2 * linux/drivers/ide/ide-pmac.c
4 * Support for IDE interfaces on PowerMacs.
5 * These IDE interfaces are memory-mapped and have a DBDMA channel
8 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Some code taken from drivers/ide/ide-dma.c:
17 * Copyright (c) 1995-1998 Mark Lord
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
25 #include <linux/config.h>
26 #include <linux/types.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/delay.h>
31 #include <linux/ide.h>
32 #include <linux/notifier.h>
33 #include <linux/reboot.h>
34 #include <linux/pci.h>
35 #include <linux/adb.h>
36 #include <linux/pmu.h>
37 #include <linux/scatterlist.h>
41 #include <asm/dbdma.h>
43 #include <asm/pci-bridge.h>
44 #include <asm/machdep.h>
45 #include <asm/pmac_feature.h>
46 #include <asm/sections.h>
50 #include <asm/mediabay.h>
53 #include "ide-timing.h"
57 #define DMA_WAIT_TIMEOUT 50
59 typedef struct pmac_ide_hwif
{
60 unsigned long regbase
;
64 unsigned cable_80
: 1;
65 unsigned mediabay
: 1;
66 unsigned broken_dma
: 1;
67 unsigned broken_dma_warn
: 1;
68 struct device_node
* node
;
69 struct macio_dev
*mdev
;
71 volatile u32 __iomem
* *kauai_fcr
;
72 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
73 /* Those fields are duplicating what is in hwif. We currently
74 * can't use the hwif ones because of some assumptions that are
75 * beeing done by the generic code about the kind of dma controller
76 * and format of the dma table. This will have to be fixed though.
78 volatile struct dbdma_regs __iomem
* dma_regs
;
79 struct dbdma_cmd
* dma_table_cpu
;
84 static pmac_ide_hwif_t pmac_ide
[MAX_HWIFS
];
85 static int pmac_ide_count
;
88 controller_ohare
, /* OHare based */
89 controller_heathrow
, /* Heathrow/Paddington */
90 controller_kl_ata3
, /* KeyLargo ATA-3 */
91 controller_kl_ata4
, /* KeyLargo ATA-4 */
92 controller_un_ata6
, /* UniNorth2 ATA-6 */
93 controller_k2_ata6
, /* K2 ATA-6 */
94 controller_sh_ata6
, /* Shasta ATA-6 */
97 static const char* model_name
[] = {
98 "OHare ATA", /* OHare based */
99 "Heathrow ATA", /* Heathrow/Paddington */
100 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
101 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
102 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
103 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
104 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
108 * Extra registers, both 32-bit little-endian
110 #define IDE_TIMING_CONFIG 0x200
111 #define IDE_INTERRUPT 0x300
113 /* Kauai (U2) ATA has different register setup */
114 #define IDE_KAUAI_PIO_CONFIG 0x200
115 #define IDE_KAUAI_ULTRA_CONFIG 0x210
116 #define IDE_KAUAI_POLL_CONFIG 0x220
119 * Timing configuration register definitions
122 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
123 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
124 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
125 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
126 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
128 /* 133Mhz cell, found in shasta.
129 * See comments about 100 Mhz Uninorth 2...
130 * Note that PIO_MASK and MDMA_MASK seem to overlap
132 #define TR_133_PIOREG_PIO_MASK 0xff000fff
133 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
134 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
135 #define TR_133_UDMAREG_UDMA_EN 0x00000001
137 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
138 * this one yet, it appears as a pci device (106b/0033) on uninorth
139 * internal PCI bus and it's clock is controlled like gem or fw. It
140 * appears to be an evolution of keylargo ATA4 with a timing register
141 * extended to 2 32bits registers and a similar DBDMA channel. Other
142 * registers seem to exist but I can't tell much about them.
144 * So far, I'm using pre-calculated tables for this extracted from
145 * the values used by the MacOS X driver.
147 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
148 * register controls the UDMA timings. At least, it seems bit 0
149 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
150 * cycle time in units of 10ns. Bits 8..15 are used by I don't
151 * know their meaning yet
153 #define TR_100_PIOREG_PIO_MASK 0xff000fff
154 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
155 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
156 #define TR_100_UDMAREG_UDMA_EN 0x00000001
159 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
160 * 40 connector cable and to 4 on 80 connector one.
161 * Clock unit is 15ns (66Mhz)
163 * 3 Values can be programmed:
164 * - Write data setup, which appears to match the cycle time. They
165 * also call it DIOW setup.
166 * - Ready to pause time (from spec)
167 * - Address setup. That one is weird. I don't see where exactly
168 * it fits in UDMA cycles, I got it's name from an obscure piece
169 * of commented out code in Darwin. They leave it to 0, we do as
170 * well, despite a comment that would lead to think it has a
172 * Apple also add 60ns to the write data setup (or cycle time ?) on
175 #define TR_66_UDMA_MASK 0xfff00000
176 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
177 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
178 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
179 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
180 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
181 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
182 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
183 #define TR_66_MDMA_MASK 0x000ffc00
184 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
185 #define TR_66_MDMA_RECOVERY_SHIFT 15
186 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
187 #define TR_66_MDMA_ACCESS_SHIFT 10
188 #define TR_66_PIO_MASK 0x000003ff
189 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
190 #define TR_66_PIO_RECOVERY_SHIFT 5
191 #define TR_66_PIO_ACCESS_MASK 0x0000001f
192 #define TR_66_PIO_ACCESS_SHIFT 0
194 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
195 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
197 * The access time and recovery time can be programmed. Some older
198 * Darwin code base limit OHare to 150ns cycle time. I decided to do
199 * the same here fore safety against broken old hardware ;)
200 * The HalfTick bit, when set, adds half a clock (15ns) to the access
201 * time and removes one from recovery. It's not supported on KeyLargo
202 * implementation afaik. The E bit appears to be set for PIO mode 0 and
203 * is used to reach long timings used in this mode.
205 #define TR_33_MDMA_MASK 0x003ff800
206 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
207 #define TR_33_MDMA_RECOVERY_SHIFT 16
208 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
209 #define TR_33_MDMA_ACCESS_SHIFT 11
210 #define TR_33_MDMA_HALFTICK 0x00200000
211 #define TR_33_PIO_MASK 0x000007ff
212 #define TR_33_PIO_E 0x00000400
213 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
214 #define TR_33_PIO_RECOVERY_SHIFT 5
215 #define TR_33_PIO_ACCESS_MASK 0x0000001f
216 #define TR_33_PIO_ACCESS_SHIFT 0
219 * Interrupt register definitions
221 #define IDE_INTR_DMA 0x80000000
222 #define IDE_INTR_DEVICE 0x40000000
225 * FCR Register on Kauai. Not sure what bit 0x4 is ...
227 #define KAUAI_FCR_UATA_MAGIC 0x00000004
228 #define KAUAI_FCR_UATA_RESET_N 0x00000002
229 #define KAUAI_FCR_UATA_ENABLE 0x00000001
231 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
233 /* Rounded Multiword DMA timings
235 * I gave up finding a generic formula for all controller
236 * types and instead, built tables based on timing values
237 * used by Apple in Darwin's implementation.
