2 * PowerPC memory management structures
4 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
16 #include <linux/config.h>
23 #define STE_ESID_V 0x80
24 #define STE_ESID_KS 0x20
25 #define STE_ESID_KP 0x10
26 #define STE_ESID_N 0x08
28 #define STE_VSID_SHIFT 12
30 /* Location of cpu0's segment table */
31 #define STAB0_PAGE 0x9
32 #define STAB0_PHYS_ADDR (STAB0_PAGE<<PAGE_SHIFT)
33 #define STAB0_VIRT_ADDR (KERNELBASE+STAB0_PHYS_ADDR)
39 #define SLB_NUM_BOLTED 3
40 #define SLB_CACHE_ENTRIES 8
42 /* Bits in the SLB ESID word */
43 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
45 /* Bits in the SLB VSID word */
46 #define SLB_VSID_SHIFT 12
47 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
48 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
49 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
50 #define SLB_VSID_L ASM_CONST(0x0000000000000100) /* largepage */
51 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
52 #define SLB_VSID_LS ASM_CONST(0x0000000000000070) /* size of largepage */
54 #define SLB_VSID_KERNEL (SLB_VSID_KP|SLB_VSID_C)
55 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS)
61 #define HPTES_PER_GROUP 8
63 /* Values for PP (assumes Ks=0, Kp=1) */
64 /* pp0 will always be 0 for linux */
65 #define PP_RWXX 0 /* Supervisor read/write, User none */
66 #define PP_RWRX 1 /* Supervisor read/write, User read */
67 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
68 #define PP_RXRX 3 /* Supervisor read, User read */
72 /* Hardware Page Table Entry */
74 unsigned long avpn
:57; /* vsid | api == avpn */
75 unsigned long : 2; /* Software use */
76 unsigned long bolted
: 1; /* HPTE is "bolted" */
77 unsigned long lock
: 1; /* lock on pSeries SMP */
78 unsigned long l
: 1; /* Virtual page is large (L=1) or 4 KB (L=0) */
79 unsigned long h
: 1; /* Hash function identifier */
80 unsigned long v
: 1; /* Valid (v=1) or invalid (v=0) */
84 unsigned long pp0
: 1; /* Page protection bit 0 */
85 unsigned long ts
: 1; /* Tag set bit */
86 unsigned long rpn
: 50; /* Real page number */
87 unsigned long : 2; /* Reserved */
88 unsigned long ac
: 1; /* Address compare */
89 unsigned long r
: 1; /* Referenced */
90 unsigned long c
: 1; /* Changed */
91 unsigned long w
: 1; /* Write-thru cache mode */
92 unsigned long i
: 1; /* Cache inhibited */
93 unsigned long m
: 1; /* Memory coherence required */
94 unsigned long g
: 1; /* Guarded */
95 unsigned long n
: 1; /* No-execute */
96 unsigned long pp
: 2; /* Page protection bits 1:2 */
100 char padding
[6]; /* padding */
101 unsigned long : 6; /* padding */
102 unsigned long flags
: 10; /* HPTE flags */
107 unsigned long dword0
;
112 unsigned long dword1
;
114 Hpte_dword1_flags flags
;
118 extern HPTE
* htab_address
;
119 extern unsigned long htab_hash_mask
;
121 static inline unsigned long hpt_hash(unsigned long vpn
, int large
)
134 return (vsid
& 0x7fffffffffUL
) ^ page
;
137 static inline void __tlbie(unsigned long va
, int large
)
139 /* clear top 16 bits, non SLS segment */
140 va
&= ~(0xffffULL
<< 48);
144 asm volatile("tlbie %0,1" : : "r"(va
) : "memory");
147 asm volatile("tlbie %0,0" : : "r"(va
) : "memory");
151 static inline void tlbie(unsigned long va
, int large
)
153 asm volatile("ptesync": : :"memory");
155 asm volatile("eieio; tlbsync; ptesync": : :"memory");
158 static inline void __tlbiel(unsigned long va
)
160 /* clear top 16 bits, non SLS segment */
161 va
&= ~(0xffffULL
<< 48);
165 * Thanks to Alan Modra we are now able to use machine specific
166 * assembly instructions (like tlbiel) by using the gas -many flag.
