Linux v2.6.13-rc3
[pohmelfs.git] / arch / ppc64 / kernel / prom.c
blob47727a6f734623c89a14d5b0d61593bdcacafa74
1 /*
2 *
4 * Procedures for interfacing to Open Firmware.
6 * Paul Mackerras August 1996.
7 * Copyright (C) 1996 Paul Mackerras.
8 *
9 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
10 * {engebret|bergner}@us.ibm.com
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #undef DEBUG
20 #include <stdarg.h>
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/version.h>
26 #include <linux/threads.h>
27 #include <linux/spinlock.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/stringify.h>
31 #include <linux/delay.h>
32 #include <linux/initrd.h>
33 #include <linux/bitops.h>
34 #include <linux/module.h>
36 #include <asm/prom.h>
37 #include <asm/rtas.h>
38 #include <asm/lmb.h>
39 #include <asm/abs_addr.h>
40 #include <asm/page.h>
41 #include <asm/processor.h>
42 #include <asm/irq.h>
43 #include <asm/io.h>
44 #include <asm/smp.h>
45 #include <asm/system.h>
46 #include <asm/mmu.h>
47 #include <asm/pgtable.h>
48 #include <asm/pci.h>
49 #include <asm/iommu.h>
50 #include <asm/bootinfo.h>
51 #include <asm/ppcdebug.h>
52 #include <asm/btext.h>
53 #include <asm/sections.h>
54 #include <asm/machdep.h>
55 #include <asm/pSeries_reconfig.h>
57 #ifdef DEBUG
58 #define DBG(fmt...) udbg_printf(fmt)
59 #else
60 #define DBG(fmt...)
61 #endif
63 struct pci_reg_property {
64 struct pci_address addr;
65 u32 size_hi;
66 u32 size_lo;
69 struct isa_reg_property {
70 u32 space;
71 u32 address;
72 u32 size;
76 typedef int interpret_func(struct device_node *, unsigned long *,
77 int, int, int);
79 extern struct rtas_t rtas;
80 extern struct lmb lmb;
81 extern unsigned long klimit;
83 static int __initdata dt_root_addr_cells;
84 static int __initdata dt_root_size_cells;
85 static int __initdata iommu_is_off;
86 int __initdata iommu_force_on;
87 typedef u32 cell_t;
89 #if 0
90 static struct boot_param_header *initial_boot_params __initdata;
91 #else
92 struct boot_param_header *initial_boot_params;
93 #endif
95 static struct device_node *allnodes = NULL;
97 /* use when traversing tree through the allnext, child, sibling,
98 * or parent members of struct device_node.
100 static DEFINE_RWLOCK(devtree_lock);
102 /* export that to outside world */
103 struct device_node *of_chosen;
106 * Wrapper for allocating memory for various data that needs to be
107 * attached to device nodes as they are processed at boot or when
108 * added to the device tree later (e.g. DLPAR). At boot there is
109 * already a region reserved so we just increment *mem_start by size;
110 * otherwise we call kmalloc.
112 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
114 unsigned long tmp;
116 if (!mem_start)
117 return kmalloc(size, GFP_KERNEL);
119 tmp = *mem_start;
120 *mem_start += size;
121 return (void *)tmp;
125 * Find the device_node with a given phandle.
127 static struct device_node * find_phandle(phandle ph)
129 struct device_node *np;
131 for (np = allnodes; np != 0; np = np->allnext)
132 if (np->linux_phandle == ph)
133 return np;
134 return NULL;
138 * Find the interrupt parent of a node.
140 static struct device_node * __devinit intr_parent(struct device_node *p)
142 phandle *parp;
144 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
145 if (parp == NULL)
146 return p->parent;
147 return find_phandle(*parp);
151 * Find out the size of each entry of the interrupts property
152 * for a node.
154 int __devinit prom_n_intr_cells(struct device_node *np)
156 struct device_node *p;
157 unsigned int *icp;
159 for (p = np; (p = intr_parent(p)) != NULL; ) {
160 icp = (unsigned int *)
161 get_property(p, "#interrupt-cells", NULL);
162 if (icp != NULL)
163 return *icp;
164 if (get_property(p, "interrupt-controller", NULL) != NULL
165 || get_property(p, "interrupt-map", NULL) != NULL) {
166 printk("oops, node %s doesn't have #interrupt-cells\n",
167 p->full_name);
168 return 1;
171 #ifdef DEBUG_IRQ
172 printk("prom_n_intr_cells failed for %s\n", np->full_name);
173 #endif
174 return 1;
178 * Map an interrupt from a device up to the platform interrupt
179 * descriptor.
