2 * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
4 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
5 * Copyright (C) 2003 Red Hat <alan@redhat.com>
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/string.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
16 #include <linux/interrupt.h>
17 #include <linux/major.h>
18 #include <linux/errno.h>
19 #include <linux/genhd.h>
20 #include <linux/blkpg.h>
21 #include <linux/slab.h>
22 #include <linux/pci.h>
23 #include <linux/delay.h>
24 #include <linux/hdreg.h>
25 #include <linux/ide.h>
26 #include <linux/bitops.h>
28 #include <asm/byteorder.h>
30 #include <asm/uaccess.h>
34 * Conventional PIO operations for ATA devices
37 static u8
ide_inb (unsigned long port
)
39 return (u8
) inb(port
);
42 static u16
ide_inw (unsigned long port
)
44 return (u16
) inw(port
);
47 static void ide_insw (unsigned long port
, void *addr
, u32 count
)
49 insw(port
, addr
, count
);
52 static u32
ide_inl (unsigned long port
)
54 return (u32
) inl(port
);
57 static void ide_insl (unsigned long port
, void *addr
, u32 count
)
59 insl(port
, addr
, count
);
62 static void ide_outb (u8 val
, unsigned long port
)
67 static void ide_outbsync (ide_drive_t
*drive
, u8 addr
, unsigned long port
)
72 static void ide_outw (u16 val
, unsigned long port
)
77 static void ide_outsw (unsigned long port
, void *addr
, u32 count
)
79 outsw(port
, addr
, count
);
82 static void ide_outl (u32 val
, unsigned long port
)
87 static void ide_outsl (unsigned long port
, void *addr
, u32 count
)
89 outsl(port
, addr
, count
);
92 void default_hwif_iops (ide_hwif_t
*hwif
)
94 hwif
->OUTB
= ide_outb
;
95 hwif
->OUTBSYNC
= ide_outbsync
;
96 hwif
->OUTW
= ide_outw
;
97 hwif
->OUTL
= ide_outl
;
98 hwif
->OUTSW
= ide_outsw
;
99 hwif
->OUTSL
= ide_outsl
;
103 hwif
->INSW
= ide_insw
;
104 hwif
->INSL
= ide_insl
;
108 * MMIO operations, typically used for SATA controllers
111 static u8
ide_mm_inb (unsigned long port
)
113 return (u8
) readb((void __iomem
*) port
);
116 static u16
ide_mm_inw (unsigned long port
)
118 return (u16
) readw((void __iomem
*) port
);
121 static void ide_mm_insw (unsigned long port
, void *addr
, u32 count
)
123 __ide_mm_insw((void __iomem
*) port
, addr
, count
);
126 static u32
ide_mm_inl (unsigned long port
)
128 return (u32
) readl((void __iomem
*) port
);
131 static void ide_mm_insl (unsigned long port
, void *addr
, u32 count
)
133 __ide_mm_insl((void __iomem
*) port
, addr
, count
);
136 static void ide_mm_outb (u8 value
, unsigned long port
)
138 writeb(value
, (void __iomem
*) port
);
141 static void ide_mm_outbsync (ide_drive_t
*drive
, u8 value
, unsigned long port
)
143 writeb(value
, (void __iomem
*) port
);
146 static void ide_mm_outw (u16 value
, unsigned long port
)
148 writew(value
, (void __iomem
*) port
);
151 static void ide_mm_outsw (unsigned long port
, void *addr
, u32 count
)
153 __ide_mm_outsw((void __iomem
*) port
, addr
, count
);
156 static void ide_mm_outl (u32 value
, unsigned long port
)
158 writel(value
, (void __iomem
*) port
);
161 static void ide_mm_outsl (unsigned long port
, void *addr
, u32 count
)
163 __ide_mm_outsl((void __iomem
*) port
, addr
, count
);
166 void default_hwif_mmiops (ide_hwif_t
*hwif
)
168 hwif
->OUTB
= ide_mm_outb
;
169 /* Most systems will need to override OUTBSYNC, alas however
170 this one is controller specific! */
171 hwif
->OUTBSYNC
= ide_mm_outbsync
;
172 hwif
->OUTW
= ide_mm_outw
;
173 hwif
->OUTL
= ide_mm_outl
;
174 hwif
->OUTSW
= ide_mm_outsw
;
175 hwif
->OUTSL
= ide_mm_outsl
;
176 hwif
->INB
= ide_mm_inb
;
177 hwif
->INW
= ide_mm_inw
;
178 hwif
->INL
= ide_mm_inl
;
179 hwif
->INSW
= ide_mm_insw
;
180 hwif
->INSL
= ide_mm_insl
;
183 EXPORT_SYMBOL(default_hwif_mmiops
);
185 u32
ide_read_24 (ide_drive_t
*drive
)
187 u8 hcyl
= HWIF(drive
)->INB(IDE_HCYL_REG
);
188 u8 lcyl
= HWIF(drive
)->INB(IDE_LCYL_REG
);
189 u8 sect
= HWIF(drive
)->INB(IDE_SECTOR_REG
);
190 return (hcyl
<<16)|(lcyl
<<8)|sect
;
193 void SELECT_DRIVE (ide_drive_t
*drive
)
195 if (HWIF(drive
)->selectproc
)
196 HWIF(drive
)->selectproc(drive
);
197 HWIF(drive
)->OUTB(drive
->select
.all
, IDE_SELECT_REG
);
200 EXPORT_SYMBOL(SELECT_DRIVE
);
202 void SELECT_INTERRUPT (ide_drive_t
*drive
)
204 if (HWIF(drive
)->intrproc
)
205 HWIF(drive
)->intrproc(drive
);
207 HWIF(drive
)->OUTB(drive
->ctl
|2, IDE_CONTROL_REG
);
210 void SELECT_MASK (ide_drive_t
*drive
, int mask
)
212 if (HWIF(drive
)->maskproc
)
213 HWIF(drive
)->maskproc(drive
, mask
);
216 void QUIRK_LIST (ide_drive_t
*drive
)
218 if (HWIF(drive
)->quirkproc
)
219 drive
->quirk_list
= HWIF(drive
)->quirkproc(drive
);
223 * Some localbus EIDE interfaces require a special access sequence
224 * when using 32-bit I/O instructions to transfer data. We call this
225 * the "vlb_sync" sequence, which consists of three successive reads
226 * of the sector count register location, with interrupts disabled
227 * to ensure that the reads all happen together.
