1 #ifndef _ASM_POWERPC_DMA_H
2 #define _ASM_POWERPC_DMA_H
5 * Defines for using and allocating dma channels.
6 * Written by Hennus Bergman, 1992.
7 * High DMA channel support & info by Hannu Savolainen
8 * and John Boyd, Nov. 1992.
9 * Changes for ppc sound by Christoph Nadig
13 * Note: Adapted for PowerPC by Gary Thomas
14 * Modified by Cort Dougan <cort@cs.nmt.edu>
16 * None of this really applies for Power Macintoshes. There is
17 * basically just enough here to get kernel/dma.c to compile.
19 * There may be some comments or restrictions made here which are
20 * not valid for the PReP platform. Take what you read
21 * with a grain of salt.
24 #include <linux/config.h>
26 #include <linux/spinlock.h>
27 #include <asm/system.h>
29 #ifndef MAX_DMA_CHANNELS
30 #define MAX_DMA_CHANNELS 8
33 /* The maximum address that we can perform a DMA transfer to on this platform */
34 /* Doesn't really apply... */
35 #define MAX_DMA_ADDRESS (~0UL)
37 #if !defined(CONFIG_PPC_ISERIES) || defined(CONFIG_PCI)
39 #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
40 #define dma_outb outb_p
48 * NOTES about DMA transfers:
50 * controller 1: channels 0-3, byte operations, ports 00-1F
51 * controller 2: channels 4-7, word operations, ports C0-DF
53 * - ALL registers are 8 bits only, regardless of transfer size
54 * - channel 4 is not used - cascades 1 into 2.
55 * - channels 0-3 are byte - addresses/counts are for physical bytes
56 * - channels 5-7 are word - addresses/counts are for physical words
57 * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
58 * - transfer count loaded to registers is 1 less than actual count
59 * - controller 2 offsets are all even (2x offsets for controller 1)
60 * - page registers for 5-7 don't use data bit 0, represent 128K pages
61 * - page registers for 0-3 use bit 0, represent 64K pages
63 * On PReP, DMA transfers are limited to the lower 16MB of _physical_ memory.
64 * On CHRP, the W83C553F (and VLSI Tollgate?) support full 32 bit addressing.
65 * Note that addresses loaded into registers must be _physical_ addresses,
66 * not logical addresses (which may differ if paging is active).
68 * Address mapping for channels 0-3:
70 * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses)
71 * | ... | | ... | | ... |
72 * | ... | | ... | | ... |
73 * | ... | | ... | | ... |
74 * P7 ... P0 A7 ... A0 A7 ... A0
75 * | Page | Addr MSB | Addr LSB | (DMA registers)
77 * Address mapping for channels 5-7:
79 * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses)
80 * | ... | \ \ ... \ \ \ ... \ \
81 * | ... | \ \ ... \ \ \ ... \ (not used)
82 * | ... | \ \ ... \ \ \ ... \
83 * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0
84 * | Page | Addr MSB | Addr LSB | (DMA registers)
86 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
87 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
88 * the hardware level, so odd-byte transfers aren't possible).
90 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
91 * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more,
92 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
96 /* see prep_setup_arch() for detailed informations */
97 #if defined(CONFIG_SOUND_CS4232) && defined(CONFIG_PPC_PREP)
98 extern long ppc_cs4232_dma
, ppc_cs4232_dma2
;
99 #define SND_DMA1 ppc_cs4232_dma
100 #define SND_DMA2 ppc_cs4232_dma2
106 /* 8237 DMA controllers */
107 #define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
108 #define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
110 /* DMA controller registers */
111 #define DMA1_CMD_REG 0x08 /* command register (w) */
112 #define DMA1_STAT_REG 0x08 /* status register (r) */
113 #define DMA1_REQ_REG 0x09 /* request register (w) */
114 #define DMA1_MASK_REG 0x0A /* single-channel mask (w) */
115 #define DMA1_MODE_REG 0x0B /* mode register (w) */
116 #define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */
117 #define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */
118 #define DMA1_RESET_REG 0x0D /* Master Clear (w) */