239 struct mdma_timings_t
{
245 struct mdma_timings_t mdma_timings_33
[] =
258 struct mdma_timings_t mdma_timings_33k
[] =
271 struct mdma_timings_t mdma_timings_66
[] =
284 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
286 int addrSetup
; /* ??? */
289 } kl66_udma_timings
[] =
291 { 0, 180, 120 }, /* Mode 0 */
292 { 0, 150, 90 }, /* 1 */
293 { 0, 120, 60 }, /* 2 */
294 { 0, 90, 45 }, /* 3 */
295 { 0, 90, 30 } /* 4 */
298 /* UniNorth 2 ATA/100 timings */
299 struct kauai_timing
{
304 static struct kauai_timing kauai_pio_timings
[] =
306 { 930 , 0x08000fff },
307 { 600 , 0x08000a92 },
308 { 383 , 0x0800060f },
309 { 360 , 0x08000492 },
310 { 330 , 0x0800048f },
311 { 300 , 0x080003cf },
312 { 270 , 0x080003cc },
313 { 240 , 0x0800038b },
314 { 239 , 0x0800030c },
315 { 180 , 0x05000249 },
319 static struct kauai_timing kauai_mdma_timings
[] =
321 { 1260 , 0x00fff000 },
322 { 480 , 0x00618000 },
323 { 360 , 0x00492000 },
324 { 270 , 0x0038e000 },
325 { 240 , 0x0030c000 },
326 { 210 , 0x002cb000 },
327 { 180 , 0x00249000 },
328 { 150 , 0x00209000 },
329 { 120 , 0x00148000 },
333 static struct kauai_timing kauai_udma_timings
[] =
335 { 120 , 0x000070c0 },
344 static struct kauai_timing shasta_pio_timings
[] =
346 { 930 , 0x08000fff },
347 { 600 , 0x0A000c97 },
348 { 383 , 0x07000712 },
349 { 360 , 0x040003cd },
350 { 330 , 0x040003cd },
351 { 300 , 0x040003cd },
352 { 270 , 0x040003cd },
353 { 240 , 0x040003cd },
354 { 239 , 0x040003cd },
355 { 180 , 0x0400028b },
359 static struct kauai_timing shasta_mdma_timings
[] =
361 { 1260 , 0x00fff000 },
362 { 480 , 0x00820800 },
363 { 360 , 0x00820800 },
364 { 270 , 0x00820800 },
365 { 240 , 0x00820800 },
366 { 210 , 0x00820800 },
367 { 180 , 0x00820800 },
368 { 150 , 0x0028b000 },
369 { 120 , 0x001ca000 },
373 static struct kauai_timing shasta_udma133_timings
[] =
375 { 120 , 0x00035901, },
376 { 90 , 0x000348b1, },
377 { 60 , 0x00033881, },
378 { 45 , 0x00033861, },
379 { 30 , 0x00033841, },
380 { 20 , 0x00033031, },
381 { 15 , 0x00033021, },
387 kauai_lookup_timing(struct kauai_timing
* table
, int cycle_time
)
391 for (i
=0; table
[i
].cycle_time
; i
++)
392 if (cycle_time
> table
[i
+1].cycle_time
)
393 return table
[i
].timing_reg
;
397 /* allow up to 256 DBDMA commands per xfer */
398 #define MAX_DCMDS 256
401 * Wait 1s for disk to answer on IDE bus after a hard reset
402 * of the device (via GPIO/FCR).
404 * Some devices seem to "pollute" the bus even after dropping
405 * the BSY bit (typically some combo drives slave on the UDMA
406 * bus) after a hard reset. Since we hard reset all drives on
407 * KeyLargo ATA66, we have to keep that delay around. I may end
408 * up not hard resetting anymore on these and keep the delay only
409 * for older interfaces instead (we have to reset when coming
410 * from MacOS...) --BenH.
412 #define IDE_WAKEUP_DELAY (1*HZ)
414 static void pmac_ide_setup_dma(pmac_ide_hwif_t
*pmif
, ide_hwif_t
*hwif
);
415 static int pmac_ide_build_dmatable(ide_drive_t
*drive
, struct request
*rq
);
416 static int pmac_ide_tune_chipset(ide_drive_t
*drive
, u8 speed
);
417 static void pmac_ide_tuneproc(ide_drive_t
*drive
, u8 pio
);
418 static void pmac_ide_selectproc(ide_drive_t
*drive
);
419 static void pmac_ide_kauai_selectproc(ide_drive_t
*drive
);
421 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
424 * Below is the code for blinking the laptop LED along with hard
428 #ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK
430 /* Set to 50ms minimum led-on time (also used to limit frequency
431 * of requests sent to the PMU
433 #define PMU_HD_BLINK_TIME (HZ/50)
435 static struct adb_request pmu_blink_on
, pmu_blink_off
;
436 static spinlock_t pmu_blink_lock
;
437 static unsigned long pmu_blink_stoptime
;
438 static int pmu_blink_ledstate
;
439 static struct timer_list pmu_blink_timer
;
440 static int pmu_ide_blink_enabled
;
444 pmu_hd_blink_timeout(unsigned long data
)
448 spin_lock_irqsave(&pmu_blink_lock
, flags
);
450 /* We may have been triggered again in a racy way, check
451 * that we really want to switch it off
453 if (time_after(pmu_blink_stoptime
, jiffies
))
456 /* Previous req. not complete, try 100ms more */
457 if (pmu_blink_off
.complete
== 0)
458 mod_timer(&pmu_blink_timer
, jiffies
+ PMU_HD_BLINK_TIME
);
459 else if (pmu_blink_ledstate
) {
460 pmu_request(&pmu_blink_off
, NULL
, 4, 0xee, 4, 0, 0);
461 pmu_blink_ledstate
= 0;
464 spin_unlock_irqrestore(&pmu_blink_lock
, flags
);
468 pmu_hd_kick_blink(void *data
, int rw
)
472 pmu_blink_stoptime
= jiffies
+ PMU_HD_BLINK_TIME
;
474 mod_timer(&pmu_blink_timer
, pmu_blink_stoptime
);
475 /* Fast path when LED is already ON */
476 if (pmu_blink_ledstate
== 1)
478 spin_lock_irqsave(&pmu_blink_lock
, flags
);
479 if (pmu_blink_on
.complete
&& !pmu_blink_ledstate
) {
480 pmu_request(&pmu_blink_on
, NULL
, 4, 0xee, 4, 0, 1);
481 pmu_blink_ledstate
= 1;
483 spin_unlock_irqrestore(&pmu_blink_lock
, flags
);
487 pmu_hd_blink_init(void)
489 struct device_node
*dt
;
492 /* Currently, I only enable this feature on KeyLargo based laptops,
493 * older laptops may support it (at least heathrow/paddington) but
494 * I don't feel like loading those venerable old machines with so
495 * much additional interrupt & PMU activity...
497 if (pmu_get_model() != PMU_KEYLARGO_BASED
)
500 dt
= of_find_node_by_path("/");
503 model
= (const char *)get_property(dt
, "model", NULL
);
506 if (strncmp(model
, "PowerBook", strlen("PowerBook")) != 0 &&
507 strncmp(model
, "iBook", strlen("iBook")) != 0) {
513 pmu_blink_on
.complete
= 1;
514 pmu_blink_off
.complete
= 1;
515 spin_lock_init(&pmu_blink_lock
);
516 init_timer(&pmu_blink_timer
);
517 pmu_blink_timer
.function
= pmu_hd_blink_timeout
;
522 #endif /* CONFIG_BLK_DEV_IDE_PMAC_BLINK */
525 * N.B. this can't be an initfunc, because the media-bay task can
526 * call ide_[un]register at any time.
529 pmac_ide_init_hwif_ports(hw_regs_t
*hw
,
530 unsigned long data_port
, unsigned long ctrl_port
,
538 for (ix
= 0; ix
< MAX_HWIFS
; ++ix
)
539 if (data_port
== pmac_ide
[ix
].regbase
)
542 if (ix
>= MAX_HWIFS
) {
543 /* Probably a PCI interface... */
544 for (i
= IDE_DATA_OFFSET
; i
<= IDE_STATUS_OFFSET
; ++i
)
545 hw
->io_ports
[i
] = data_port
+ i
- IDE_DATA_OFFSET
;
546 hw
->io_ports
[IDE_CONTROL_OFFSET
] = ctrl_port
;
550 for (i
= 0; i
< 8; ++i
)
551 hw
->io_ports
[i
] = data_port
+ i
* 0x10;
552 hw
->io_ports
[8] = data_port
+ 0x160;
555 *irq
= pmac_ide
[ix
].irq
;
558 #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
561 * Apply the timings of the proper unit (master/slave) to the shared
562 * timing register when selecting that unit. This version is for
563 * ASICs with a single timing register
566 pmac_ide_selectproc(ide_drive_t
*drive
)
568 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
573 if (drive
->select
.b
.unit
& 0x01)
574 writel(pmif
->timings
[1], PMAC_IDE_REG(IDE_TIMING_CONFIG
));
576 writel(pmif
->timings
[0], PMAC_IDE_REG(IDE_TIMING_CONFIG
));
577 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG
));
581 * Apply the timings of the proper unit (master/slave) to the shared
582 * timing register when selecting that unit. This version is for
583 * ASICs with a dual timing register (Kauai)
586 pmac_ide_kauai_selectproc(ide_drive_t
*drive
)
588 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
593 if (drive
->select
.b
.unit
& 0x01) {
594 writel(pmif
->timings
[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
595 writel(pmif
->timings
[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG
));
597 writel(pmif
->timings
[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
598 writel(pmif
->timings
[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG
));
600 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
604 * Force an update of controller timing values for a given drive
607 pmac_ide_do_update_timings(ide_drive_t
*drive
)
609 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
614 if (pmif
->kind
== controller_sh_ata6
||
615 pmif
->kind
== controller_un_ata6
||
616 pmif
->kind
== controller_k2_ata6
)
617 pmac_ide_kauai_selectproc(drive
);
619 pmac_ide_selectproc(drive
);
623 pmac_outbsync(ide_drive_t
*drive
, u8 value
, unsigned long port
)
627 writeb(value
, (void __iomem
*) port
);
628 tmp
= readl(PMAC_IDE_REG(IDE_TIMING_CONFIG
));
632 * Send the SET_FEATURE IDE command to the drive and update drive->id with
633 * the new state. We currently don't use the generic routine as it used to
634 * cause various trouble, especially with older mediabays.
