Linux v2.6.15-rc7
[pohmelfs.git] / drivers / mtd / nand / nand_base.c
blob5d222460b42a87acd20c18f23183c67ad9f109e4
1 /*
2 * drivers/mtd/nand.c
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002 Thomas Gleixner (tglx@linutronix.de)
15 * 02-08-2004 tglx: support for strange chips, which cannot auto increment
16 * pages on read / read_oob
18 * 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes
19 * pointed this out, as he marked an auto increment capable chip
20 * as NOAUTOINCR in the board driver.
21 * Make reads over block boundaries work too
23 * 04-14-2004 tglx: first working version for 2k page size chips
25 * 05-19-2004 tglx: Basic support for Renesas AG-AND chips
27 * 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
28 * among multiple independend devices. Suggestions and initial patch
29 * from Ben Dooks <ben-mtd@fluff.org>
31 * 12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb" issue.
32 * Basically, any block not rewritten may lose data when surrounding blocks
33 * are rewritten many times. JFFS2 ensures this doesn't happen for blocks
34 * it uses, but the Bad Block Table(s) may not be rewritten. To ensure they
35 * do not lose data, force them to be rewritten when some of the surrounding
36 * blocks are erased. Rather than tracking a specific nearby block (which
37 * could itself go bad), use a page address 'mask' to select several blocks
38 * in the same area, and rewrite the BBT when any of them are erased.
40 * 01-03-2005 dmarlin: added support for the device recovery command sequence for Renesas
41 * AG-AND chips. If there was a sudden loss of power during an erase operation,
42 * a "device recovery" operation must be performed when power is restored
43 * to ensure correct operation.
45 * 01-20-2005 dmarlin: added support for optional hardware specific callback routine to
46 * perform extra error status checks on erase and write failures. This required
47 * adding a wrapper function for nand_read_ecc.
49 * 08-20-2005 vwool: suspend/resume added
51 * Credits:
52 * David Woodhouse for adding multichip support
54 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
55 * rework for 2K page size chips
57 * TODO:
58 * Enable cached programming for 2k page size chips
59 * Check, if mtd->ecctype should be set to MTD_ECC_HW
60 * if we have HW ecc support.
61 * The AG-AND chips have nice features for speed improvement,
62 * which are not supported yet. Read / program 4 pages in one go.
64 * $Id: nand_base.c,v 1.150 2005/09/15 13:58:48 vwool Exp $
66 * This program is free software; you can redistribute it and/or modify
67 * it under the terms of the GNU General Public License version 2 as
68 * published by the Free Software Foundation.
72 #include <linux/delay.h>
73 #include <linux/errno.h>
74 #include <linux/sched.h>
75 #include <linux/slab.h>
76 #include <linux/types.h>
77 #include <linux/mtd/mtd.h>
78 #include <linux/mtd/nand.h>
79 #include <linux/mtd/nand_ecc.h>
80 #include <linux/mtd/compatmac.h>
81 #include <linux/interrupt.h>
82 #include <linux/bitops.h>
83 #include <asm/io.h>
85 #ifdef CONFIG_MTD_PARTITIONS
86 #include <linux/mtd/partitions.h>
87 #endif
89 /* Define default oob placement schemes for large and small page devices */
90 static struct nand_oobinfo nand_oob_8 = {
91 .useecc = MTD_NANDECC_AUTOPLACE,
92 .eccbytes = 3,
93 .eccpos = {0, 1, 2},
94 .oobfree = { {3, 2}, {6, 2} }
97 static struct nand_oobinfo nand_oob_16 = {
98 .useecc = MTD_NANDECC_AUTOPLACE,
99 .eccbytes = 6,
100 .eccpos = {0, 1, 2, 3, 6, 7},
101 .oobfree = { {8, 8} }
104 static struct nand_oobinfo nand_oob_64 = {
105 .useecc = MTD_NANDECC_AUTOPLACE,
106 .eccbytes = 24,
107 .eccpos = {
108 40, 41, 42, 43, 44, 45, 46, 47,
109 48, 49, 50, 51, 52, 53, 54, 55,
110 56, 57, 58, 59, 60, 61, 62, 63},
111 .oobfree = { {2, 38} }
114 /* This is used for padding purposes in nand_write_oob */
115 static u_char ffchars[] = {
116 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
117 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
118 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
119 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
120 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
121 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
122 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
123 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
127 * NAND low-level MTD interface functions
129 static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
130 static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
131 static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
133 static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
134 static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
135 size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
136 static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
137 static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
138 static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
139 size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
140 static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
141 static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
142 unsigned long count, loff_t to, size_t * retlen);
143 static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
144 unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
145 static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
146 static void nand_sync (struct mtd_info *mtd);
148 /* Some internal functions */
149 static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,
150 struct nand_oobinfo *oobsel, int mode);
151 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
152 static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
153 u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
154 #else
155 #define nand_verify_pages(...) (0)
156 #endif
158 static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state);
161 * nand_release_device - [GENERIC] release chip
162 * @mtd: MTD device structure
164 * Deselect, release chip lock and wake up anyone waiting on the device
166 static void nand_release_device (struct mtd_info *mtd)
168 struct nand_chip *this = mtd->priv;
170 /* De-select the NAND device */
171 this->select_chip(mtd, -1);
173 if (this->controller) {
174 /* Release the controller and the chip */
175 spin_lock(&this->controller->lock);
176 this->controller->active = NULL;
177 this->state = FL_READY;
178 wake_up(&this->controller->wq);
179 spin_unlock(&this->controller->lock);
180 } else {
181 /* Release the chip */
182 spin_lock(&this->chip_lock);
183 this->state = FL_READY;
184 wake_up(&this->wq);
185 spin_unlock(&this->chip_lock);
190 * nand_read_byte - [DEFAULT] read one byte from the chip
191 * @mtd: MTD device structure
193 * Default read function for 8bit buswith
195 static u_char nand_read_byte(struct mtd_info *mtd)
197 struct nand_chip *this = mtd->priv;
198 return readb(this->IO_ADDR_R);
202 * nand_write_byte - [DEFAULT] write one byte to the chip
203 * @mtd: MTD device structure
204 * @byte: pointer to data byte to write
206 * Default write function for 8it buswith
208 static void nand_write_byte(struct mtd_info *mtd, u_char byte)
210 struct nand_chip *this = mtd->priv;
211 writeb(byte, this->IO_ADDR_W);
215 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
216 * @mtd: MTD device structure
218 * Default read function for 16bit buswith with
219 * endianess conversion
221 static u_char nand_read_byte16(struct mtd_info *mtd)
223 struct nand_chip *this = mtd->priv;
224 return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
228 * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
229 * @mtd: MTD device structure
230 * @byte: pointer to data byte to write
232 * Default write function for 16bit buswith with
233 * endianess conversion
235 static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
237 struct nand_chip *this = mtd->priv;
238 writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
242 * nand_read_word - [DEFAULT] read one word from the chip
243 * @mtd: MTD device structure
245 * Default read function for 16bit buswith without
246 * endianess conversion
248 static u16 nand_read_word(struct mtd_info *mtd)
250 struct nand_chip *this = mtd->priv;
251 return readw(this->IO_ADDR_R);
255 * nand_write_word - [DEFAULT] write one word to the chip
256 * @mtd: MTD device structure
257 * @word: data word to write
259 * Default write function for 16bit buswith without
260 * endianess conversion
262 static void nand_write_word(struct mtd_info *mtd, u16 word)
264 struct nand_chip *this = mtd->priv;
265 writew(word, this->IO_ADDR_W);
269 * nand_select_chip - [DEFAULT] control CE line
270 * @mtd: MTD device structure
271 * @chip: chipnumber to select, -1 for deselect
273 * Default select function for 1 chip devices.
275 static void nand_select_chip(struct mtd_info *mtd, int chip)
277 struct nand_chip *this = mtd->priv;
278 switch(chip) {
279 case -1:
280 this->hwcontrol(mtd, NAND_CTL_CLRNCE);
281 break;
282 case 0:
283 this->hwcontrol(mtd, NAND_CTL_SETNCE);
284 break;
286 default:
287 BUG();
292 * nand_write_buf - [DEFAULT] write buffer to chip
293 * @mtd: MTD device structure
294 * @buf: data buffer
295 * @len: number of bytes to write
297 * Default write function for 8bit buswith
299 static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
301 int i;
302 struct nand_chip *this = mtd->priv;
304 for (i=0; i<len; i++)
305 writeb(buf[i], this->IO_ADDR_W);
309 * nand_read_buf - [DEFAULT] read chip data into buffer
310 * @mtd: MTD device structure
311 * @buf: buffer to store date
312 * @len: number of bytes to read
314 * Default read function for 8bit buswith
316 static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
318 int i;
319 struct nand_chip *this = mtd->priv;
321 for (i=0; i<len; i++)
322 buf[i] = readb(this->IO_ADDR_R);
326 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
327 * @mtd: MTD device structure
328 * @buf: buffer containing the data to compare
329 * @len: number of bytes to compare
331 * Default verify function for 8bit buswith
333 static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
335 int i;
336 struct nand_chip *this = mtd->priv;
338 for (i=0; i<len; i++)
339 if (buf[i] != readb(this->IO_ADDR_R))
340 return -EFAULT;
342 return 0;
346 * nand_write_buf16 - [DEFAULT] write buffer to chip
347 * @mtd: MTD device structure
348 * @buf: data buffer
349 * @len: number of bytes to write
351 * Default write function for 16bit buswith
353 static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
355 int i;
356 struct nand_chip *this = mtd->priv;
357 u16 *p = (u16 *) buf;
358 len >>= 1;
360 for (i=0; i<len; i++)
361 writew(p[i], this->IO_ADDR_W);
366 * nand_read_buf16 - [DEFAULT] read chip data into buffer
367 * @mtd: MTD device structure
368 * @buf: buffer to store date
369 * @len: number of bytes to read
371 * Default read function for 16bit buswith
373 static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
375 int i;
376 struct nand_chip *this = mtd->priv;
377 u16 *p = (u16 *) buf;
378 len >>= 1;
380 for (i=0; i<len; i++)
381 p[i] = readw(this->IO_ADDR_R);
385 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
386 * @mtd: MTD device structure
387 * @buf: buffer containing the data to compare
388 * @len: number of bytes to compare
390 * Default verify function for 16bit buswith
392 static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
394 int i;
395 struct nand_chip *this = mtd->priv;
396 u16 *p = (u16 *) buf;
397 len >>= 1;
399 for (i=0; i<len; i++)
400 if (p[i] != readw(this->IO_ADDR_R))
401 return -EFAULT;
403 return 0;
407 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
408 * @mtd: MTD device structure
409 * @ofs: offset from device start
410 * @getchip: 0, if the chip is already selected
412 * Check, if the block is bad.