119 #define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */
120 #define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */
122 #define DMA2_CMD_REG 0xD0 /* command register (w) */
123 #define DMA2_STAT_REG 0xD0 /* status register (r) */
124 #define DMA2_REQ_REG 0xD2 /* request register (w) */
125 #define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */
126 #define DMA2_MODE_REG 0xD6 /* mode register (w) */
127 #define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */
128 #define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */
129 #define DMA2_RESET_REG 0xDA /* Master Clear (w) */
130 #define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */
131 #define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */
133 #define DMA_ADDR_0 0x00 /* DMA address registers */
134 #define DMA_ADDR_1 0x02
135 #define DMA_ADDR_2 0x04
136 #define DMA_ADDR_3 0x06
137 #define DMA_ADDR_4 0xC0
138 #define DMA_ADDR_5 0xC4
139 #define DMA_ADDR_6 0xC8
140 #define DMA_ADDR_7 0xCC
142 #define DMA_CNT_0 0x01 /* DMA count registers */
143 #define DMA_CNT_1 0x03
144 #define DMA_CNT_2 0x05
145 #define DMA_CNT_3 0x07
146 #define DMA_CNT_4 0xC2
147 #define DMA_CNT_5 0xC6
148 #define DMA_CNT_6 0xCA
149 #define DMA_CNT_7 0xCE
151 #define DMA_LO_PAGE_0 0x87 /* DMA page registers */
152 #define DMA_LO_PAGE_1 0x83
153 #define DMA_LO_PAGE_2 0x81
154 #define DMA_LO_PAGE_3 0x82
155 #define DMA_LO_PAGE_5 0x8B
156 #define DMA_LO_PAGE_6 0x89
157 #define DMA_LO_PAGE_7 0x8A
159 #define DMA_HI_PAGE_0 0x487 /* DMA page registers */
160 #define DMA_HI_PAGE_1 0x483
161 #define DMA_HI_PAGE_2 0x481
162 #define DMA_HI_PAGE_3 0x482
163 #define DMA_HI_PAGE_5 0x48B
164 #define DMA_HI_PAGE_6 0x489
165 #define DMA_HI_PAGE_7 0x48A
167 #define DMA1_EXT_REG 0x40B
168 #define DMA2_EXT_REG 0x4D6
170 #ifndef __powerpc64__
171 /* in arch/ppc/kernel/setup.c -- Cort */
172 extern unsigned int DMA_MODE_WRITE
;
173 extern unsigned int DMA_MODE_READ
;
174 extern unsigned long ISA_DMA_THRESHOLD
;
176 #define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */
177 #define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */
180 #define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */
182 #define DMA_AUTOINIT 0x10
184 extern spinlock_t dma_spin_lock
;
186 static __inline__
unsigned long claim_dma_lock(void)
189 spin_lock_irqsave(&dma_spin_lock
, flags
);
193 static __inline__
void release_dma_lock(unsigned long flags
)
195 spin_unlock_irqrestore(&dma_spin_lock
, flags
);
198 /* enable/disable a specific DMA channel */
199 static __inline__
void enable_dma(unsigned int dmanr
)
201 unsigned char ucDmaCmd
= 0x00;
204 dma_outb(0, DMA2_MASK_REG
); /* This may not be enabled */
205 dma_outb(ucDmaCmd
, DMA2_CMD_REG
); /* Enable group */
208 dma_outb(dmanr
, DMA1_MASK_REG
);
209 dma_outb(ucDmaCmd
, DMA1_CMD_REG
); /* Enable group */
211 dma_outb(dmanr
& 3, DMA2_MASK_REG
);
215 static __inline__
void disable_dma(unsigned int dmanr
)
218 dma_outb(dmanr
| 4, DMA1_MASK_REG
);
220 dma_outb((dmanr
& 3) | 4, DMA2_MASK_REG
);
223 /* Clear the 'DMA Pointer Flip Flop'.
224 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
225 * Use this once to initialize the FF to a known state.
226 * After that, keep track of it. :-)
227 * --- In order to do that, the DMA routines below should ---
228 * --- only be used while interrupts are disabled! ---
230 static __inline__
void clear_dma_ff(unsigned int dmanr
)
233 dma_outb(0, DMA1_CLEAR_FF_REG
);
235 dma_outb(0, DMA2_CLEAR_FF_REG
);
238 /* set mode (above) for a specific DMA channel */
239 static __inline__
void set_dma_mode(unsigned int dmanr
, char mode
)
242 dma_outb(mode
| dmanr
, DMA1_MODE_REG
);
244 dma_outb(mode
| (dmanr
& 3), DMA2_MODE_REG
);
247 /* Set only the page register bits of the transfer address.
248 * This is used for successive transfers when we know the contents of
249 * the lower 16 bits of the DMA current address register, but a 64k boundary
250 * may have been crossed.