181 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
182 struct device_node *np, unsigned int *ints,
183 int nintrc)
185 struct device_node *p, *ipar;
186 unsigned int *imap, *imask, *ip;
187 int i, imaplen, match;
188 int newintrc = 0, newaddrc = 0;
189 unsigned int *reg;
190 int naddrc;
192 reg = (unsigned int *) get_property(np, "reg", NULL);
193 naddrc = prom_n_addr_cells(np);
194 p = intr_parent(np);
195 while (p != NULL) {
196 if (get_property(p, "interrupt-controller", NULL) != NULL)
197 /* this node is an interrupt controller, stop here */
198 break;
199 imap = (unsigned int *)
200 get_property(p, "interrupt-map", &imaplen);
201 if (imap == NULL) {
202 p = intr_parent(p);
203 continue;
205 imask = (unsigned int *)
206 get_property(p, "interrupt-map-mask", NULL);
207 if (imask == NULL) {
208 printk("oops, %s has interrupt-map but no mask\n",
209 p->full_name);
210 return 0;
212 imaplen /= sizeof(unsigned int);
213 match = 0;
214 ipar = NULL;
215 while (imaplen > 0 && !match) {
216 /* check the child-interrupt field */
217 match = 1;
218 for (i = 0; i < naddrc && match; ++i)
219 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
220 for (; i < naddrc + nintrc && match; ++i)
221 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
222 imap += naddrc + nintrc;
223 imaplen -= naddrc + nintrc;
224 /* grab the interrupt parent */
225 ipar = find_phandle((phandle) *imap++);
226 --imaplen;
227 if (ipar == NULL) {
228 printk("oops, no int parent %x in map of %s\n",
229 imap[-1], p->full_name);
230 return 0;
232 /* find the parent's # addr and intr cells */
233 ip = (unsigned int *)
234 get_property(ipar, "#interrupt-cells", NULL);
235 if (ip == NULL) {
236 printk("oops, no #interrupt-cells on %s\n",
237 ipar->full_name);
238 return 0;
240 newintrc = *ip;
241 ip = (unsigned int *)
242 get_property(ipar, "#address-cells", NULL);
243 newaddrc = (ip == NULL)? 0: *ip;
244 imap += newaddrc + newintrc;
245 imaplen -= newaddrc + newintrc;
247 if (imaplen < 0) {
248 printk("oops, error decoding int-map on %s, len=%d\n",
249 p->full_name, imaplen);
250 return 0;
252 if (!match) {
253 #ifdef DEBUG_IRQ
254 printk("oops, no match in %s int-map for %s\n",
255 p->full_name, np->full_name);
256 #endif
257 return 0;
259 p = ipar;
260 naddrc = newaddrc;
261 nintrc = newintrc;
262 ints = imap - nintrc;
263 reg = ints - naddrc;
265 if (p == NULL) {
266 #ifdef DEBUG_IRQ
267 printk("hmmm, int tree for %s doesn't have ctrler\n",
268 np->full_name);
269 #endif
270 return 0;
272 *irq = ints;
273 *ictrler = p;
274 return nintrc;
277 static int __devinit finish_node_interrupts(struct device_node *np,
278 unsigned long *mem_start,
279 int measure_only)
281 unsigned int *ints;
282 int intlen, intrcells, intrcount;
283 int i, j, n;
284 unsigned int *irq, virq;
285 struct device_node *ic;
287 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
288 if (ints == NULL)
289 return 0;
290 intrcells = prom_n_intr_cells(np);
291 intlen /= intrcells * sizeof(unsigned int);
293 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
294 if (!np->intrs)
295 return -ENOMEM;
297 if (measure_only)
298 return 0;
300 intrcount = 0;
301 for (i = 0; i < intlen; ++i, ints += intrcells) {
302 n = map_interrupt(&irq, &ic, np, ints, intrcells);
303 if (n <= 0)
304 continue;
306 /* don't map IRQ numbers under a cascaded 8259 controller */
307 if (ic && device_is_compatible(ic, "chrp,iic")) {
308 np->intrs[intrcount].line = irq[0];
309 } else {
310 virq = virt_irq_create_mapping(irq[0]);
311 if (virq == NO_IRQ) {
312 printk(KERN_CRIT "Could not allocate interrupt"
313 " number for %s\n", np->full_name);
314 continue;
316 np->intrs[intrcount].line = irq_offset_up(virq);
319 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
320 if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
321 char *name = get_property(ic->parent, "name", NULL);
322 if (name && !strcmp(name, "u3"))
323 np->intrs[intrcount].line += 128;
324 else if (!(name && !strcmp(name, "mac-io")))
325 /* ignore other cascaded controllers, such as
326 the k2-sata-root */
327 break;
329 np->intrs[intrcount].sense = 1;
330 if (n > 1)
331 np->intrs[intrcount].sense = irq[1];
332 if (n > 2) {
333 printk("hmmm, got %d intr cells for %s:", n,
334 np->full_name);
335 for (j = 0; j < n; ++j)
336 printk(" %d", irq[j]);
337 printk("\n");
339 ++intrcount;
341 np->n_intrs = intrcount;
343 return 0;
346 static int __devinit interpret_pci_props(struct device_node *np,
347 unsigned long *mem_start,
348 int naddrc, int nsizec,
349 int measure_only)
351 struct address_range *adr;
352 struct pci_reg_property *pci_addrs;
353 int i, l, n_addrs;
355 pci_addrs = (struct pci_reg_property *)
356 get_property(np, "assigned-addresses", &l);
357 if (!pci_addrs)
358 return 0;
360 n_addrs = l / sizeof(*pci_addrs);
362 adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
363 if (!adr)
364 return -ENOMEM;
366 if (measure_only)
367 return 0;
369 np->addrs = adr;
370 np->n_addrs = n_addrs;
372 for (i = 0; i < n_addrs; i++) {
373 adr[i].space = pci_addrs[i].addr.a_hi;
374 adr[i].address = pci_addrs[i].addr.a_lo |
375 ((u64)pci_addrs[i].addr.a_mid << 32);
376 adr[i].size = pci_addrs[i].size_lo;
379 return 0;
382 static int __init interpret_dbdma_props(struct device_node *np,
383 unsigned long *mem_start,
384 int naddrc, int nsizec,
385 int measure_only)
387 struct reg_property32 *rp;
388 struct address_range *adr;
389 unsigned long base_address;
390 int i, l;
391 struct device_node *db;
393 base_address = 0;
394 if (!measure_only) {
395 for (db = np->parent; db != NULL; db = db->parent) {
396 if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
397 base_address = db->addrs[0].address;
398 break;
403 rp = (struct reg_property32 *) get_property(np, "reg", &l);
404 if (rp != 0 && l >= sizeof(struct reg_property32)) {
405 i = 0;
406 adr = (struct address_range *) (*mem_start);
407 while ((l -= sizeof(struct reg_property32)) >= 0) {
408 if (!measure_only) {
409 adr[i].space = 2;
410 adr[i].address = rp[i].address + base_address;
411 adr[i].size = rp[i].size;
413 ++i;
415 np->addrs = adr;
416 np->n_addrs = i;
417 (*mem_start) += i * sizeof(struct address_range);
420 return 0;
423 static int __init interpret_macio_props(struct device_node *np,
424 unsigned long *mem_start,