229 static void ata_vlb_sync(ide_drive_t
*drive
, unsigned long port
)
231 (void) HWIF(drive
)->INB(port
);
232 (void) HWIF(drive
)->INB(port
);
233 (void) HWIF(drive
)->INB(port
);
237 * This is used for most PIO data transfers *from* the IDE interface
239 static void ata_input_data(ide_drive_t
*drive
, void *buffer
, u32 wcount
)
241 ide_hwif_t
*hwif
= HWIF(drive
);
242 u8 io_32bit
= drive
->io_32bit
;
247 local_irq_save(flags
);
248 ata_vlb_sync(drive
, IDE_NSECTOR_REG
);
249 hwif
->INSL(IDE_DATA_REG
, buffer
, wcount
);
250 local_irq_restore(flags
);
252 hwif
->INSL(IDE_DATA_REG
, buffer
, wcount
);
254 hwif
->INSW(IDE_DATA_REG
, buffer
, wcount
<<1);
259 * This is used for most PIO data transfers *to* the IDE interface
261 static void ata_output_data(ide_drive_t
*drive
, void *buffer
, u32 wcount
)
263 ide_hwif_t
*hwif
= HWIF(drive
);
264 u8 io_32bit
= drive
->io_32bit
;
269 local_irq_save(flags
);
270 ata_vlb_sync(drive
, IDE_NSECTOR_REG
);
271 hwif
->OUTSL(IDE_DATA_REG
, buffer
, wcount
);
272 local_irq_restore(flags
);
274 hwif
->OUTSL(IDE_DATA_REG
, buffer
, wcount
);
276 hwif
->OUTSW(IDE_DATA_REG
, buffer
, wcount
<<1);
281 * The following routines are mainly used by the ATAPI drivers.
283 * These routines will round up any request for an odd number of bytes,
284 * so if an odd bytecount is specified, be sure that there's at least one
285 * extra byte allocated for the buffer.
288 static void atapi_input_bytes(ide_drive_t
*drive
, void *buffer
, u32 bytecount
)
290 ide_hwif_t
*hwif
= HWIF(drive
);
293 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
294 if (MACH_IS_ATARI
|| MACH_IS_Q40
) {
295 /* Atari has a byte-swapped IDE interface */
296 insw_swapw(IDE_DATA_REG
, buffer
, bytecount
/ 2);
299 #endif /* CONFIG_ATARI || CONFIG_Q40 */
300 hwif
->ata_input_data(drive
, buffer
, bytecount
/ 4);
301 if ((bytecount
& 0x03) >= 2)
302 hwif
->INSW(IDE_DATA_REG
, ((u8
*)buffer
)+(bytecount
& ~0x03), 1);
305 static void atapi_output_bytes(ide_drive_t
*drive
, void *buffer
, u32 bytecount
)
307 ide_hwif_t
*hwif
= HWIF(drive
);
310 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
311 if (MACH_IS_ATARI
|| MACH_IS_Q40
) {
312 /* Atari has a byte-swapped IDE interface */
313 outsw_swapw(IDE_DATA_REG
, buffer
, bytecount
/ 2);
316 #endif /* CONFIG_ATARI || CONFIG_Q40 */
317 hwif
->ata_output_data(drive
, buffer
, bytecount
/ 4);
318 if ((bytecount
& 0x03) >= 2)
319 hwif
->OUTSW(IDE_DATA_REG
, ((u8
*)buffer
)+(bytecount
& ~0x03), 1);
322 void default_hwif_transport(ide_hwif_t
*hwif
)
324 hwif
->ata_input_data
= ata_input_data
;
325 hwif
->ata_output_data
= ata_output_data
;
326 hwif
->atapi_input_bytes
= atapi_input_bytes
;
327 hwif
->atapi_output_bytes
= atapi_output_bytes
;
331 * Beginning of Taskfile OPCODE Library and feature sets.