635 * This code is sometimes triggering a spurrious interrupt though, I need
636 * to sort that out sooner or later and see if I can finally get the
637 * common version to work properly in all cases
640 pmac_ide_do_setfeature(ide_drive_t
*drive
, u8 command
)
642 ide_hwif_t
*hwif
= HWIF(drive
);
645 disable_irq_nosync(hwif
->irq
);
648 SELECT_MASK(drive
, 0);
650 /* Get rid of pending error state */
651 (void) hwif
->INB(IDE_STATUS_REG
);
652 /* Timeout bumped for some powerbooks */
653 if (wait_for_ready(drive
, 2000)) {
654 /* Timeout bumped for some powerbooks */
655 printk(KERN_ERR
"%s: pmac_ide_do_setfeature disk not ready "
656 "before SET_FEATURE!\n", drive
->name
);
660 hwif
->OUTB(drive
->ctl
| 2, IDE_CONTROL_REG
);
661 hwif
->OUTB(command
, IDE_NSECTOR_REG
);
662 hwif
->OUTB(SETFEATURES_XFER
, IDE_FEATURE_REG
);
663 hwif
->OUTBSYNC(drive
, WIN_SETFEATURES
, IDE_COMMAND_REG
);
665 /* Timeout bumped for some powerbooks */
666 result
= wait_for_ready(drive
, 2000);
667 hwif
->OUTB(drive
->ctl
, IDE_CONTROL_REG
);
669 printk(KERN_ERR
"%s: pmac_ide_do_setfeature disk not ready "
670 "after SET_FEATURE !\n", drive
->name
);
672 SELECT_MASK(drive
, 0);
674 drive
->id
->dma_ultra
&= ~0xFF00;
675 drive
->id
->dma_mword
&= ~0x0F00;
676 drive
->id
->dma_1word
&= ~0x0F00;
679 drive
->id
->dma_ultra
|= 0x8080; break;
681 drive
->id
->dma_ultra
|= 0x4040; break;
683 drive
->id
->dma_ultra
|= 0x2020; break;
685 drive
->id
->dma_ultra
|= 0x1010; break;
687 drive
->id
->dma_ultra
|= 0x0808; break;
689 drive
->id
->dma_ultra
|= 0x0404; break;
691 drive
->id
->dma_ultra
|= 0x0202; break;
693 drive
->id
->dma_ultra
|= 0x0101; break;
695 drive
->id
->dma_mword
|= 0x0404; break;
697 drive
->id
->dma_mword
|= 0x0202; break;
699 drive
->id
->dma_mword
|= 0x0101; break;
701 drive
->id
->dma_1word
|= 0x0404; break;
703 drive
->id
->dma_1word
|= 0x0202; break;
705 drive
->id
->dma_1word
|= 0x0101; break;
709 enable_irq(hwif
->irq
);
714 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
717 pmac_ide_tuneproc(ide_drive_t
*drive
, u8 pio
)
721 unsigned accessTicks
, recTicks
;
722 unsigned accessTime
, recTime
;
723 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
728 /* which drive is it ? */
729 timings
= &pmif
->timings
[drive
->select
.b
.unit
& 0x01];
731 pio
= ide_get_best_pio_mode(drive
, pio
, 4, &d
);
733 switch (pmif
->kind
) {
734 case controller_sh_ata6
: {
736 u32 tr
= kauai_lookup_timing(shasta_pio_timings
, d
.cycle_time
);
739 *timings
= ((*timings
) & ~TR_133_PIOREG_PIO_MASK
) | tr
;
742 case controller_un_ata6
:
743 case controller_k2_ata6
: {
745 u32 tr
= kauai_lookup_timing(kauai_pio_timings
, d
.cycle_time
);
748 *timings
= ((*timings
) & ~TR_100_PIOREG_PIO_MASK
) | tr
;
751 case controller_kl_ata4
:
753 recTime
= d
.cycle_time
- ide_pio_timings
[pio
].active_time
754 - ide_pio_timings
[pio
].setup_time
;
755 recTime
= max(recTime
, 150U);
756 accessTime
= ide_pio_timings
[pio
].active_time
;
757 accessTime
= max(accessTime
, 150U);
758 accessTicks
= SYSCLK_TICKS_66(accessTime
);
759 accessTicks
= min(accessTicks
, 0x1fU
);
760 recTicks
= SYSCLK_TICKS_66(recTime
);
761 recTicks
= min(recTicks
, 0x1fU
);
762 *timings
= ((*timings
) & ~TR_66_PIO_MASK
) |
763 (accessTicks
<< TR_66_PIO_ACCESS_SHIFT
) |
764 (recTicks
<< TR_66_PIO_RECOVERY_SHIFT
);
769 recTime
= d
.cycle_time
- ide_pio_timings
[pio
].active_time
770 - ide_pio_timings
[pio
].setup_time
;
771 recTime
= max(recTime
, 150U);
772 accessTime
= ide_pio_timings
[pio
].active_time
;
773 accessTime
= max(accessTime
, 150U);
774 accessTicks
= SYSCLK_TICKS(accessTime
);
775 accessTicks
= min(accessTicks
, 0x1fU
);
776 accessTicks
= max(accessTicks
, 4U);
777 recTicks
= SYSCLK_TICKS(recTime
);
778 recTicks
= min(recTicks
, 0x1fU
);
779 recTicks
= max(recTicks
, 5U) - 4;
781 recTicks
--; /* guess, but it's only for PIO0, so... */
784 *timings
= ((*timings
) & ~TR_33_PIO_MASK
) |
785 (accessTicks
<< TR_33_PIO_ACCESS_SHIFT
) |
786 (recTicks
<< TR_33_PIO_RECOVERY_SHIFT
);
788 *timings
|= TR_33_PIO_E
;
793 #ifdef IDE_PMAC_DEBUG
794 printk(KERN_ERR
"%s: Set PIO timing for mode %d, reg: 0x%08x\n",
795 drive
->name
, pio
, *timings
);
798 if (drive
->select
.all
== HWIF(drive
)->INB(IDE_SELECT_REG
))
799 pmac_ide_do_update_timings(drive
);
802 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
805 * Calculate KeyLargo ATA/66 UDMA timings
808 set_timings_udma_ata4(u32
*timings
, u8 speed
)
810 unsigned rdyToPauseTicks
, wrDataSetupTicks
, addrTicks
;
812 if (speed
> XFER_UDMA_4
)
815 rdyToPauseTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].rdy2pause
);
816 wrDataSetupTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].wrDataSetup
);
817 addrTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].addrSetup
);
819 *timings
= ((*timings
) & ~(TR_66_UDMA_MASK
| TR_66_MDMA_MASK
)) |
820 (wrDataSetupTicks
<< TR_66_UDMA_WRDATASETUP_SHIFT
) |
821 (rdyToPauseTicks
<< TR_66_UDMA_RDY2PAUS_SHIFT
) |
822 (addrTicks
<<TR_66_UDMA_ADDRSETUP_SHIFT
) |
824 #ifdef IDE_PMAC_DEBUG
825 printk(KERN_ERR
"ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
826 speed
& 0xf, *timings
);
833 * Calculate Kauai ATA/100 UDMA timings
836 set_timings_udma_ata6(u32
*pio_timings
, u32
*ultra_timings
, u8 speed
)
838 struct ide_timing
*t
= ide_timing_find_mode(speed
);
841 if (speed
> XFER_UDMA_5
|| t
== NULL
)
843 tr
= kauai_lookup_timing(kauai_udma_timings
, (int)t
->udma
);
846 *ultra_timings
= ((*ultra_timings
) & ~TR_100_UDMAREG_UDMA_MASK
) | tr
;
847 *ultra_timings
= (*ultra_timings
) | TR_100_UDMAREG_UDMA_EN
;
853 * Calculate Shasta ATA/133 UDMA timings
856 set_timings_udma_shasta(u32
*pio_timings
, u32
*ultra_timings
, u8 speed
)
858 struct ide_timing
*t
= ide_timing_find_mode(speed
);
861 if (speed
> XFER_UDMA_6
|| t
== NULL
)
863 tr
= kauai_lookup_timing(shasta_udma133_timings
, (int)t
->udma
);
866 *ultra_timings
= ((*ultra_timings
) & ~TR_133_UDMAREG_UDMA_MASK
) | tr
;
867 *ultra_timings
= (*ultra_timings
) | TR_133_UDMAREG_UDMA_EN
;
873 * Calculate MDMA timings for all cells
876 set_timings_mdma(ide_drive_t
*drive
, int intf_type
, u32
*timings
, u32
*timings2
,
877 u8 speed
, int drive_cycle_time
)
879 int cycleTime
, accessTime
= 0, recTime
= 0;
880 unsigned accessTicks
, recTicks
;
881 struct mdma_timings_t
* tm
= NULL
;