414 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
416 int page, chipnr, res = 0;
417 struct nand_chip *this = mtd->priv;
418 u16 bad;
420 if (getchip) {
421 page = (int)(ofs >> this->page_shift);
422 chipnr = (int)(ofs >> this->chip_shift);
424 /* Grab the lock and see if the device is available */
425 nand_get_device (this, mtd, FL_READING);
427 /* Select the NAND device */
428 this->select_chip(mtd, chipnr);
429 } else
430 page = (int) ofs;
432 if (this->options & NAND_BUSWIDTH_16) {
433 this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
434 bad = cpu_to_le16(this->read_word(mtd));
435 if (this->badblockpos & 0x1)
436 bad >>= 8;
437 if ((bad & 0xFF) != 0xff)
438 res = 1;
439 } else {
440 this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
441 if (this->read_byte(mtd) != 0xff)
442 res = 1;
445 if (getchip) {
446 /* Deselect and wake up anyone waiting on the device */
447 nand_release_device(mtd);
450 return res;
454 * nand_default_block_markbad - [DEFAULT] mark a block bad
455 * @mtd: MTD device structure
456 * @ofs: offset from device start
458 * This is the default implementation, which can be overridden by
459 * a hardware specific driver.
461 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
463 struct nand_chip *this = mtd->priv;
464 u_char buf[2] = {0, 0};
465 size_t retlen;
466 int block;
468 /* Get block number */
469 block = ((int) ofs) >> this->bbt_erase_shift;
470 if (this->bbt)
471 this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
473 /* Do we have a flash based bad block table ? */
474 if (this->options & NAND_USE_FLASH_BBT)
475 return nand_update_bbt (mtd, ofs);
477 /* We write two bytes, so we dont have to mess with 16 bit access */
478 ofs += mtd->oobsize + (this->badblockpos & ~0x01);
479 return nand_write_oob (mtd, ofs , 2, &retlen, buf);
483 * nand_check_wp - [GENERIC] check if the chip is write protected
484 * @mtd: MTD device structure
485 * Check, if the device is write protected
487 * The function expects, that the device is already selected
489 static int nand_check_wp (struct mtd_info *mtd)
491 struct nand_chip *this = mtd->priv;
492 /* Check the WP bit */
493 this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
494 return (this->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
498 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
499 * @mtd: MTD device structure
500 * @ofs: offset from device start
501 * @getchip: 0, if the chip is already selected
502 * @allowbbt: 1, if its allowed to access the bbt area
504 * Check, if the block is bad. Either by reading the bad block table or
505 * calling of the scan function.
507 static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
509 struct nand_chip *this = mtd->priv;
511 if (!this->bbt)
512 return this->block_bad(mtd, ofs, getchip);
514 /* Return info from the table */
515 return nand_isbad_bbt (mtd, ofs, allowbbt);
519 * Wait for the ready pin, after a command
520 * The timeout is catched later.
522 static void nand_wait_ready(struct mtd_info *mtd)
524 struct nand_chip *this = mtd->priv;
525 unsigned long timeo = jiffies + 2;
527 /* wait until command is processed or timeout occures */
528 do {
529 if (this->dev_ready(mtd))
530 return;
531 touch_softlockup_watchdog();
532 } while (time_before(jiffies, timeo));
536 * nand_command - [DEFAULT] Send command to NAND device
537 * @mtd: MTD device structure
538 * @command: the command to be sent
539 * @column: the column address for this command, -1 if none
540 * @page_addr: the page address for this command, -1 if none
542 * Send command to NAND device. This function is used for small page
543 * devices (256/512 Bytes per page)
545 static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
547 register struct nand_chip *this = mtd->priv;
549 /* Begin command latch cycle */
550 this->hwcontrol(mtd, NAND_CTL_SETCLE);
552 * Write out the command to the device.
554 if (command == NAND_CMD_SEQIN) {
555 int readcmd;
557 if (column >= mtd->oobblock) {
558 /* OOB area */
559 column -= mtd->oobblock;
560 readcmd = NAND_CMD_READOOB;
561 } else if (column < 256) {
562 /* First 256 bytes --> READ0 */
563 readcmd = NAND_CMD_READ0;
564 } else {
565 column -= 256;
566 readcmd = NAND_CMD_READ1;
568 this->write_byte(mtd, readcmd);
570 this->write_byte(mtd, command);
572 /* Set ALE and clear CLE to start address cycle */
573 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
575 if (column != -1 || page_addr != -1) {
576 this->hwcontrol(mtd, NAND_CTL_SETALE);
578 /* Serially input address */
579 if (column != -1) {
580 /* Adjust columns for 16 bit buswidth */
581 if (this->options & NAND_BUSWIDTH_16)
582 column >>= 1;
583 this->write_byte(mtd, column);
585 if (page_addr != -1) {
586 this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
587 this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
588 /* One more address cycle for devices > 32MiB */
589 if (this->chipsize > (32 << 20))
590 this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
592 /* Latch in address */
593 this->hwcontrol(mtd, NAND_CTL_CLRALE);
597 * program and erase have their own busy handlers
598 * status and sequential in needs no delay
600 switch (command) {
602 case NAND_CMD_PAGEPROG:
603 case NAND_CMD_ERASE1:
604 case NAND_CMD_ERASE2:
605 case NAND_CMD_SEQIN:
606 case NAND_CMD_STATUS:
607 return;
609 case NAND_CMD_RESET:
610 if (this->dev_ready)
611 break;
612 udelay(this->chip_delay);
613 this->hwcontrol(mtd, NAND_CTL_SETCLE);
614 this->write_byte(mtd, NAND_CMD_STATUS);
615 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
616 while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
617 return;
619 /* This applies to read commands */
620 default:
622 * If we don't have access to the busy pin, we apply the given
623 * command delay
625 if (!this->dev_ready) {
626 udelay (this->chip_delay);
627 return;
630 /* Apply this short delay always to ensure that we do wait tWB in
631 * any case on any machine. */
632 ndelay (100);
634 nand_wait_ready(mtd);
638 * nand_command_lp - [DEFAULT] Send command to NAND large page device
639 * @mtd: MTD device structure
640 * @command: the command to be sent
641 * @column: the column address for this command, -1 if none
642 * @page_addr: the page address for this command, -1 if none
644 * Send command to NAND device. This is the version for the new large page devices
645 * We dont have the seperate regions as we have in the small page devices.
646 * We must emulate NAND_CMD_READOOB to keep the code compatible.
