Linux v2.6.13-rc3
[pohmelfs.git] / kernel / fork.c
blobcdef6cea8900d67910bb1199ca7728c045a1737b
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/ptrace.h>
39 #include <linux/mount.h>
40 #include <linux/audit.h>
41 #include <linux/profile.h>
42 #include <linux/rmap.h>
43 #include <linux/acct.h>
45 #include <asm/pgtable.h>
46 #include <asm/pgalloc.h>
47 #include <asm/uaccess.h>
48 #include <asm/mmu_context.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
53 * Protected counters by write_lock_irq(&tasklist_lock)
55 unsigned long total_forks; /* Handle normal Linux uptimes. */
56 int nr_threads; /* The idle threads do not count.. */
58 int max_threads; /* tunable limit on nr_threads */
60 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
62 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
64 EXPORT_SYMBOL(tasklist_lock);
66 int nr_processes(void)
68 int cpu;
69 int total = 0;
71 for_each_online_cpu(cpu)
72 total += per_cpu(process_counts, cpu);
74 return total;
77 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
78 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
79 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
80 static kmem_cache_t *task_struct_cachep;
81 #endif
83 /* SLAB cache for signal_struct structures (tsk->signal) */
84 kmem_cache_t *signal_cachep;
86 /* SLAB cache for sighand_struct structures (tsk->sighand) */
87 kmem_cache_t *sighand_cachep;
89 /* SLAB cache for files_struct structures (tsk->files) */
90 kmem_cache_t *files_cachep;
92 /* SLAB cache for fs_struct structures (tsk->fs) */
93 kmem_cache_t *fs_cachep;
95 /* SLAB cache for vm_area_struct structures */
96 kmem_cache_t *vm_area_cachep;
98 /* SLAB cache for mm_struct structures (tsk->mm) */
99 static kmem_cache_t *mm_cachep;
101 void free_task(struct task_struct *tsk)
103 free_thread_info(tsk->thread_info);
104 free_task_struct(tsk);
106 EXPORT_SYMBOL(free_task);
108 void __put_task_struct(struct task_struct *tsk)
110 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
111 WARN_ON(atomic_read(&tsk->usage));
112 WARN_ON(tsk == current);
114 if (unlikely(tsk->audit_context))
115 audit_free(tsk);
116 security_task_free(tsk);
117 free_uid(tsk->user);
118 put_group_info(tsk->group_info);
120 if (!profile_handoff_task(tsk))
121 free_task(tsk);
124 void __init fork_init(unsigned long mempages)
126 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
127 #ifndef ARCH_MIN_TASKALIGN
128 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
129 #endif
130 /* create a slab on which task_structs can be allocated */
131 task_struct_cachep =
132 kmem_cache_create("task_struct", sizeof(struct task_struct),
133 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
134 #endif
137 * The default maximum number of threads is set to a safe
138 * value: the thread structures can take up at most half
139 * of memory.
141 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
144 * we need to allow at least 20 threads to boot a system
146 if(max_threads < 20)
147 max_threads = 20;
149 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
150 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
151 init_task.signal->rlim[RLIMIT_SIGPENDING] =
152 init_task.signal->rlim[RLIMIT_NPROC];
155 static struct task_struct *dup_task_struct(struct task_struct *orig)
157 struct task_struct *tsk;
158 struct thread_info *ti;
160 prepare_to_copy(orig);
162 tsk = alloc_task_struct();
163 if (!tsk)
164 return NULL;
166 ti = alloc_thread_info(tsk);
167 if (!ti) {
168 free_task_struct(tsk);
169 return NULL;
172 *ti = *orig->thread_info;
173 *tsk = *orig;
174 tsk->thread_info = ti;
175 ti->task = tsk;
177 /* One for us, one for whoever does the "release_task()" (usually parent) */
178 atomic_set(&tsk->usage,2);
179 return tsk;
182 #ifdef CONFIG_MMU
183 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
185 struct vm_area_struct * mpnt, *tmp, **pprev;
186 struct rb_node **rb_link, *rb_parent;
187 int retval;
188 unsigned long charge;
189 struct mempolicy *pol;
191 down_write(&oldmm->mmap_sem);
192 flush_cache_mm(current->mm);
193 mm->locked_vm = 0;
194 mm->mmap = NULL;
195 mm->mmap_cache = NULL;
196 mm->free_area_cache = oldmm->mmap_base;
197 mm->cached_hole_size = ~0UL;
198 mm->map_count = 0;
199 set_mm_counter(mm, rss, 0);
200 set_mm_counter(mm, anon_rss, 0);
201 cpus_clear(mm->cpu_vm_mask);
202 mm->mm_rb = RB_ROOT;
203 rb_link = &mm->mm_rb.rb_node;
204 rb_parent = NULL;
205 pprev = &mm->mmap;
207 for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
208 struct file *file;
210 if (mpnt->vm_flags & VM_DONTCOPY) {
211 __vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
212 -vma_pages(mpnt));
213 continue;
215 charge = 0;
216 if (mpnt->vm_flags & VM_ACCOUNT) {
217 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
218 if (security_vm_enough_memory(len))
219 goto fail_nomem;
220 charge = len;
222 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
223 if (!tmp)
224 goto fail_nomem;
225 *tmp = *mpnt;
226 pol = mpol_copy(vma_policy(mpnt));
227 retval = PTR_ERR(pol);
228 if (IS_ERR(pol))
229 goto fail_nomem_policy;
230 vma_set_policy(tmp, pol);
231 tmp->vm_flags &= ~VM_LOCKED;
232 tmp->vm_mm = mm;
233 tmp->vm_next = NULL;
234 anon_vma_link(tmp);
235 file = tmp->vm_file;
236 if (file) {
237 struct inode *inode = file->f_dentry->d_inode;
238 get_file(file);
239 if (tmp->vm_flags & VM_DENYWRITE)
240 atomic_dec(&inode->i_writecount);
242 /* insert tmp into the share list, just after mpnt */
243 spin_lock(&file->f_mapping->i_mmap_lock);
244 tmp->vm_truncate_count = mpnt->vm_truncate_count;
245 flush_dcache_mmap_lock(file->f_mapping);
246 vma_prio_tree_add(tmp, mpnt);
247 flush_dcache_mmap_unlock(file->f_mapping);
248 spin_unlock(&file->f_mapping->i_mmap_lock);
252 * Link in the new vma and copy the page table entries:
253 * link in first so that swapoff can see swap entries.
254 * Note that, exceptionally, here the vma is inserted
255 * without holding mm->mmap_sem.
257 spin_lock(&mm->page_table_lock);
258 *pprev = tmp;
259 pprev = &tmp->vm_next;
261 __vma_link_rb(mm, tmp, rb_link, rb_parent);
262 rb_link = &tmp->vm_rb.rb_right;
263 rb_parent = &tmp->vm_rb;
265 mm->map_count++;
266 retval = copy_page_range(mm, current->mm, tmp);
267 spin_unlock(&mm->page_table_lock);
269 if (tmp->vm_ops && tmp->vm_ops->open)
270 tmp->vm_ops->open(tmp);
272 if (retval)
273 goto out;
275 retval = 0;
277 out:
278 flush_tlb_mm(current->mm);
279 up_write(&oldmm->mmap_sem);
280 return retval;
281 fail_nomem_policy:
282 kmem_cache_free(vm_area_cachep, tmp);
283 fail_nomem:
284 retval = -ENOMEM;
285 vm_unacct_memory(charge);
286 goto out;
289 static inline int mm_alloc_pgd(struct mm_struct * mm)
291 mm->pgd = pgd_alloc(mm);
292 if (unlikely(!mm->pgd))
293 return -ENOMEM;
294 return 0;
297 static inline void mm_free_pgd(struct mm_struct * mm)
299 pgd_free(mm->pgd);
301 #else
302 #define dup_mmap(mm, oldmm) (0)
303 #define mm_alloc_pgd(mm) (0)
304 #define mm_free_pgd(mm)
305 #endif /* CONFIG_MMU */
307 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
309 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
310 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
312 #include <linux/init_task.h>
314 static struct mm_struct * mm_init(struct mm_struct * mm)
316 atomic_set(&mm->mm_users, 1);
317 atomic_set(&mm->mm_count, 1);
318 init_rwsem(&mm->mmap_sem);
319 INIT_LIST_HEAD(&mm->mmlist);
320 mm->core_waiters = 0;
321 mm->nr_ptes = 0;
322 spin_lock_init(&mm->page_table_lock);
323 rwlock_init(&mm->ioctx_list_lock);
324 mm->ioctx_list = NULL;
325 mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
326 mm->free_area_cache = TASK_UNMAPPED_BASE;
327 mm->cached_hole_size = ~0UL;
329 if (likely(!mm_alloc_pgd(mm))) {
330 mm->def_flags = 0;
331 return mm;
333 free_mm(mm);
334 return NULL;
338 * Allocate and initialize an mm_struct.
340 struct mm_struct * mm_alloc(void)
342 struct mm_struct * mm;
344 mm = allocate_mm();
345 if (mm) {
346 memset(mm, 0, sizeof(*mm));
347 mm = mm_init(mm);
349 return mm;
353 * Called when the last reference to the mm
354 * is dropped: either by a lazy thread or by
355 * mmput. Free the page directory and the mm.
357 void fastcall __mmdrop(struct mm_struct *mm)
359 BUG_ON(mm == &init_mm);
360 mm_free_pgd(mm);
361 destroy_context(mm);
362 free_mm(mm);
366 * Decrement the use count and release all resources for an mm.
368 void mmput(struct mm_struct *mm)
370 if (atomic_dec_and_test(&mm->mm_users)) {
371 exit_aio(mm);
372 exit_mmap(mm);
373 if (!list_empty(&mm->mmlist)) {
374 spin_lock(&mmlist_lock);
375 list_del(&mm->mmlist);
376 spin_unlock(&mmlist_lock);
378 put_swap_token(mm);
379 mmdrop(mm);
382 EXPORT_SYMBOL_GPL(mmput);
385 * get_task_mm - acquire a reference to the task's mm
387 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
388 * this kernel workthread has transiently adopted a user mm with use_mm,
389 * to do its AIO) is not set and if so returns a reference to it, after
390 * bumping up the use count. User must release the mm via mmput()
391 * after use. Typically used by /proc and ptrace.
393 struct mm_struct *get_task_mm(struct task_struct *task)
395 struct mm_struct *mm;
397 task_lock(task);
398 mm = task->mm;
399 if (mm) {
400 if (task->flags & PF_BORROWED_MM)
401 mm = NULL;
402 else
403 atomic_inc(&mm->mm_users);
405 task_unlock(task);
406 return mm;
408 EXPORT_SYMBOL_GPL(get_task_mm);
410 /* Please note the differences between mmput and mm_release.
411 * mmput is called whenever we stop holding onto a mm_struct,
412 * error success whatever.
414 * mm_release is called after a mm_struct has been removed
415 * from the current process.
417 * This difference is important for error handling, when we
418 * only half set up a mm_struct for a new process and need to restore
419 * the old one. Because we mmput the new mm_struct before
420 * restoring the old one. . .
421 * Eric Biederman 10 January 1998
423 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
425 struct completion *vfork_done = tsk->vfork_done;
427 /* Get rid of any cached register state */
428 deactivate_mm(tsk, mm);
430 /* notify parent sleeping on vfork() */
431 if (vfork_done) {
432 tsk->vfork_done = NULL;
433 complete(vfork_done);
435 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
436 u32 __user * tidptr = tsk->clear_child_tid;
437 tsk->clear_child_tid = NULL;
440 * We don't check the error code - if userspace has
441 * not set up a proper pointer then tough luck.
443 put_user(0, tidptr);
444 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
448 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
450 struct mm_struct * mm, *oldmm;
451 int retval;
453 tsk->min_flt = tsk->maj_flt = 0;
454 tsk->nvcsw = tsk->nivcsw = 0;
456 tsk->mm = NULL;
457 tsk->active_mm = NULL;
460 * Are we cloning a kernel thread?
462 * We need to steal a active VM for that..
464 oldmm = current->mm;
465 if (!oldmm)
466 return 0;
468 if (clone_flags & CLONE_VM) {
469 atomic_inc(&oldmm->mm_users);
470 mm = oldmm;
472 * There are cases where the PTL is held to ensure no
473 * new threads start up in user mode using an mm, which
474 * allows optimizing out ipis; the tlb_gather_mmu code
475 * is an example.
477 spin_unlock_wait(&oldmm->page_table_lock);
478 goto good_mm;
481 retval = -ENOMEM;
482 mm = allocate_mm();
483 if (!mm)
484 goto fail_nomem;
486 /* Copy the current MM stuff.. */
487 memcpy(mm, oldmm, sizeof(*mm));
488 if (!mm_init(mm))
489 goto fail_nomem;
491 if (init_new_context(tsk,mm))
492 goto fail_nocontext;
494 retval = dup_mmap(mm, oldmm);
495 if (retval)
496 goto free_pt;
498 mm->hiwater_rss = get_mm_counter(mm,rss);
499 mm->hiwater_vm = mm->total_vm;
501 good_mm:
502 tsk->mm = mm;
503 tsk->active_mm = mm;
504 return 0;
506 free_pt:
507 mmput(mm);
508 fail_nomem:
509 return retval;
511 fail_nocontext:
513 * If init_new_context() failed, we cannot use mmput() to free the mm
514 * because it calls destroy_context()
516 mm_free_pgd(mm);
517 free_mm(mm);
518 return retval;
521 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
523 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
524 /* We don't need to lock fs - think why ;-) */
525 if (fs) {
526 atomic_set(&fs->count, 1);
527 rwlock_init(&fs->lock);
528 fs->umask = old->umask;
529 read_lock(&old->lock);
530 fs->rootmnt = mntget(old->rootmnt);
531 fs->root = dget(old->root);
532 fs->pwdmnt = mntget(old->pwdmnt);
533 fs->pwd = dget(old->pwd);
534 if (old->altroot) {
535 fs->altrootmnt = mntget(old->altrootmnt);
536 fs->altroot = dget(old->altroot);
537 } else {
538 fs->altrootmnt = NULL;
539 fs->altroot = NULL;
541 read_unlock(&old->lock);
543 return fs;
546 struct fs_struct *copy_fs_struct(struct fs_struct *old)
548 return __copy_fs_struct(old);
551 EXPORT_SYMBOL_GPL(copy_fs_struct);
553 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
555 if (clone_flags & CLONE_FS) {
556 atomic_inc(&current->fs->count);
557 return 0;
559 tsk->fs = __copy_fs_struct(current->fs);
560 if (!tsk->fs)
561 return -ENOMEM;
562 return 0;
565 static int count_open_files(struct files_struct *files, int size)
567 int i;
569 /* Find the last open fd */
570 for (i = size/(8*sizeof(long)); i > 0; ) {
571 if (files->open_fds->fds_bits[--i])
572 break;
574 i = (i+1) * 8 * sizeof(long);
575 return i;
578 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
580 struct files_struct *oldf, *newf;
581 struct file **old_fds, **new_fds;
582 int open_files, size, i, error = 0, expand;
585 * A background process may not have any files ...
587 oldf = current->files;
588 if (!oldf)
589 goto out;
591 if (clone_flags & CLONE_FILES) {
592 atomic_inc(&oldf->count);
593 goto out;
597 * Note: we may be using current for both targets (See exec.c)
598 * This works because we cache current->files (old) as oldf. Don't
599 * break this.
601 tsk->files = NULL;
602 error = -ENOMEM;
603 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
604 if (!newf)
605 goto out;
607 atomic_set(&newf->count, 1);
609 spin_lock_init(&newf->file_lock);
610 newf->next_fd = 0;
611 newf->max_fds = NR_OPEN_DEFAULT;
612 newf->max_fdset = __FD_SETSIZE;
613 newf->close_on_exec = &newf->close_on_exec_init;
614 newf->open_fds = &newf->open_fds_init;
615 newf->fd = &newf->fd_array[0];
617 spin_lock(&oldf->file_lock);
619 open_files = count_open_files(oldf, oldf->max_fdset);
620 expand = 0;
623 * Check whether we need to allocate a larger fd array or fd set.
624 * Note: we're not a clone task, so the open count won't change.
626 if (open_files > newf->max_fdset) {
627 newf->max_fdset = 0;
628 expand = 1;
630 if (open_files > newf->max_fds) {
631 newf->max_fds = 0;
632 expand = 1;
635 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
636 if (expand) {
637 spin_unlock(&oldf->file_lock);
638 spin_lock(&newf->file_lock);
639 error = expand_files(newf, open_files-1);
640 spin_unlock(&newf->file_lock);
641 if (error < 0)
642 goto out_release;
643 spin_lock(&oldf->file_lock);
646 old_fds = oldf->fd;
647 new_fds = newf->fd;
649 memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
650 memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
652 for (i = open_files; i != 0; i--) {
653 struct file *f = *old_fds++;
654 if (f) {
655 get_file(f);
656 } else {
658 * The fd may be claimed in the fd bitmap but not yet
659 * instantiated in the files array if a sibling thread
660 * is partway through open(). So make sure that this
661 * fd is available to the new process.
663 FD_CLR(open_files - i, newf->open_fds);
665 *new_fds++ = f;
667 spin_unlock(&oldf->file_lock);
669 /* compute the remainder to be cleared */
670 size = (newf->max_fds - open_files) * sizeof(struct file *);
672 /* This is long word aligned thus could use a optimized version */
673 memset(new_fds, 0, size);
675 if (newf->max_fdset > open_files) {
676 int left = (newf->max_fdset-open_files)/8;
677 int start = open_files / (8 * sizeof(unsigned long));
679 memset(&newf->open_fds->fds_bits[start], 0, left);
680 memset(&newf->close_on_exec->fds_bits[start], 0, left);
683 tsk->files = newf;
684 error = 0;
685 out:
686 return error;
688 out_release:
689 free_fdset (newf->close_on_exec, newf->max_fdset);
690 free_fdset (newf->open_fds, newf->max_fdset);
691 free_fd_array(newf->fd, newf->max_fds);
692 kmem_cache_free(files_cachep, newf);
693 goto out;
697 * Helper to unshare the files of the current task.
698 * We don't want to expose copy_files internals to
699 * the exec layer of the kernel.
702 int unshare_files(void)
704 struct files_struct *files = current->files;
705 int rc;
707 if(!files)
708 BUG();
710 /* This can race but the race causes us to copy when we don't
711 need to and drop the copy */
712 if(atomic_read(&files->count) == 1)
714 atomic_inc(&files->count);
715 return 0;
717 rc = copy_files(0, current);
718 if(rc)
719 current->files = files;
720 return rc;
723 EXPORT_SYMBOL(unshare_files);
725 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
727 struct sighand_struct *sig;
729 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
730 atomic_inc(&current->sighand->count);
731 return 0;
733 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
734 tsk->sighand = sig;
735 if (!sig)
736 return -ENOMEM;
737 spin_lock_init(&sig->siglock);
738 atomic_set(&sig->count, 1);
739 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
740 return 0;
743 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
745 struct signal_struct *sig;
746 int ret;
748 if (clone_flags & CLONE_THREAD) {
749 atomic_inc(&current->signal->count);
750 atomic_inc(&current->signal->live);
751 return 0;
753 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
754 tsk->signal = sig;
755 if (!sig)
756 return -ENOMEM;
758 ret = copy_thread_group_keys(tsk);
759 if (ret < 0) {
760 kmem_cache_free(signal_cachep, sig);
761 return ret;
764 atomic_set(&sig->count, 1);
765 atomic_set(&sig->live, 1);
766 init_waitqueue_head(&sig->wait_chldexit);
767 sig->flags = 0;
768 sig->group_exit_code = 0;
769 sig->group_exit_task = NULL;
770 sig->group_stop_count = 0;
771 sig->curr_target = NULL;
772 init_sigpending(&sig->shared_pending);
773 INIT_LIST_HEAD(&sig->posix_timers);
775 sig->it_real_value = sig->it_real_incr = 0;
776 sig->real_timer.function = it_real_fn;
777 sig->real_timer.data = (unsigned long) tsk;
778 init_timer(&sig->real_timer);
780 sig->it_virt_expires = cputime_zero;
781 sig->it_virt_incr = cputime_zero;
782 sig->it_prof_expires = cputime_zero;
783 sig->it_prof_incr = cputime_zero;
785 sig->tty = current->signal->tty;
786 sig->pgrp = process_group(current);
787 sig->session = current->signal->session;
788 sig->leader = 0; /* session leadership doesn't inherit */
789 sig->tty_old_pgrp = 0;
791 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
792 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
793 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
794 sig->sched_time = 0;
795 INIT_LIST_HEAD(&sig->cpu_timers[0]);
796 INIT_LIST_HEAD(&sig->cpu_timers[1]);
797 INIT_LIST_HEAD(&sig->cpu_timers[2]);
799 task_lock(current->group_leader);
800 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
801 task_unlock(current->group_leader);
803 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
805 * New sole thread in the process gets an expiry time
806 * of the whole CPU time limit.
808 tsk->it_prof_expires =
809 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
812 return 0;
815 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
817 unsigned long new_flags = p->flags;
819 new_flags &= ~PF_SUPERPRIV;
820 new_flags |= PF_FORKNOEXEC;
821 if (!(clone_flags & CLONE_PTRACE))
822 p->ptrace = 0;
823 p->flags = new_flags;
826 asmlinkage long sys_set_tid_address(int __user *tidptr)
828 current->clear_child_tid = tidptr;
830 return current->pid;
834 * This creates a new process as a copy of the old one,
835 * but does not actually start it yet.
837 * It copies the registers, and all the appropriate
838 * parts of the process environment (as per the clone
839 * flags). The actual kick-off is left to the caller.
841 static task_t *copy_process(unsigned long clone_flags,
842 unsigned long stack_start,
843 struct pt_regs *regs,
844 unsigned long stack_size,
845 int __user *parent_tidptr,
846 int __user *child_tidptr,
847 int pid)
849 int retval;
850 struct task_struct *p = NULL;
852 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
853 return ERR_PTR(-EINVAL);
856 * Thread groups must share signals as well, and detached threads
857 * can only be started up within the thread group.
859 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
860 return ERR_PTR(-EINVAL);
863 * Shared signal handlers imply shared VM. By way of the above,
864 * thread groups also imply shared VM. Blocking this case allows
865 * for various simplifications in other code.
867 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
868 return ERR_PTR(-EINVAL);
870 retval = security_task_create(clone_flags);
871 if (retval)
872 goto fork_out;
874 retval = -ENOMEM;
875 p = dup_task_struct(current);
876 if (!p)
877 goto fork_out;
879 retval = -EAGAIN;
880 if (atomic_read(&p->user->processes) >=
881 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
882 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
883 p->user != &root_user)
884 goto bad_fork_free;
887 atomic_inc(&p->user->__count);
888 atomic_inc(&p->user->processes);
889 get_group_info(p->group_info);
892 * If multiple threads are within copy_process(), then this check
893 * triggers too late. This doesn't hurt, the check is only there
894 * to stop root fork bombs.
896 if (nr_threads >= max_threads)
897 goto bad_fork_cleanup_count;
899 if (!try_module_get(p->thread_info->exec_domain->module))
900 goto bad_fork_cleanup_count;
902 if (p->binfmt && !try_module_get(p->binfmt->module))
903 goto bad_fork_cleanup_put_domain;
905 p->did_exec = 0;
906 copy_flags(clone_flags, p);
907 p->pid = pid;
908 retval = -EFAULT;
909 if (clone_flags & CLONE_PARENT_SETTID)
910 if (put_user(p->pid, parent_tidptr))
911 goto bad_fork_cleanup;
913 p->proc_dentry = NULL;
915 INIT_LIST_HEAD(&p->children);
916 INIT_LIST_HEAD(&p->sibling);
917 p->vfork_done = NULL;
918 spin_lock_init(&p->alloc_lock);
919 spin_lock_init(&p->proc_lock);
921 clear_tsk_thread_flag(p, TIF_SIGPENDING);
922 init_sigpending(&p->pending);
924 p->utime = cputime_zero;
925 p->stime = cputime_zero;
926 p->sched_time = 0;
927 p->rchar = 0; /* I/O counter: bytes read */
928 p->wchar = 0; /* I/O counter: bytes written */
929 p->syscr = 0; /* I/O counter: read syscalls */
930 p->syscw = 0; /* I/O counter: write syscalls */
931 acct_clear_integrals(p);
933 p->it_virt_expires = cputime_zero;
934 p->it_prof_expires = cputime_zero;
935 p->it_sched_expires = 0;
936 INIT_LIST_HEAD(&p->cpu_timers[0]);
937 INIT_LIST_HEAD(&p->cpu_timers[1]);
938 INIT_LIST_HEAD(&p->cpu_timers[2]);
940 p->lock_depth = -1; /* -1 = no lock */
941 do_posix_clock_monotonic_gettime(&p->start_time);
942 p->security = NULL;
943 p->io_context = NULL;
944 p->io_wait = NULL;
945 p->audit_context = NULL;
946 #ifdef CONFIG_NUMA
947 p->mempolicy = mpol_copy(p->mempolicy);
948 if (IS_ERR(p->mempolicy)) {
949 retval = PTR_ERR(p->mempolicy);
950 p->mempolicy = NULL;
951 goto bad_fork_cleanup;
953 #endif
955 p->tgid = p->pid;
956 if (clone_flags & CLONE_THREAD)
957 p->tgid = current->tgid;
959 if ((retval = security_task_alloc(p)))
960 goto bad_fork_cleanup_policy;
961 if ((retval = audit_alloc(p)))
962 goto bad_fork_cleanup_security;
963 /* copy all the process information */
964 if ((retval = copy_semundo(clone_flags, p)))
965 goto bad_fork_cleanup_audit;
966 if ((retval = copy_files(clone_flags, p)))
967 goto bad_fork_cleanup_semundo;
968 if ((retval = copy_fs(clone_flags, p)))
969 goto bad_fork_cleanup_files;
970 if ((retval = copy_sighand(clone_flags, p)))
971 goto bad_fork_cleanup_fs;
972 if ((retval = copy_signal(clone_flags, p)))
973 goto bad_fork_cleanup_sighand;
974 if ((retval = copy_mm(clone_flags, p)))
975 goto bad_fork_cleanup_signal;
976 if ((retval = copy_keys(clone_flags, p)))
977 goto bad_fork_cleanup_mm;
978 if ((retval = copy_namespace(clone_flags, p)))
979 goto bad_fork_cleanup_keys;
980 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
981 if (retval)
982 goto bad_fork_cleanup_namespace;
984 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
986 * Clear TID on mm_release()?
988 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
991 * Syscall tracing should be turned off in the child regardless
992 * of CLONE_PTRACE.
994 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
996 /* Our parent execution domain becomes current domain
997 These must match for thread signalling to apply */
999 p->parent_exec_id = p->self_exec_id;
1001 /* ok, now we should be set up.. */
1002 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1003 p->pdeath_signal = 0;
1004 p->exit_state = 0;
1007 * Ok, make it visible to the rest of the system.
1008 * We dont wake it up yet.
1010 p->group_leader = p;
1011 INIT_LIST_HEAD(&p->ptrace_children);
1012 INIT_LIST_HEAD(&p->ptrace_list);
1014 /* Perform scheduler related setup. Assign this task to a CPU. */
1015 sched_fork(p, clone_flags);
1017 /* Need tasklist lock for parent etc handling! */
1018 write_lock_irq(&tasklist_lock);
1021 * The task hasn't been attached yet, so its cpus_allowed mask will
1022 * not be changed, nor will its assigned CPU.
1024 * The cpus_allowed mask of the parent may have changed after it was
1025 * copied first time - so re-copy it here, then check the child's CPU
1026 * to ensure it is on a valid CPU (and if not, just force it back to
1027 * parent's CPU). This avoids alot of nasty races.
1029 p->cpus_allowed = current->cpus_allowed;
1030 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed)))
1031 set_task_cpu(p, smp_processor_id());
1034 * Check for pending SIGKILL! The new thread should not be allowed
1035 * to slip out of an OOM kill. (or normal SIGKILL.)
1037 if (sigismember(&current->pending.signal, SIGKILL)) {
1038 write_unlock_irq(&tasklist_lock);
1039 retval = -EINTR;
1040 goto bad_fork_cleanup_namespace;
1043 /* CLONE_PARENT re-uses the old parent */
1044 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1045 p->real_parent = current->real_parent;
1046 else
1047 p->real_parent = current;
1048 p->parent = p->real_parent;
1050 if (clone_flags & CLONE_THREAD) {
1051 spin_lock(&current->sighand->siglock);
1053 * Important: if an exit-all has been started then
1054 * do not create this new thread - the whole thread
1055 * group is supposed to exit anyway.
1057 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1058 spin_unlock(&current->sighand->siglock);
1059 write_unlock_irq(&tasklist_lock);
1060 retval = -EAGAIN;
1061 goto bad_fork_cleanup_namespace;
1063 p->group_leader = current->group_leader;
1065 if (current->signal->group_stop_count > 0) {
1067 * There is an all-stop in progress for the group.
1068 * We ourselves will stop as soon as we check signals.
1069 * Make the new thread part of that group stop too.
1071 current->signal->group_stop_count++;
1072 set_tsk_thread_flag(p, TIF_SIGPENDING);
1075 if (!cputime_eq(current->signal->it_virt_expires,
1076 cputime_zero) ||
1077 !cputime_eq(current->signal->it_prof_expires,
1078 cputime_zero) ||
1079 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1080 !list_empty(&current->signal->cpu_timers[0]) ||
1081 !list_empty(&current->signal->cpu_timers[1]) ||
1082 !list_empty(&current->signal->cpu_timers[2])) {
1084 * Have child wake up on its first tick to check
1085 * for process CPU timers.
1087 p->it_prof_expires = jiffies_to_cputime(1);
1090 spin_unlock(&current->sighand->siglock);
1094 * inherit ioprio
1096 p->ioprio = current->ioprio;
1098 SET_LINKS(p);
1099 if (unlikely(p->ptrace & PT_PTRACED))
1100 __ptrace_link(p, current->parent);
1102 cpuset_fork(p);
1104 attach_pid(p, PIDTYPE_PID, p->pid);
1105 attach_pid(p, PIDTYPE_TGID, p->tgid);
1106 if (thread_group_leader(p)) {
1107 attach_pid(p, PIDTYPE_PGID, process_group(p));
1108 attach_pid(p, PIDTYPE_SID, p->signal->session);
1109 if (p->pid)
1110 __get_cpu_var(process_counts)++;
1113 nr_threads++;
1114 total_forks++;
1115 write_unlock_irq(&tasklist_lock);
1116 retval = 0;
1118 fork_out:
1119 if (retval)
1120 return ERR_PTR(retval);
1121 return p;
1123 bad_fork_cleanup_namespace:
1124 exit_namespace(p);
1125 bad_fork_cleanup_keys:
1126 exit_keys(p);
1127 bad_fork_cleanup_mm:
1128 if (p->mm)
1129 mmput(p->mm);
1130 bad_fork_cleanup_signal:
1131 exit_signal(p);
1132 bad_fork_cleanup_sighand:
1133 exit_sighand(p);
1134 bad_fork_cleanup_fs:
1135 exit_fs(p); /* blocking */