167 * However we have to support older toolchains so for the moment
171 asm volatile("tlbiel %0" : : "r"(va
) : "memory");
173 asm volatile(".long 0x7c000224 | (%0 << 11)" : : "r"(va
) : "memory");
177 static inline void tlbiel(unsigned long va
)
179 asm volatile("ptesync": : :"memory");
181 asm volatile("ptesync": : :"memory");
184 static inline unsigned long slot2va(unsigned long avpn
, unsigned long large
,
185 unsigned long secondary
, unsigned long slot
)
192 unsigned long vpi
, pteg
;
194 pteg
= slot
/ HPTES_PER_GROUP
;
198 vpi
= ((va
>> 28) ^ pteg
) & htab_hash_mask
;
200 va
|= vpi
<< PAGE_SHIFT
;
207 * Handle a fault by adding an HPTE. If the address can't be determined
208 * to be valid via Linux page tables, return 1. If handled return 0
210 extern int __hash_page(unsigned long ea
, unsigned long access
,
211 unsigned long vsid
, pte_t
*ptep
, unsigned long trap
,
214 extern void htab_finish_init(void);
216 extern void hpte_init_native(void);
217 extern void hpte_init_lpar(void);
218 extern void hpte_init_iSeries(void);
220 extern long pSeries_lpar_hpte_insert(unsigned long hpte_group
,
221 unsigned long va
, unsigned long prpn
,
222 int secondary
, unsigned long hpteflags
,
223 int bolted
, int large
);
224 extern long native_hpte_insert(unsigned long hpte_group
, unsigned long va
,
225 unsigned long prpn
, int secondary
,
226 unsigned long hpteflags
, int bolted
, int large
);
228 #endif /* __ASSEMBLY__ */
233 * We first generate a 36-bit "proto-VSID". For kernel addresses this
234 * is equal to the ESID, for user addresses it is:
235 * (context << 15) | (esid & 0x7fff)
237 * The two forms are distinguishable because the top bit is 0 for user
238 * addresses, whereas the top two bits are 1 for kernel addresses.
239 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
242 * The proto-VSIDs are then scrambled into real VSIDs with the
243 * multiplicative hash:
245 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
246 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
247 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
249 * This scramble is only well defined for proto-VSIDs below
250 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
251 * reserved. VSID_MULTIPLIER is prime, so in particular it is
252 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
253 * Because the modulus is 2^n-1 we can compute it efficiently without
254 * a divide or extra multiply (see below).
256 * This scheme has several advantages over older methods:
258 * - We have VSIDs allocated for every kernel address
259 * (i.e. everything above 0xC000000000000000), except the very top
260 * segment, which simplifies several things.
262 * - We allow for 15 significant bits of ESID and 20 bits of
263 * context for user addresses. i.e. 8T (43 bits) of address space for
264 * up to 1M contexts (although the page table structure and context
265 * allocation will need changes to take advantage of this).
267 * - The scramble function gives robust scattering in the hash
268 * table (at least based on some initial results). The previous
269 * method was more susceptible to pathological cases giving excessive
273 * WARNING - If you change these you must make sure the asm
274 * implementations in slb_allocate (slb_low.S), do_stab_bolted
275 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
277 * You'll also need to change the precomputed VSID values in head.S
278 * which are used by the iSeries firmware.
281 #define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */
283 #define VSID_MODULUS ((1UL<<VSID_BITS)-1)
285 #define CONTEXT_BITS 20
286 #define USER_ESID_BITS 15
289 * This macro generates asm code to compute the VSID scramble
290 * function. Used in slb_allocate() and do_stab_bolted. The function
291 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
293 * rt = register continaing the proto-VSID and into which the
294 * VSID will be stored
295 * rx = scratch register (clobbered)
297 * - rt and rx must be different registers
298 * - The answer will end up in the low 36 bits of rt. The higher
299 * bits may contain other garbage, so you may need to mask the
302 #define ASM_VSID_SCRAMBLE(rt, rx) \
303 lis rx,VSID_MULTIPLIER@h; \
304 ori rx,rx,VSID_MULTIPLIER@l; \
305 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
307 srdi rx,rt,VSID_BITS; \
308 clrldi rt,rt,(64-VSID_BITS); \
309 add rt,rt,rx; /* add high and low bits */ \
310 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
311 * 2^36-1+2^28-1. That in particular means that if r3 >= \
312 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
313 * the bit clear, r3 already has the answer we want, if it \
314 * doesn't, the answer is the low 36 bits of r3+1. So in all \
315 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
317 srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \
323 typedef unsigned long mm_context_id_t
;
327 #ifdef CONFIG_HUGETLB_PAGE
329 u16 htlb_segs
; /* bitmask */
334 static inline unsigned long vsid_scramble(unsigned long protovsid
)
337 /* The code below is equivalent to this function for arguments
338 * < 2^VSID_BITS, which is all this should ever be called
339 * with. However gcc is not clever enough to compute the
340 * modulus (2^n-1) without a second multiply. */
341 return ((protovsid
* VSID_MULTIPLIER
) % VSID_MODULUS
);
345 x
= protovsid
* VSID_MULTIPLIER
;
346 x
= (x
>> VSID_BITS
) + (x
& VSID_MODULUS
);
347 return (x
+ ((x
+1) >> VSID_BITS
)) & VSID_MODULUS
;
351 /* This is only valid for addresses >= KERNELBASE */
352 static inline unsigned long get_kernel_vsid(unsigned long ea
)
354 return vsid_scramble(ea
>> SID_SHIFT
);
357 /* This is only valid for user addresses (which are below 2^41) */
358 static inline unsigned long get_vsid(unsigned long context
, unsigned long ea
)
360 return vsid_scramble((context
<< USER_ESID_BITS
)
361 | (ea
>> SID_SHIFT
));
364 #endif /* __ASSEMBLY */
366 #endif /* _PPC64_MMU_H_ */