649 static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr)
651 register struct nand_chip *this = mtd->priv;
653 /* Emulate NAND_CMD_READOOB */
654 if (command == NAND_CMD_READOOB) {
655 column += mtd->oobblock;
656 command = NAND_CMD_READ0;
660 /* Begin command latch cycle */
661 this->hwcontrol(mtd, NAND_CTL_SETCLE);
662 /* Write out the command to the device. */
663 this->write_byte(mtd, (command & 0xff));
664 /* End command latch cycle */
665 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
667 if (column != -1 || page_addr != -1) {
668 this->hwcontrol(mtd, NAND_CTL_SETALE);
670 /* Serially input address */
671 if (column != -1) {
672 /* Adjust columns for 16 bit buswidth */
673 if (this->options & NAND_BUSWIDTH_16)
674 column >>= 1;
675 this->write_byte(mtd, column & 0xff);
676 this->write_byte(mtd, column >> 8);
678 if (page_addr != -1) {
679 this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
680 this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
681 /* One more address cycle for devices > 128MiB */
682 if (this->chipsize > (128 << 20))
683 this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff));
685 /* Latch in address */
686 this->hwcontrol(mtd, NAND_CTL_CLRALE);
690 * program and erase have their own busy handlers
691 * status, sequential in, and deplete1 need no delay
693 switch (command) {
695 case NAND_CMD_CACHEDPROG:
696 case NAND_CMD_PAGEPROG:
697 case NAND_CMD_ERASE1:
698 case NAND_CMD_ERASE2:
699 case NAND_CMD_SEQIN:
700 case NAND_CMD_STATUS:
701 case NAND_CMD_DEPLETE1:
702 return;
705 * read error status commands require only a short delay
707 case NAND_CMD_STATUS_ERROR:
708 case NAND_CMD_STATUS_ERROR0:
709 case NAND_CMD_STATUS_ERROR1:
710 case NAND_CMD_STATUS_ERROR2:
711 case NAND_CMD_STATUS_ERROR3:
712 udelay(this->chip_delay);
713 return;
715 case NAND_CMD_RESET:
716 if (this->dev_ready)
717 break;
718 udelay(this->chip_delay);
719 this->hwcontrol(mtd, NAND_CTL_SETCLE);
720 this->write_byte(mtd, NAND_CMD_STATUS);
721 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
722 while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
723 return;
725 case NAND_CMD_READ0:
726 /* Begin command latch cycle */
727 this->hwcontrol(mtd, NAND_CTL_SETCLE);
728 /* Write out the start read command */
729 this->write_byte(mtd, NAND_CMD_READSTART);
730 /* End command latch cycle */
731 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
732 /* Fall through into ready check */
734 /* This applies to read commands */
735 default:
737 * If we don't have access to the busy pin, we apply the given
738 * command delay
740 if (!this->dev_ready) {
741 udelay (this->chip_delay);
742 return;
746 /* Apply this short delay always to ensure that we do wait tWB in
747 * any case on any machine. */
748 ndelay (100);
750 nand_wait_ready(mtd);
754 * nand_get_device - [GENERIC] Get chip for selected access
755 * @this: the nand chip descriptor
756 * @mtd: MTD device structure
757 * @new_state: the state which is requested
759 * Get the device and lock it for exclusive access
761 static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
763 struct nand_chip *active;
764 spinlock_t *lock;
765 wait_queue_head_t *wq;
766 DECLARE_WAITQUEUE (wait, current);
768 lock = (this->controller) ? &this->controller->lock : &this->chip_lock;
769 wq = (this->controller) ? &this->controller->wq : &this->wq;
770 retry:
771 active = this;
772 spin_lock(lock);
774 /* Hardware controller shared among independend devices */
775 if (this->controller) {
776 if (this->controller->active)
777 active = this->controller->active;
778 else
779 this->controller->active = this;
781 if (active == this && this->state == FL_READY) {
782 this->state = new_state;
783 spin_unlock(lock);
784 return 0;
786 if (new_state == FL_PM_SUSPENDED) {
787 spin_unlock(lock);
788 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
790 set_current_state(TASK_UNINTERRUPTIBLE);
791 add_wait_queue(wq, &wait);
792 spin_unlock(lock);
793 schedule();
794 remove_wait_queue(wq, &wait);
795 goto retry;
799 * nand_wait - [DEFAULT] wait until the command is done
800 * @mtd: MTD device structure
801 * @this: NAND chip structure
802 * @state: state to select the max. timeout value
804 * Wait for command done. This applies to erase and program only
805 * Erase can take up to 400ms and program up to 20ms according to
806 * general NAND and SmartMedia specs
809 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
812 unsigned long timeo = jiffies;
813 int status;
815 if (state == FL_ERASING)
816 timeo += (HZ * 400) / 1000;
817 else
818 timeo += (HZ * 20) / 1000;
820 /* Apply this short delay always to ensure that we do wait tWB in
821 * any case on any machine. */
822 ndelay (100);
824 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
825 this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
826 else
827 this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
829 while (time_before(jiffies, timeo)) {
830 /* Check, if we were interrupted */
831 if (this->state != state)
832 return 0;
834 if (this->dev_ready) {
835 if (this->dev_ready(mtd))
836 break;
837 } else {
838 if (this->read_byte(mtd) & NAND_STATUS_READY)
839 break;
841 cond_resched();
843 status = (int) this->read_byte(mtd);
844 return status;
848 * nand_write_page - [GENERIC] write one page
849 * @mtd: MTD device structure
850 * @this: NAND chip structure
851 * @page: startpage inside the chip, must be called with (page & this->pagemask)
852 * @oob_buf: out of band data buffer
853 * @oobsel: out of band selecttion structre
854 * @cached: 1 = enable cached programming if supported by chip
856 * Nand_page_program function is used for write and writev !
857 * This function will always program a full page of data
858 * If you call it with a non page aligned buffer, you're lost :)
860 * Cached programming is not supported yet.
862 static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page,
863 u_char *oob_buf, struct nand_oobinfo *oobsel, int cached)
865 int i, status;
866 u_char ecc_code[32];
867 int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
868 int *oob_config = oobsel->eccpos;
869 int datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
870 int eccbytes = 0;
872 /* FIXME: Enable cached programming */
873 cached = 0;
875 /* Send command to begin auto page programming */
876 this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
878 /* Write out complete page of data, take care of eccmode */
879 switch (eccmode) {
880 /* No ecc, write all */
881 case NAND_ECC_NONE:
882 printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
883 this->write_buf(mtd, this->data_poi, mtd->oobblock);
884 break;
886 /* Software ecc 3/256, write all */
887 case NAND_ECC_SOFT:
888 for (; eccsteps; eccsteps--) {
889 this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
890 for (i = 0; i < 3; i++, eccidx++)
891 oob_buf[oob_config[eccidx]] = ecc_code[i];
892 datidx += this->eccsize;
894 this->write_buf(mtd, this->data_poi, mtd->oobblock);
895 break;
896 default:
897 eccbytes = this->eccbytes;
898 for (; eccsteps; eccsteps--) {
899 /* enable hardware ecc logic for write */
900 this->enable_hwecc(mtd, NAND_ECC_WRITE);
901 this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
902 this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
903 for (i = 0; i < eccbytes; i++, eccidx++)
904 oob_buf[oob_config[eccidx]] = ecc_code[i];
905 /* If the hardware ecc provides syndromes then
906 * the ecc code must be written immidiately after
907 * the data bytes (words) */
908 if (this->options & NAND_HWECC_SYNDROME)
909 this->write_buf(mtd, ecc_code, eccbytes);
910 datidx += this->eccsize;
912 break;
915 /* Write out OOB data */
916 if (this->options & NAND_HWECC_SYNDROME)
917 this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
918 else
919 this->write_buf(mtd, oob_buf, mtd->oobsize);
921 /* Send command to actually program the data */
922 this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
924 if (!cached) {
925 /* call wait ready function */
926 status = this->waitfunc (mtd, this, FL_WRITING);
928 /* See if operation failed and additional status checks are available */
929 if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
930 status = this->errstat(mtd, this, FL_WRITING, status, page);
933 /* See if device thinks it succeeded */
934 if (status & NAND_STATUS_FAIL) {
935 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
936 return -EIO;
938 } else {
939 /* FIXME: Implement cached programming ! */
940 /* wait until cache is ready*/
941 // status = this->waitfunc (mtd, this, FL_CACHEDRPG);
943 return 0;
946 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
948 * nand_verify_pages - [GENERIC] verify the chip contents after a write
949 * @mtd: MTD device structure
950 * @this: NAND chip structure
951 * @page: startpage inside the chip, must be called with (page & this->pagemask)
952 * @numpages: number of pages to verify
953 * @oob_buf: out of band data buffer
954 * @oobsel: out of band selecttion structre
955 * @chipnr: number of the current chip
956 * @oobmode: 1 = full buffer verify, 0 = ecc only
958 * The NAND device assumes that it is always writing to a cleanly erased page.
959 * Hence, it performs its internal write verification only on bits that
960 * transitioned from 1 to 0. The device does NOT verify the whole page on a
961 * byte by byte basis. It is possible that the page was not completely erased
962 * or the page is becoming unusable due to wear. The read with ECC would catch
963 * the error later when the ECC page check fails, but we would rather catch
964 * it early in the page write stage. Better to write no data than invalid data.
966 static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
967 u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
969 int i, j, datidx = 0, oobofs = 0, res = -EIO;
970 int eccsteps = this->eccsteps;
971 int hweccbytes;
972 u_char oobdata[64];
974 hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
976 /* Send command to read back the first page */
977 this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
979 for(;;) {
980 for (j = 0; j < eccsteps; j++) {
981 /* Loop through and verify the data */
982 if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
983 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
984 goto out;
986 datidx += mtd->eccsize;
987 /* Have we a hw generator layout ? */
988 if (!hweccbytes)
989 continue;
990 if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
991 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
992 goto out;
994 oobofs += hweccbytes;
997 /* check, if we must compare all data or if we just have to
998 * compare the ecc bytes
1000 if (oobmode) {
1001 if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
1002 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
1003 goto out;
1005 } else {
1006 /* Read always, else autoincrement fails */
1007 this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
1009 if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
1010 int ecccnt = oobsel->eccbytes;
1012 for (i = 0; i < ecccnt; i++) {
1013 int idx = oobsel->eccpos[i];
1014 if (oobdata[idx] != oob_buf[oobofs + idx] ) {
1015 DEBUG (MTD_DEBUG_LEVEL0,
1016 "%s: Failed ECC write "
1017 "verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
1018 goto out;
1023 oobofs += mtd->oobsize - hweccbytes * eccsteps;
1024 page++;
1025 numpages--;
1027 /* Apply delay or wait for ready/busy pin
1028 * Do this before the AUTOINCR check, so no problems
1029 * arise if a chip which does auto increment
1030 * is marked as NOAUTOINCR by the board driver.
1031 * Do this also before returning, so the chip is
1032 * ready for the next command.
1034 if (!this->dev_ready)
1035 udelay (this->chip_delay);
1036 else
1037 nand_wait_ready(mtd);
1039 /* All done, return happy */
1040 if (!numpages)
1041 return 0;
1044 /* Check, if the chip supports auto page increment */
1045 if (!NAND_CANAUTOINCR(this))
1046 this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
1049 * Terminate the read command. We come here in case of an error
1050 * So we must issue a reset command.