884 /* Get default cycle time for mode */
885 switch(speed
& 0xf) {
886 case 0: cycleTime
= 480; break;
887 case 1: cycleTime
= 150; break;
888 case 2: cycleTime
= 120; break;
892 /* Adjust for drive */
893 if (drive_cycle_time
&& drive_cycle_time
> cycleTime
)
894 cycleTime
= drive_cycle_time
;
895 /* OHare limits according to some old Apple sources */
896 if ((intf_type
== controller_ohare
) && (cycleTime
< 150))
898 /* Get the proper timing array for this controller */
900 case controller_sh_ata6
:
901 case controller_un_ata6
:
902 case controller_k2_ata6
:
904 case controller_kl_ata4
:
905 tm
= mdma_timings_66
;
907 case controller_kl_ata3
:
908 tm
= mdma_timings_33k
;
911 tm
= mdma_timings_33
;
915 /* Lookup matching access & recovery times */
918 if (tm
[i
+1].cycleTime
< cycleTime
)
924 cycleTime
= tm
[i
].cycleTime
;
925 accessTime
= tm
[i
].accessTime
;
926 recTime
= tm
[i
].recoveryTime
;
928 #ifdef IDE_PMAC_DEBUG
929 printk(KERN_ERR
"%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
930 drive
->name
, cycleTime
, accessTime
, recTime
);
934 case controller_sh_ata6
: {
936 u32 tr
= kauai_lookup_timing(shasta_mdma_timings
, cycleTime
);
939 *timings
= ((*timings
) & ~TR_133_PIOREG_MDMA_MASK
) | tr
;
940 *timings2
= (*timings2
) & ~TR_133_UDMAREG_UDMA_EN
;
942 case controller_un_ata6
:
943 case controller_k2_ata6
: {
945 u32 tr
= kauai_lookup_timing(kauai_mdma_timings
, cycleTime
);
948 *timings
= ((*timings
) & ~TR_100_PIOREG_MDMA_MASK
) | tr
;
949 *timings2
= (*timings2
) & ~TR_100_UDMAREG_UDMA_EN
;
952 case controller_kl_ata4
:
954 accessTicks
= SYSCLK_TICKS_66(accessTime
);
955 accessTicks
= min(accessTicks
, 0x1fU
);
956 accessTicks
= max(accessTicks
, 0x1U
);
957 recTicks
= SYSCLK_TICKS_66(recTime
);
958 recTicks
= min(recTicks
, 0x1fU
);
959 recTicks
= max(recTicks
, 0x3U
);
960 /* Clear out mdma bits and disable udma */
961 *timings
= ((*timings
) & ~(TR_66_MDMA_MASK
| TR_66_UDMA_MASK
)) |
962 (accessTicks
<< TR_66_MDMA_ACCESS_SHIFT
) |
963 (recTicks
<< TR_66_MDMA_RECOVERY_SHIFT
);
965 case controller_kl_ata3
:
966 /* 33Mhz cell on KeyLargo */
967 accessTicks
= SYSCLK_TICKS(accessTime
);
968 accessTicks
= max(accessTicks
, 1U);
969 accessTicks
= min(accessTicks
, 0x1fU
);
970 accessTime
= accessTicks
* IDE_SYSCLK_NS
;
971 recTicks
= SYSCLK_TICKS(recTime
);
972 recTicks
= max(recTicks
, 1U);
973 recTicks
= min(recTicks
, 0x1fU
);
974 *timings
= ((*timings
) & ~TR_33_MDMA_MASK
) |
975 (accessTicks
<< TR_33_MDMA_ACCESS_SHIFT
) |
976 (recTicks
<< TR_33_MDMA_RECOVERY_SHIFT
);
979 /* 33Mhz cell on others */
981 int origAccessTime
= accessTime
;
982 int origRecTime
= recTime
;
984 accessTicks
= SYSCLK_TICKS(accessTime
);
985 accessTicks
= max(accessTicks
, 1U);
986 accessTicks
= min(accessTicks
, 0x1fU
);
987 accessTime
= accessTicks
* IDE_SYSCLK_NS
;
988 recTicks
= SYSCLK_TICKS(recTime
);
989 recTicks
= max(recTicks
, 2U) - 1;
990 recTicks
= min(recTicks
, 0x1fU
);
991 recTime
= (recTicks
+ 1) * IDE_SYSCLK_NS
;
992 if ((accessTicks
> 1) &&
993 ((accessTime
- IDE_SYSCLK_NS
/2) >= origAccessTime
) &&
994 ((recTime
- IDE_SYSCLK_NS
/2) >= origRecTime
)) {
998 *timings
= ((*timings
) & ~TR_33_MDMA_MASK
) |
999 (accessTicks
<< TR_33_MDMA_ACCESS_SHIFT
) |
1000 (recTicks
<< TR_33_MDMA_RECOVERY_SHIFT
);
1002 *timings
|= TR_33_MDMA_HALFTICK
;
1005 #ifdef IDE_PMAC_DEBUG
1006 printk(KERN_ERR
"%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
1007 drive
->name
, speed
& 0xf, *timings
);
1011 #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
1014 * Speedproc. This function is called by the core to set any of the standard
1015 * timing (PIO, MDMA or UDMA) to both the drive and the controller.
1016 * You may notice we don't use this function on normal "dma check" operation,
1017 * our dedicated function is more precise as it uses the drive provided
1018 * cycle time value. We should probably fix this one to deal with that too...
1021 pmac_ide_tune_chipset (ide_drive_t
*drive
, byte speed
)
1023 int unit
= (drive
->select
.b
.unit
& 0x01);
1025 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
1026 u32
*timings
, *timings2
;
1031 timings
= &pmif
->timings
[unit
];
1032 timings2
= &pmif
->timings
[unit
+2];
1035 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1037 if (pmif
->kind
!= controller_sh_ata6
)
1040 if (pmif
->kind
!= controller_un_ata6
&&
1041 pmif
->kind
!= controller_k2_ata6
&&
1042 pmif
->kind
!= controller_sh_ata6
)
1046 if (HWIF(drive
)->udma_four
== 0)
1051 if (pmif
->kind
== controller_kl_ata4
)
1052 ret
= set_timings_udma_ata4(timings
, speed
);
1053 else if (pmif
->kind
== controller_un_ata6
1054 || pmif
->kind
== controller_k2_ata6
)
1055 ret
= set_timings_udma_ata6(timings
, timings2
, speed
);
1056 else if (pmif
->kind
== controller_sh_ata6
)
1057 ret
= set_timings_udma_shasta(timings
, timings2
, speed
);
1064 ret
= set_timings_mdma(drive
, pmif
->kind
, timings
, timings2
, speed
, 0);
1070 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1076 pmac_ide_tuneproc(drive
, speed
& 0x07);
1084 ret
= pmac_ide_do_setfeature(drive
, speed
);
1088 pmac_ide_do_update_timings(drive
);
1089 drive
->current_speed
= speed
;
1095 * Blast some well known "safe" values to the timing registers at init or
1096 * wakeup from sleep time, before we do real calculation
1099 sanitize_timings(pmac_ide_hwif_t
*pmif
)
1101 unsigned int value
, value2
= 0;
1103 switch(pmif
->kind
) {
1104 case controller_sh_ata6
:
1106 value2
= 0x00033031;
1108 case controller_un_ata6
:
1109 case controller_k2_ata6
:
1111 value2
= 0x00002921;
1113 case controller_kl_ata4
:
1116 case controller_kl_ata3
:
1119 case controller_heathrow
:
1120 case controller_ohare
:
1125 pmif
->timings
[0] = pmif
->timings
[1] = value
;
1126 pmif
->timings
[2] = pmif
->timings
[3] = value2
;
1130 pmac_ide_get_base(int index
)
1132 return pmac_ide
[index
].regbase
;
1136 pmac_ide_check_base(unsigned long base
)
1140 for (ix
= 0; ix
< MAX_HWIFS
; ++ix
)
1141 if (base
== pmac_ide
[ix
].regbase
)
1147 pmac_ide_get_irq(unsigned long base
)
1151 for (ix
= 0; ix
< MAX_HWIFS
; ++ix
)
1152 if (base
== pmac_ide
[ix
].regbase
)
1153 return pmac_ide
[ix
].irq
;
1157 static int ide_majors
[] = { 3, 22, 33, 34, 56, 57 };
1160 pmac_find_ide_boot(char *bootdevice
, int n
)
1165 * Look through the list of IDE interfaces for this one.