252 static __inline__
void set_dma_page(unsigned int dmanr
, int pagenr
)
256 dma_outb(pagenr
, DMA_LO_PAGE_0
);
257 dma_outb(pagenr
>> 8, DMA_HI_PAGE_0
);
260 dma_outb(pagenr
, DMA_LO_PAGE_1
);
261 dma_outb(pagenr
>> 8, DMA_HI_PAGE_1
);
264 dma_outb(pagenr
, DMA_LO_PAGE_2
);
265 dma_outb(pagenr
>> 8, DMA_HI_PAGE_2
);
268 dma_outb(pagenr
, DMA_LO_PAGE_3
);
269 dma_outb(pagenr
>> 8, DMA_HI_PAGE_3
);
272 if (SND_DMA1
== 5 || SND_DMA2
== 5)
273 dma_outb(pagenr
, DMA_LO_PAGE_5
);
275 dma_outb(pagenr
& 0xfe, DMA_LO_PAGE_5
);
276 dma_outb(pagenr
>> 8, DMA_HI_PAGE_5
);
279 if (SND_DMA1
== 6 || SND_DMA2
== 6)
280 dma_outb(pagenr
, DMA_LO_PAGE_6
);
282 dma_outb(pagenr
& 0xfe, DMA_LO_PAGE_6
);
283 dma_outb(pagenr
>> 8, DMA_HI_PAGE_6
);
286 if (SND_DMA1
== 7 || SND_DMA2
== 7)
287 dma_outb(pagenr
, DMA_LO_PAGE_7
);
289 dma_outb(pagenr
& 0xfe, DMA_LO_PAGE_7
);
290 dma_outb(pagenr
>> 8, DMA_HI_PAGE_7
);
295 /* Set transfer address & page bits for specific DMA channel.
296 * Assumes dma flipflop is clear.
298 static __inline__
void set_dma_addr(unsigned int dmanr
, unsigned int phys
)
301 dma_outb(phys
& 0xff,
302 ((dmanr
& 3) << 1) + IO_DMA1_BASE
);
303 dma_outb((phys
>> 8) & 0xff,
304 ((dmanr
& 3) << 1) + IO_DMA1_BASE
);
305 } else if (dmanr
== SND_DMA1
|| dmanr
== SND_DMA2
) {
306 dma_outb(phys
& 0xff,
307 ((dmanr
& 3) << 2) + IO_DMA2_BASE
);
308 dma_outb((phys
>> 8) & 0xff,
309 ((dmanr
& 3) << 2) + IO_DMA2_BASE
);
310 dma_outb((dmanr
& 3), DMA2_EXT_REG
);
312 dma_outb((phys
>> 1) & 0xff,
313 ((dmanr
& 3) << 2) + IO_DMA2_BASE
);
314 dma_outb((phys
>> 9) & 0xff,
315 ((dmanr
& 3) << 2) + IO_DMA2_BASE
);
317 set_dma_page(dmanr
, phys
>> 16);
321 /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
322 * a specific DMA channel.
323 * You must ensure the parameters are valid.
324 * NOTE: from a manual: "the number of transfers is one more
325 * than the initial word count"! This is taken into account.
326 * Assumes dma flip-flop is clear.
327 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
329 static __inline__
void set_dma_count(unsigned int dmanr
, unsigned int count
)
333 dma_outb(count
& 0xff,
334 ((dmanr
& 3) << 1) + 1 + IO_DMA1_BASE
);
335 dma_outb((count
>> 8) & 0xff,
336 ((dmanr
& 3) << 1) + 1 + IO_DMA1_BASE
);
337 } else if (dmanr
== SND_DMA1
|| dmanr
== SND_DMA2
) {
338 dma_outb(count
& 0xff,
339 ((dmanr
& 3) << 2) + 2 + IO_DMA2_BASE
);
340 dma_outb((count
>> 8) & 0xff,
341 ((dmanr
& 3) << 2) + 2 + IO_DMA2_BASE
);
343 dma_outb((count
>> 1) & 0xff,
344 ((dmanr
& 3) << 2) + 2 + IO_DMA2_BASE
);
345 dma_outb((count
>> 9) & 0xff,
346 ((dmanr
& 3) << 2) + 2 + IO_DMA2_BASE
);
351 /* Get DMA residue count. After a DMA transfer, this
352 * should return zero. Reading this while a DMA transfer is
353 * still in progress will return unpredictable results.
354 * If called before the channel has been used, it may return 1.
355 * Otherwise, it returns the number of _bytes_ left to transfer.
357 * Assumes DMA flip-flop is clear.
359 static __inline__
int get_dma_residue(unsigned int dmanr
)
361 unsigned int io_port
= (dmanr
<= 3)
362 ? ((dmanr
& 3) << 1) + 1 + IO_DMA1_BASE
363 : ((dmanr
& 3) << 2) + 2 + IO_DMA2_BASE
;
365 /* using short to get 16-bit wrap around */
366 unsigned short count
;
368 count
= 1 + dma_inb(io_port
);
369 count
+= dma_inb(io_port
) << 8;
371 return (dmanr
<= 3 || dmanr
== SND_DMA1
|| dmanr
== SND_DMA2
)
372 ? count
: (count
<< 1);
375 /* These are in kernel/dma.c: */
377 /* reserve a DMA channel */
378 extern int request_dma(unsigned int dmanr
, const char *device_id
);
379 /* release it again */
380 extern void free_dma(unsigned int dmanr
);
383 extern int isa_dma_bridge_buggy
;
385 #define isa_dma_bridge_buggy (0)
388 #endif /* !defined(CONFIG_PPC_ISERIES) || defined(CONFIG_PCI) */
390 #endif /* _ASM_POWERPC_DMA_H */