1052 out:
1053 this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1);
1054 return res;
1056 #endif
1059 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1060 * @mtd: MTD device structure
1061 * @from: offset to read from
1062 * @len: number of bytes to read
1063 * @retlen: pointer to variable to store the number of read bytes
1064 * @buf: the databuffer to put data
1066 * This function simply calls nand_do_read_ecc with oob buffer and oobsel = NULL
1067 * and flags = 0xff
1069 static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
1071 return nand_do_read_ecc (mtd, from, len, retlen, buf, NULL, &mtd->oobinfo, 0xff);
1076 * nand_read_ecc - [MTD Interface] MTD compability function for nand_do_read_ecc
1077 * @mtd: MTD device structure
1078 * @from: offset to read from
1079 * @len: number of bytes to read
1080 * @retlen: pointer to variable to store the number of read bytes
1081 * @buf: the databuffer to put data
1082 * @oob_buf: filesystem supplied oob data buffer
1083 * @oobsel: oob selection structure
1085 * This function simply calls nand_do_read_ecc with flags = 0xff
1087 static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
1088 size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
1090 /* use userspace supplied oobinfo, if zero */
1091 if (oobsel == NULL)
1092 oobsel = &mtd->oobinfo;
1093 return nand_do_read_ecc(mtd, from, len, retlen, buf, oob_buf, oobsel, 0xff);
1098 * nand_do_read_ecc - [MTD Interface] Read data with ECC
1099 * @mtd: MTD device structure
1100 * @from: offset to read from
1101 * @len: number of bytes to read
1102 * @retlen: pointer to variable to store the number of read bytes
1103 * @buf: the databuffer to put data
1104 * @oob_buf: filesystem supplied oob data buffer (can be NULL)
1105 * @oobsel: oob selection structure
1106 * @flags: flag to indicate if nand_get_device/nand_release_device should be preformed
1107 * and how many corrected error bits are acceptable:
1108 * bits 0..7 - number of tolerable errors
1109 * bit 8 - 0 == do not get/release chip, 1 == get/release chip
1111 * NAND read with ECC
1113 int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
1114 size_t * retlen, u_char * buf, u_char * oob_buf,
1115 struct nand_oobinfo *oobsel, int flags)
1118 int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
1119 int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
1120 struct nand_chip *this = mtd->priv;
1121 u_char *data_poi, *oob_data = oob_buf;
1122 u_char ecc_calc[32];
1123 u_char ecc_code[32];
1124 int eccmode, eccsteps;
1125 int *oob_config, datidx;
1126 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1127 int eccbytes;
1128 int compareecc = 1;
1129 int oobreadlen;
1132 DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1134 /* Do not allow reads past end of device */
1135 if ((from + len) > mtd->size) {
1136 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
1137 *retlen = 0;
1138 return -EINVAL;
1141 /* Grab the lock and see if the device is available */
1142 if (flags & NAND_GET_DEVICE)
1143 nand_get_device (this, mtd, FL_READING);
1145 /* Autoplace of oob data ? Use the default placement scheme */
1146 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
1147 oobsel = this->autooob;
1149 eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
1150 oob_config = oobsel->eccpos;
1152 /* Select the NAND device */
1153 chipnr = (int)(from >> this->chip_shift);
1154 this->select_chip(mtd, chipnr);
1156 /* First we calculate the starting page */
1157 realpage = (int) (from >> this->page_shift);
1158 page = realpage & this->pagemask;
1160 /* Get raw starting column */
1161 col = from & (mtd->oobblock - 1);
1163 end = mtd->oobblock;
1164 ecc = this->eccsize;
1165 eccbytes = this->eccbytes;
1167 if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
1168 compareecc = 0;
1170 oobreadlen = mtd->oobsize;
1171 if (this->options & NAND_HWECC_SYNDROME)
1172 oobreadlen -= oobsel->eccbytes;
1174 /* Loop until all data read */
1175 while (read < len) {
1177 int aligned = (!col && (len - read) >= end);
1179 * If the read is not page aligned, we have to read into data buffer
1180 * due to ecc, else we read into return buffer direct
1182 if (aligned)
1183 data_poi = &buf[read];
1184 else
1185 data_poi = this->data_buf;
1187 /* Check, if we have this page in the buffer
1189 * FIXME: Make it work when we must provide oob data too,
1190 * check the usage of data_buf oob field
1192 if (realpage == this->pagebuf && !oob_buf) {
1193 /* aligned read ? */
1194 if (aligned)
1195 memcpy (data_poi, this->data_buf, end);
1196 goto readdata;
1199 /* Check, if we must send the read command */
1200 if (sndcmd) {
1201 this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
1202 sndcmd = 0;
1205 /* get oob area, if we have no oob buffer from fs-driver */
1206 if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE ||
1207 oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1208 oob_data = &this->data_buf[end];
1210 eccsteps = this->eccsteps;
1212 switch (eccmode) {
1213 case NAND_ECC_NONE: { /* No ECC, Read in a page */
1214 static unsigned long lastwhinge = 0;
1215 if ((lastwhinge / HZ) != (jiffies / HZ)) {
1216 printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
1217 lastwhinge = jiffies;
1219 this->read_buf(mtd, data_poi, end);
1220 break;
1223 case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
1224 this->read_buf(mtd, data_poi, end);
1225 for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc)
1226 this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
1227 break;
1229 default:
1230 for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
1231 this->enable_hwecc(mtd, NAND_ECC_READ);
1232 this->read_buf(mtd, &data_poi[datidx], ecc);
1234 /* HW ecc with syndrome calculation must read the
1235 * syndrome from flash immidiately after the data */
1236 if (!compareecc) {
1237 /* Some hw ecc generators need to know when the
1238 * syndrome is read from flash */
1239 this->enable_hwecc(mtd, NAND_ECC_READSYN);
1240 this->read_buf(mtd, &oob_data[i], eccbytes);
1241 /* We calc error correction directly, it checks the hw
1242 * generator for an error, reads back the syndrome and
1243 * does the error correction on the fly */
1244 ecc_status = this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]);
1245 if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
1246 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: "
1247 "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
1248 ecc_failed++;
1250 } else {
1251 this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
1254 break;
1257 /* read oobdata */
1258 this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
1260 /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
1261 if (!compareecc)
1262 goto readoob;
1264 /* Pick the ECC bytes out of the oob data */
1265 for (j = 0; j < oobsel->eccbytes; j++)
1266 ecc_code[j] = oob_data[oob_config[j]];
1268 /* correct data, if neccecary */
1269 for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
1270 ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
1272 /* Get next chunk of ecc bytes */
1273 j += eccbytes;
1275 /* Check, if we have a fs supplied oob-buffer,
1276 * This is the legacy mode. Used by YAFFS1
1277 * Should go away some day
1279 if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {
1280 int *p = (int *)(&oob_data[mtd->oobsize]);
1281 p[i] = ecc_status;
1284 if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
1285 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
1286 ecc_failed++;
1290 readoob:
1291 /* check, if we have a fs supplied oob-buffer */
1292 if (oob_buf) {
1293 /* without autoplace. Legacy mode used by YAFFS1 */
1294 switch(oobsel->useecc) {
1295 case MTD_NANDECC_AUTOPLACE:
1296 case MTD_NANDECC_AUTOPL_USR:
1297 /* Walk through the autoplace chunks */
1298 for (i = 0; oobsel->oobfree[i][1]; i++) {
1299 int from = oobsel->oobfree[i][0];
1300 int num = oobsel->oobfree[i][1];
1301 memcpy(&oob_buf[oob], &oob_data[from], num);
1302 oob += num;
1304 break;
1305 case MTD_NANDECC_PLACE:
1306 /* YAFFS1 legacy mode */
1307 oob_data += this->eccsteps * sizeof (int);
1308 default:
1309 oob_data += mtd->oobsize;
1312 readdata:
1313 /* Partial page read, transfer data into fs buffer */
1314 if (!aligned) {
1315 for (j = col; j < end && read < len; j++)
1316 buf[read++] = data_poi[j];
1317 this->pagebuf = realpage;
1318 } else
1319 read += mtd->oobblock;
1321 /* Apply delay or wait for ready/busy pin
1322 * Do this before the AUTOINCR check, so no problems
1323 * arise if a chip which does auto increment
1324 * is marked as NOAUTOINCR by the board driver.
1326 if (!this->dev_ready)
1327 udelay (this->chip_delay);
1328 else
1329 nand_wait_ready(mtd);
1331 if (read == len)
1332 break;
1334 /* For subsequent reads align to page boundary. */
1335 col = 0;
1336 /* Increment page address */
1337 realpage++;
1339 page = realpage & this->pagemask;
1340 /* Check, if we cross a chip boundary */
1341 if (!page) {
1342 chipnr++;
1343 this->select_chip(mtd, -1);
1344 this->select_chip(mtd, chipnr);
1346 /* Check, if the chip supports auto page increment
1347 * or if we have hit a block boundary.
1349 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
1350 sndcmd = 1;
1353 /* Deselect and wake up anyone waiting on the device */
1354 if (flags & NAND_GET_DEVICE)
1355 nand_release_device(mtd);
1358 * Return success, if no ECC failures, else -EBADMSG
1359 * fs driver will take care of that, because
1360 * retlen == desired len and result == -EBADMSG
1362 *retlen = read;
1363 return ecc_failed ? -EBADMSG : 0;
1367 * nand_read_oob - [MTD Interface] NAND read out-of-band
1368 * @mtd: MTD device structure
1369 * @from: offset to read from
1370 * @len: number of bytes to read
1371 * @retlen: pointer to variable to store the number of read bytes
1372 * @buf: the databuffer to put data
1374 * NAND read out-of-band data from the spare area
1376 static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
1378 int i, col, page, chipnr;
1379 struct nand_chip *this = mtd->priv;
1380 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1382 DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1384 /* Shift to get page */
1385 page = (int)(from >> this->page_shift);
1386 chipnr = (int)(from >> this->chip_shift);
1388 /* Mask to get column */
1389 col = from & (mtd->oobsize - 1);
1391 /* Initialize return length value */
1392 *retlen = 0;
1394 /* Do not allow reads past end of device */
1395 if ((from + len) > mtd->size) {
1396 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
1397 *retlen = 0;
1398 return -EINVAL;
1401 /* Grab the lock and see if the device is available */
1402 nand_get_device (this, mtd , FL_READING);
1404 /* Select the NAND device */
1405 this->select_chip(mtd, chipnr);
1407 /* Send the read command */
1408 this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
1410 * Read the data, if we read more than one page
1411 * oob data, let the device transfer the data !
1413 i = 0;
1414 while (i < len) {
1415 int thislen = mtd->oobsize - col;
1416 thislen = min_t(int, thislen, len);
1417 this->read_buf(mtd, &buf[i], thislen);
1418 i += thislen;
1420 /* Read more ? */
1421 if (i < len) {
1422 page++;
1423 col = 0;
1425 /* Check, if we cross a chip boundary */
1426 if (!(page & this->pagemask)) {
1427 chipnr++;
1428 this->select_chip(mtd, -1);
1429 this->select_chip(mtd, chipnr);
1432 /* Apply delay or wait for ready/busy pin
1433 * Do this before the AUTOINCR check, so no problems
1434 * arise if a chip which does auto increment
1435 * is marked as NOAUTOINCR by the board driver.
1437 if (!this->dev_ready)
1438 udelay (this->chip_delay);
1439 else
1440 nand_wait_ready(mtd);
1442 /* Check, if the chip supports auto page increment
1443 * or if we have hit a block boundary.
1445 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
1446 /* For subsequent page reads set offset to 0 */
1447 this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
1452 /* Deselect and wake up anyone waiting on the device */
1453 nand_release_device(mtd);
1455 /* Return happy */
1456 *retlen = len;
1457 return 0;
1461 * nand_read_raw - [GENERIC] Read raw data including oob into buffer
1462 * @mtd: MTD device structure
1463 * @buf: temporary buffer
1464 * @from: offset to read from
1465 * @len: number of bytes to read
1466 * @ooblen: number of oob data bytes to read
1468 * Read raw data including oob into buffer
1470 int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
1472 struct nand_chip *this = mtd->priv;
1473 int page = (int) (from >> this->page_shift);
1474 int chip = (int) (from >> this->chip_shift);
1475 int sndcmd = 1;
1476 int cnt = 0;
1477 int pagesize = mtd->oobblock + mtd->oobsize;
1478 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1480 /* Do not allow reads past end of device */
1481 if ((from + len) > mtd->size) {
1482 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
1483 return -EINVAL;
1486 /* Grab the lock and see if the device is available */
1487 nand_get_device (this, mtd , FL_READING);
1489 this->select_chip (mtd, chip);
1491 /* Add requested oob length */
1492 len += ooblen;
1494 while (len) {
1495 if (sndcmd)
1496 this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask);
1497 sndcmd = 0;
1499 this->read_buf (mtd, &buf[cnt], pagesize);
1501 len -= pagesize;
1502 cnt += pagesize;
1503 page++;
1505 if (!this->dev_ready)
1506 udelay (this->chip_delay);
1507 else
1508 nand_wait_ready(mtd);
1510 /* Check, if the chip supports auto page increment */
1511 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
1512 sndcmd = 1;
1515 /* Deselect and wake up anyone waiting on the device */
1516 nand_release_device(mtd);
1517 return 0;
1522 * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
1523 * @mtd: MTD device structure
1524 * @fsbuf: buffer given by fs driver
1525 * @oobsel: out of band selection structre
1526 * @autoplace: 1 = place given buffer into the oob bytes
1527 * @numpages: number of pages to prepare
1529 * Return:
1530 * 1. Filesystem buffer available and autoplacement is off,
1531 * return filesystem buffer
1532 * 2. No filesystem buffer or autoplace is off, return internal
1533 * buffer
1534 * 3. Filesystem buffer is given and autoplace selected
1535 * put data from fs buffer into internal buffer and
1536 * retrun internal buffer
1538 * Note: The internal buffer is filled with 0xff. This must
1539 * be done only once, when no autoplacement happens
1540 * Autoplacement sets the buffer dirty flag, which
1541 * forces the 0xff fill before using the buffer again.
1544 static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
1545 int autoplace, int numpages)
1547 struct nand_chip *this = mtd->priv;
1548 int i, len, ofs;
1550 /* Zero copy fs supplied buffer */
1551 if (fsbuf && !autoplace)
1552 return fsbuf;
1554 /* Check, if the buffer must be filled with ff again */
1555 if (this->oobdirty) {
1556 memset (this->oob_buf, 0xff,
1557 mtd->oobsize << (this->phys_erase_shift - this->page_shift));
1558 this->oobdirty = 0;
1561 /* If we have no autoplacement or no fs buffer use the internal one */
1562 if (!autoplace || !fsbuf)
1563 return this->oob_buf;
1565 /* Walk through the pages and place the data */
1566 this->oobdirty = 1;
1567 ofs = 0;
1568 while (numpages--) {
1569 for (i = 0, len = 0; len < mtd->oobavail; i++) {
1570 int to = ofs + oobsel->oobfree[i][0];
1571 int num = oobsel->oobfree[i][1];
1572 memcpy (&this->oob_buf[to], fsbuf, num);
1573 len += num;
1574 fsbuf += num;
1576 ofs += mtd->oobavail;
1578 return this->oob_buf;
1581 #define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
1584 * nand_write - [MTD Interface] compability function for nand_write_ecc
1585 * @mtd: MTD device structure
1586 * @to: offset to write to
1587 * @len: number of bytes to write
1588 * @retlen: pointer to variable to store the number of written bytes
1589 * @buf: the data to write
1591 * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
1594 static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
1596 return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
1600 * nand_write_ecc - [MTD Interface] NAND write with ECC
1601 * @mtd: MTD device structure
1602 * @to: offset to write to
1603 * @len: number of bytes to write
1604 * @retlen: pointer to variable to store the number of written bytes
1605 * @buf: the data to write
1606 * @eccbuf: filesystem supplied oob data buffer
1607 * @oobsel: oob selection structure
1609 * NAND write with ECC
1611 static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
1612 size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
1614 int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
1615 int autoplace = 0, numpages, totalpages;
1616 struct nand_chip *this = mtd->priv;
1617 u_char *oobbuf, *bufstart;
1618 int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
1620 DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1622 /* Initialize retlen, in case of early exit */
1623 *retlen = 0;
1625 /* Do not allow write past end of device */
1626 if ((to + len) > mtd->size) {
1627 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
1628 return -EINVAL;
1631 /* reject writes, which are not page aligned */
1632 if (NOTALIGNED (to) || NOTALIGNED(len)) {
1633 printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
1634 return -EINVAL;
1637 /* Grab the lock and see if the device is available */
1638 nand_get_device (this, mtd, FL_WRITING);
1640 /* Calculate chipnr */
1641 chipnr = (int)(to >> this->chip_shift);
1642 /* Select the NAND device */
1643 this->select_chip(mtd, chipnr);
1645 /* Check, if it is write protected */
1646 if (nand_check_wp(mtd))
1647 goto out;
1649 /* if oobsel is NULL, use chip defaults */
1650 if (oobsel == NULL)
1651 oobsel = &mtd->oobinfo;
1653 /* Autoplace of oob data ? Use the default placement scheme */
1654 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
1655 oobsel = this->autooob;
1656 autoplace = 1;
1658 if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1659 autoplace = 1;
1661 /* Setup variables and oob buffer */
1662 totalpages = len >> this->page_shift;
1663 page = (int) (to >> this->page_shift);
1664 /* Invalidate the page cache, if we write to the cached page */
1665 if (page <= this->pagebuf && this->pagebuf < (page + totalpages))
1666 this->pagebuf = -1;
1668 /* Set it relative to chip */
1669 page &= this->pagemask;
1670 startpage = page;
1671 /* Calc number of pages we can write in one go */
1672 numpages = min (ppblock - (startpage & (ppblock - 1)), totalpages);
1673 oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);
1674 bufstart = (u_char *)buf;
1676 /* Loop until all data is written */
1677 while (written < len) {
1679 this->data_poi = (u_char*) &buf[written];
1680 /* Write one page. If this is the last page to write
1681 * or the last page in this block, then use the
1682 * real pageprogram command, else select cached programming
1683 * if supported by the chip.
1685 ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
1686 if (ret) {
1687 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
1688 goto out;
1690 /* Next oob page */
1691 oob += mtd->oobsize;
1692 /* Update written bytes count */
1693 written += mtd->oobblock;
1694 if (written == len)
1695 goto cmp;
1697 /* Increment page address */
1698 page++;
1700 /* Have we hit a block boundary ? Then we have to verify and
1701 * if verify is ok, we have to setup the oob buffer for
1702 * the next pages.
1704 if (!(page & (ppblock - 1))){
1705 int ofs;
1706 this->data_poi = bufstart;
1707 ret = nand_verify_pages (mtd, this, startpage,
1708 page - startpage,
1709 oobbuf, oobsel, chipnr, (eccbuf != NULL));
1710 if (ret) {
1711 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
1712 goto out;
1714 *retlen = written;
1716 ofs = autoplace ? mtd->oobavail : mtd->oobsize;
1717 if (eccbuf)
1718 eccbuf += (page - startpage) * ofs;
1719 totalpages -= page - startpage;
1720 numpages = min (totalpages, ppblock);
1721 page &= this->pagemask;
1722 startpage = page;
1723 oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel,
1724 autoplace, numpages);
1725 oob = 0;
1726 /* Check, if we cross a chip boundary */
1727 if (!page) {
1728 chipnr++;
1729 this->select_chip(mtd, -1);
1730 this->select_chip(mtd, chipnr);
1734 /* Verify the remaining pages */
1735 cmp:
1736 this->data_poi = bufstart;
1737 ret = nand_verify_pages (mtd, this, startpage, totalpages,
1738 oobbuf, oobsel, chipnr, (eccbuf != NULL));
1739 if (!ret)
1740 *retlen = written;
1741 else
1742 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
1744 out:
1745 /* Deselect and wake up anyone waiting on the device */
1746 nand_release_device(mtd);
1748 return ret;
1753 * nand_write_oob - [MTD Interface] NAND write out-of-band
1754 * @mtd: MTD device structure
1755 * @to: offset to write to
1756 * @len: number of bytes to write
1757 * @retlen: pointer to variable to store the number of written bytes
1758 * @buf: the data to write
1760 * NAND write out-of-band
1762 static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
1764 int column, page, status, ret = -EIO, chipnr;
1765 struct nand_chip *this = mtd->priv;
1767 DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1769 /* Shift to get page */
1770 page = (int) (to >> this->page_shift);
1771 chipnr = (int) (to >> this->chip_shift);
1773 /* Mask to get column */
1774 column = to & (mtd->oobsize - 1);
1776 /* Initialize return length value */
1777 *retlen = 0;
1779 /* Do not allow write past end of page */
1780 if ((column + len) > mtd->oobsize) {
1781 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
1782 return -EINVAL;
1785 /* Grab the lock and see if the device is available */
1786 nand_get_device (this, mtd, FL_WRITING);
1788 /* Select the NAND device */
1789 this->select_chip(mtd, chipnr);
1791 /* Reset the chip. Some chips (like the Toshiba TC5832DC found
1792 in one of my DiskOnChip 2000 test units) will clear the whole
1793 data page too if we don't do this. I have no clue why, but
1794 I seem to have 'fixed' it in the doc2000 driver in
1795 August 1999. dwmw2. */
1796 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1798 /* Check, if it is write protected */
1799 if (nand_check_wp(mtd))
1800 goto out;
1802 /* Invalidate the page cache, if we write to the cached page */
1803 if (page == this->pagebuf)
1804 this->pagebuf = -1;
1806 if (NAND_MUST_PAD(this)) {
1807 /* Write out desired data */
1808 this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
1809 /* prepad 0xff for partial programming */
1810 this->write_buf(mtd, ffchars, column);
1811 /* write data */
1812 this->write_buf(mtd, buf, len);
1813 /* postpad 0xff for partial programming */
1814 this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
1815 } else {
1816 /* Write out desired data */
1817 this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
1818 /* write data */
1819 this->write_buf(mtd, buf, len);
1821 /* Send command to program the OOB data */
1822 this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
1824 status = this->waitfunc (mtd, this, FL_WRITING);
1826 /* See if device thinks it succeeded */
1827 if (status & NAND_STATUS_FAIL) {
1828 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
1829 ret = -EIO;
1830 goto out;
1832 /* Return happy */
1833 *retlen = len;
1835 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1836 /* Send command to read back the data */
1837 this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask);
1839 if (this->verify_buf(mtd, buf, len)) {
1840 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
1841 ret = -EIO;
1842 goto out;
1844 #endif
1845 ret = 0;
1846 out:
1847 /* Deselect and wake up anyone waiting on the device */
1848 nand_release_device(mtd);
1850 return ret;
1855 * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
1856 * @mtd: MTD device structure
1857 * @vecs: the iovectors to write
1858 * @count: number of vectors
1859 * @to: offset to write to
1860 * @retlen: pointer to variable to store the number of written bytes
1862 * NAND write with kvec. This just calls the ecc function
1864 static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
1865 loff_t to, size_t * retlen)
1867 return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));
1871 * nand_writev_ecc - [MTD Interface] write with iovec with ecc
1872 * @mtd: MTD device structure
1873 * @vecs: the iovectors to write
1874 * @count: number of vectors
1875 * @to: offset to write to
1876 * @retlen: pointer to variable to store the number of written bytes
1877 * @eccbuf: filesystem supplied oob data buffer
1878 * @oobsel: oob selection structure
1880 * NAND write with iovec with ecc
1882 static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
1883 loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
1885 int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
1886 int oob, numpages, autoplace = 0, startpage;
1887 struct nand_chip *this = mtd->priv;
1888 int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
1889 u_char *oobbuf, *bufstart;
1891 /* Preset written len for early exit */
1892 *retlen = 0;
1894 /* Calculate total length of data */
1895 total_len = 0;
1896 for (i = 0; i < count; i++)
1897 total_len += (int) vecs[i].iov_len;
1899 DEBUG (MTD_DEBUG_LEVEL3,
1900 "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
1902 /* Do not allow write past end of page */
1903 if ((to + total_len) > mtd->size) {
1904 DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
1905 return -EINVAL;
1908 /* reject writes, which are not page aligned */
1909 if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
1910 printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
1911 return -EINVAL;
1914 /* Grab the lock and see if the device is available */
1915 nand_get_device (this, mtd, FL_WRITING);
1917 /* Get the current chip-nr */
1918 chipnr = (int) (to >> this->chip_shift);
1919 /* Select the NAND device */
1920 this->select_chip(mtd, chipnr);
1922 /* Check, if it is write protected */
1923 if (nand_check_wp(mtd))
1924 goto out;
1926 /* if oobsel is NULL, use chip defaults */
1927 if (oobsel == NULL)
1928 oobsel = &mtd->oobinfo;
1930 /* Autoplace of oob data ? Use the default placement scheme */
1931 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
1932 oobsel = this->autooob;
1933 autoplace = 1;
1935 if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1936 autoplace = 1;
1938 /* Setup start page */
1939 page = (int) (to >> this->page_shift);
1940 /* Invalidate the page cache, if we write to the cached page */
1941 if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))
1942 this->pagebuf = -1;
1944 startpage = page & this->pagemask;
1946 /* Loop until all kvec' data has been written */
1947 len = 0;
1948 while (count) {
1949 /* If the given tuple is >= pagesize then
1950 * write it out from the iov
1952 if ((vecs->iov_len - len) >= mtd->oobblock) {
1953 /* Calc number of pages we can write
1954 * out of this iov in one go */
1955 numpages = (vecs->iov_len - len) >> this->page_shift;
1956 /* Do not cross block boundaries */
1957 numpages = min (ppblock - (startpage & (ppblock - 1)), numpages);
1958 oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
1959 bufstart = (u_char *)vecs->iov_base;
1960 bufstart += len;
1961 this->data_poi = bufstart;
1962 oob = 0;
1963 for (i = 1; i <= numpages; i++) {
1964 /* Write one page. If this is the last page to write
1965 * then use the real pageprogram command, else select
1966 * cached programming if supported by the chip.
1968 ret = nand_write_page (mtd, this, page & this->pagemask,
1969 &oobbuf[oob], oobsel, i != numpages);
1970 if (ret)
1971 goto out;
1972 this->data_poi += mtd->oobblock;
1973 len += mtd->oobblock;
1974 oob += mtd->oobsize;
1975 page++;
1977 /* Check, if we have to switch to the next tuple */
1978 if (len >= (int) vecs->iov_len) {
1979 vecs++;
1980 len = 0;
1981 count--;
1983 } else {
1984 /* We must use the internal buffer, read data out of each
1985 * tuple until we have a full page to write
1987 int cnt = 0;
1988 while (cnt < mtd->oobblock) {
1989 if (vecs->iov_base != NULL && vecs->iov_len)
1990 this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
1991 /* Check, if we have to switch to the next tuple */
1992 if (len >= (int) vecs->iov_len) {
1993 vecs++;
1994 len = 0;
1995 count--;
1998 this->pagebuf = page;
1999 this->data_poi = this->data_buf;
2000 bufstart = this->data_poi;
2001 numpages = 1;
2002 oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
2003 ret = nand_write_page (mtd, this, page & this->pagemask,
2004 oobbuf, oobsel, 0);
2005 if (ret)
2006 goto out;
2007 page++;
2010 this->data_poi = bufstart;
2011 ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
2012 if (ret)
2013 goto out;
2015 written += mtd->oobblock * numpages;
2016 /* All done ? */
2017 if (!count)
2018 break;
2020 startpage = page & this->pagemask;
2021 /* Check, if we cross a chip boundary */
2022 if (!startpage) {
2023 chipnr++;
2024 this->select_chip(mtd, -1);
2025 this->select_chip(mtd, chipnr);
2028 ret = 0;
2029 out:
2030 /* Deselect and wake up anyone waiting on the device */
2031 nand_release_device(mtd);
2033 *retlen = written;
2034 return ret;
2038 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2039 * @mtd: MTD device structure
2040 * @page: the page address of the block which will be erased
2042 * Standard erase command for NAND chips
2044 static void single_erase_cmd (struct mtd_info *mtd, int page)
2046 struct nand_chip *this = mtd->priv;
2047 /* Send commands to erase a block */
2048 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
2049 this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
2053 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2054 * @mtd: MTD device structure
2055 * @page: the page address of the block which will be erased
2057 * AND multi block erase command function
2058 * Erase 4 consecutive blocks
2060 static void multi_erase_cmd (struct mtd_info *mtd, int page)
2062 struct nand_chip *this = mtd->priv;
2063 /* Send commands to erase a block */
2064 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2065 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2066 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2067 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
2068 this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
2072 * nand_erase - [MTD Interface] erase block(s)
2073 * @mtd: MTD device structure
2074 * @instr: erase instruction
2076 * Erase one ore more blocks
2078 static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
2080 return nand_erase_nand (mtd, instr, 0);
2083 #define BBT_PAGE_MASK 0xffffff3f
2085 * nand_erase_intern - [NAND Interface] erase block(s)
2086 * @mtd: MTD device structure
2087 * @instr: erase instruction
2088 * @allowbbt: allow erasing the bbt area
2090 * Erase one ore more blocks
2092 int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
2094 int page, len, status, pages_per_block, ret, chipnr;
2095 struct nand_chip *this = mtd->priv;
2096 int rewrite_bbt[NAND_MAX_CHIPS]={0}; /* flags to indicate the page, if bbt needs to be rewritten. */
2097 unsigned int bbt_masked_page; /* bbt mask to compare to page being erased. */
2098 /* It is used to see if the current page is in the same */
2099 /* 256 block group and the same bank as the bbt. */
2101 DEBUG (MTD_DEBUG_LEVEL3,
2102 "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
2104 /* Start address must align on block boundary */
2105 if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
2106 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
2107 return -EINVAL;
2110 /* Length must align on block boundary */
2111 if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
2112 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
2113 return -EINVAL;
2116 /* Do not allow erase past end of device */
2117 if ((instr->len + instr->addr) > mtd->size) {
2118 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
2119 return -EINVAL;
2122 instr->fail_addr = 0xffffffff;
2124 /* Grab the lock and see if the device is available */
2125 nand_get_device (this, mtd, FL_ERASING);
2127 /* Shift to get first page */
2128 page = (int) (instr->addr >> this->page_shift);
2129 chipnr = (int) (instr->addr >> this->chip_shift);
2131 /* Calculate pages in each block */
2132 pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
2134 /* Select the NAND device */
2135 this->select_chip(mtd, chipnr);
2137 /* Check the WP bit */
2138 /* Check, if it is write protected */
2139 if (nand_check_wp(mtd)) {
2140 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
2141 instr->state = MTD_ERASE_FAILED;
2142 goto erase_exit;
2145 /* if BBT requires refresh, set the BBT page mask to see if the BBT should be rewritten */
2146 if (this->options & BBT_AUTO_REFRESH) {
2147 bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2148 } else {
2149 bbt_masked_page = 0xffffffff; /* should not match anything */
2152 /* Loop through the pages */
2153 len = instr->len;
2155 instr->state = MTD_ERASING;
2157 while (len) {
2158 /* Check if we have a bad block, we do not erase bad blocks ! */
2159 if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
2160 printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
2161 instr->state = MTD_ERASE_FAILED;
2162 goto erase_exit;
2165 /* Invalidate the page cache, if we erase the block which contains
2166 the current cached page */
2167 if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
2168 this->pagebuf = -1;
2170 this->erase_cmd (mtd, page & this->pagemask);
2172 status = this->waitfunc (mtd, this, FL_ERASING);
2174 /* See if operation failed and additional status checks are available */
2175 if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
2176 status = this->errstat(mtd, this, FL_ERASING, status, page);
2179 /* See if block erase succeeded */
2180 if (status & NAND_STATUS_FAIL) {
2181 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
2182 instr->state = MTD_ERASE_FAILED;
2183 instr->fail_addr = (page << this->page_shift);
2184 goto erase_exit;
2187 /* if BBT requires refresh, set the BBT rewrite flag to the page being erased */
2188 if (this->options & BBT_AUTO_REFRESH) {
2189 if (((page & BBT_PAGE_MASK) == bbt_masked_page) &&
2190 (page != this->bbt_td->pages[chipnr])) {
2191 rewrite_bbt[chipnr] = (page << this->page_shift);
2195 /* Increment page address and decrement length */
2196 len -= (1 << this->phys_erase_shift);
2197 page += pages_per_block;
2199 /* Check, if we cross a chip boundary */
2200 if (len && !(page & this->pagemask)) {
2201 chipnr++;
2202 this->select_chip(mtd, -1);
2203 this->select_chip(mtd, chipnr);
2205 /* if BBT requires refresh and BBT-PERCHIP,
2206 * set the BBT page mask to see if this BBT should be rewritten */
2207 if ((this->options & BBT_AUTO_REFRESH) && (this->bbt_td->options & NAND_BBT_PERCHIP)) {
2208 bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2213 instr->state = MTD_ERASE_DONE;
2215 erase_exit:
2217 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2218 /* Do call back function */
2219 if (!ret)
2220 mtd_erase_callback(instr);
2222 /* Deselect and wake up anyone waiting on the device */
2223 nand_release_device(mtd);
2225 /* if BBT requires refresh and erase was successful, rewrite any selected bad block tables */
2226 if ((this->options & BBT_AUTO_REFRESH) && (!ret)) {
2227 for (chipnr = 0; chipnr < this->numchips; chipnr++) {
2228 if (rewrite_bbt[chipnr]) {
2229 /* update the BBT for chip */
2230 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt (%d:0x%0x 0x%0x)\n",
2231 chipnr, rewrite_bbt[chipnr], this->bbt_td->pages[chipnr]);
2232 nand_update_bbt (mtd, rewrite_bbt[chipnr]);
2237 /* Return more or less happy */
2238 return ret;
2242 * nand_sync - [MTD Interface] sync
2243 * @mtd: MTD device structure
2245 * Sync is actually a wait for chip ready function
2247 static void nand_sync (struct mtd_info *mtd)
2249 struct nand_chip *this = mtd->priv;
2251 DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2253 /* Grab the lock and see if the device is available */
2254 nand_get_device (this, mtd, FL_SYNCING);
2255 /* Release it and go back */
2256 nand_release_device (mtd);
2261 * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2262 * @mtd: MTD device structure
2263 * @ofs: offset relative to mtd start
2265 static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
2267 /* Check for invalid offset */
2268 if (ofs > mtd->size)
2269 return -EINVAL;
2271 return nand_block_checkbad (mtd, ofs, 1, 0);
2275 * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2276 * @mtd: MTD device structure
2277 * @ofs: offset relative to mtd start
2279 static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
2281 struct nand_chip *this = mtd->priv;
2282 int ret;
2284 if ((ret = nand_block_isbad(mtd, ofs))) {
2285 /* If it was bad already, return success and do nothing. */
2286 if (ret > 0)
2287 return 0;
2288 return ret;
2291 return this->block_markbad(mtd, ofs);
2295 * nand_suspend - [MTD Interface] Suspend the NAND flash
2296 * @mtd: MTD device structure
2298 static int nand_suspend(struct mtd_info *mtd)
2300 struct nand_chip *this = mtd->priv;
2302 return nand_get_device (this, mtd, FL_PM_SUSPENDED);
2306 * nand_resume - [MTD Interface] Resume the NAND flash
2307 * @mtd: MTD device structure
2309 static void nand_resume(struct mtd_info *mtd)
2311 struct nand_chip *this = mtd->priv;
2313 if (this->state == FL_PM_SUSPENDED)
2314 nand_release_device(mtd);
2315 else
2316 printk(KERN_ERR "resume() called for the chip which is not "
2317 "in suspended state\n");
2323 * nand_scan - [NAND Interface] Scan for the NAND device
2324 * @mtd: MTD device structure
2325 * @maxchips: Number of chips to scan for
2327 * This fills out all the not initialized function pointers
2328 * with the defaults.
2329 * The flash ID is read and the mtd/chip structures are
2330 * filled with the appropriate values. Buffers are allocated if
2331 * they are not provided by the board driver
2334 int nand_scan (struct mtd_info *mtd, int maxchips)
2336 int i, nand_maf_id, nand_dev_id, busw, maf_id;
2337 struct nand_chip *this = mtd->priv;
2339 /* Get buswidth to select the correct functions*/
2340 busw = this->options & NAND_BUSWIDTH_16;
2342 /* check for proper chip_delay setup, set 20us if not */
2343 if (!this->chip_delay)
2344 this->chip_delay = 20;
2346 /* check, if a user supplied command function given */
2347 if (this->cmdfunc == NULL)
2348 this->cmdfunc = nand_command;
2350 /* check, if a user supplied wait function given */
2351 if (this->waitfunc == NULL)
2352 this->waitfunc = nand_wait;
2354 if (!this->select_chip)
2355 this->select_chip = nand_select_chip;
2356 if (!this->write_byte)
2357 this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2358 if (!this->read_byte)
2359 this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2360 if (!this->write_word)
2361 this->write_word = nand_write_word;
2362 if (!this->read_word)
2363 this->read_word = nand_read_word;
2364 if (!this->block_bad)
2365 this->block_bad = nand_block_bad;
2366 if (!this->block_markbad)
2367 this->block_markbad = nand_default_block_markbad;
2368 if (!this->write_buf)
2369 this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2370 if (!this->read_buf)
2371 this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2372 if (!this->verify_buf)
2373 this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2374 if (!this->scan_bbt)
2375 this->scan_bbt = nand_default_bbt;
2377 /* Select the device */
2378 this->select_chip(mtd, 0);
2380 /* Send the command for reading device ID */
2381 this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
2383 /* Read manufacturer and device IDs */
2384 nand_maf_id = this->read_byte(mtd);
2385 nand_dev_id = this->read_byte(mtd);
2387 /* Print and store flash device information */
2388 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2390 if (nand_dev_id != nand_flash_ids[i].id)
2391 continue;
2393 if (!mtd->name) mtd->name = nand_flash_ids[i].name;
2394 this->chipsize = nand_flash_ids[i].chipsize << 20;
2396 /* New devices have all the information in additional id bytes */
2397 if (!nand_flash_ids[i].pagesize) {
2398 int extid;
2399 /* The 3rd id byte contains non relevant data ATM */
2400 extid = this->read_byte(mtd);
2401 /* The 4th id byte is the important one */
2402 extid = this->read_byte(mtd);
2403 /* Calc pagesize */
2404 mtd->oobblock = 1024 << (extid & 0x3);
2405 extid >>= 2;
2406 /* Calc oobsize */
2407 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->oobblock >> 9);
2408 extid >>= 2;
2409 /* Calc blocksize. Blocksize is multiples of 64KiB */
2410 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2411 extid >>= 2;
2412 /* Get buswidth information */
2413 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2415 } else {
2416 /* Old devices have this data hardcoded in the
2417 * device id table */
2418 mtd->erasesize = nand_flash_ids[i].erasesize;
2419 mtd->oobblock = nand_flash_ids[i].pagesize;
2420 mtd->oobsize = mtd->oobblock / 32;
2421 busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
2424 /* Try to identify manufacturer */
2425 for (maf_id = 0; nand_manuf_ids[maf_id].id != 0x0; maf_id++) {
2426 if (nand_manuf_ids[maf_id].id == nand_maf_id)
2427 break;
2430 /* Check, if buswidth is correct. Hardware drivers should set
2431 * this correct ! */
2432 if (busw != (this->options & NAND_BUSWIDTH_16)) {
2433 printk (KERN_INFO "NAND device: Manufacturer ID:"
2434 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
2435 nand_manuf_ids[maf_id].name , mtd->name);
2436 printk (KERN_WARNING
2437 "NAND bus width %d instead %d bit\n",
2438 (this->options & NAND_BUSWIDTH_16) ? 16 : 8,
2439 busw ? 16 : 8);
2440 this->select_chip(mtd, -1);
2441 return 1;
2444 /* Calculate the address shift from the page size */
2445 this->page_shift = ffs(mtd->oobblock) - 1;
2446 this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
2447 this->chip_shift = ffs(this->chipsize) - 1;
2449 /* Set the bad block position */
2450 this->badblockpos = mtd->oobblock > 512 ?
