1 /* $Id: bbc_envctrl.c,v 1.4 2001/04/06 16:48:08 davem Exp $
2 * bbc_envctrl.c: UltraSPARC-III environment control driver.
4 * Copyright (C) 2001 David S. Miller (davem@redhat.com)
7 #define __KERNEL_SYSCALLS__
10 #include <linux/kernel.h>
11 #include <linux/kthread.h>
12 #include <linux/sched.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <asm/oplib.h>
23 /* WARNING: Making changes to this driver is very dangerous.
24 * If you misprogram the sensor chips they can
25 * cut the power on you instantly.
28 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
29 * Both are implemented using max1617 i2c devices. Each max1617
30 * monitors 2 temperatures, one for one of the cpu dies and the other
31 * for the ambient temperature.
33 * The max1617 is capable of being programmed with power-off
34 * temperature values, one low limit and one high limit. These
35 * can be controlled independently for the cpu or ambient temperature.
36 * If a limit is violated, the power is simply shut off. The frequency
37 * with which the max1617 does temperature sampling can be controlled
40 * Three fans exist inside the machine, all three are controlled with
41 * an i2c digital to analog converter. There is a fan directed at the
42 * two processor slots, another for the rest of the enclosure, and the
43 * third is for the power supply. The first two fans may be speed
44 * controlled by changing the voltage fed to them. The third fan may
45 * only be completely off or on. The third fan is meant to only be
46 * disabled/enabled when entering/exiting the lowest power-saving
47 * mode of the machine.
49 * An environmental control kernel thread periodically monitors all
50 * temperature sensors. Based upon the samples it will adjust the
51 * fan speeds to try and keep the system within a certain temperature
52 * range (the goal being to make the fans as quiet as possible without
53 * allowing the system to get too hot).
55 * If the temperature begins to rise/fall outside of the acceptable
56 * operating range, a periodic warning will be sent to the kernel log.
57 * The fans will be put on full blast to attempt to deal with this
58 * situation. After exceeding the acceptable operating range by a
59 * certain threshold, the kernel thread will shut down the system.
60 * Here, the thread is attempting to shut the machine down cleanly
61 * before the hardware based power-off event is triggered.
64 /* These settings are in Celsius. We use these defaults only
65 * if we cannot interrogate the cpu-fru SEEPROM.
68 s8 high_pwroff
, high_shutdown
, high_warn
;
69 s8 low_warn
, low_shutdown
, low_pwroff
;
72 static struct temp_limits cpu_temp_limits
[2] = {
73 { 100, 85, 80, 5, -5, -10 },
74 { 100, 85, 80, 5, -5, -10 },
77 static struct temp_limits amb_temp_limits
[2] = {
78 { 65, 55, 40, 5, -5, -10 },
79 { 65, 55, 40, 5, -5, -10 },
82 enum fan_action
{ FAN_SLOWER
, FAN_SAME
, FAN_FASTER
, FAN_FULLBLAST
, FAN_STATE_MAX
};
84 struct bbc_cpu_temperature
{
85 struct bbc_cpu_temperature
*next
;
87 struct bbc_i2c_client
*client
;
90 /* Current readings, and history. */
100 enum fan_action fan_todo
[2];
101 #define FAN_AMBIENT 0
105 struct bbc_cpu_temperature
*all_bbc_temps
;
107 struct bbc_fan_control
{
108 struct bbc_fan_control
*next
;
110 struct bbc_i2c_client
*client
;
115 int system_fan_speed
;
118 struct bbc_fan_control
*all_bbc_fans
;
120 #define CPU_FAN_REG 0xf0
121 #define SYS_FAN_REG 0xf2
122 #define PSUPPLY_FAN_REG 0xf4
124 #define FAN_SPEED_MIN 0x0c
125 #define FAN_SPEED_MAX 0x3f
127 #define PSUPPLY_FAN_ON 0x1f
128 #define PSUPPLY_FAN_OFF 0x00
130 static void set_fan_speeds(struct bbc_fan_control
*fp
)
132 /* Put temperatures into range so we don't mis-program
135 if (fp
->cpu_fan_speed
< FAN_SPEED_MIN
)
136 fp
->cpu_fan_speed
= FAN_SPEED_MIN
;
137 if (fp
->cpu_fan_speed
> FAN_SPEED_MAX
)
138 fp
->cpu_fan_speed
= FAN_SPEED_MAX
;
139 if (fp
->system_fan_speed
< FAN_SPEED_MIN
)
140 fp
->system_fan_speed
= FAN_SPEED_MIN
;
141 if (fp
->system_fan_speed
> FAN_SPEED_MAX
)
142 fp
->system_fan_speed
= FAN_SPEED_MAX
;
144 printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
146 fp
->cpu_fan_speed
, fp
->system_fan_speed
);
149 bbc_i2c_writeb(fp
->client
, fp
->cpu_fan_speed
, CPU_FAN_REG
);
150 bbc_i2c_writeb(fp
->client
, fp
->system_fan_speed
, SYS_FAN_REG
);
151 bbc_i2c_writeb(fp
->client
,
152 (fp
->psupply_fan_on
?