333 void ide_fix_driveid (struct hd_driveid
*id
)
335 #ifndef __LITTLE_ENDIAN
340 id
->config
= __le16_to_cpu(id
->config
);
341 id
->cyls
= __le16_to_cpu(id
->cyls
);
342 id
->reserved2
= __le16_to_cpu(id
->reserved2
);
343 id
->heads
= __le16_to_cpu(id
->heads
);
344 id
->track_bytes
= __le16_to_cpu(id
->track_bytes
);
345 id
->sector_bytes
= __le16_to_cpu(id
->sector_bytes
);
346 id
->sectors
= __le16_to_cpu(id
->sectors
);
347 id
->vendor0
= __le16_to_cpu(id
->vendor0
);
348 id
->vendor1
= __le16_to_cpu(id
->vendor1
);
349 id
->vendor2
= __le16_to_cpu(id
->vendor2
);
350 stringcast
= (u16
*)&id
->serial_no
[0];
351 for (i
= 0; i
< (20/2); i
++)
352 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
353 id
->buf_type
= __le16_to_cpu(id
->buf_type
);
354 id
->buf_size
= __le16_to_cpu(id
->buf_size
);
355 id
->ecc_bytes
= __le16_to_cpu(id
->ecc_bytes
);
356 stringcast
= (u16
*)&id
->fw_rev
[0];
357 for (i
= 0; i
< (8/2); i
++)
358 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
359 stringcast
= (u16
*)&id
->model
[0];
360 for (i
= 0; i
< (40/2); i
++)
361 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
362 id
->dword_io
= __le16_to_cpu(id
->dword_io
);
363 id
->reserved50
= __le16_to_cpu(id
->reserved50
);
364 id
->field_valid
= __le16_to_cpu(id
->field_valid
);
365 id
->cur_cyls
= __le16_to_cpu(id
->cur_cyls
);
366 id
->cur_heads
= __le16_to_cpu(id
->cur_heads
);
367 id
->cur_sectors
= __le16_to_cpu(id
->cur_sectors
);
368 id
->cur_capacity0
= __le16_to_cpu(id
->cur_capacity0
);
369 id
->cur_capacity1
= __le16_to_cpu(id
->cur_capacity1
);
370 id
->lba_capacity
= __le32_to_cpu(id
->lba_capacity
);
371 id
->dma_1word
= __le16_to_cpu(id
->dma_1word
);
372 id
->dma_mword
= __le16_to_cpu(id
->dma_mword
);
373 id
->eide_pio_modes
= __le16_to_cpu(id
->eide_pio_modes
);
374 id
->eide_dma_min
= __le16_to_cpu(id
->eide_dma_min
);
375 id
->eide_dma_time
= __le16_to_cpu(id
->eide_dma_time
);
376 id
->eide_pio
= __le16_to_cpu(id
->eide_pio
);
377 id
->eide_pio_iordy
= __le16_to_cpu(id
->eide_pio_iordy
);
378 for (i
= 0; i
< 2; ++i
)
379 id
->words69_70
[i
] = __le16_to_cpu(id
->words69_70
[i
]);
380 for (i
= 0; i
< 4; ++i
)
381 id
->words71_74
[i
] = __le16_to_cpu(id
->words71_74
[i
]);
382 id
->queue_depth
= __le16_to_cpu(id
->queue_depth
);
383 for (i
= 0; i
< 4; ++i
)
384 id
->words76_79
[i
] = __le16_to_cpu(id
->words76_79
[i
]);
385 id
->major_rev_num
= __le16_to_cpu(id
->major_rev_num
);
386 id
->minor_rev_num
= __le16_to_cpu(id
->minor_rev_num
);
387 id
->command_set_1
= __le16_to_cpu(id
->command_set_1
);
388 id
->command_set_2
= __le16_to_cpu(id
->command_set_2
);
389 id
->cfsse
= __le16_to_cpu(id
->cfsse
);
390 id
->cfs_enable_1
= __le16_to_cpu(id
->cfs_enable_1
);
391 id
->cfs_enable_2
= __le16_to_cpu(id
->cfs_enable_2
);
392 id
->csf_default
= __le16_to_cpu(id
->csf_default
);
393 id
->dma_ultra
= __le16_to_cpu(id
->dma_ultra
);
394 id
->trseuc
= __le16_to_cpu(id
->trseuc
);
395 id
->trsEuc
= __le16_to_cpu(id
->trsEuc
);
396 id
->CurAPMvalues
= __le16_to_cpu(id
->CurAPMvalues
);
397 id
->mprc
= __le16_to_cpu(id
->mprc
);
398 id
->hw_config
= __le16_to_cpu(id
->hw_config
);
399 id
->acoustic
= __le16_to_cpu(id
->acoustic
);
400 id
->msrqs
= __le16_to_cpu(id
->msrqs
);
401 id
->sxfert
= __le16_to_cpu(id
->sxfert
);
402 id
->sal
= __le16_to_cpu(id
->sal
);
403 id
->spg
= __le32_to_cpu(id
->spg
);
404 id
->lba_capacity_2
= __le64_to_cpu(id
->lba_capacity_2
);
405 for (i
= 0; i
< 22; i
++)
406 id
->words104_125
[i
] = __le16_to_cpu(id
->words104_125
[i
]);
407 id
->last_lun
= __le16_to_cpu(id
->last_lun
);
408 id
->word127
= __le16_to_cpu(id
->word127
);
409 id
->dlf
= __le16_to_cpu(id
->dlf
);
410 id
->csfo
= __le16_to_cpu(id
->csfo
);
411 for (i
= 0; i
< 26; i
++)
412 id
->words130_155
[i
] = __le16_to_cpu(id
->words130_155
[i
]);
413 id
->word156
= __le16_to_cpu(id
->word156
);
414 for (i
= 0; i
< 3; i
++)
415 id
->words157_159
[i
] = __le16_to_cpu(id
->words157_159
[i
]);
416 id
->cfa_power
= __le16_to_cpu(id
->cfa_power
);
417 for (i
= 0; i
< 14; i
++)
418 id
->words161_175
[i
] = __le16_to_cpu(id
->words161_175
[i
]);
419 for (i
= 0; i
< 31; i
++)
420 id
->words176_205
[i
] = __le16_to_cpu(id
->words176_205
[i
]);
421 for (i
= 0; i
< 48; i
++)
422 id
->words206_254
[i
] = __le16_to_cpu(id