2451 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2453 /* Get chip options, preserve non chip based options */
2454 this->options &= ~NAND_CHIPOPTIONS_MSK;
2455 this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
2456 /* Set this as a default. Board drivers can override it, if neccecary */
2457 this->options |= NAND_NO_AUTOINCR;
2458 /* Check if this is a not a samsung device. Do not clear the options
2459 * for chips which are not having an extended id.
2461 if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
2462 this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2464 /* Check for AND chips with 4 page planes */
2465 if (this->options & NAND_4PAGE_ARRAY)
2466 this->erase_cmd = multi_erase_cmd;
2467 else
2468 this->erase_cmd = single_erase_cmd;
2470 /* Do not replace user supplied command function ! */
2471 if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
2472 this->cmdfunc = nand_command_lp;
2474 printk (KERN_INFO "NAND device: Manufacturer ID:"
2475 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
2476 nand_manuf_ids[maf_id].name , nand_flash_ids[i].name);
2477 break;
2480 if (!nand_flash_ids[i].name) {
2481 printk (KERN_WARNING "No NAND device found!!!\n");
2482 this->select_chip(mtd, -1);
2483 return 1;
2486 for (i=1; i < maxchips; i++) {
2487 this->select_chip(mtd, i);
2489 /* Send the command for reading device ID */
2490 this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
2492 /* Read manufacturer and device IDs */
2493 if (nand_maf_id != this->read_byte(mtd) ||
2494 nand_dev_id != this->read_byte(mtd))
2495 break;
2497 if (i > 1)
2498 printk(KERN_INFO "%d NAND chips detected\n", i);
2500 /* Allocate buffers, if neccecary */
2501 if (!this->oob_buf) {
2502 size_t len;
2503 len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
2504 this->oob_buf = kmalloc (len, GFP_KERNEL);
2505 if (!this->oob_buf) {
2506 printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
2507 return -ENOMEM;
2509 this->options |= NAND_OOBBUF_ALLOC;
2512 if (!this->data_buf) {
2513 size_t len;
2514 len = mtd->oobblock + mtd->oobsize;
2515 this->data_buf = kmalloc (len, GFP_KERNEL);
2516 if (!this->data_buf) {
2517 if (this->options & NAND_OOBBUF_ALLOC)
2518 kfree (this->oob_buf);
2519 printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
2520 return -ENOMEM;
2522 this->options |= NAND_DATABUF_ALLOC;
2525 /* Store the number of chips and calc total size for mtd */
2526 this->numchips = i;
2527 mtd->size = i * this->chipsize;
2528 /* Convert chipsize to number of pages per chip -1. */
2529 this->pagemask = (this->chipsize >> this->page_shift) - 1;
2530 /* Preset the internal oob buffer */
2531 memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
2533 /* If no default placement scheme is given, select an
2534 * appropriate one */
2535 if (!this->autooob) {
2536 /* Select the appropriate default oob placement scheme for
2537 * placement agnostic filesystems */
2538 switch (mtd->oobsize) {
2539 case 8:
2540 this->autooob = &nand_oob_8;
2541 break;
2542 case 16:
2543 this->autooob = &nand_oob_16;
2544 break;
2545 case 64:
2546 this->autooob = &nand_oob_64;
2547 break;
2548 default:
2549 printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
2550 mtd->oobsize);
2551 BUG();
2555 /* The number of bytes available for the filesystem to place fs dependend
2556 * oob data */
2557 mtd->oobavail = 0;
2558 for (i = 0; this->autooob->oobfree[i][1]; i++)
2559 mtd->oobavail += this->autooob->oobfree[i][1];
2562 * check ECC mode, default to software
2563 * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
2564 * fallback to software ECC
2566 this->eccsize = 256; /* set default eccsize */
2567 this->eccbytes = 3;
2569 switch (this->eccmode) {
2570 case NAND_ECC_HW12_2048:
2571 if (mtd->oobblock < 2048) {
2572 printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
2573 mtd->oobblock);
2574 this->eccmode = NAND_ECC_SOFT;
2575 this->calculate_ecc = nand_calculate_ecc;
2576 this->correct_data = nand_correct_data;
2577 } else
2578 this->eccsize = 2048;
2579 break;
2581 case NAND_ECC_HW3_512:
2582 case NAND_ECC_HW6_512:
2583 case NAND_ECC_HW8_512:
2584 if (mtd->oobblock == 256) {
2585 printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
2586 this->eccmode = NAND_ECC_SOFT;
2587 this->calculate_ecc = nand_calculate_ecc;
2588 this->correct_data = nand_correct_data;
2589 } else
2590 this->eccsize = 512; /* set eccsize to 512 */
2591 break;
2593 case NAND_ECC_HW3_256:
2594 break;
2596 case NAND_ECC_NONE:
2597 printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
2598 this->eccmode = NAND_ECC_NONE;
2599 break;
2601 case NAND_ECC_SOFT:
2602 this->calculate_ecc = nand_calculate_ecc;
2603 this->correct_data = nand_correct_data;
2604 break;
2606 default:
2607 printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
2608 BUG();
2611 /* Check hardware ecc function availability and adjust number of ecc bytes per
2612 * calculation step
2614 switch (this->eccmode) {
2615 case NAND_ECC_HW12_2048:
2616 this->eccbytes += 4;
2617 case NAND_ECC_HW8_512:
2618 this->eccbytes += 2;
2619 case NAND_ECC_HW6_512:
2620 this->eccbytes += 3;
2621 case NAND_ECC_HW3_512:
2622 case NAND_ECC_HW3_256:
2623 if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
2624 break;
2625 printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
2626 BUG();
2629 mtd->eccsize = this->eccsize;
2631 /* Set the number of read / write steps for one page to ensure ECC generation */
2632 switch (this->eccmode) {
2633 case NAND_ECC_HW12_2048:
2634 this->eccsteps = mtd->oobblock / 2048;
2635 break;
2636 case NAND_ECC_HW3_512:
2637 case NAND_ECC_HW6_512:
2638 case NAND_ECC_HW8_512:
2639 this->eccsteps = mtd->oobblock / 512;
2640 break;
2641 case NAND_ECC_HW3_256:
2642 case NAND_ECC_SOFT:
2643 this->eccsteps = mtd->oobblock / 256;
2644 break;
2646 case NAND_ECC_NONE:
2647 this->eccsteps = 1;
2648 break;
2651 /* Initialize state, waitqueue and spinlock */
2652 this->state = FL_READY;
2653 init_waitqueue_head (&this->wq);
2654 spin_lock_init (&this->chip_lock);
2656 /* De-select the device */
2657 this->select_chip(mtd, -1);
2659 /* Invalidate the pagebuffer reference */
2660 this->pagebuf = -1;
2662 /* Fill in remaining MTD driver data */
2663 mtd->type = MTD_NANDFLASH;
2664 mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
2665 mtd->ecctype = MTD_ECC_SW;
2666 mtd->erase = nand_erase;
2667 mtd->point = NULL;
2668 mtd->unpoint = NULL;
2669 mtd->read = nand_read;
2670 mtd->write = nand_write;
2671 mtd->read_ecc = nand_read_ecc;
2672 mtd->write_ecc = nand_write_ecc;
2673 mtd->read_oob = nand_read_oob;
2674 mtd->write_oob = nand_write_oob;
2675 mtd->readv = NULL;
2676 mtd->writev = nand_writev;
2677 mtd->writev_ecc = nand_writev_ecc;
2678 mtd->sync = nand_sync;
2679 mtd->lock = NULL;
2680 mtd->unlock = NULL;
2681 mtd->suspend = nand_suspend;
2682 mtd->resume = nand_resume;
2683 mtd->block_isbad = nand_block_isbad;
2684 mtd->block_markbad = nand_block_markbad;
2686 /* and make the autooob the default one */
2687 memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
2689 mtd->owner = THIS_MODULE;
2691 /* Check, if we should skip the bad block table scan */
2692 if (this->options & NAND_SKIP_BBTSCAN)
2693 return 0;
2695 /* Build bad block table */
2696 return this->scan_bbt (mtd);
2700 * nand_release - [NAND Interface] Free resources held by the NAND device
2701 * @mtd: MTD device structure
2703 void nand_release (struct mtd_info *mtd)
2705 struct nand_chip *this = mtd->priv;
2707 #ifdef CONFIG_MTD_PARTITIONS
2708 /* Deregister partitions */
2709 del_mtd_partitions (mtd);
2710 #endif
2711 /* Deregister the device */
2712 del_mtd_device (mtd);
2714 /* Free bad block table memory */
2715 kfree (this->bbt);
2716 /* Buffer allocated by nand_scan ? */
2717 if (this->options & NAND_OOBBUF_ALLOC)
2718 kfree (this->oob_buf);
2719 /* Buffer allocated by nand_scan ? */
2720 if (this->options & NAND_DATABUF_ALLOC)
2721 kfree (this->data_buf);
2724 EXPORT_SYMBOL_GPL (nand_scan);
2725 EXPORT_SYMBOL_GPL (nand_release);
2727 MODULE_LICENSE ("GPL");
2728 MODULE_AUTHOR ("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2729 MODULE_DESCRIPTION ("Generic NAND flash driver code");