153 PSUPPLY_FAN_ON
: PSUPPLY_FAN_OFF
),
157 static void get_current_temps(struct bbc_cpu_temperature
*tp
)
159 tp
->prev_amb_temp
= tp
->curr_amb_temp
;
160 bbc_i2c_readb(tp
->client
,
161 (unsigned char *) &tp
->curr_amb_temp
,
163 tp
->prev_cpu_temp
= tp
->curr_cpu_temp
;
164 bbc_i2c_readb(tp
->client
,
165 (unsigned char *) &tp
->curr_cpu_temp
,
168 printk("temp%d: cpu(%d C) amb(%d C)\n",
170 (int) tp
->curr_cpu_temp
, (int) tp
->curr_amb_temp
);
175 static void do_envctrl_shutdown(struct bbc_cpu_temperature
*tp
)
177 static int shutting_down
= 0;
178 static char *envp
[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL
};
179 char *argv
[] = { "/sbin/shutdown", "-h", "now", NULL
};
183 if (shutting_down
!= 0)
186 if (tp
->curr_amb_temp
>= amb_temp_limits
[tp
->index
].high_shutdown
||
187 tp
->curr_amb_temp
< amb_temp_limits
[tp
->index
].low_shutdown
) {
189 val
= tp
->curr_amb_temp
;
190 } else if (tp
->curr_cpu_temp
>= cpu_temp_limits
[tp
->index
].high_shutdown
||
191 tp
->curr_cpu_temp
< cpu_temp_limits
[tp
->index
].low_shutdown
) {
193 val
= tp
->curr_cpu_temp
;
196 printk(KERN_CRIT
"temp%d: Outside of safe %s "
197 "operating temperature, %d C.\n",
198 tp
->index
, type
, val
);
200 printk(KERN_CRIT
"kenvctrld: Shutting down the system now.\n");
203 if (execve("/sbin/shutdown", argv
, envp
) < 0)
204 printk(KERN_CRIT
"envctrl: shutdown execution failed\n");
207 #define WARN_INTERVAL (30 * HZ)
209 static void analyze_ambient_temp(struct bbc_cpu_temperature
*tp
, unsigned long *last_warn
, int tick
)
213 if (time_after(jiffies
, (*last_warn
+ WARN_INTERVAL
))) {
214 if (tp
->curr_amb_temp
>=
215 amb_temp_limits
[tp
->index
].high_warn
) {
216 printk(KERN_WARNING
"temp%d: "
217 "Above safe ambient operating temperature, %d C.\n",
218 tp
->index
, (int) tp
->curr_amb_temp
);
220 } else if (tp
->curr_amb_temp
<
221 amb_temp_limits
[tp
->index
].low_warn
) {
222 printk(KERN_WARNING
"temp%d: "
223 "Below safe ambient operating temperature, %d C.\n",
224 tp
->index
, (int) tp
->curr_amb_temp
);
228 *last_warn
= jiffies
;
229 } else if (tp
->curr_amb_temp
>= amb_temp_limits
[tp
->index
].high_warn
||
230 tp
->curr_amb_temp
< amb_temp_limits
[tp
->index
].low_warn
)
233 /* Now check the shutdown limits. */
234 if (tp
->curr_amb_temp
>= amb_temp_limits
[tp
->index
].high_shutdown
||
235 tp
->curr_amb_temp
< amb_temp_limits
[tp
->index
].low_shutdown
) {
236 do_envctrl_shutdown(tp
);
241 tp
->fan_todo
[FAN_AMBIENT
] = FAN_FULLBLAST
;
242 } else if ((tick
& (8 - 1)) == 0) {
243 s8 amb_goal_hi
= amb_temp_limits
[tp
->index
].high_warn
- 10;
246 amb_goal_lo
= amb_goal_hi
- 3;
248 /* We do not try to avoid 'too cold' events. Basically we
249 * only try to deal with over-heating and fan noise reduction.