425 int naddrc, int nsizec,
426 int measure_only)
428 struct reg_property32 *rp;
429 struct address_range *adr;
430 unsigned long base_address;
431 int i, l;
432 struct device_node *db;
434 base_address = 0;
435 if (!measure_only) {
436 for (db = np->parent; db != NULL; db = db->parent) {
437 if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
438 base_address = db->addrs[0].address;
439 break;
444 rp = (struct reg_property32 *) get_property(np, "reg", &l);
445 if (rp != 0 && l >= sizeof(struct reg_property32)) {
446 i = 0;
447 adr = (struct address_range *) (*mem_start);
448 while ((l -= sizeof(struct reg_property32)) >= 0) {
449 if (!measure_only) {
450 adr[i].space = 2;
451 adr[i].address = rp[i].address + base_address;
452 adr[i].size = rp[i].size;
454 ++i;
456 np->addrs = adr;
457 np->n_addrs = i;
458 (*mem_start) += i * sizeof(struct address_range);
461 return 0;
464 static int __init interpret_isa_props(struct device_node *np,
465 unsigned long *mem_start,
466 int naddrc, int nsizec,
467 int measure_only)
469 struct isa_reg_property *rp;
470 struct address_range *adr;
471 int i, l;
473 rp = (struct isa_reg_property *) get_property(np, "reg", &l);
474 if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
475 i = 0;
476 adr = (struct address_range *) (*mem_start);
477 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
478 if (!measure_only) {
479 adr[i].space = rp[i].space;
480 adr[i].address = rp[i].address;
481 adr[i].size = rp[i].size;
483 ++i;
485 np->addrs = adr;
486 np->n_addrs = i;
487 (*mem_start) += i * sizeof(struct address_range);
490 return 0;
493 static int __init interpret_root_props(struct device_node *np,
494 unsigned long *mem_start,
495 int naddrc, int nsizec,
496 int measure_only)
498 struct address_range *adr;
499 int i, l;
500 unsigned int *rp;
501 int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
503 rp = (unsigned int *) get_property(np, "reg", &l);
504 if (rp != 0 && l >= rpsize) {
505 i = 0;
506 adr = (struct address_range *) (*mem_start);
507 while ((l -= rpsize) >= 0) {
508 if (!measure_only) {
509 adr[i].space = 0;
510 adr[i].address = rp[naddrc - 1];
511 adr[i].size = rp[naddrc + nsizec - 1];
513 ++i;
514 rp += naddrc + nsizec;
516 np->addrs = adr;
517 np->n_addrs = i;
518 (*mem_start) += i * sizeof(struct address_range);
521 return 0;
524 static int __devinit finish_node(struct device_node *np,
525 unsigned long *mem_start,
526 interpret_func *ifunc,
527 int naddrc, int nsizec,
528 int measure_only)
530 struct device_node *child;
531 int *ip, rc = 0;
533 /* get the device addresses and interrupts */
534 if (ifunc != NULL)
535 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
536 if (rc)
537 goto out;
539 rc = finish_node_interrupts(np, mem_start, measure_only);
540 if (rc)
541 goto out;
543 /* Look for #address-cells and #size-cells properties. */
544 ip = (int *) get_property(np, "#address-cells", NULL);
545 if (ip != NULL)
546 naddrc = *ip;
547 ip = (int *) get_property(np, "#size-cells", NULL);
548 if (ip != NULL)
549 nsizec = *ip;
551 if (!strcmp(np->name, "device-tree") || np->parent == NULL)
552 ifunc = interpret_root_props;
553 else if (np->type == 0)
554 ifunc = NULL;
555 else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
556 ifunc = interpret_pci_props;
557 else if (!strcmp(np->type, "dbdma"))
558 ifunc = interpret_dbdma_props;
559 else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
560 ifunc = interpret_macio_props;
561 else if (!strcmp(np->type, "isa"))
562 ifunc = interpret_isa_props;
563 else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
564 ifunc = interpret_root_props;
565 else if (!((ifunc == interpret_dbdma_props
566 || ifunc == interpret_macio_props)
567 && (!strcmp(np->type, "escc")
568 || !strcmp(np->type, "media-bay"))))
569 ifunc = NULL;
571 for (child = np->child; child != NULL; child = child->sibling) {
572 rc = finish_node(child, mem_start, ifunc,
573 naddrc, nsizec, measure_only);
574 if (rc)
575 goto out;
577 out:
578 return rc;
582 * finish_device_tree is called once things are running normally
583 * (i.e. with text and data mapped to the address they were linked at).
584 * It traverses the device tree and fills in some of the additional,
585 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
586 * mapping is also initialized at this point.
588 void __init finish_device_tree(void)
590 unsigned long start, end, size = 0;
592 DBG(" -> finish_device_tree\n");
594 if (ppc64_interrupt_controller == IC_INVALID) {
595 DBG("failed to configure interrupt controller type\n");
596 panic("failed to configure interrupt controller type\n");
599 /* Initialize virtual IRQ map */
600 virt_irq_init();
603 * Finish device-tree (pre-parsing some properties etc...)
604 * We do this in 2 passes. One with "measure_only" set, which
605 * will only measure the amount of memory needed, then we can
606 * allocate that memory, and call finish_node again. However,
607 * we must be careful as most routines will fail nowadays when
608 * prom_alloc() returns 0, so we must make sure our first pass
609 * doesn't start at 0. We pre-initialize size to 16 for that
610 * reason and then remove those additional 16 bytes
612 size = 16;
613 finish_node(allnodes, &size, NULL, 0, 0, 1);
614 size -= 16;
615 end = start = (unsigned long)abs_to_virt(lmb_alloc(size, 128));
616 finish_node(allnodes, &end, NULL, 0, 0, 0);
617 BUG_ON(end != start + size);
619 DBG(" <- finish_device_tree\n");
622 #ifdef DEBUG
623 #define printk udbg_printf
624 #endif
626 static inline char *find_flat_dt_string(u32 offset)
628 return ((char *)initial_boot_params) + initial_boot_params->off_dt_strings
629 + offset;
633 * This function is used to scan the flattened device-tree, it is
634 * used to extract the memory informations at boot before we can
635 * unflatten the tree
637 static int __init scan_flat_dt(int (*it)(unsigned long node,
638 const char *full_path, void *data),
639 void *data)
641 unsigned long p = ((unsigned long)initial_boot_params) +
642 initial_boot_params->off_dt_struct;
643 int rc = 0;
645 do {
646 u32 tag = *((u32 *)p);
647 char *pathp;
649 p += 4;
650 if (tag == OF_DT_END_NODE)
651 continue;
652 if (tag == OF_DT_END)
653 break;
654 if (tag == OF_DT_PROP) {
655 u32 sz = *((u32 *)p);
656 p += 8;
657 p = _ALIGN(p, sz >= 8 ? 8 : 4);