1167 for (i
= 0; i
< pmac_ide_count
; ++i
) {
1169 if (!pmac_ide
[i
].node
|| !pmac_ide
[i
].node
->full_name
)
1171 name
= pmac_ide
[i
].node
->full_name
;
1172 if (memcmp(name
, bootdevice
, n
) == 0 && name
[n
] == 0) {
1173 /* XXX should cope with the 2nd drive as well... */
1174 return MKDEV(ide_majors
[i
], 0);
1181 /* Suspend call back, should be called after the child devices
1182 * have actually been suspended
1185 pmac_ide_do_suspend(ide_hwif_t
*hwif
)
1187 pmac_ide_hwif_t
*pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1189 /* We clear the timings */
1190 pmif
->timings
[0] = 0;
1191 pmif
->timings
[1] = 0;
1193 #ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK
1194 /* Note: This code will be called for every hwif, thus we'll
1195 * try several time to stop the LED blinker timer, but that
1196 * should be harmless
1198 if (pmu_ide_blink_enabled
) {
1199 unsigned long flags
;
1201 /* Make sure we don't hit the PMU blink */
1202 spin_lock_irqsave(&pmu_blink_lock
, flags
);
1203 if (pmu_blink_ledstate
)
1204 del_timer(&pmu_blink_timer
);
1205 pmu_blink_ledstate
= 0;
1206 spin_unlock_irqrestore(&pmu_blink_lock
, flags
);
1208 #endif /* CONFIG_BLK_DEV_IDE_PMAC_BLINK */
1210 disable_irq(pmif
->irq
);
1212 /* The media bay will handle itself just fine */
1216 /* Kauai has bus control FCRs directly here */
1217 if (pmif
->kauai_fcr
) {
1218 u32 fcr
= readl(pmif
->kauai_fcr
);
1219 fcr
&= ~(KAUAI_FCR_UATA_RESET_N
| KAUAI_FCR_UATA_ENABLE
);
1220 writel(fcr
, pmif
->kauai_fcr
);
1223 /* Disable the bus on older machines and the cell on kauai */
1224 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, pmif
->node
, pmif
->aapl_bus_id
,
1230 /* Resume call back, should be called before the child devices
1234 pmac_ide_do_resume(ide_hwif_t
*hwif
)
1236 pmac_ide_hwif_t
*pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1238 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
1239 if (!pmif
->mediabay
) {
1240 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, pmif
->node
, pmif
->aapl_bus_id
, 1);
1241 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, pmif
->node
, pmif
->aapl_bus_id
, 1);
1243 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, pmif
->node
, pmif
->aapl_bus_id
, 0);
1245 /* Kauai has it different */
1246 if (pmif
->kauai_fcr
) {
1247 u32 fcr
= readl(pmif
->kauai_fcr
);
1248 fcr
|= KAUAI_FCR_UATA_RESET_N
| KAUAI_FCR_UATA_ENABLE
;
1249 writel(fcr
, pmif
->kauai_fcr
);
1252 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY
));
1255 /* Sanitize drive timings */
1256 sanitize_timings(pmif
);
1258 enable_irq(pmif
->irq
);
1264 * Setup, register & probe an IDE channel driven by this driver, this is
1265 * called by one of the 2 probe functions (macio or PCI). Note that a channel
1266 * that ends up beeing free of any device is not kept around by this driver
1267 * (it is kept in 2.4). This introduce an interface numbering change on some
1268 * rare machines unfortunately, but it's better this way.
1271 pmac_ide_setup_device(pmac_ide_hwif_t
*pmif
, ide_hwif_t
*hwif
)
1273 struct device_node
*np
= pmif
->node
;
1277 pmif
->broken_dma
= pmif
->broken_dma_warn
= 0;
1278 if (device_is_compatible(np
, "shasta-ata"))
1279 pmif
->kind
= controller_sh_ata6
;
1280 else if (device_is_compatible(np
, "kauai-ata"))
1281 pmif
->kind
= controller_un_ata6
;
1282 else if (device_is_compatible(np
, "K2-UATA"))
1283 pmif
->kind
= controller_k2_ata6
;
1284 else if (device_is_compatible(np
, "keylargo-ata")) {
1285 if (strcmp(np
->name
, "ata-4") == 0)
1286 pmif
->kind
= controller_kl_ata4
;
1288 pmif
->kind
= controller_kl_ata3
;
1289 } else if (device_is_compatible(np
, "heathrow-ata"))
1290 pmif
->kind
= controller_heathrow
;
1292 pmif
->kind
= controller_ohare
;
1293 pmif
->broken_dma
= 1;
1296 bidp
= (int *)get_property(np
, "AAPL,bus-id", NULL
);
1297 pmif
->aapl_bus_id
= bidp
? *bidp
: 0;
1299 /* Get cable type from device-tree */
1300 if (pmif
->kind
== controller_kl_ata4
|| pmif
->kind
== controller_un_ata6
1301 || pmif
->kind
== controller_k2_ata6
1302 || pmif
->kind
== controller_sh_ata6
) {
1303 char* cable
= get_property(np
, "cable-type", NULL
);
1304 if (cable
&& !strncmp(cable
, "80-", 3))
1307 /* G5's seem to have incorrect cable type in device-tree. Let's assume
1308 * they have a 80 conductor cable, this seem to be always the case unless
1309 * the user mucked around
1311 if (device_is_compatible(np
, "K2-UATA") ||
1312 device_is_compatible(np
, "shasta-ata"))
1315 /* On Kauai-type controllers, we make sure the FCR is correct */
1316 if (pmif
->kauai_fcr
)
1317 writel(KAUAI_FCR_UATA_MAGIC
|
1318 KAUAI_FCR_UATA_RESET_N
|
1319 KAUAI_FCR_UATA_ENABLE
, pmif
->kauai_fcr
);
1323 /* Make sure we have sane timings */
1324 sanitize_timings(pmif
);
1326 #ifndef CONFIG_PPC64
1327 /* XXX FIXME: Media bay stuff need re-organizing */
1328 if (np
->parent
&& np
->parent
->name
1329 && strcasecmp(np
->parent
->name
, "media-bay") == 0) {
1330 #ifdef CONFIG_PMAC_MEDIABAY
1331 media_bay_set_ide_infos(np
->parent
, pmif
->regbase
, pmif
->irq
, hwif
->index
);
1332 #endif /* CONFIG_PMAC_MEDIABAY */
1335 pmif
->aapl_bus_id
= 1;
1336 } else if (pmif
->kind
== controller_ohare
) {
1337 /* The code below is having trouble on some ohare machines
1338 * (timing related ?). Until I can put my hand on one of these
1339 * units, I keep the old way
1341 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, np
, 0, 1);
1345 /* This is necessary to enable IDE when net-booting */
1346 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, np
, pmif
->aapl_bus_id
, 1);
1347 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, np
, pmif
->aapl_bus_id
, 1);
1349 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, np
, pmif
->aapl_bus_id
, 0);
1350 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY
));
1353 /* Setup MMIO ops */
1354 default_hwif_mmiops(hwif
);
1355 hwif
->OUTBSYNC
= pmac_outbsync
;
1357 /* Tell common code _not_ to mess with resources */
1359 hwif
->hwif_data
= pmif
;
1360 pmac_ide_init_hwif_ports(&hwif
->hw
, pmif
->regbase
, 0, &hwif
->irq
);
1361 memcpy(hwif
->io_ports
, hwif
->hw
.io_ports
, sizeof(hwif
->io_ports
));
1362 hwif
->chipset
= ide_pmac
;
1363 hwif
->noprobe
= !hwif
->io_ports
[IDE_DATA_OFFSET
] || pmif
->mediabay
;
1364 hwif
->hold
= pmif
->mediabay
;
1365 hwif
->udma_four
= pmif
->cable_80
;
1366 hwif
->drives
[0].unmask
= 1;
1367 hwif
->drives
[1].unmask
= 1;
1368 hwif
->tuneproc
= pmac_ide_tuneproc
;
1369 if (pmif
->kind
== controller_un_ata6
1370 || pmif
->kind
== controller_k2_ata6
1371 || pmif
->kind
== controller_sh_ata6
)
1372 hwif
->selectproc
= pmac_ide_kauai_selectproc
;
1374 hwif
->selectproc
= pmac_ide_selectproc
;
1375 hwif
->speedproc
= pmac_ide_tune_chipset
;
1377 #ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK
1378 pmu_ide_blink_enabled
= pmu_hd_blink_init();
1380 if (pmu_ide_blink_enabled
)
1381 hwif
->led_act
= pmu_hd_kick_blink
;
1384 printk(KERN_INFO
"ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
1385 hwif
->index
, model_name
[pmif
->kind
], pmif
->aapl_bus_id
,
1386 pmif
->mediabay
? " (mediabay)" : "", hwif
->irq
);
1388 #ifdef CONFIG_PMAC_MEDIABAY
1389 if (pmif
->mediabay
&& check_media_bay_by_base(pmif
->regbase
, MB_CD
) == 0)
1391 #endif /* CONFIG_PMAC_MEDIABAY */
1393 hwif
->sg_max_nents
= MAX_DCMDS
;
1395 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1396 /* has a DBDMA controller channel */
1398 pmac_ide_setup_dma(pmif
, hwif
);
1399 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1401 /* We probe the hwif now */
1402 probe_hwif_init(hwif
);
1408 * Attach to a macio probed interface
1410 static int __devinit
1411 pmac_ide_macio_attach(struct macio_dev
*mdev
, const struct of_device_id
*match
)
1414 unsigned long regbase
;
1417 pmac_ide_hwif_t
*pmif
;
1421 while (i
< MAX_HWIFS
&& (ide_hwifs
[i
].io_ports
[IDE_DATA_OFFSET
] != 0
1422 || pmac_ide
[i
].node
!= NULL
))
1424 if (i
>= MAX_HWIFS
) {
1425 printk(KERN_ERR
"ide-pmac: MacIO interface attach with no slot\n");
1426 printk(KERN_ERR
" %s\n", mdev
->ofdev
.node
->full_name
);
1430 pmif
= &pmac_ide
[i
];
1431 hwif
= &ide_hwifs
[i
];
1433 if (mdev
->ofdev
.node
->n_addrs
== 0) {
1434 printk(KERN_WARNING
"ide%d: no address for %s\n",
1435 i
, mdev
->ofdev
.node
->full_name
);
1439 /* Request memory resource for IO ports */
1440 if (macio_request_resource(mdev
, 0, "ide-pmac (ports)")) {
1441 printk(KERN_ERR
"ide%d: can't request mmio resource !\n", i
);
1445 /* XXX This is bogus. Should be fixed in the registry by checking
1446 * the kind of host interrupt controller, a bit like gatwick
1447 * fixes in irq.c. That works well enough for the single case
1448 * where that happens though...