1136 bad_fork_cleanup_files:
1137 exit_files(p); /* blocking */
1138 bad_fork_cleanup_semundo:
1139 exit_sem(p);
1140 bad_fork_cleanup_audit:
1141 audit_free(p);
1142 bad_fork_cleanup_security:
1143 security_task_free(p);
1144 bad_fork_cleanup_policy:
1145 #ifdef CONFIG_NUMA
1146 mpol_free(p->mempolicy);
1147 #endif
1148 bad_fork_cleanup:
1149 if (p->binfmt)
1150 module_put(p->binfmt->module);
1151 bad_fork_cleanup_put_domain:
1152 module_put(p->thread_info->exec_domain->module);
1153 bad_fork_cleanup_count:
1154 put_group_info(p->group_info);
1155 atomic_dec(&p->user->processes);
1156 free_uid(p->user);
1157 bad_fork_free:
1158 free_task(p);
1159 goto fork_out;
1162 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1164 memset(regs, 0, sizeof(struct pt_regs));
1165 return regs;
1168 task_t * __devinit fork_idle(int cpu)
1170 task_t *task;
1171 struct pt_regs regs;
1173 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1174 if (!task)
1175 return ERR_PTR(-ENOMEM);
1176 init_idle(task, cpu);
1177 unhash_process(task);
1178 return task;
1181 static inline int fork_traceflag (unsigned clone_flags)
1183 if (clone_flags & CLONE_UNTRACED)
1184 return 0;
1185 else if (clone_flags & CLONE_VFORK) {
1186 if (current->ptrace & PT_TRACE_VFORK)
1187 return PTRACE_EVENT_VFORK;
1188 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1189 if (current->ptrace & PT_TRACE_CLONE)
1190 return PTRACE_EVENT_CLONE;
1191 } else if (current->ptrace & PT_TRACE_FORK)
1192 return PTRACE_EVENT_FORK;
1194 return 0;
1198 * Ok, this is the main fork-routine.
1200 * It copies the process, and if successful kick-starts
1201 * it and waits for it to finish using the VM if required.
1203 long do_fork(unsigned long clone_flags,
1204 unsigned long stack_start,
1205 struct pt_regs *regs,
1206 unsigned long stack_size,
1207 int __user *parent_tidptr,
1208 int __user *child_tidptr)
1210 struct task_struct *p;
1211 int trace = 0;
1212 long pid = alloc_pidmap();
1214 if (pid < 0)
1215 return -EAGAIN;
1216 if (unlikely(current->ptrace)) {
1217 trace = fork_traceflag (clone_flags);
1218 if (trace)
1219 clone_flags |= CLONE_PTRACE;
1222 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1224 * Do this prior waking up the new thread - the thread pointer
1225 * might get invalid after that point, if the thread exits quickly.
1227 if (!IS_ERR(p)) {
1228 struct completion vfork;
1230 if (clone_flags & CLONE_VFORK) {
1231 p->vfork_done = &vfork;
1232 init_completion(&vfork);
1235 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1237 * We'll start up with an immediate SIGSTOP.
1239 sigaddset(&p->pending.signal, SIGSTOP);
1240 set_tsk_thread_flag(p, TIF_SIGPENDING);
1243 if (!(clone_flags & CLONE_STOPPED))
1244 wake_up_new_task(p, clone_flags);
1245 else
1246 p->state = TASK_STOPPED;
1248 if (unlikely (trace)) {
1249 current->ptrace_message = pid;
1250 ptrace_notify ((trace << 8) | SIGTRAP);
1253 if (clone_flags & CLONE_VFORK) {
1254 wait_for_completion(&vfork);
1255 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1256 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1258 } else {
1259 free_pidmap(pid);
1260 pid = PTR_ERR(p);
1262 return pid;
1265 void __init proc_caches_init(void)
1267 sighand_cachep = kmem_cache_create("sighand_cache",
1268 sizeof(struct sighand_struct), 0,
1269 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1270 signal_cachep = kmem_cache_create("signal_cache",
1271 sizeof(struct signal_struct), 0,
1272 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1273 files_cachep = kmem_cache_create("files_cache",
1274 sizeof(struct files_struct), 0,
1275 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1276 fs_cachep = kmem_cache_create("fs_cache",
1277 sizeof(struct fs_struct), 0,
1278 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1279 vm_area_cachep = kmem_cache_create("vm_area_struct",
1280 sizeof(struct vm_area_struct), 0,
1281 SLAB_PANIC, NULL, NULL);
1282 mm_cachep = kmem_cache_create("mm_struct",
1283 sizeof(struct mm_struct), 0,
1284 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);