->words206_254
[i
]);
423 id
->integrity_word
= __le16_to_cpu(id
->integrity_word
);
425 # error "Please fix <asm/byteorder.h>"
430 /* FIXME: exported for use by the USB storage (isd200.c) code only */
431 EXPORT_SYMBOL(ide_fix_driveid
);
433 void ide_fixstring (u8
*s
, const int bytecount
, const int byteswap
)
435 u8
*p
= s
, *end
= &s
[bytecount
& ~1]; /* bytecount must be even */
438 /* convert from big-endian to host byte order */
439 for (p
= end
; p
!= s
;) {
440 unsigned short *pp
= (unsigned short *) (p
-= 2);
444 /* strip leading blanks */
445 while (s
!= end
&& *s
== ' ')
447 /* compress internal blanks and strip trailing blanks */
448 while (s
!= end
&& *s
) {
449 if (*s
++ != ' ' || (s
!= end
&& *s
&& *s
!= ' '))
452 /* wipe out trailing garbage */
457 EXPORT_SYMBOL(ide_fixstring
);
460 * Needed for PCI irq sharing
462 int drive_is_ready (ide_drive_t
*drive
)
464 ide_hwif_t
*hwif
= HWIF(drive
);
467 if (drive
->waiting_for_dma
)
468 return hwif
->ide_dma_test_irq(drive
);
471 /* need to guarantee 400ns since last command was issued */
475 #ifdef CONFIG_IDEPCI_SHARE_IRQ
477 * We do a passive status test under shared PCI interrupts on
478 * cards that truly share the ATA side interrupt, but may also share
479 * an interrupt with another pci card/device. We make no assumptions
480 * about possible isa-pnp and pci-pnp issues yet.
483 stat
= hwif
->INB(IDE_ALTSTATUS_REG
);
485 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
486 /* Note: this may clear a pending IRQ!! */
487 stat
= hwif
->INB(IDE_STATUS_REG
);
489 if (stat
& BUSY_STAT
)
490 /* drive busy: definitely not interrupting */
493 /* drive ready: *might* be interrupting */
497 EXPORT_SYMBOL(drive_is_ready
);
500 * Global for All, and taken from ide-pmac.c. Can be called
501 * with spinlock held & IRQs disabled, so don't schedule !
503 int wait_for_ready (ide_drive_t
*drive
, int timeout
)
505 ide_hwif_t
*hwif
= HWIF(drive
);
509 stat
= hwif
->INB(IDE_STATUS_REG
);
510 if (!(stat
& BUSY_STAT
)) {
511 if (drive
->ready_stat
== 0)
513 else if ((stat
& drive
->ready_stat
)||(stat
& ERR_STAT
))
518 if ((stat
& ERR_STAT
) || timeout
<= 0) {
519 if (stat
& ERR_STAT
) {
520 printk(KERN_ERR
"%s: wait_for_ready, "
521 "error status: %x\n", drive
->name
, stat
);
529 * This routine busy-waits for the drive status to be not "busy".
530 * It then checks the status for all of the "good" bits and none
531 * of the "bad" bits, and if all is okay it returns 0. All other
532 * cases return 1 after invoking ide_error() -- caller should just return.
534 * This routine should get fixed to not hog the cpu during extra long waits..
535 * That could be done by busy-waiting for the first jiffy or two, and then
536 * setting a timer to wake up at half second intervals thereafter,
537 * until timeout is achieved, before timing out.
539 int ide_wait_stat (ide_startstop_t
*startstop
, ide_drive_t
*drive
, u8 good
, u8 bad
, unsigned long timeout
)
541 ide_hwif_t
*hwif
= HWIF(drive
);
546 /* bail early if we've exceeded max_failures */
547 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
548 *startstop
= ide_stopped
;
552 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
553 if ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
554 local_irq_set(flags
);
556 while ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
557 if (time_after(jiffies
, timeout
)) {
559 * One last read after the timeout in case
560 * heavy interrupt load made us not make any
561 * progress during the timeout..
563 stat
= hwif
->INB(IDE_STATUS_REG
);
564 if (!(stat
& BUSY_STAT
))
567 local_irq_restore(flags
);
568 *startstop
= ide_error(drive
, "status timeout", stat
);
572 local_irq_restore(flags
);
575 * Allow status to settle, then read it again.
576 * A few rare drives vastly violate the 400ns spec here,
577 * so we'll wait up to 10usec for a "good" status
578 * rather than expensively fail things immediately.
579 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
581 for (i
= 0; i
< 10; i
++) {
583 if (OK_STAT((stat
= hwif
->INB(IDE_STATUS_REG
)), good
, bad
))
586 *startstop
= ide_error(drive
, "status error", stat
);
590 EXPORT_SYMBOL(ide_wait_stat
);
593 * All hosts that use the 80c ribbon must use!
594 * The name is derived from upper byte of word 93 and the 80c ribbon.