1450 if (macio_irq_count(mdev
) == 0) {
1451 printk(KERN_WARNING
"ide%d: no intrs for device %s, using 13\n",
1452 i
, mdev
->ofdev
.node
->full_name
);
1455 irq
= macio_irq(mdev
, 0);
1457 base
= ioremap(macio_resource_start(mdev
, 0), 0x400);
1458 regbase
= (unsigned long) base
;
1460 hwif
->pci_dev
= mdev
->bus
->pdev
;
1461 hwif
->gendev
.parent
= &mdev
->ofdev
.dev
;
1464 pmif
->node
= mdev
->ofdev
.node
;
1465 pmif
->regbase
= regbase
;
1467 pmif
->kauai_fcr
= NULL
;
1468 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1469 if (macio_resource_count(mdev
) >= 2) {
1470 if (macio_request_resource(mdev
, 1, "ide-pmac (dma)"))
1471 printk(KERN_WARNING
"ide%d: can't request DMA resource !\n", i
);
1473 pmif
->dma_regs
= ioremap(macio_resource_start(mdev
, 1), 0x1000);
1475 pmif
->dma_regs
= NULL
;
1476 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1477 dev_set_drvdata(&mdev
->ofdev
.dev
, hwif
);
1479 rc
= pmac_ide_setup_device(pmif
, hwif
);
1481 /* The inteface is released to the common IDE layer */
1482 dev_set_drvdata(&mdev
->ofdev
.dev
, NULL
);
1485 iounmap(pmif
->dma_regs
);
1486 memset(pmif
, 0, sizeof(*pmif
));
1487 macio_release_resource(mdev
, 0);
1489 macio_release_resource(mdev
, 1);
1496 pmac_ide_macio_suspend(struct macio_dev
*mdev
, pm_message_t state
)
1498 ide_hwif_t
*hwif
= (ide_hwif_t
*)dev_get_drvdata(&mdev
->ofdev
.dev
);
1501 if (state
.event
!= mdev
->ofdev
.dev
.power
.power_state
.event
&& state
.event
>= PM_EVENT_SUSPEND
) {
1502 rc
= pmac_ide_do_suspend(hwif
);
1504 mdev
->ofdev
.dev
.power
.power_state
= state
;
1511 pmac_ide_macio_resume(struct macio_dev
*mdev
)
1513 ide_hwif_t
*hwif
= (ide_hwif_t
*)dev_get_drvdata(&mdev
->ofdev
.dev
);
1516 if (mdev
->ofdev
.dev
.power
.power_state
.event
!= PM_EVENT_ON
) {
1517 rc
= pmac_ide_do_resume(hwif
);
1519 mdev
->ofdev
.dev
.power
.power_state
= PMSG_ON
;
1526 * Attach to a PCI probed interface
1528 static int __devinit
1529 pmac_ide_pci_attach(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
1532 struct device_node
*np
;
1533 pmac_ide_hwif_t
*pmif
;
1535 unsigned long rbase
, rlen
;
1538 np
= pci_device_to_OF_node(pdev
);
1540 printk(KERN_ERR
"ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1544 while (i
< MAX_HWIFS
&& (ide_hwifs
[i
].io_ports
[IDE_DATA_OFFSET
] != 0
1545 || pmac_ide
[i
].node
!= NULL
))
1547 if (i
>= MAX_HWIFS
) {
1548 printk(KERN_ERR
"ide-pmac: PCI interface attach with no slot\n");
1549 printk(KERN_ERR
" %s\n", np
->full_name
);
1553 pmif
= &pmac_ide
[i
];
1554 hwif
= &ide_hwifs
[i
];
1556 if (pci_enable_device(pdev
)) {
1557 printk(KERN_WARNING
"ide%i: Can't enable PCI device for %s\n",
1561 pci_set_master(pdev
);
1563 if (pci_request_regions(pdev
, "Kauai ATA")) {
1564 printk(KERN_ERR
"ide%d: Cannot obtain PCI resources for %s\n",
1569 hwif
->pci_dev
= pdev
;
1570 hwif
->gendev
.parent
= &pdev
->dev
;
1574 rbase
= pci_resource_start(pdev
, 0);
1575 rlen
= pci_resource_len(pdev
, 0);
1577 base
= ioremap(rbase
, rlen
);
1578 pmif
->regbase
= (unsigned long) base
+ 0x2000;
1579 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1580 pmif
->dma_regs
= base
+ 0x1000;
1581 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1582 pmif
->kauai_fcr
= base
;
1583 pmif
->irq
= pdev
->irq
;
1585 pci_set_drvdata(pdev
, hwif
);
1587 rc
= pmac_ide_setup_device(pmif
, hwif
);
1589 /* The inteface is released to the common IDE layer */
1590 pci_set_drvdata(pdev
, NULL
);
1592 memset(pmif
, 0, sizeof(*pmif
));
1593 pci_release_regions(pdev
);
1600 pmac_ide_pci_suspend(struct pci_dev
*pdev
, pm_message_t state
)
1602 ide_hwif_t
*hwif
= (ide_hwif_t
*)pci_get_drvdata(pdev
);
1605 if (state
.event
!= pdev
->dev
.power
.power_state
.event
&& state
.event
>= 2) {
1606 rc
= pmac_ide_do_suspend(hwif
);
1608 pdev
->dev
.power
.power_state
= state
;
1615 pmac_ide_pci_resume(struct pci_dev
*pdev
)
1617 ide_hwif_t
*hwif
= (ide_hwif_t
*)pci_get_drvdata(pdev
);
1620 if (pdev
->dev
.power
.power_state
.event
!= PM_EVENT_ON
) {
1621 rc
= pmac_ide_do_resume(hwif
);
1623 pdev
->dev
.power
.power_state
= PMSG_ON
;
1629 static struct of_device_id pmac_ide_macio_match
[] =
1646 static struct macio_driver pmac_ide_macio_driver
=
1649 .match_table
= pmac_ide_macio_match
,
1650 .probe
= pmac_ide_macio_attach
,
1651 .suspend
= pmac_ide_macio_suspend
,
1652 .resume
= pmac_ide_macio_resume
,
1655 static struct pci_device_id pmac_ide_pci_match
[] = {
1656 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_ATA
,
1657 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
1658 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_IPID_ATA100
,
1659 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
1660 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_K2_ATA100
,
1661 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
1662 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_SH_ATA
,
1663 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
1664 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_IPID2_ATA
,
1665 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
1668 static struct pci_driver pmac_ide_pci_driver
= {
1670 .id_table
= pmac_ide_pci_match
,
1671 .probe
= pmac_ide_pci_attach
,
1672 .suspend
= pmac_ide_pci_suspend
,
1673 .resume
= pmac_ide_pci_resume
,
1675 MODULE_DEVICE_TABLE(pci
, pmac_ide_pci_match
);
1678 pmac_ide_probe(void)
1680 if (_machine
!= _MACH_Pmac
)
1683 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1684 pci_register_driver(&pmac_ide_pci_driver
);
1685 macio_register_driver(&pmac_ide_macio_driver
);
1687 macio_register_driver(&pmac_ide_macio_driver
);
1688 pci_register_driver(&pmac_ide_pci_driver
);
1692 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1695 * pmac_ide_build_dmatable builds the DBDMA command list
1696 * for a transfer and sets the DBDMA channel to point to it.