658 p += sz;
659 p = _ALIGN(p, 4);
660 continue;
662 if (tag != OF_DT_BEGIN_NODE) {
663 printk(KERN_WARNING "Invalid tag %x scanning flattened"
664 " device tree !\n", tag);
665 return -EINVAL;
667 pathp = (char *)p;
668 p = _ALIGN(p + strlen(pathp) + 1, 4);
669 rc = it(p, pathp, data);
670 if (rc != 0)
671 break;
672 } while(1);
674 return rc;
678 * This function can be used within scan_flattened_dt callback to get
679 * access to properties
681 static void* __init get_flat_dt_prop(unsigned long node, const char *name,
682 unsigned long *size)
684 unsigned long p = node;
686 do {
687 u32 tag = *((u32 *)p);
688 u32 sz, noff;
689 const char *nstr;
691 p += 4;
692 if (tag != OF_DT_PROP)
693 return NULL;
695 sz = *((u32 *)p);
696 noff = *((u32 *)(p + 4));
697 p += 8;
698 p = _ALIGN(p, sz >= 8 ? 8 : 4);
700 nstr = find_flat_dt_string(noff);
701 if (nstr == NULL) {
702 printk(KERN_WARNING "Can't find property index name !\n");
703 return NULL;
705 if (strcmp(name, nstr) == 0) {
706 if (size)
707 *size = sz;
708 return (void *)p;
710 p += sz;
711 p = _ALIGN(p, 4);
712 } while(1);
715 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
716 unsigned long align)
718 void *res;
720 *mem = _ALIGN(*mem, align);
721 res = (void *)*mem;
722 *mem += size;
724 return res;
727 static unsigned long __init unflatten_dt_node(unsigned long mem,
728 unsigned long *p,
729 struct device_node *dad,
730 struct device_node ***allnextpp)
732 struct device_node *np;
733 struct property *pp, **prev_pp = NULL;
734 char *pathp;
735 u32 tag;
736 unsigned int l;
738 tag = *((u32 *)(*p));
739 if (tag != OF_DT_BEGIN_NODE) {
740 printk("Weird tag at start of node: %x\n", tag);
741 return mem;
743 *p += 4;
744 pathp = (char *)*p;
745 l = strlen(pathp) + 1;
746 *p = _ALIGN(*p + l, 4);
748 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + l,
749 __alignof__(struct device_node));
750 if (allnextpp) {
751 memset(np, 0, sizeof(*np));
752 np->full_name = ((char*)np) + sizeof(struct device_node);
753 memcpy(np->full_name, pathp, l);
754 prev_pp = &np->properties;
755 **allnextpp = np;
756 *allnextpp = &np->allnext;
757 if (dad != NULL) {
758 np->parent = dad;
759 /* we temporarily use the `next' field as `last_child'. */
760 if (dad->next == 0)
761 dad->child = np;
762 else
763 dad->next->sibling = np;
764 dad->next = np;
766 kref_init(&np->kref);
768 while(1) {
769 u32 sz, noff;
770 char *pname;
772 tag = *((u32 *)(*p));
773 if (tag != OF_DT_PROP)
774 break;
775 *p += 4;
776 sz = *((u32 *)(*p));
777 noff = *((u32 *)((*p) + 4));
778 *p = _ALIGN((*p) + 8, sz >= 8 ? 8 : 4);
780 pname = find_flat_dt_string(noff);
781 if (pname == NULL) {
782 printk("Can't find property name in list !\n");
783 break;
785 l = strlen(pname) + 1;
786 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
787 __alignof__(struct property));
788 if (allnextpp) {
789 if (strcmp(pname, "linux,phandle") == 0) {
790 np->node = *((u32 *)*p);
791 if (np->linux_phandle == 0)
792 np->linux_phandle = np->node;
794 if (strcmp(pname, "ibm,phandle") == 0)
795 np->linux_phandle = *((u32 *)*p);
796 pp->name = pname;
797 pp->length = sz;
798 pp->value = (void *)*p;
799 *prev_pp = pp;
800 prev_pp = &pp->next;
802 *p = _ALIGN((*p) + sz, 4);
804 if (allnextpp) {
805 *prev_pp = NULL;
806 np->name = get_property(np, "name", NULL);
807 np->type = get_property(np, "device_type", NULL);
809 if (!np->name)
810 np->name = "<NULL>";
811 if (!np->type)
812 np->type = "<NULL>";
814 while (tag == OF_DT_BEGIN_NODE) {
815 mem = unflatten_dt_node(mem, p, np, allnextpp);
816 tag = *((u32 *)(*p));
818 if (tag != OF_DT_END_NODE) {
819 printk("Weird tag at start of node: %x\n", tag);
820 return mem;
822 *p += 4;
823 return mem;
828 * unflattens the device-tree passed by the firmware, creating the
829 * tree of struct device_node. It also fills the "name" and "type"
830 * pointers of the nodes so the normal device-tree walking functions
831 * can be used (this used to be done by finish_device_tree)
833 void __init unflatten_device_tree(void)
835 unsigned long start, mem, size;
836 struct device_node **allnextp = &allnodes;
837 char *p = NULL;
838 int l = 0;
840 DBG(" -> unflatten_device_tree()\n");
842 /* First pass, scan for size */
843 start = ((unsigned long)initial_boot_params) +
844 initial_boot_params->off_dt_struct;
845 size = unflatten_dt_node(0, &start, NULL, NULL);
847 DBG(" size is %lx, allocating...\n", size);
849 /* Allocate memory for the expanded device tree */
850 mem = (unsigned long)abs_to_virt(lmb_alloc(size,
851 __alignof__(struct device_node)));
852 DBG(" unflattening...\n", mem);
854 /* Second pass, do actual unflattening */
855 start = ((unsigned long)initial_boot_params) +
856 initial_boot_params->off_dt_struct;
857 unflatten_dt_node(mem, &start, NULL, &allnextp);
858 if (*((u32 *)start) != OF_DT_END)
859 printk(KERN_WARNING "Weird tag at end of tree: %x\n", *((u32 *)start));
860 *allnextp = NULL;
862 /* Get pointer to OF "/chosen" node for use everywhere */
863 of_chosen = of_find_node_by_path("/chosen");
865 /* Retreive command line */
866 if (of_chosen != NULL) {
867 p = (char *)get_property(of_chosen, "bootargs", &l);
868 if (p != NULL && l > 0)
869 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
871 #ifdef CONFIG_CMDLINE
872 if (l == 0 || (l == 1 && (*p) == 0))
873 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
874 #endif /* CONFIG_CMDLINE */
876 DBG("Command line is: %s\n", cmd_line);
878 DBG(" <- unflatten_device_tree()\n");
882 static int __init early_init_dt_scan_cpus(unsigned long node,
883 const char *full_path, void *data)
885 char *type = get_flat_dt_prop(node, "device_type", NULL);
886 u32 *prop;
887 unsigned long size;
889 /* We are scanning "cpu" nodes only */
890 if (type == NULL || strcmp(type, "cpu") != 0)
891 return 0;
893 /* On LPAR, look for the first ibm,pft-size property for the hash table size
895 if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) {
896 u32 *pft_size;
897 pft_size = (u32 *)get_flat_dt_prop(node, "ibm,pft-size", NULL);
898 if (pft_size != NULL) {
899 /* pft_size[0] is the NUMA CEC cookie */
900 ppc64_pft_size = pft_size[1];
904 if (initial_boot_params && initial_boot_params->version >= 2) {
905 /* version 2 of the kexec param format adds the phys cpuid
906 * of booted proc.