596 u8
eighty_ninty_three (ide_drive_t
*drive
)
598 if(HWIF(drive
)->udma_four
== 0)
600 if (!(drive
->id
->hw_config
& 0x6000))
602 #ifndef CONFIG_IDEDMA_IVB
603 if(!(drive
->id
->hw_config
& 0x4000))
605 #endif /* CONFIG_IDEDMA_IVB */
609 EXPORT_SYMBOL(eighty_ninty_three
);
611 int ide_ata66_check (ide_drive_t
*drive
, ide_task_t
*args
)
613 if ((args
->tfRegister
[IDE_COMMAND_OFFSET
] == WIN_SETFEATURES
) &&
614 (args
->tfRegister
[IDE_SECTOR_OFFSET
] > XFER_UDMA_2
) &&
615 (args
->tfRegister
[IDE_FEATURE_OFFSET
] == SETFEATURES_XFER
)) {
616 #ifndef CONFIG_IDEDMA_IVB
617 if ((drive
->id
->hw_config
& 0x6000) == 0) {
618 #else /* !CONFIG_IDEDMA_IVB */
619 if (((drive
->id
->hw_config
& 0x2000) == 0) ||
620 ((drive
->id
->hw_config
& 0x4000) == 0)) {
621 #endif /* CONFIG_IDEDMA_IVB */
622 printk("%s: Speed warnings UDMA 3/4/5 is not "
623 "functional.\n", drive
->name
);
626 if (!HWIF(drive
)->udma_four
) {
627 printk("%s: Speed warnings UDMA 3/4/5 is not "
637 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
638 * 1 : Safe to update drive->id DMA registers.
639 * 0 : OOPs not allowed.
641 int set_transfer (ide_drive_t
*drive
, ide_task_t
*args
)
643 if ((args
->tfRegister
[IDE_COMMAND_OFFSET
] == WIN_SETFEATURES
) &&
644 (args
->tfRegister
[IDE_SECTOR_OFFSET
] >= XFER_SW_DMA_0
) &&
645 (args
->tfRegister
[IDE_FEATURE_OFFSET
] == SETFEATURES_XFER
) &&
646 (drive
->id
->dma_ultra
||
647 drive
->id
->dma_mword
||
648 drive
->id
->dma_1word
))
654 #ifdef CONFIG_BLK_DEV_IDEDMA
655 static u8
ide_auto_reduce_xfer (ide_drive_t
*drive
)
657 if (!drive
->crc_count
)
658 return drive
->current_speed
;
659 drive
->crc_count
= 0;
661 switch(drive
->current_speed
) {
662 case XFER_UDMA_7
: return XFER_UDMA_6
;
663 case XFER_UDMA_6
: return XFER_UDMA_5
;
664 case XFER_UDMA_5
: return XFER_UDMA_4
;
665 case XFER_UDMA_4
: return XFER_UDMA_3
;
666 case XFER_UDMA_3
: return XFER_UDMA_2
;
667 case XFER_UDMA_2
: return XFER_UDMA_1
;
668 case XFER_UDMA_1
: return XFER_UDMA_0
;
670 * OOPS we do not goto non Ultra DMA modes
671 * without iCRC's available we force
672 * the system to PIO and make the user
673 * invoke the ATA-1 ATA-2 DMA modes.
676 default: return XFER_PIO_4
;
679 #endif /* CONFIG_BLK_DEV_IDEDMA */
684 int ide_driveid_update (ide_drive_t
*drive
)
686 ide_hwif_t
*hwif
= HWIF(drive
);
687 struct hd_driveid
*id
;
689 id
= kmalloc(SECTOR_WORDS
*4, GFP_ATOMIC
);
693 taskfile_lib_get_identify(drive
, (char *)&id
);
697 drive
->id
->dma_ultra
= id
->dma_ultra
;
698 drive
->id
->dma_mword
= id
->dma_mword
;
699 drive
->id
->dma_1word
= id
->dma_1word
;
700 /* anything more ? */
706 * Re-read drive->id for possible DMA mode
707 * change (copied from ide-probe.c)
709 unsigned long timeout
, flags
;
711 SELECT_MASK(drive
, 1);
713 hwif
->OUTB(drive
->ctl
,IDE_CONTROL_REG
);
715 hwif
->OUTB(WIN_IDENTIFY
, IDE_COMMAND_REG
);
716 timeout
= jiffies
+ WAIT_WORSTCASE
;
718 if (time_after(jiffies
, timeout
)) {
719 SELECT_MASK(drive
, 0);
720 return 0; /* drive timed-out */
722 msleep(50); /* give drive a breather */
723 } while (hwif
->INB(IDE_ALTSTATUS_REG
) & BUSY_STAT
);
724 msleep(50); /* wait for IRQ and DRQ_STAT */
725 if (!OK_STAT(hwif
->INB(IDE_STATUS_REG
),DRQ_STAT
,BAD_R_STAT
)) {
726 SELECT_MASK(drive
, 0);
727 printk("%s: CHECK for good STATUS\n", drive
->name
);
730 local_irq_save(flags
);
731 SELECT_MASK(drive
, 0);
732 id
= kmalloc(SECTOR_WORDS
*4, GFP_ATOMIC
);
734 local_irq_restore(flags
);
737 ata_input_data(drive
, id
, SECTOR_WORDS
);
738 (void) hwif
->INB(IDE_STATUS_REG
); /* clear drive IRQ */
740 local_irq_restore(flags
);
743 drive
->id
->dma_ultra
= id
->dma_ultra
;
744 drive
->id
->dma_mword
= id
->dma_mword
;
745 drive
->id
->dma_1word
= id
->dma_1word
;
746 /* anything more ? */
755 * Similar to ide_wait_stat(), except it never calls ide_error internally.
756 * This is a kludge to handle the new ide_config_drive_speed() function,
757 * and should not otherwise be used anywhere. Eventually, the tuneproc's
758 * should be updated to return ide_startstop_t, in which case we can get
759 * rid of this abomination again. :) -ml
761 * It is gone..........
763 * const char *msg == consider adding for verbose errors.
765 int ide_config_drive_speed (ide_drive_t
*drive
, u8 speed
)
767 ide_hwif_t
*hwif
= HWIF(drive
);
771 // while (HWGROUP(drive)->busy)
774 #ifdef CONFIG_BLK_DEV_IDEDMA
775 if (hwif
->ide_dma_check
) /* check if host supports DMA */
776 hwif
->ide_dma_host_off(drive
);
780 * Don't use ide_wait_cmd here - it will
781 * attempt to set_geometry and recalibrate,
782 * but for some reason these don't work at
783 * this point (lost interrupt).
786 * Select the drive, and issue the SETFEATURES command
788 disable_irq_nosync(hwif
->irq
);
791 * FIXME: we race against the running IRQ here if
792 * this is called from non IRQ context. If we use
793 * disable_irq() we hang on the error path. Work
799 SELECT_MASK(drive
, 0);
802 hwif
->OUTB(drive
->ctl
| 2, IDE_CONTROL_REG
);
803 hwif
->OUTB(speed
, IDE_NSECTOR_REG
);
804 hwif
->OUTB(SETFEATURES_XFER
, IDE_FEATURE_REG
);
805 hwif
->OUTB(WIN_SETFEATURES
, IDE_COMMAND_REG
);
806 if ((IDE_CONTROL_REG
) && (drive
->quirk_list
== 2))
807 hwif
->OUTB(drive
->ctl
, IDE_CONTROL_REG
);
810 * Wait for drive to become non-BUSY
812 if ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
813 unsigned long flags
, timeout
;
814 local_irq_set(flags
);
815 timeout
= jiffies
+ WAIT_CMD
;
816 while ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
817 if (time_after(jiffies
, timeout
))
820 local_irq_restore(flags
);
824 * Allow status to settle, then read it again.
825 * A few rare drives vastly violate the 400ns spec here,
826 * so we'll wait up to 10usec for a "good" status
827 * rather than expensively fail things immediately.
828 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
830 for (i
= 0; i
< 10; i
++) {
832 if (OK_STAT((stat
= hwif
->INB(IDE_STATUS_REG
)), DRIVE_READY
, BUSY_STAT
|DRQ_STAT
|ERR_STAT
)) {
838 SELECT_MASK(drive
, 0);
840 enable_irq(hwif
->irq
);
843 (void) ide_dump_status(drive
, "set_drive_speed_status", stat
);
847 drive
->id
->dma_ultra
&= ~0xFF00;
848 drive
->id
->dma_mword
&= ~0x0F00;
849 drive
->id
->dma_1word
&= ~0x0F00;
851 #ifdef CONFIG_BLK_DEV_IDEDMA
852 if (speed
>= XFER_SW_DMA_0
)
853 hwif
->ide_dma_host_on(drive
);
854 else if (hwif
->ide_dma_check
) /* check if host supports DMA */
855 hwif
->ide_dma_off_quietly(drive
);
859 case XFER_UDMA_7
: drive
->id
->dma_ultra
|= 0x8080; break;
860 case XFER_UDMA_6
: drive
->id
->dma_ultra
|= 0x4040; break;
861 case XFER_UDMA_5
: drive
->id
->dma_ultra
|= 0x2020; break;
862 case XFER_UDMA_4
: drive
->id
->dma_ultra
|= 0x1010; break;
863 case XFER_UDMA_3
: drive
->id
->dma_ultra
|= 0x0808; break;
864 case XFER_UDMA_2
: drive
->id
->dma_ultra
|= 0x0404; break;
865 case XFER_UDMA_1
: drive
->id
->dma_ultra
|= 0x0202; break;
866 case XFER_UDMA_0
: drive
->id
->dma_ultra
|= 0x0101; break;
867 case XFER_MW_DMA_2
: drive
->id
->dma_mword
|= 0x0404; break;
868 case XFER_MW_DMA_1
: drive
->id
->dma_mword
|= 0x0202; break;
869 case XFER_MW_DMA_0
: drive
->id
->dma_mword
|= 0x0101; break;
870 case XFER_SW_DMA_2
: drive
->id
->dma_1word
|= 0x0404; break;
871 case XFER_SW_DMA_1
: drive
->id
->dma_1word
|= 0x0202; break;
872 case XFER_SW_DMA_0
: drive
->id
->dma_1word
|= 0x0101; break;
875 if (!drive
->init_speed
)
876 drive
->init_speed
= speed
;
877 drive
->current_speed
= speed
;
881 EXPORT_SYMBOL(ide_config_drive_speed
);
885 * This should get invoked any time we exit the driver to
886 * wait for an interrupt response from a drive. handler() points
887 * at the appropriate code to handle the next interrupt, and a
888 * timer is started to prevent us from waiting forever in case
889 * something goes wrong (see the ide_timer_expiry() handler later on).
891 * See also ide_execute_command
893 static void __ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
894 unsigned int timeout
, ide_expiry_t
*expiry
)
896 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
898 if (hwgroup
->handler
!= NULL
) {
899 printk(KERN_CRIT
"%s: ide_set_handler: handler not null; "
901 drive
->name
, hwgroup
->handler
, handler
);
903 hwgroup
->handler
= handler
;
904 hwgroup
->expiry
= expiry
;
905 hwgroup
->timer
.expires
= jiffies
+ timeout
;
906 add_timer(&hwgroup
->timer
);
909 void ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
910 unsigned int timeout
, ide_expiry_t
*expiry
)
913 spin_lock_irqsave(&ide_lock
, flags
);
914 __ide_set_handler(drive
, handler
, timeout
, expiry
);
915 spin_unlock_irqrestore(&ide_lock
, flags
);
918 EXPORT_SYMBOL(ide_set_handler
);
921 * ide_execute_command - execute an IDE command
922 * @drive: IDE drive to issue the command against
923 * @command: command byte to write
924 * @handler: handler for next phase
925 * @timeout: timeout for command
926 * @expiry: handler to run on timeout
928 * Helper function to issue an IDE command. This handles the
929 * atomicity requirements, command timing and ensures that the
930 * handler and IRQ setup do not race. All IDE command kick off
931 * should go via this function or do equivalent locking.
934 void ide_execute_command(ide_drive_t
*drive
, task_ioreg_t cmd
, ide_handler_t
*handler
, unsigned timeout
, ide_expiry_t
*expiry
)
937 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
938 ide_hwif_t
*hwif
= HWIF(drive
);
940 spin_lock_irqsave(&ide_lock
, flags
);
944 hwgroup
->handler
= handler
;
945 hwgroup
->expiry
= expiry
;
946 hwgroup
->timer
.expires
= jiffies
+ timeout
;
947 add_timer(&hwgroup
->timer
);
948 hwif
->OUTBSYNC(drive
, cmd
, IDE_COMMAND_REG
);
949 /* Drive takes 400nS to respond, we must avoid the IRQ being
950 serviced before that.
952 FIXME: we could skip this delay with care on non shared
956 spin_unlock_irqrestore(&ide_lock
, flags
);
959 EXPORT_SYMBOL(ide_execute_command
);
963 static ide_startstop_t
do_reset1 (ide_drive_t
*, int);
966 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
967 * during an atapi drive reset operation. If the drive has not yet responded,
968 * and we have not yet hit our maximum waiting time, then the timer is restarted
971 static ide_startstop_t
atapi_reset_pollfunc (ide_drive_t
*drive
)
973 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
974 ide_hwif_t
*hwif
= HWIF(drive
);
980 if (OK_STAT(stat
= hwif
->INB(IDE_STATUS_REG
), 0, BUSY_STAT
)) {
981 printk("%s: ATAPI reset complete\n", drive
->name
);
983 if (time_before(jiffies
, hwgroup
->poll_timeout
)) {
984 if (HWGROUP(drive
)->handler
!= NULL
)
986 ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
987 /* continue polling */
991 hwgroup
->polling
= 0;
992 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
994 /* do it the old fashioned way */
995 return do_reset1(drive
, 1);
998 hwgroup
->polling
= 0;
1003 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1004 * during an ide reset operation. If the drives have not yet responded,
1005 * and we have not yet hit our maximum waiting time, then the timer is restarted
1008 static ide_startstop_t
reset_pollfunc (ide_drive_t
*drive
)
1010 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1011 ide_hwif_t
*hwif
= HWIF(drive
);
1014 if (hwif
->reset_poll
!= NULL
) {
1015 if (hwif
->reset_poll(drive
)) {
1016 printk(KERN_ERR
"%s: host reset_poll failure for %s.\n",
1017 hwif
->name
, drive
->name
);
1022 if (!OK_STAT(tmp
= hwif
->INB(IDE_STATUS_REG
), 0, BUSY_STAT
)) {
1023 if (time_before(jiffies
, hwgroup
->poll_timeout
)) {
1024 if (HWGROUP(drive
)->handler
!= NULL
)
1026 ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
1027 /* continue polling */
1030 printk("%s: reset timed-out, status=0x%02x\n", hwif
->name
, tmp
);
1033 printk("%s: reset: ", hwif
->name
);
1034 if ((tmp
= hwif
->INB(IDE_ERROR_REG
)) == 1) {
1035 printk("success\n");
1036 drive
->failures
= 0;
1040 switch (tmp
& 0x7f) {
1041 case 1: printk("passed");
1043 case 2: printk("formatter device error");
1045 case 3: printk("sector buffer error");
1047 case 4: printk("ECC circuitry error");
1049 case 5: printk("controlling MPU error");
1051 default:printk("error (0x%02x?)", tmp
);
1054 printk("; slave: failed");
1058 hwgroup
->polling
= 0; /* done polling */
1062 static void check_dma_crc(ide_drive_t
*drive
)
1064 #ifdef CONFIG_BLK_DEV_IDEDMA
1065 if (drive
->crc_count
) {
1066 (void) HWIF(drive
)->ide_dma_off_quietly(drive
);
1067 ide_set_xfer_rate(drive
, ide_auto_reduce_xfer(drive
));
1068 if (drive
->current_speed
>= XFER_SW_DMA_0
)
1069 (void) HWIF(drive
)->ide_dma_on(drive
);
1071 (void)__ide_dma_off(drive
);
1075 static void ide_disk_pre_reset(ide_drive_t
*drive
)
1077 int legacy
= (drive
->id
->cfs_enable_2
& 0x0400) ? 0 : 1;
1079 drive
->special
.all
= 0;
1080 drive
->special
.b
.set_geometry
= legacy
;
1081 drive
->special
.b
.recalibrate
= legacy
;
1082 if (OK_TO_RESET_CONTROLLER
)
1083 drive
->mult_count
= 0;
1084 if (!drive
->keep_settings
&& !drive
->using_dma
)
1085 drive
->mult_req
= 0;
1086 if (drive
->mult_req
!= drive
->mult_count
)
1087 drive
->special
.b
.set_multmode
= 1;
1090 static void pre_reset(ide_drive_t
*drive
)
1092 if (drive
->media
== ide_disk
)
1093 ide_disk_pre_reset(drive
);
1095 drive
->post_reset
= 1;
1097 if (!drive
->keep_settings
) {
1098 if (drive
->using_dma
) {
1099 check_dma_crc(drive
);
1102 drive
->io_32bit
= 0;
1106 if (drive
->using_dma
)
1107 check_dma_crc(drive
);
1109 if (HWIF(drive
)->pre_reset
!= NULL
)
1110 HWIF(drive
)->pre_reset(drive
);
1115 * do_reset1() attempts to recover a confused drive by resetting it.