1699 pmac_ide_build_dmatable(ide_drive_t
*drive
, struct request
*rq
)
1701 struct dbdma_cmd
*table
;
1703 ide_hwif_t
*hwif
= HWIF(drive
);
1704 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1705 volatile struct dbdma_regs __iomem
*dma
= pmif
->dma_regs
;
1706 struct scatterlist
*sg
;
1707 int wr
= (rq_data_dir(rq
) == WRITE
);
1709 /* DMA table is already aligned */
1710 table
= (struct dbdma_cmd
*) pmif
->dma_table_cpu
;
1712 /* Make sure DMA controller is stopped (necessary ?) */
1713 writel((RUN
|PAUSE
|FLUSH
|WAKE
|DEAD
) << 16, &dma
->control
);
1714 while (readl(&dma
->status
) & RUN
)
1717 hwif
->sg_nents
= i
= ide_build_sglist(drive
, rq
);
1722 /* Build DBDMA commands list */
1723 sg
= hwif
->sg_table
;
1724 while (i
&& sg_dma_len(sg
)) {
1728 cur_addr
= sg_dma_address(sg
);
1729 cur_len
= sg_dma_len(sg
);
1731 if (pmif
->broken_dma
&& cur_addr
& (L1_CACHE_BYTES
- 1)) {
1732 if (pmif
->broken_dma_warn
== 0) {
1733 printk(KERN_WARNING
"%s: DMA on non aligned address,"
1734 "switching to PIO on Ohare chipset\n", drive
->name
);
1735 pmif
->broken_dma_warn
= 1;
1737 goto use_pio_instead
;
1740 unsigned int tc
= (cur_len
< 0xfe00)? cur_len
: 0xfe00;
1742 if (count
++ >= MAX_DCMDS
) {
1743 printk(KERN_WARNING
"%s: DMA table too small\n",
1745 goto use_pio_instead
;
1747 st_le16(&table
->command
, wr
? OUTPUT_MORE
: INPUT_MORE
);
1748 st_le16(&table
->req_count
, tc
);
1749 st_le32(&table
->phy_addr
, cur_addr
);
1751 table
->xfer_status
= 0;
1752 table
->res_count
= 0;
1761 /* convert the last command to an input/output last command */
1763 st_le16(&table
[-1].command
, wr
? OUTPUT_LAST
: INPUT_LAST
);
1764 /* add the stop command to the end of the list */
1765 memset(table
, 0, sizeof(struct dbdma_cmd
));
1766 st_le16(&table
->command
, DBDMA_STOP
);
1768 writel(hwif
->dmatable_dma
, &dma
->cmdptr
);
1772 printk(KERN_DEBUG
"%s: empty DMA table?\n", drive
->name
);
1774 pci_unmap_sg(hwif
->pci_dev
,
1777 hwif
->sg_dma_direction
);
1778 return 0; /* revert to PIO for this request */
1781 /* Teardown mappings after DMA has completed. */
1783 pmac_ide_destroy_dmatable (ide_drive_t
*drive
)
1785 ide_hwif_t
*hwif
= drive
->hwif
;
1786 struct pci_dev
*dev
= HWIF(drive
)->pci_dev
;
1787 struct scatterlist
*sg
= hwif
->sg_table
;
1788 int nents
= hwif
->sg_nents
;
1791 pci_unmap_sg(dev
, sg
, nents
, hwif
->sg_dma_direction
);
1797 * Pick up best MDMA timing for the drive and apply it
1800 pmac_ide_mdma_enable(ide_drive_t
*drive
, u16 mode
)
1802 ide_hwif_t
*hwif
= HWIF(drive
);
1803 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1804 int drive_cycle_time
;
1805 struct hd_driveid
*id
= drive
->id
;
1806 u32
*timings
, *timings2
;
1807 u32 timing_local
[2];
1810 /* which drive is it ? */
1811 timings
= &pmif
->timings
[drive
->select
.b
.unit
& 0x01];
1812 timings2
= &pmif
->timings
[(drive
->select
.b
.unit
& 0x01) + 2];
1814 /* Check if drive provide explicit cycle time */
1815 if ((id
->field_valid
& 2) && (id
->eide_dma_time
))
1816 drive_cycle_time
= id
->eide_dma_time
;
1818 drive_cycle_time
= 0;
1820 /* Copy timings to local image */
1821 timing_local
[0] = *timings
;
1822 timing_local
[1] = *timings2
;
1824 /* Calculate controller timings */
1825 ret
= set_timings_mdma( drive
, pmif
->kind
,
1833 /* Set feature on drive */
1834 printk(KERN_INFO
"%s: Enabling MultiWord DMA %d\n", drive
->name
, mode
& 0xf);
1835 ret
= pmac_ide_do_setfeature(drive
, mode
);
1837 printk(KERN_WARNING
"%s: Failed !\n", drive
->name
);
1841 /* Apply timings to controller */
1842 *timings
= timing_local
[0];
1843 *timings2
= timing_local
[1];
1845 /* Set speed info in drive */
1846 drive
->current_speed
= mode
;
1847 if (!drive
->init_speed
)
1848 drive
->init_speed
= mode
;
1854 * Pick up best UDMA timing for the drive and apply it
1857 pmac_ide_udma_enable(ide_drive_t
*drive
, u16 mode
)
1859 ide_hwif_t
*hwif
= HWIF(drive
);
1860 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1861 u32
*timings
, *timings2
;
1862 u32 timing_local
[2];
1865 /* which drive is it ? */
1866 timings
= &pmif
->timings
[drive
->select
.b
.unit
& 0x01];
1867 timings2
= &pmif
->timings
[(drive
->select
.b
.unit
& 0x01) + 2];
1869 /* Copy timings to local image */
1870 timing_local
[0] = *timings
;
1871 timing_local
[1] = *timings2
;
1873 /* Calculate timings for interface */
1874 if (pmif
->kind
== controller_un_ata6
1875 || pmif
->kind
== controller_k2_ata6
)
1876 ret
= set_timings_udma_ata6( &timing_local
[0],
1879 else if (pmif
->kind
== controller_sh_ata6
)
1880 ret
= set_timings_udma_shasta( &timing_local
[0],
1884 ret
= set_timings_udma_ata4(&timing_local
[0], mode
);
1888 /* Set feature on drive */
1889 printk(KERN_INFO
"%s: Enabling Ultra DMA %d\n", drive
->name
, mode
& 0x0f);
1890 ret
= pmac_ide_do_setfeature(drive
, mode
);
1892 printk(KERN_WARNING
"%s: Failed !\n", drive
->name
);
1896 /* Apply timings to controller */
1897 *timings
= timing_local
[0];
1898 *timings2
= timing_local
[1];
1900 /* Set speed info in drive */
1901 drive
->current_speed
= mode
;
1902 if (!drive
->init_speed
)
1903 drive
->init_speed
= mode
;
1909 * Check what is the best DMA timing setting for the drive and
1910 * call appropriate functions to apply it.
