buffer
3296 * do not grab locks. We also permanently disable the ring
3297 * buffer too. A one time deal is all you get from reading
3298 * the ring buffer from an NMI.
3300 if (likely(!in_nmi()))
3301 return 1;
3303 tracing_off_permanent();
3304 return 0;
3308 * ring_buffer_peek - peek at the next event to be read
3309 * @buffer: The ring buffer to read
3310 * @cpu: The cpu to peak at
3311 * @ts: The timestamp counter of this event.
3312 * @lost_events: a variable to store if events were lost (may be NULL)
3314 * This will return the event that will be read next, but does
3315 * not consume the data.
3317 struct ring_buffer_event *
3318 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3319 unsigned long *lost_events)
3321 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3322 struct ring_buffer_event *event;
3323 unsigned long flags;
3324 int dolock;
3326 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3327 return NULL;
3329 dolock = rb_ok_to_lock();
3330 again:
3331 local_irq_save(flags);
3332 if (dolock)
3333 raw_spin_lock(&cpu_buffer->reader_lock);
3334 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3335 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3336 rb_advance_reader(cpu_buffer);
3337 if (dolock)
3338 raw_spin_unlock(&cpu_buffer->reader_lock);
3339 local_irq_restore(flags);
3341 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3342 goto again;
3344 return event;
3348 * ring_buffer_iter_peek - peek at the next event to be read
3349 * @iter: The ring buffer iterator
3350 * @ts: The timestamp counter of this event.
3352 * This will return the event that will be read next, but does
3353 * not increment the iterator.
3355 struct ring_buffer_event *
3356 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3358 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3359 struct ring_buffer_event *event;
3360 unsigned long flags;
3362 again:
3363 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3364 event = rb_iter_peek(iter, ts);
3365 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3367 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3368 goto again;
3370 return event;
3374 * ring_buffer_consume - return an event and consume it
3375 * @buffer: The ring buffer to get the next event from
3376 * @cpu: the cpu to read the buffer from
3377 * @ts: a variable to store the timestamp (may be NULL)
3378 * @lost_events: a variable to store if events were lost (may be NULL)
3380 * Returns the next event in the ring buffer, and that event is consumed.
3381 * Meaning, that sequential reads will keep returning a different event,
3382 * and eventually empty the ring buffer if the producer is slower.
3384 struct ring_buffer_event *
3385 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3386 unsigned long *lost_events)
3388 struct ring_buffer_per_cpu *cpu_buffer;
3389 struct ring_buffer_event *event = NULL;
3390 unsigned long flags;
3391 int dolock;
3393 dolock = rb_ok_to_lock();
3395 again:
3396 /* might be called in atomic */
3397 preempt_disable();
3399 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3400 goto out;
3402 cpu_buffer = buffer->buffers[cpu];
3403 local_irq_save(flags);
3404 if (dolock)
3405 raw_spin_lock(&cpu_buffer->reader_lock);
3407 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3408 if (event) {
3409 cpu_buffer->lost_events = 0;
3410 rb_advance_reader(cpu_buffer);
3413 if (dolock)
3414 raw_spin_unlock(&cpu_buffer->reader_lock);
3415 local_irq_restore(flags);
3417 out:
3418 preempt_enable();
3420 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3421 goto again;
3423 return event;
3425 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3428 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3429 * @buffer: The ring buffer to read from
3430 * @cpu: The cpu buffer to iterate over
3432 * This performs the initial preparations necessary to iterate
3433 * through the buffer. Memory is allocated, buffer recording
3434 * is disabled, and the iterator pointer is returned to the caller.
3436 * Disabling buffer recordng prevents the reading from being
3437 * corrupted. This is not a consuming read, so a producer is not
3438 * expected.
3440 * After a sequence of ring_buffer_read_prepare calls, the user is
3441 * expected to make at least one call to ring_buffer_prepare_sync.
3442 * Afterwards, ring_buffer_read_start is invoked to get things going
3443 * for real.
3445 * This overall must be paired with ring_buffer_finish.
3447 struct ring_buffer_iter *
3448 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3450 struct ring_buffer_per_cpu *cpu_buffer;
3451 struct ring_buffer_iter *iter;
3453 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3454 return NULL;
3456 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3457 if (!iter)
3458 return NULL;
3460 cpu_buffer = buffer->buffers[cpu];
3462 iter->cpu_buffer = cpu_buffer;
3464 atomic_inc(&cpu_buffer->record_disabled);
3466 return iter;
3468 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3471 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3473 * All previously invoked ring_buffer_read_prepare calls to prepare
3474 * iterators will be synchronized. Afterwards, read_buffer_read_start
3475 * calls on those iterators are allowed.
3477 void
3478 ring_buffer_read_prepare_sync(void)
3480 synchronize_sched();
3482 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3485 * ring_buffer_read_start - start a non consuming read of the buffer
3486 * @iter: The iterator returned by ring_buffer_read_prepare
3488 * This finalizes the startup of an iteration through the buffer.
3489 * The iterator comes from a call to ring_buffer_read_prepare and
3490 * an intervening ring_buffer_read_prepare_sync must have been
3491 * performed.
3493 * Must be paired with ring_buffer_finish.
3495 void
3496 ring_buffer_read_start(struct ring_buffer_iter *iter)
3498 struct ring_buffer_per_cpu *cpu_buffer;
3499 unsigned long flags;
3501 if (!iter)
3502 return;
3504 cpu_buffer = iter->cpu_buffer;
3506 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3507 arch_spin_lock(&cpu_buffer->lock);
3508 rb_iter_reset(iter);
3509 arch_spin_unlock(&cpu_buffer->lock);
3510 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3512 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3515 * ring_buffer_finish - finish reading the iterator of the buffer
3516 * @iter: The iterator retrieved by ring_buffer_start
3518 * This re-enables the recording to the buffer, and frees the
3519 * iterator.
3521 void
3522 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3524 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3526 atomic_dec(&cpu_buffer->record_disabled);
3527 kfree(iter);
3529 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3532 * ring_buffer_read - read the next item in the ring buffer by the iterator
3533 * @iter: The ring buffer iterator
3534 * @ts: The time stamp of the event read.
3536 * This reads the next event in the ring buffer and increments the iterator.
3538 struct ring_buffer_event *
3539 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3541 struct ring_buffer_event *event;
3542 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3543 unsigned long flags;
3545 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3546 again:
3547 event = rb_iter_peek(iter, ts);
3548 if (!event)
3549 goto out;
3551 if (event->type_len == RINGBUF_TYPE_PADDING)
3552 goto again;
3554 rb_advance_iter(iter);
3555 out:
3556 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3558 return event;
3560 EXPORT_SYMBOL_GPL(ring_buffer_read);
3563 * ring_buffer_size - return the size of the ring buffer (in bytes)
3564 * @buffer: The ring buffer.
3566 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3568 return BUF_PAGE_SIZE * buffer->pages;
3570 EXPORT_SYMBOL_GPL(ring_buffer_size);
3572 static void
3573 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3575 rb_head_page_deactivate(cpu_buffer);
3577 cpu_buffer->head_page
3578 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3579 local_set(&cpu_buffer->head_page->write, 0);
3580 local_set(&cpu_buffer->head_page->entries, 0);
3581 local_set(&cpu_buffer->head_page->page->commit, 0);
3583 cpu_buffer->head_page->read = 0;
3585 cpu_buffer->tail_page = cpu_buffer->head_page;
3586 cpu_buffer->commit_page = cpu_buffer->head_page;
3588 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3589 local_set(&cpu_buffer->reader_page->write, 0);
3590 local_set(&cpu_buffer->reader_page->entries, 0);
3591 local_set(&cpu_buffer->reader_page->page->commit, 0);
3592 cpu_buffer->reader_page->read = 0;
3594 local_set(&cpu_buffer->commit_overrun, 0);
3595 local_set(&cpu_buffer->entries_bytes, 0);
3596 local_set(&cpu_buffer->overrun, 0);
3597 local_set(&cpu_buffer->entries, 0);
3598 local_set(&cpu_buffer->committing, 0);
3599 local_set(&cpu_buffer->commits, 0);
3600 cpu_buffer->read = 0;
3601 cpu_buffer->read_bytes = 0;
3603 cpu_buffer->write_stamp = 0;
3604 cpu_buffer->read_stamp = 0;
3606 cpu_buffer->lost_events = 0;
3607 cpu_buffer->last_overrun = 0;
3609 rb_head_page_activate(cpu_buffer);
3613 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3614 * @buffer: The ring buffer to reset a per cpu buffer of
3615 * @cpu: The CPU buffer to be reset
3617 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3619 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3620 unsigned long flags;
3622 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3623 return;
3625 atomic_inc(&cpu_buffer->record_disabled);
3627 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3629 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3630 goto out;
3632 arch_spin_lock(&cpu_buffer->lock);
3634 rb_reset_cpu(cpu_buffer);
3636 arch_spin_unlock(&cpu_buffer->lock);
3638 out:
3639 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3641 atomic_dec(&cpu_buffer->record_disabled);
3643 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3646 * ring_buffer_reset - reset a ring buffer
3647 * @buffer: The ring buffer to reset all cpu buffers
3649 void ring_buffer_reset(struct ring_buffer *buffer)
3651 int cpu;
3653 for_each_buffer_cpu(buffer, cpu)
3654 ring_buffer_reset_cpu(buffer, cpu);
3656 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3659 * rind_buffer_empty - is the ring buffer empty?
3660 * @buffer: The ring buffer to test
3662 int ring_buffer_empty(struct ring_buffer *buffer)
3664 struct ring_buffer_per_cpu *cpu_buffer;
3665 unsigned long flags;
3666 int dolock;
3667 int cpu;
3668 int ret;
3670 dolock = rb_ok_to_lock();
3672 /* yes this is racy, but if you don't like the race, lock the buffer */
3673 for_each_buffer_cpu(buffer, cpu) {
3674 cpu_buffer = buffer->buffers[cpu];
3675 local_irq_save(flags);
3676 if (dolock)
3677 raw_spin_lock(&cpu_buffer->reader_lock);
3678 ret = rb_per_cpu_empty(cpu_buffer);
3679 if (dolock)
3680 raw_spin_unlock(&cpu_buffer->reader_lock);
3681 local_irq_restore(flags);
3683 if (!ret)
3684 return 0;
3687 return 1;
3689 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3692 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3693 * @buffer: The ring buffer
3694 * @cpu: The CPU buffer to test
3696 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3698 struct ring_buffer_per_cpu *cpu_buffer;
3699 unsigned long flags;
3700 int dolock;
3701 int ret;
3703 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3704 return 1;
3706 dolock = rb_ok_to_lock();
3708 cpu_buffer = buffer->buffers[cpu];
3709 local_irq_save(flags);
3710 if (dolock)
3711 raw_spin_lock(&cpu_buffer->reader_lock);
3712 ret = rb_per_cpu_empty(cpu_buffer);
3713 if (dolock)
3714 raw_spin_unlock(&cpu_buffer->reader_lock);
3715 local_irq_restore(flags);
3717 return ret;
3719 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3721 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3723 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3724 * @buffer_a: One buffer to swap with
3725 * @buffer_b: The other buffer to swap with
3727 * This function is useful for tracers that want to take a "snapshot"
3728 * of a CPU buffer and has another back up buffer lying around.
3729 * it is expected that the tracer handles the cpu buffer not being
3730 * used at the moment.
3732 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3733 struct ring_buffer *buffer_b, int cpu)
3735 struct ring_buffer_per_cpu *cpu_buffer_a;
3736 struct ring_buffer_per_cpu *cpu_buffer_b;
3737 int ret = -EINVAL;
3739 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3740 !cpumask_test_cpu(cpu, buffer_b->cpumask))
3741 goto out;
3743 /* At least make sure the two buffers are somewhat the same */
3744 if (buffer_a->pages != buffer_b->pages)
3745 goto out;
3747 ret = -EAGAIN;
3749 if (ring_buffer_flags != RB_BUFFERS_ON)
3750 goto out;
3752 if (atomic_read(&buffer_a->record_disabled))
3753 goto out;
3755 if (atomic_read(&buffer_b->record_disabled))
3756 goto out;
3758 cpu_buffer_a = buffer_a->buffers[cpu];
3759 cpu_buffer_b = buffer_b->buffers[cpu];
3761 if (atomic_read(&cpu_buffer_a->record_disabled))
3762 goto out;
3764 if (atomic_read(&cpu_buffer_b->record_disabled))
3765 goto out;
3768 * We can't do a synchronize_sched here because this
3769 * function can be called in atomic context.
3770 * Normally this will be called from the same CPU as cpu.
3771 * If not it's up to the caller to protect this.
3773 atomic_inc(&cpu_buffer_a->record_disabled);
3774 atomic_inc(&cpu_buffer_b->record_disabled);
3776 ret = -EBUSY;
3777 if (local_read(&cpu_buffer_a->committing))
3778 goto out_dec;
3779 if (local_read(&cpu_buffer_b->committing))
3780 goto out_dec;
3782 buffer_a->buffers[cpu] = cpu_buffer_b;
3783 buffer_b->buffers[cpu] = cpu_buffer_a;
3785 cpu_buffer_b->buffer = buffer_a;
3786 cpu_buffer_a->buffer = buffer_b;
3788 ret = 0;
3790 out_dec:
3791 atomic_dec(&cpu_buffer_a->record_disabled);
3792 atomic_dec(&cpu_buffer_b->record_disabled);
3793 out:
3794 return ret;
3796 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3797 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3800 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3801 * @buffer: the buffer to allocate for.
3803 * This function is used in conjunction with ring_buffer_read_page.
3804 * When reading a full page from the ring buffer, these functions
3805 * can be used to speed up the process. The calling function should
3806 * allocate a few pages first with this function. Then when it
3807 * needs to get pages from the ring buffer, it passes the result
3808 * of this function into ring_buffer_read_page, which will swap
3809 * the page that was allocated, with the read page of the buffer.
3811 * Returns:
3812 * The page allocated, or NULL on error.
3814 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
3816 struct buffer_data_page *bpage;
3817 struct page *page;
3819 page = alloc_pages_node(cpu_to_node(cpu),
3820 GFP_KERNEL | __GFP_NORETRY, 0);
3821 if (!page)
3822 return NULL;
3824 bpage = page_address(page);
3826 rb_init_page(bpage);
3828 return bpage;
3830 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3833 * ring_buffer_free_read_page - free an allocated read page
3834 * @buffer: the buffer the page was allocate for
3835 * @data: the page to free
3837 * Free a page allocated from ring_buffer_alloc_read_page.
3839 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3841 free_page((unsigned long)data);
3843 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3846 * ring_buffer_read_page - extract a page from the ring buffer
3847 * @buffer: buffer to extract from
3848 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3849 * @len: amount to extract
3850 * @cpu: the cpu of the buffer to extract
3851 * @full: should the extraction only happen when the page is full.
3853 * This function will pull out a page from the ring buffer and consume it.
3854 * @data_page must be the address of the variable that was returned
3855 * from ring_buffer_alloc_read_page. This is because the page might be used
3856 * to swap with a page in the ring buffer.
3858 * for example:
3859 * rpage = ring_buffer_alloc_read_page(buffer);
3860 * if (!rpage)
3861 * return error;
3862 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3863 * if (ret >= 0)
3864 * process_page(rpage, ret);
3866 * When @full is set, the function will not return true unless
3867 * the writer is off the reader page.
3869 * Note: it is up to the calling functions to handle sleeps and wakeups.
3870 * The ring buffer can be used anywhere in the kernel and can not
3871 * blindly call wake_up. The layer that uses the ring buffer must be
3872 * responsible for that.
3874 * Returns:
3875 * >=0 if data has been transferred, returns the offset of consumed data.
3876 * <0 if no data has been transferred.
3878 int ring_buffer_read_page(struct ring_buffer *buffer,
3879 void **data_page, size_t len, int cpu, int full)
3881 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3882 struct ring_buffer_event *event;
3883 struct buffer_data_page *bpage;
3884 struct buffer_page *reader;
3885 unsigned long missed_events;
3886 unsigned long flags;
3887 unsigned int commit;
3888 unsigned int read;
3889 u64 save_timestamp;
3890 int ret = -1;
3892 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3893 goto out;
3896 * If len is not big enough to hold the page header, then
3897 * we can not copy anything.
3899 if (len <= BUF_PAGE_HDR_SIZE)
3900 goto out;
3902 len -= BUF_PAGE_HDR_SIZE;
3904 if (!data_page)
3905 goto out;
3907 bpage = *data_page;
3908 if (!bpage)
3909 goto out;
3911 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3913 reader = rb_get_reader_page(cpu_buffer);
3914 if (!reader)
3915 goto out_unlock;
3917 event = rb_reader_event(cpu_buffer);
3919 read = reader->read;
3920 commit = rb_page_commit(reader);
3922 /* Check if any events were dropped */
3923 missed_events = cpu_buffer->lost_events;
3926 * If this page has been partially read or
3927 * if len is not big enough to read the rest of the page or
3928 * a writer is still on the page, then
3929 * we must copy the data from the page to the buffer.
3930 * Otherwise, we can simply swap the page with the one passed in.
3932 if (read || (len < (commit - read)) ||
3933 cpu_buffer->reader_page == cpu_buffer->commit_page) {
3934 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3935 unsigned int rpos = read;
3936 unsigned int pos = 0;
3937 unsigned int size;
3939 if (full)
3940 goto out_unlock;
3942 if (len > (commit - read))
3943 len = (commit - read);
3945 /* Always keep the time extend and data together */
3946 size = rb_event_ts_length(event);
3948 if (len < size)
3949 goto out_unlock;
3951 /* save the current timestamp, since the user will need it */
3952 save_timestamp = cpu_buffer->read_stamp;
3954 /* Need to copy one event at a time */
3955 do {
3956 /* We need the size of one event, because
3957 * rb_advance_reader only advances by one event,
3958 * whereas rb_event_ts_length may include the size of
3959 * one or two events.
3960 * We have already ensured there's enough space if this
3961 * is a time extend. */
3962 size = rb_event_length(event);
3963 memcpy(bpage->data + pos, rpage->data + rpos, size);
3965 len -= size;
3967 rb_advance_reader(cpu_buffer);
3968 rpos = reader->read;
3969 pos += size;
3971 if (rpos >= commit)
3972 break;
3974 event = rb_reader_event(cpu_buffer);
3975 /* Always keep the time extend and data together */
3976 size = rb_event_ts_length(event);
3977 } while (len >= size);
3979 /* update bpage */
3980 local_set(&bpage->commit, pos);
3981 bpage->time_stamp = save_timestamp;
3983 /* we copied everything to the beginning */
3984 read = 0;
3985 } else {
3986 /* update the entry counter */
3987 cpu_buffer->read += rb_page_entries(reader);
3988 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
3990 /* swap the pages */
3991 rb_init_page(bpage);
3992 bpage = reader->page;
3993 reader->page = *data_page;
3994 local_set(&reader->write, 0);
3995 local_set(&reader->entries, 0);
3996 reader->read = 0;
3997 *data_page = bpage;
4000 * Use the real_end for the data size,
4001 * This gives us a chance to store the lost events
4002 * on the page.
4004 if (reader->real_end)
4005 local_set(&bpage->commit, reader->real_end);
4007 ret = read;
4009 cpu_buffer->lost_events = 0;
4011 commit = local_read(&bpage->commit);
4013 * Set a flag in the commit field if we lost events
4015 if (missed_events) {
4016 /* If there is room at the end of the page to save the
4017 * missed events, then record it there.
4019 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4020 memcpy(&bpage->data[commit], &missed_events,
4021 sizeof(missed_events));
4022 local_add(RB_MISSED_STORED, &bpage->commit);
4023 commit += sizeof(missed_events);
4025 local_add(RB_MISSED_EVENTS, &bpage->commit);
4029 * This page may be off to user land. Zero it out here.
4031 if (commit < BUF_PAGE_SIZE)
4032 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4034 out_unlock:
4035 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4037 out:
4038 return ret;
4040 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4042 #ifdef CONFIG_TRACING
4043 static ssize_t
4044 rb_simple_read(struct file *filp, char __user *ubuf,
4045 size_t cnt, loff_t *ppos)
4047 unsigned long *p = filp->private_data;
4048 char buf[64];
4049 int r;
4051 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
4052 r = sprintf(buf, "permanently disabled\n");
4053 else
4054 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
4056 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
4059 static ssize_t
4060 rb_simple_write(struct file *filp, const char __user *ubuf,
4061 size_t cnt, loff_t *ppos)
4063 unsigned long *p = filp->private_data;
4064 unsigned long val;
4065 int ret;
4067 ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
4068 if (ret)
4069 return ret;
4071 if (val)
4072 set_bit(RB_BUFFERS_ON_BIT, p);
4073 else
4074 clear_bit(RB_BUFFERS_ON_BIT, p);
4076 (*ppos)++;
4078 return cnt;
4081 static const struct file_operations rb_simple_fops = {
4082 .open = tracing_open_generic,
4083 .read = rb_simple_read,
4084 .write = rb_simple_write,
4085 .llseek = default_llseek,
4089 static __init int rb_init_debugfs(void)
4091 struct dentry *d_tracer;
4093 d_tracer = tracing_init_dentry();
4095 trace_create_file("tracing_on", 0644, d_tracer,
4096 &ring_buffer_flags, &rb_simple_fops);
4098 return 0;
4101 fs_initcall(rb_init_debugfs);
4102 #endif
4104 #ifdef CONFIG_HOTPLUG_CPU
4105 static int rb_cpu_notify(struct notifier_block *self,
4106 unsigned long action, void *hcpu)
4108 struct ring_buffer *buffer =
4109 container_of(self, struct ring_buffer, cpu_notify);
4110 long cpu = (long)hcpu;
4112 switch (action) {
4113 case CPU_UP_PREPARE:
4114 case CPU_UP_PREPARE_FROZEN:
4115 if (cpumask_test_cpu(cpu, buffer->cpumask))
4116 return NOTIFY_OK;
4118 buffer->buffers[cpu] =
4119 rb_allocate_cpu_buffer(buffer, cpu);
4120 if (!buffer->buffers[cpu]) {
4121 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4122 cpu);
4123 return NOTIFY_OK;
4125 smp_wmb();
4126 cpumask_set_cpu(cpu, buffer->cpumask);
4127 break;
4128 case CPU_DOWN_PREPARE:
4129 case CPU_DOWN_PREPARE_FROZEN:
4131 * Do nothing.
4132 * If we were to free the buffer, then the user would
4133 * lose any trace that was in the buffer.
4135 break;
4136 default:
4137 break;
4139 return NOTIFY_OK;
4141 #endif