1116 * Unfortunately, resetting a disk drive actually resets all devices on
1117 * the same interface, so it can really be thought of as resetting the
1118 * interface rather than resetting the drive.
1120 * ATAPI devices have their own reset mechanism which allows them to be
1121 * individually reset without clobbering other devices on the same interface.
1123 * Unfortunately, the IDE interface does not generate an interrupt to let
1124 * us know when the reset operation has finished, so we must poll for this.
1125 * Equally poor, though, is the fact that this may a very long time to complete,
1126 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1127 * we set a timer to poll at 50ms intervals.
1129 static ide_startstop_t
do_reset1 (ide_drive_t
*drive
, int do_not_try_atapi
)
1132 unsigned long flags
;
1134 ide_hwgroup_t
*hwgroup
;
1136 spin_lock_irqsave(&ide_lock
, flags
);
1138 hwgroup
= HWGROUP(drive
);
1140 /* We must not reset with running handlers */
1141 if(hwgroup
->handler
!= NULL
)
1144 /* For an ATAPI device, first try an ATAPI SRST. */
1145 if (drive
->media
!= ide_disk
&& !do_not_try_atapi
) {
1147 SELECT_DRIVE(drive
);
1149 hwif
->OUTBSYNC(drive
, WIN_SRST
, IDE_COMMAND_REG
);
1151 hwgroup
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1152 hwgroup
->polling
= 1;
1153 __ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
1154 spin_unlock_irqrestore(&ide_lock
, flags
);
1159 * First, reset any device state data we were maintaining
1160 * for any of the drives on this interface.
1162 for (unit
= 0; unit
< MAX_DRIVES
; ++unit
)
1163 pre_reset(&hwif
->drives
[unit
]);
1165 #if OK_TO_RESET_CONTROLLER
1166 if (!IDE_CONTROL_REG
) {
1167 spin_unlock_irqrestore(&ide_lock
, flags
);
1172 * Note that we also set nIEN while resetting the device,
1173 * to mask unwanted interrupts from the interface during the reset.
1174 * However, due to the design of PC hardware, this will cause an
1175 * immediate interrupt due to the edge transition it produces.
1176 * This single interrupt gives us a "fast poll" for drives that
1177 * recover from reset very quickly, saving us the first 50ms wait time.
1179 /* set SRST and nIEN */
1180 hwif
->OUTBSYNC(drive
, drive
->ctl
|6,IDE_CONTROL_REG
);
1181 /* more than enough time */
1183 if (drive
->quirk_list
== 2) {
1184 /* clear SRST and nIEN */
1185 hwif
->OUTBSYNC(drive
, drive
->ctl
, IDE_CONTROL_REG
);
1187 /* clear SRST, leave nIEN */
1188 hwif
->OUTBSYNC(drive
, drive
->ctl
|2, IDE_CONTROL_REG
);
1190 /* more than enough time */
1192 hwgroup
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1193 hwgroup
->polling
= 1;
1194 __ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
1197 * Some weird controller like resetting themselves to a strange
1198 * state when the disks are reset this way. At least, the Winbond
1199 * 553 documentation says that
1201 if (hwif
->resetproc
!= NULL
) {
1202 hwif
->resetproc(drive
);
1205 #endif /* OK_TO_RESET_CONTROLLER */
1207 spin_unlock_irqrestore(&ide_lock
, flags
);
1212 * ide_do_reset() is the entry point to the drive/interface reset code.
1215 ide_startstop_t
ide_do_reset (ide_drive_t
*drive
)
1217 return do_reset1(drive
, 0);
1220 EXPORT_SYMBOL(ide_do_reset
);
1223 * ide_wait_not_busy() waits for the currently selected device on the hwif
1224 * to report a non-busy status, see comments in probe_hwif().
1226 int ide_wait_not_busy(ide_hwif_t
*hwif
, unsigned long timeout
)
1232 * Turn this into a schedule() sleep once I'm sure
1233 * about locking issues (2.5 work ?).
1236 stat
= hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1237 if ((stat
& BUSY_STAT
) == 0)
1240 * Assume a value of 0xff means nothing is connected to
1241 * the interface and it doesn't implement the pull-down
1250 EXPORT_SYMBOL_GPL(ide_wait_not_busy
);