1913 pmac_ide_dma_check(ide_drive_t
*drive
)
1915 struct hd_driveid
*id
= drive
->id
;
1916 ide_hwif_t
*hwif
= HWIF(drive
);
1917 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1920 drive
->using_dma
= 0;
1922 if (drive
->media
== ide_floppy
)
1924 if (((id
->capability
& 1) == 0) && !__ide_dma_good_drive(drive
))
1926 if (__ide_dma_bad_drive(drive
))
1933 if (pmif
->kind
== controller_kl_ata4
1934 || pmif
->kind
== controller_un_ata6
1935 || pmif
->kind
== controller_k2_ata6
1936 || pmif
->kind
== controller_sh_ata6
) {
1938 if (pmif
->cable_80
) {
1939 map
|= XFER_UDMA_66
;
1940 if (pmif
->kind
== controller_un_ata6
||
1941 pmif
->kind
== controller_k2_ata6
||
1942 pmif
->kind
== controller_sh_ata6
)
1943 map
|= XFER_UDMA_100
;
1944 if (pmif
->kind
== controller_sh_ata6
)
1945 map
|= XFER_UDMA_133
;
1948 mode
= ide_find_best_mode(drive
, map
);
1949 if (mode
& XFER_UDMA
)
1950 drive
->using_dma
= pmac_ide_udma_enable(drive
, mode
);
1951 else if (mode
& XFER_MWDMA
)
1952 drive
->using_dma
= pmac_ide_mdma_enable(drive
, mode
);
1953 hwif
->OUTB(0, IDE_CONTROL_REG
);
1954 /* Apply settings to controller */
1955 pmac_ide_do_update_timings(drive
);
1961 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1962 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1965 pmac_ide_dma_setup(ide_drive_t
*drive
)
1967 ide_hwif_t
*hwif
= HWIF(drive
);
1968 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1969 struct request
*rq
= HWGROUP(drive
)->rq
;
1970 u8 unit
= (drive
->select
.b
.unit
& 0x01);
1975 ata4
= (pmif
->kind
== controller_kl_ata4
);
1977 if (!pmac_ide_build_dmatable(drive
, rq
)) {
1978 ide_map_sg(drive
, rq
);
1982 /* Apple adds 60ns to wrDataSetup on reads */
1983 if (ata4
&& (pmif
->timings
[unit
] & TR_66_UDMA_EN
)) {
1984 writel(pmif
->timings
[unit
] + (!rq_data_dir(rq
) ? 0x00800000UL
: 0),
1985 PMAC_IDE_REG(IDE_TIMING_CONFIG
));
1986 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG
));
1989 drive
->waiting_for_dma
= 1;
1995 pmac_ide_dma_exec_cmd(ide_drive_t
*drive
, u8 command
)
1997 /* issue cmd to drive */
1998 ide_execute_command(drive
, command
, &ide_dma_intr
, 2*WAIT_CMD
, NULL
);
2002 * Kick the DMA controller into life after the DMA command has been issued
2006 pmac_ide_dma_start(ide_drive_t
*drive
)
2008 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
2009 volatile struct dbdma_regs __iomem
*dma
;
2011 dma
= pmif
->dma_regs
;
2013 writel((RUN
<< 16) | RUN
, &dma
->control
);
2014 /* Make sure it gets to the controller right now */
2015 (void)readl(&dma
->control
);
2019 * After a DMA transfer, make sure the controller is stopped
2022 pmac_ide_dma_end (ide_drive_t
*drive
)
2024 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
2025 volatile struct dbdma_regs __iomem
*dma
;
2030 dma
= pmif
->dma_regs
;
2032 drive
->waiting_for_dma
= 0;
2033 dstat
= readl(&dma
->status
);
2034 writel(((RUN
|WAKE
|DEAD
) << 16), &dma
->control
);
2035 pmac_ide_destroy_dmatable(drive
);
2036 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
2037 * in theory, but with ATAPI decices doing buffer underruns, that would
2038 * cause us to disable DMA, which isn't what we want
2040 return (dstat
& (RUN
|DEAD
)) != RUN
;
2044 * Check out that the interrupt we got was for us. We can't always know this
2045 * for sure with those Apple interfaces (well, we could on the recent ones but
2046 * that's not implemented yet), on the other hand, we don't have shared interrupts
2047 * so it's not really a problem
2050 pmac_ide_dma_test_irq (ide_drive_t
*drive
)
2052 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
2053 volatile struct dbdma_regs __iomem
*dma
;
2054 unsigned long status
, timeout
;
2058 dma
= pmif
->dma_regs
;
2060 /* We have to things to deal with here:
2062 * - The dbdma won't stop if the command was started
2063 * but completed with an error without transferring all
2064 * datas. This happens when bad blocks are met during
2065 * a multi-block transfer.
2067 * - The dbdma fifo hasn't yet finished flushing to
2068 * to system memory when the disk interrupt occurs.
2072 /* If ACTIVE is cleared, the STOP command have passed and
2073 * transfer is complete.
2075 status
= readl(&dma
->status
);
2076 if (!(status
& ACTIVE
))
2078 if (!drive
->waiting_for_dma
)
2079 printk(KERN_WARNING
"ide%d, ide_dma_test_irq \
2080 called while not waiting\n", HWIF(drive
)->index
);
2082 /* If dbdma didn't execute the STOP command yet, the
2083 * active bit is still set. We consider that we aren't
2084 * sharing interrupts (which is hopefully the case with
2085 * those controllers) and so we just try to flush the
2086 * channel for pending data in the fifo
2089 writel((FLUSH
<< 16) | FLUSH
, &dma
->control
);
2093 status
= readl(&dma
->status
);
2094 if ((status
& FLUSH
) == 0)
2096 if (++timeout
> 100) {
2097 printk(KERN_WARNING
"ide%d, ide_dma_test_irq \
2098 timeout flushing channel\n", HWIF(drive
)->index
);
2106 pmac_ide_dma_host_off (ide_drive_t
*drive
)
2112 pmac_ide_dma_host_on (ide_drive_t
*drive
)
2118 pmac_ide_dma_lostirq (ide_drive_t
*drive
)
2120 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
2121 volatile struct dbdma_regs __iomem
*dma
;
2122 unsigned long status
;
2126 dma
= pmif
->dma_regs
;
2128 status
= readl(&dma
->status
);
2129 printk(KERN_ERR
"ide-pmac lost interrupt, dma status: %lx\n", status
);
2134 * Allocate the data structures needed for using DMA with an interface
2135 * and fill the proper list of functions pointers
2138 pmac_ide_setup_dma(pmac_ide_hwif_t
*pmif
, ide_hwif_t
*hwif
)
2140 /* We won't need pci_dev if we switch to generic consistent
2143 if (hwif
->pci_dev
== NULL
)
2146 * Allocate space for the DBDMA commands.
2147 * The +2 is +1 for the stop command and +1 to allow for
2148 * aligning the start address to a multiple of 16 bytes.
2150 pmif
->dma_table_cpu
= (struct dbdma_cmd
*)pci_alloc_consistent(
2152 (MAX_DCMDS
+ 2) * sizeof(struct dbdma_cmd
),
2153 &hwif
->dmatable_dma
);
2154 if (pmif
->dma_table_cpu
== NULL
) {
2155 printk(KERN_ERR
"%s: unable to allocate DMA command list\n",
2160 hwif
->ide_dma_off_quietly
= &__ide_dma_off_quietly
;
2161 hwif
->ide_dma_on
= &__ide_dma_on
;
2162 hwif
->ide_dma_check
= &pmac_ide_dma_check
;
2163 hwif
->dma_setup
= &pmac_ide_dma_setup
;
2164 hwif
->dma_exec_cmd
= &pmac_ide_dma_exec_cmd
;
2165 hwif
->dma_start
= &pmac_ide_dma_start
;
2166 hwif
->ide_dma_end
= &pmac_ide_dma_end
;
2167 hwif
->ide_dma_test_irq
= &pmac_ide_dma_test_irq
;
2168 hwif
->ide_dma_host_off
= &pmac_ide_dma_host_off
;
2169 hwif
->ide_dma_host_on
= &pmac_ide_dma_host_on
;
2170 hwif
->ide_dma_timeout
= &__ide_dma_timeout
;
2171 hwif
->ide_dma_lostirq
= &pmac_ide_dma_lostirq
;
2173 hwif
->atapi_dma
= 1;
2174 switch(pmif
->kind
) {
2175 case controller_sh_ata6
:
2176 hwif
->ultra_mask
= pmif
->cable_80
? 0x7f : 0x07;
2177 hwif
->mwdma_mask
= 0x07;
2178 hwif
->swdma_mask
= 0x00;
2180 case controller_un_ata6
:
2181 case controller_k2_ata6
:
2182 hwif
->ultra_mask
= pmif
->cable_80
? 0x3f : 0x07;
2183 hwif
->mwdma_mask
= 0x07;
2184 hwif
->swdma_mask
= 0x00;
2186 case controller_kl_ata4
:
2187 hwif
->ultra_mask
= pmif
->cable_80
? 0x1f : 0x07;
2188 hwif
->mwdma_mask
= 0x07;
2189 hwif
->swdma_mask
= 0x00;
2192 hwif
->ultra_mask
= 0x00;
2193 hwif
->mwdma_mask
= 0x07;
2194 hwif
->swdma_mask
= 0x00;
2199 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */