1 #ifndef _ASM_POWERPC_MMU_H_
2 #define _ASM_POWERPC_MMU_H_
5 #include <asm-ppc/mmu.h>
9 * PowerPC memory management structures
11 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
20 #include <asm/asm-compat.h>
27 #define STE_ESID_V 0x80
28 #define STE_ESID_KS 0x20
29 #define STE_ESID_KP 0x10
30 #define STE_ESID_N 0x08
32 #define STE_VSID_SHIFT 12
34 /* Location of cpu0's segment table */
35 #define STAB0_PAGE 0x6
36 #define STAB0_PHYS_ADDR (STAB0_PAGE<<12)
39 extern char initial_stab
[];
40 #endif /* ! __ASSEMBLY */
46 #define SLB_NUM_BOLTED 3
47 #define SLB_CACHE_ENTRIES 8
49 /* Bits in the SLB ESID word */
50 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
52 /* Bits in the SLB VSID word */
53 #define SLB_VSID_SHIFT 12
54 #define SLB_VSID_B ASM_CONST(0xc000000000000000)
55 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
56 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
57 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
58 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
59 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
60 #define SLB_VSID_L ASM_CONST(0x0000000000000100)
61 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
62 #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
63 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
64 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
65 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
66 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
67 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
69 #define SLB_VSID_KERNEL (SLB_VSID_KP)
70 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
72 #define SLBIE_C (0x08000000)
78 #define HPTES_PER_GROUP 8
80 #define HPTE_V_AVPN_SHIFT 7
81 #define HPTE_V_AVPN ASM_CONST(0xffffffffffffff80)
82 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
83 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & HPTE_V_AVPN))
84 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
85 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
86 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
87 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
88 #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
90 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
91 #define HPTE_R_TS ASM_CONST(0x4000000000000000)
92 #define HPTE_R_RPN_SHIFT 12
93 #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
94 #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
95 #define HPTE_R_PP ASM_CONST(0x0000000000000003)
96 #define HPTE_R_N ASM_CONST(0x0000000000000004)
98 /* Values for PP (assumes Ks=0, Kp=1) */
99 /* pp0 will always be 0 for linux */
100 #define PP_RWXX 0 /* Supervisor read/write, User none */
101 #define PP_RWRX 1 /* Supervisor read/write, User read */
102 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
103 #define PP_RXRX 3 /* Supervisor read, User read */
112 extern hpte_t
*htab_address
;
113 extern unsigned long htab_hash_mask
;
116 * Page size definition
118 * shift : is the "PAGE_SHIFT" value for that page size
119 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
120 * directly to a slbmte "vsid" value
121 * penc : is the HPTE encoding mask for the "LP" field:
126 unsigned int shift
; /* number of bits */
127 unsigned int penc
; /* HPTE encoding */
128 unsigned int tlbiel
; /* tlbiel supported for that page size */
129 unsigned long avpnm
; /* bits to mask out in AVPN in the HPTE */
130 unsigned long sllp
; /* SLB L||LP (exact mask to use in slbmte) */
133 #endif /* __ASSEMBLY__ */
136 * The kernel use the constants below to index in the page sizes array.
137 * The use of fixed constants for this purpose is better for performances
138 * of the low level hash refill handlers.