908 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
909 boot_cpuid = 0;
910 } else {
911 /* Check if it's the boot-cpu, set it's hw index in paca now */
912 if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) {
913 u32 *prop = get_flat_dt_prop(node, "reg", NULL);
914 set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop);
915 boot_cpuid_phys = get_hard_smp_processor_id(0);
919 /* Check if we have a VMX and eventually update CPU features */
920 prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", NULL);
921 if (prop && (*prop) > 0) {
922 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
923 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
926 /* Same goes for Apple's "altivec" property */
927 prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL);
928 if (prop) {
929 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
930 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
934 * Check for an SMT capable CPU and set the CPU feature. We do
935 * this by looking at the size of the ibm,ppc-interrupt-server#s
936 * property
938 prop = (u32 *)get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
939 &size);
940 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
941 if (prop && ((size / sizeof(u32)) > 1))
942 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
944 return 0;
947 static int __init early_init_dt_scan_chosen(unsigned long node,
948 const char *full_path, void *data)
950 u32 *prop;
951 u64 *prop64;
952 extern unsigned long memory_limit, tce_alloc_start, tce_alloc_end;
954 if (strcmp(full_path, "/chosen") != 0)
955 return 0;
957 /* get platform type */
958 prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL);
959 if (prop == NULL)
960 return 0;
961 systemcfg->platform = *prop;
963 /* check if iommu is forced on or off */
964 if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
965 iommu_is_off = 1;
966 if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
967 iommu_force_on = 1;
969 prop64 = (u64*)get_flat_dt_prop(node, "linux,memory-limit", NULL);
970 if (prop64)
971 memory_limit = *prop64;
973 prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
974 if (prop64)
975 tce_alloc_start = *prop64;
977 prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
978 if (prop64)
979 tce_alloc_end = *prop64;
981 #ifdef CONFIG_PPC_RTAS
982 /* To help early debugging via the front panel, we retreive a minimal
983 * set of RTAS infos now if available
986 u64 *basep, *entryp;
988 basep = (u64*)get_flat_dt_prop(node, "linux,rtas-base", NULL);
989 entryp = (u64*)get_flat_dt_prop(node, "linux,rtas-entry", NULL);
990 prop = (u32*)get_flat_dt_prop(node, "linux,rtas-size", NULL);
991 if (basep && entryp && prop) {
992 rtas.base = *basep;
993 rtas.entry = *entryp;
994 rtas.size = *prop;
997 #endif /* CONFIG_PPC_RTAS */
999 /* break now */
1000 return 1;
1003 static int __init early_init_dt_scan_root(unsigned long node,
1004 const char *full_path, void *data)
1006 u32 *prop;
1008 if (strcmp(full_path, "/") != 0)
1009 return 0;
1011 prop = (u32 *)get_flat_dt_prop(node, "#size-cells", NULL);
1012 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1014 prop = (u32 *)get_flat_dt_prop(node, "#address-cells", NULL);
1015 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1017 /* break now */
1018 return 1;
1021 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1023 cell_t *p = *cellp;
1024 unsigned long r = 0;
1026 /* Ignore more than 2 cells */
1027 while (s > 2) {
1028 p++;
1029 s--;
1031 while (s) {
1032 r <<= 32;
1033 r |= *(p++);
1034 s--;
1037 *cellp = p;
1038 return r;
1042 static int __init early_init_dt_scan_memory(unsigned long node,
1043 const char *full_path, void *data)
1045 char *type = get_flat_dt_prop(node, "device_type", NULL);
1046 cell_t *reg, *endp;
1047 unsigned long l;
1049 /* We are scanning "memory" nodes only */
1050 if (type == NULL || strcmp(type, "memory") != 0)
1051 return 0;
1053 reg = (cell_t *)get_flat_dt_prop(node, "reg", &l);
1054 if (reg == NULL)
1055 return 0;
1057 endp = reg + (l / sizeof(cell_t));
1059 DBG("memory scan node %s ...\n", full_path);
1060 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1061 unsigned long base, size;
1063 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1064 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1066 if (size == 0)
1067 continue;
1068 DBG(" - %lx , %lx\n", base, size);
1069 if (iommu_is_off) {
1070 if (base >= 0x80000000ul)
1071 continue;
1072 if ((base + size) > 0x80000000ul)
1073 size = 0x80000000ul - base;
1075 lmb_add(base, size);
1077 return 0;
1080 static void __init early_reserve_mem(void)
1082 u64 base, size;
1083 u64 *reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1084 initial_boot_params->off_mem_rsvmap);
1085 while (1) {
1086 base = *(reserve_map++);
1087 size = *(reserve_map++);
1088 if (size == 0)
1089 break;
1090 DBG("reserving: %lx -> %lx\n", base, size);
1091 lmb_reserve(base, size);
1094 #if 0
1095 DBG("memory reserved, lmbs :\n");
1096 lmb_dump_all();
1097 #endif
1100 void __init early_init_devtree(void *params)
1102 DBG(" -> early_init_devtree()\n");
1104 /* Setup flat device-tree pointer */
1105 initial_boot_params = params;
1107 /* By default, hash size is not set */
1108 ppc64_pft_size = 0;
1110 /* Retreive various informations from the /chosen node of the
1111 * device-tree, including the platform type, initrd location and
1112 * size, TCE reserve, and more ...
1114 scan_flat_dt(early_init_dt_scan_chosen, NULL);
1116 /* Scan memory nodes and rebuild LMBs */
1117 lmb_init();
1118 scan_flat_dt(early_init_dt_scan_root, NULL);
1119 scan_flat_dt(early_init_dt_scan_memory, NULL);
1120 lmb_enforce_memory_limit();
1121 lmb_analyze();
1122 systemcfg->physicalMemorySize = lmb_phys_mem_size();
1123 lmb_reserve(0, __pa(klimit));
1125 DBG("Phys. mem: %lx\n", systemcfg->physicalMemorySize);
1127 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1128 early_reserve_mem();
1130 DBG("Scanning CPUs ...\n");
1132 /* Retreive hash table size from flattened tree plus other
1133 * CPU related informations (altivec support, boot CPU ID, ...)
1135 scan_flat_dt(early_init_dt_scan_cpus, NULL);
1137 /* If hash size wasn't obtained above, we calculate it now based on
1138 * the total RAM size
1140 if (ppc64_pft_size == 0) {
1141 unsigned long rnd_mem_size, pteg_count;
1143 /* round mem_size up to next power of 2 */
1144 rnd_mem_size = 1UL << __ilog2(systemcfg->physicalMemorySize);
1145 if (rnd_mem_size < systemcfg->physicalMemorySize)
1146 rnd_mem_size <<= 1;
1148 /* # pages / 2 */
1149 pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11);
1151 ppc64_pft_size = __ilog2(pteg_count << 7);
1154 DBG("Hash pftSize: %x\n", (int)ppc64_pft_size);
1155 DBG(" <- early_init_devtree()\n");
1158 #undef printk
1161 prom_n_addr_cells(struct device_node* np)
1163 int* ip;
1164 do {
1165 if (np->parent)
1166 np = np->parent;
1167 ip = (int *) get_property(np, "#address-cells", NULL);
1168 if (ip != NULL)
1169 return *ip;
1170 } while (np->parent);
1171 /* No #address-cells property for the root node, default to 1 */
1172 return 1;
1176 prom_n_size_cells(struct device_node* np)
1178 int* ip;
1179 do {
1180 if (np->parent)
1181 np = np->parent;
1182 ip = (int *) get_property(np, "#size-cells", NULL);
1183 if (ip != NULL)
1184 return *ip;
1185 } while (np->parent);
1186 /* No #size-cells property for the root node, default to 1 */
1187 return 1;
1191 * Work out the sense (active-low level / active-high edge)
1192 * of each interrupt from the device tree.
1194 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1196 struct device_node *np;
1197 int i, j;
1199 /* default to level-triggered */
1200 memset(senses, 1, max - off);
1202 for (np = allnodes; np != 0; np = np->allnext) {
1203 for (j = 0; j < np->n_intrs; j++) {
1204 i = np->intrs[j].line;
1205 if (i >= off && i < max)
1206 senses[i-off] = np->intrs[j].sense ?
1207 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE :
1208 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE;
1214 * Construct and return a list of the device_nodes with a given name.
1216 struct device_node *
1217 find_devices(const char *name)
1219 struct device_node *head, **prevp, *np;
1221 prevp = &head;
1222 for (np = allnodes; np != 0; np = np->allnext) {
1223 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1224 *prevp = np;
1225 prevp = &np->next;
1228 *prevp = NULL;
1229 return head;
1231 EXPORT_SYMBOL(find_devices);
1234 * Construct and return a list of the device_nodes with a given type.
1236 struct device_node *
1237 find_type_devices(const char *type)
1239 struct device_node *head, **prevp, *np;
1241 prevp = &head;
1242 for (np = allnodes; np != 0; np = np->allnext) {
1243 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1244 *prevp = np;
1245 prevp = &np->next;
1248 *prevp = NULL;
1249 return head;
1251 EXPORT_SYMBOL(find_type_devices);
1254 * Returns all nodes linked together
1256 struct device_node *
1257 find_all_nodes(void)
1259 struct device_node *head, **prevp, *np;
1261 prevp = &head;
1262 for (np = allnodes; np != 0; np = np->allnext) {
1263 *prevp = np;
1264 prevp = &np->next;
1266 *prevp = NULL;
1267 return head;
1269 EXPORT_SYMBOL(find_all_nodes);
1271 /** Checks if the given "compat" string matches one of the strings in
1272 * the device's "compatible" property
1275 device_is_compatible(struct device_node *device, const char *compat)
1277 const char* cp;
1278 int cplen, l;
1280 cp = (char *) get_property(device, "compatible", &cplen);
1281 if (cp == NULL)
1282 return 0;
1283 while (cplen > 0) {
1284 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1285 return 1;
1286 l = strlen(cp) + 1;
1287 cp += l;
1288 cplen -= l;
1291 return 0;
1293 EXPORT_SYMBOL(device_is_compatible);
1297 * Indicates whether the root node has a given value in its
1298 * compatible property.
1301 machine_is_compatible(const char *compat)
1303 struct device_node *root;
1304 int rc = 0;
1306 root = of_find_node_by_path("/");
1307 if (root) {
1308 rc = device_is_compatible(root, compat);
1309 of_node_put(root);
1311 return rc;
1313 EXPORT_SYMBOL(machine_is_compatible);
1316 * Construct and return a list of the device_nodes with a given type
1317 * and compatible property.
1319 struct device_node *
1320 find_compatible_devices(const char *type, const char *compat)
1322 struct device_node *head, **prevp, *np;
1324 prevp = &head;
1325 for (np = allnodes; np != 0; np = np->allnext) {
1326 if (type != NULL
1327 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1328 continue;
1329 if (device_is_compatible(np, compat)) {
1330 *prevp = np;
1331 prevp = &np->next;
1334 *prevp = NULL;
1335 return head;
1337 EXPORT_SYMBOL(find_compatible_devices);
1340 * Find the device_node with a given full_name.
1342 struct device_node *
1343 find_path_device(const char *path)
1345 struct device_node *np;
1347 for (np = allnodes; np != 0; np = np->allnext)
1348 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1349 return np;
1350 return NULL;
1352 EXPORT_SYMBOL(find_path_device);
1354 /*******
1356 * New implementation of the OF "find" APIs, return a refcounted
1357 * object, call of_node_put() when done. The device tree and list
1358 * are protected by a rw_lock.
1360 * Note that property management will need some locking as well,
1361 * this isn't dealt with yet.
1363 *******/
1366 * of_find_node_by_name - Find a node by its "name" property
1367 * @from: The node to start searching from or NULL, the node
1368 * you pass will not be searched, only the next one
1369 * will; typically, you pass what the previous call
1370 * returned. of_node_put() will be called on it
1371 * @name: The name string to match against
1373 * Returns a node pointer with refcount incremented, use
1374 * of_node_put() on it when done.
1376 struct device_node *of_find_node_by_name(struct device_node *from,
1377 const char *name)
1379 struct device_node *np;
1381 read_lock(&devtree_lock);
1382 np = from ? from->allnext : allnodes;
1383 for (; np != 0; np = np->allnext)
1384 if (np->name != 0 && strcasecmp(np->name, name) == 0
1385 && of_node_get(np))
1386 break;
1387 if (from)
1388 of_node_put(from);
1389 read_unlock(&devtree_lock);
1390 return np;
1392 EXPORT_SYMBOL(of_find_node_by_name);
1395 * of_find_node_by_type - Find a node by its "device_type" property
1396 * @from: The node to start searching from or NULL, the node
1397 * you pass will not be searched, only the next one
1398 * will; typically, you pass what the previous call
1399 * returned. of_node_put() will be called on it
1400 * @name: The type string to match against
1402 * Returns a node pointer with refcount incremented, use
1403 * of_node_put() on it when done.
1405 struct device_node *of_find_node_by_type(struct device_node *from,
1406 const char *type)
1408 struct device_node *np;
1410 read_lock(&devtree_lock);
1411 np = from ? from->allnext : allnodes;
1412 for (; np != 0; np = np->allnext)
1413 if (np->type != 0 && strcasecmp(np->type, type) == 0
1414 && of_node_get(np))
1415 break;
1416 if (from)
1417 of_node_put(from);
1418 read_unlock(&devtree_lock);
1419 return np;
1421 EXPORT_SYMBOL(of_find_node_by_type);
1424 * of_find_compatible_node - Find a node based on type and one of the
1425 * tokens in its "compatible" property
1426 * @from: The node to start searching from or NULL, the node
1427 * you pass will not be searched, only the next one
1428 * will; typically, you pass what the previous call
1429 * returned. of_node_put() will be called on it
1430 * @type: The type string to match "device_type" or NULL to ignore
1431 * @compatible: The string to match to one of the tokens in the device
1432 * "compatible" list.
1434 * Returns a node pointer with refcount incremented, use
1435 * of_node_put() on it when done.
1437 struct device_node *of_find_compatible_node(struct device_node *from,
1438 const char *type, const char *compatible)
1440 struct device_node *np;
1442 read_lock(&devtree_lock);
1443 np = from ? from->allnext : allnodes;
1444 for (; np != 0; np = np->allnext) {
1445 if (type != NULL
1446 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1447 continue;
1448 if (device_is_compatible(np, compatible) && of_node_get(np))
1449 break;
1451 if (from)
1452 of_node_put(from);
1453 read_unlock(&devtree_lock);
1454 return np;
1456 EXPORT_SYMBOL(of_find_compatible_node);
1459 * of_find_node_by_path - Find a node matching a full OF path
1460 * @path: The full path to match
1462 * Returns a node pointer with refcount incremented, use
1463 * of_node_put() on it when done.
1465 struct device_node *of_find_node_by_path(const char *path)
1467 struct device_node *np = allnodes;
1469 read_lock(&devtree_lock);
1470 for (; np != 0; np = np->allnext)
1471 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1472 && of_node_get(np))
1473 break;
1474 read_unlock(&devtree_lock);
1475 return np;
1477 EXPORT_SYMBOL(of_find_node_by_path);
1480 * of_find_node_by_phandle - Find a node given a phandle
1481 * @handle: phandle of the node to find
1483 * Returns a node pointer with refcount incremented, use
1484 * of_node_put() on it when done.
1486 struct device_node *of_find_node_by_phandle(phandle handle)
1488 struct device_node *np;
1490 read_lock(&devtree_lock);
1491 for (np = allnodes; np != 0; np = np->allnext)
1492 if (np->linux_phandle == handle)
1493 break;
1494 if (np)
1495 of_node_get(np);
1496 read_unlock(&devtree_lock);
1497 return np;
1499 EXPORT_SYMBOL(of_find_node_by_phandle);
1502 * of_find_all_nodes - Get next node in global list
1503 * @prev: Previous node or NULL to start iteration
1504 * of_node_put() will be called on it
1506 * Returns a node pointer with refcount incremented, use
1507 * of_node_put() on it when done.
1509 struct device_node *of_find_all_nodes(struct device_node *prev)
1511 struct device_node *np;
1513 read_lock(&devtree_lock);
1514 np = prev ? prev->allnext : allnodes;
1515 for (; np != 0; np = np->allnext)
1516 if (of_node_get(np))
1517 break;
1518 if (prev)
1519 of_node_put(prev);
1520 read_unlock(&devtree_lock);
1521 return np;
1523 EXPORT_SYMBOL(of_find_all_nodes);
1526 * of_get_parent - Get a node's parent if any
1527 * @node: Node to get parent
1529 * Returns a node pointer with refcount incremented, use
1530 * of_node_put() on it when done.
1532 struct device_node *of_get_parent(const struct device_node *node)
1534 struct device_node *np;
1536 if (!node)
1537 return NULL;
1539 read_lock(&devtree_lock);
1540 np = of_node_get(node->parent);
1541 read_unlock(&devtree_lock);
1542 return np;
1544 EXPORT_SYMBOL(of_get_parent);
1547 * of_get_next_child - Iterate a node childs
1548 * @node: parent node
1549 * @prev: previous child of the parent node, or NULL to get first
1551 * Returns a node pointer with refcount incremented, use
1552 * of_node_put() on it when done.
1554 struct device_node *of_get_next_child(const struct device_node *node,
1555 struct device_node *prev)
1557 struct device_node *next;
1559 read_lock(&devtree_lock);
1560 next = prev ? prev->sibling : node->child;
1561 for (; next != 0; next = next->sibling)
1562 if (of_node_get(next))
1563 break;
1564 if (prev)
1565 of_node_put(prev);
1566 read_unlock(&devtree_lock);
1567 return next;
1569 EXPORT_SYMBOL(of_get_next_child);
1572 * of_node_get - Increment refcount of a node
1573 * @node: Node to inc refcount, NULL is supported to
1574 * simplify writing of callers
1576 * Returns node.
1578 struct device_node *of_node_get(struct device_node *node)
1580 if (node)
1581 kref_get(&node->kref);
1582 return node;
1584 EXPORT_SYMBOL(of_node_get);
1586 static inline struct device_node * kref_to_device_node(struct kref *kref)
1588 return container_of(kref, struct device_node, kref);
1592 * of_node_release - release a dynamically allocated node
1593 * @kref: kref element of the node to be released
1595 * In of_node_put() this function is passed to kref_put()
1596 * as the destructor.
1598 static void of_node_release(struct kref *kref)
1600 struct device_node *node = kref_to_device_node(kref);
1601 struct property *prop = node->properties;
1603 if (!OF_IS_DYNAMIC(node))
1604 return;
1605 while (prop) {
1606 struct property *next = prop->next;
1607 kfree(prop->name);
1608 kfree(prop->value);
1609 kfree(prop);
1610 prop = next;
1612 kfree(node->intrs);
1613 kfree(node->addrs);
1614 kfree(node->full_name);
1615 kfree(node);
1619 * of_node_put - Decrement refcount of a node
1620 * @node: Node to dec refcount, NULL is supported to
1621 * simplify writing of callers
1624 void of_node_put(struct device_node *node)
1626 if (node)
1627 kref_put(&node->kref, of_node_release);
1629 EXPORT_SYMBOL(of_node_put);
1632 * Fix up the uninitialized fields in a new device node:
1633 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1635 * A lot of boot-time code is duplicated here, because functions such
1636 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1637 * slab allocator.
1639 * This should probably be split up into smaller chunks.
1642 static int of_finish_dynamic_node(struct device_node *node,
1643 unsigned long *unused1, int unused2,
1644 int unused3, int unused4)
1646 struct device_node *parent = of_get_parent(node);
1647 int err = 0;
1648 phandle *ibm_phandle;
1650 node->name = get_property(node, "name", NULL);
1651 node->type = get_property(node, "device_type", NULL);
1653 if (!parent) {
1654 err = -ENODEV;
1655 goto out;
1658 /* We don't support that function on PowerMac, at least
1659 * not yet
1661 if (systemcfg->platform == PLATFORM_POWERMAC)
1662 return -ENODEV;
1664 /* fix up new node's linux_phandle field */
1665 if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1666 node->linux_phandle = *ibm_phandle;
1668 out:
1669 of_node_put(parent);
1670 return err;
1674 * Plug a device node into the tree and global list.
1676 void of_attach_node(struct device_node *np)
1678 write_lock(&devtree_lock);
1679 np->sibling = np->parent->child;
1680 np->allnext = allnodes;
1681 np->parent->child = np;
1682 allnodes = np;
1683 write_unlock(&devtree_lock);
1687 * "Unplug" a node from the device tree. The caller must hold
1688 * a reference to the node. The memory associated with the node
1689 * is not freed until its refcount goes to zero.
1691 void of_detach_node(const struct device_node *np)
1693 struct device_node *parent;
1695 write_lock(&devtree_lock);
1697 parent = np->parent;
1699 if (allnodes == np)
1700 allnodes = np->allnext;
1701 else {
1702 struct device_node *prev;
1703 for (prev = allnodes;
1704 prev->allnext != np;
1705 prev = prev->allnext)
1707 prev->allnext = np->allnext;
1710 if (parent->child == np)
1711 parent->child = np->sibling;
1712 else {
1713 struct device_node *prevsib;
1714 for (prevsib = np->parent->child;
1715 prevsib->sibling != np;
1716 prevsib = prevsib->sibling)
1718 prevsib->sibling = np->sibling;
1721 write_unlock(&devtree_lock);
1724 static int prom_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *node)
1726 int err;
1728 switch (action) {
1729 case PSERIES_RECONFIG_ADD:
1730 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1731 if (err < 0) {
1732 printk(KERN_ERR "finish_node returned %d\n", err);
1733 err = NOTIFY_BAD;
1735 break;
1736 default:
1737 err = NOTIFY_DONE;
1738 break;
1740 return err;
1743 static struct notifier_block prom_reconfig_nb = {
1744 .notifier_call = prom_reconfig_notifier,
1745 .priority = 10, /* This one needs to run first */
1748 static int __init prom_reconfig_setup(void)
1750 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1752 __initcall(prom_reconfig_setup);
1755 * Find a property with a given name for a given node
1756 * and return the value.
1758 unsigned char *
1759 get_property(struct device_node *np, const char *name, int *lenp)
1761 struct property *pp;
1763 for (pp = np->properties; pp != 0; pp = pp->next)
1764 if (strcmp(pp->name, name) == 0) {
1765 if (lenp != 0)
1766 *lenp = pp->length;
1767 return pp->value;
1769 return NULL;
1771 EXPORT_SYMBOL(get_property);
1774 * Add a property to a node
1776 void
1777 prom_add_property(struct device_node* np, struct property* prop)
1779 struct property **next = &np->properties;
1781 prop->next = NULL;
1782 while (*next)
1783 next = &(*next)->next;
1784 *next = prop;
1787 #if 0
1788 void
1789 print_properties(struct device_node *np)
1791 struct property *pp;
1792 char *cp;
1793 int i, n;
1795 for (pp = np->properties; pp != 0; pp = pp->next) {
1796 printk(KERN_INFO "%s", pp->name);
1797 for (i = strlen(pp->name); i < 16; ++i)
1798 printk(" ");
1799 cp = (char *) pp->value;
1800 for (i = pp->length; i > 0; --i, ++cp)
1801 if ((i > 1 && (*cp < 0x20 || *cp > 0x7e))
1802 || (i == 1 && *cp != 0))
1803 break;
1804 if (i == 0 && pp->length > 1) {
1805 /* looks like a string */
1806 printk(" %s\n", (char *) pp->value);
1807 } else {
1808 /* dump it in hex */
1809 n = pp->length;
1810 if (n > 64)
1811 n = 64;
1812 if (pp->length % 4 == 0) {
1813 unsigned int *p = (unsigned int *) pp->value;
1815 n /= 4;
1816 for (i = 0; i < n; ++i) {
1817 if (i != 0 && (i % 4) == 0)
1818 printk("\n ");
1819 printk(" %08x", *p++);
1821 } else {
1822 unsigned char *bp = pp->value;
1824 for (i = 0; i < n; ++i) {
1825 if (i != 0 && (i % 16) == 0)
1826 printk("\n ");
1827 printk(" %02x", *bp++);
1830 printk("\n");
1831 if (pp->length > 64)
1832 printk(" ... (length = %d)\n",
1833 pp->length);
1837 #endif