140 * A non supported page size has a "shift" field set to 0
142 * Any new page size being implemented can get a new entry in here. Whether
143 * the kernel will use it or not is a different matter though. The actual page
144 * size used by hugetlbfs is not defined here and may be made variable
147 #define MMU_PAGE_4K 0 /* 4K */
148 #define MMU_PAGE_64K 1 /* 64K */
149 #define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
150 #define MMU_PAGE_1M 3 /* 1M */
151 #define MMU_PAGE_16M 4 /* 16M */
152 #define MMU_PAGE_16G 5 /* 16G */
153 #define MMU_PAGE_COUNT 6
158 * The current system page sizes
160 extern struct mmu_psize_def mmu_psize_defs
[MMU_PAGE_COUNT
];
161 extern int mmu_linear_psize
;
162 extern int mmu_virtual_psize
;
164 #ifdef CONFIG_HUGETLB_PAGE
166 * The page size index of the huge pages for use by hugetlbfs
168 extern int mmu_huge_psize
;
170 #endif /* CONFIG_HUGETLB_PAGE */
173 * This function sets the AVPN and L fields of the HPTE appropriately
176 static inline unsigned long hpte_encode_v(unsigned long va
, int psize
)
179 v
= (va
>> 23) & ~(mmu_psize_defs
[psize
].avpnm
);
180 v
<<= HPTE_V_AVPN_SHIFT
;
181 if (psize
!= MMU_PAGE_4K
)
187 * This function sets the ARPN, and LP fields of the HPTE appropriately
188 * for the page size. We assume the pa is already "clean" that is properly
189 * aligned for the requested page size
191 static inline unsigned long hpte_encode_r(unsigned long pa
, int psize
)
195 /* A 4K page needs no special encoding */
196 if (psize
== MMU_PAGE_4K
)
197 return pa
& HPTE_R_RPN
;
199 unsigned int penc
= mmu_psize_defs
[psize
].penc
;
200 unsigned int shift
= mmu_psize_defs
[psize
].shift
;
201 return (pa
& ~((1ul << shift
) - 1)) | (penc
<< 12);
207 * This hashes a virtual address for a 256Mb segment only for now
210 static inline unsigned long hpt_hash(unsigned long va
, unsigned int shift
)
212 return ((va
>> 28) & 0x7fffffffffUL
) ^ ((va
& 0x0fffffffUL
) >> shift
);
215 extern int __hash_page_4K(unsigned long ea
, unsigned long access
,
216 unsigned long vsid
, pte_t
*ptep
, unsigned long trap
,
218 extern int __hash_page_64K(unsigned long ea
, unsigned long access
,
219 unsigned long vsid
, pte_t
*ptep
, unsigned long trap
,
222 extern int hash_huge_page(struct mm_struct
*mm
, unsigned long access
,
223 unsigned long ea
, unsigned long vsid
, int local
,
226 extern void htab_finish_init(void);
227 extern int htab_bolt_mapping(unsigned long vstart
, unsigned long vend
,
228 unsigned long pstart
, unsigned long mode
,
231 extern void htab_initialize(void);
232 extern void htab_initialize_secondary(void);
233 extern void hpte_init_native(void);
234 extern void hpte_init_lpar(void);
235 extern void hpte_init_iSeries(void);
236 extern void mm_init_ppc64(void);
238 extern long pSeries_lpar_hpte_insert(unsigned long hpte_group
,
239 unsigned long va
, unsigned long prpn
,
240 unsigned long rflags
,
241 unsigned long vflags
, int psize
);
243 extern long native_hpte_insert(unsigned long hpte_group
,
244 unsigned long va
, unsigned long prpn
,
245 unsigned long rflags
,
246 unsigned long vflags
, int psize
);
248 extern long iSeries_hpte_insert(unsigned long hpte_group
,
249 unsigned long va
, unsigned long prpn
,
250 unsigned long rflags
,
251 unsigned long vflags
, int psize
);
253 extern void stabs_alloc(void);
254 extern void slb_initialize(void);
255 extern void stab_initialize(unsigned long stab
);
257 #endif /* __ASSEMBLY__ */
262 * We first generate a 36-bit "proto-VSID". For kernel addresses this
263 * is equal to the ESID, for user addresses it is:
264 * (context << 15) | (esid & 0x7fff)
266 * The two forms are distinguishable because the top bit is 0 for user
267 * addresses, whereas the top two bits are 1 for kernel addresses.
268 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
271 * The proto-VSIDs are then scrambled into real VSIDs with the
272 * multiplicative hash:
274 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
275 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
276 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
278 * This scramble is only well defined for proto-VSIDs below
279 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
280 * reserved. VSID_MULTIPLIER is prime, so in particular it is
281 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
282 * Because the modulus is 2^n-1 we can compute it efficiently without
283 * a divide or extra multiply (see below).
285 * This scheme has several advantages over older methods:
287 * - We have VSIDs allocated for every kernel address
288 * (i.e. everything above 0xC000000000000000), except the very top
289 * segment, which simplifies several things.
291 * - We allow for 15 significant bits of ESID and 20 bits of
292 * context for user addresses. i.e. 8T (43 bits) of address space for
293 * up to 1M contexts (although the page table structure and context
294 * allocation will need changes to take advantage of this).
296 * - The scramble function gives robust scattering in the hash
297 * table (at least based on some initial results). The previous
298 * method was more susceptible to pathological cases giving excessive
302 * WARNING - If you change these you must make sure the asm
303 * implementations in slb_allocate (slb_low.S), do_stab_bolted
304 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
306 * You'll also need to change the precomputed VSID values in head.S
307 * which are used by the iSeries firmware.
310 #define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */
312 #define VSID_MODULUS ((1UL<<VSID_BITS)-1)
314 #define CONTEXT_BITS 19
315 #define USER_ESID_BITS 16
317 #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
320 * This macro generates asm code to compute the VSID scramble
321 * function. Used in slb_allocate() and do_stab_bolted. The function
322 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
324 * rt = register continaing the proto-VSID and into which the
325 * VSID will be stored
326 * rx = scratch register (clobbered)
328 * - rt and rx must be different registers
329 * - The answer will end up in the low 36 bits of rt. The higher
330 * bits may contain other garbage, so you may need to mask the
333 #define ASM_VSID_SCRAMBLE(rt, rx) \
334 lis rx,VSID_MULTIPLIER@h; \
335 ori rx,rx,VSID_MULTIPLIER@l; \
336 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
338 srdi rx,rt,VSID_BITS; \
339 clrldi rt,rt,(64-VSID_BITS); \
340 add rt,rt,rx; /* add high and low bits */ \
341 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
342 * 2^36-1+2^28-1. That in particular means that if r3 >= \
343 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
344 * the bit clear, r3 already has the answer we want, if it \
345 * doesn't, the answer is the low 36 bits of r3+1. So in all \
346 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
348 srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \
354 typedef unsigned long mm_context_id_t
;
358 #ifdef CONFIG_HUGETLB_PAGE
359 u16 low_htlb_areas
, high_htlb_areas
;
364 static inline unsigned long vsid_scramble(unsigned long protovsid
)
367 /* The code below is equivalent to this function for arguments
368 * < 2^VSID_BITS, which is all this should ever be called
369 * with. However gcc is not clever enough to compute the
370 * modulus (2^n-1) without a second multiply. */
371 return ((protovsid
* VSID_MULTIPLIER
) % VSID_MODULUS
);
375 x
= protovsid
* VSID_MULTIPLIER
;
376 x
= (x
>> VSID_BITS
) + (x
& VSID_MODULUS
);
377 return (x
+ ((x
+1) >> VSID_BITS
)) & VSID_MODULUS
;
381 /* This is only valid for addresses >= KERNELBASE */
382 static inline unsigned long get_kernel_vsid(unsigned long ea
)
384 return vsid_scramble(ea
>> SID_SHIFT
);
387 /* This is only valid for user addresses (which are below 2^41) */
388 static inline unsigned long get_vsid(unsigned long context
, unsigned long ea
)
390 return vsid_scramble((context
<< USER_ESID_BITS
)
391 | (ea
>> SID_SHIFT
));
394 #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS)
395 #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
397 #endif /* __ASSEMBLY */
399 #endif /* CONFIG_PPC64 */
400 #endif /* _ASM_POWERPC_MMU_H_ */