251 if (tp
->avg_amb_temp
< amb_goal_hi
) {
252 if (tp
->avg_amb_temp
>= amb_goal_lo
)
253 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SAME
;
255 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SLOWER
;
257 tp
->fan_todo
[FAN_AMBIENT
] = FAN_FASTER
;
260 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SAME
;
264 static void analyze_cpu_temp(struct bbc_cpu_temperature
*tp
, unsigned long *last_warn
, int tick
)
268 if (time_after(jiffies
, (*last_warn
+ WARN_INTERVAL
))) {
269 if (tp
->curr_cpu_temp
>=
270 cpu_temp_limits
[tp
->index
].high_warn
) {
271 printk(KERN_WARNING
"temp%d: "
272 "Above safe CPU operating temperature, %d C.\n",
273 tp
->index
, (int) tp
->curr_cpu_temp
);
275 } else if (tp
->curr_cpu_temp
<
276 cpu_temp_limits
[tp
->index
].low_warn
) {
277 printk(KERN_WARNING
"temp%d: "
278 "Below safe CPU operating temperature, %d C.\n",
279 tp
->index
, (int) tp
->curr_cpu_temp
);
283 *last_warn
= jiffies
;
284 } else if (tp
->curr_cpu_temp
>= cpu_temp_limits
[tp
->index
].high_warn
||
285 tp
->curr_cpu_temp
< cpu_temp_limits
[tp
->index
].low_warn
)
288 /* Now check the shutdown limits. */
289 if (tp
->curr_cpu_temp
>= cpu_temp_limits
[tp
->index
].high_shutdown
||
290 tp
->curr_cpu_temp
< cpu_temp_limits
[tp
->index
].low_shutdown
) {
291 do_envctrl_shutdown(tp
);
296 tp
->fan_todo
[FAN_CPU
] = FAN_FULLBLAST
;
297 } else if ((tick
& (8 - 1)) == 0) {
298 s8 cpu_goal_hi
= cpu_temp_limits
[tp
->index
].high_warn
- 10;
301 cpu_goal_lo
= cpu_goal_hi
- 3;
303 /* We do not try to avoid 'too cold' events. Basically we
304 * only try to deal with over-heating and fan noise reduction.
306 if (tp
->avg_cpu_temp
< cpu_goal_hi
) {
307 if (tp
->avg_cpu_temp
>= cpu_goal_lo
)
308 tp
->fan_todo
[FAN_CPU
] = FAN_SAME
;
310 tp
->fan_todo
[FAN_CPU
] = FAN_SLOWER
;
312 tp
->fan_todo
[FAN_CPU
] = FAN_FASTER
;
315 tp
->fan_todo
[FAN_CPU
] = FAN_SAME
;
319 static void analyze_temps(struct bbc_cpu_temperature
*tp
, unsigned long *last_warn
)
321 tp
->avg_amb_temp
= (s8
)((int)((int)tp
->avg_amb_temp
+ (int)tp
->curr_amb_temp
) / 2);
322 tp
->avg_cpu_temp
= (s8
)((int)((int)tp
->avg_cpu_temp
+ (int)tp
->curr_cpu_temp
) / 2);
324 analyze_ambient_temp(tp
, last_warn
, tp
->sample_tick
);
325 analyze_cpu_temp(tp
, last_warn
, tp
->sample_tick
);
330 static enum fan_action
prioritize_fan_action(int which_fan
)
332 struct bbc_cpu_temperature
*tp
;
333 enum fan_action decision
= FAN_STATE_MAX
;
335 /* Basically, prioritize what the temperature sensors
336 * recommend we do, and perform that action on all the
339 for (tp
= all_bbc_temps
; tp
; tp
= tp
->next
) {
340 if (tp
->fan_todo
[which_fan
] == FAN_FULLBLAST
) {
341 decision
= FAN_FULLBLAST
;
344 if (tp
->fan_todo
[which_fan
] == FAN_SAME
&&
345 decision
!= FAN_FASTER
)
347 else if (tp
->fan_todo
[which_fan
] == FAN_FASTER
)
348 decision
= FAN_FASTER
;
349 else if (decision
!= FAN_FASTER
&&
350 decision
!= FAN_SAME
&&
351 tp
->fan_todo
[which_fan
] == FAN_SLOWER
)
352 decision
= FAN_SLOWER
;
354 if (decision
== FAN_STATE_MAX
)
360 static int maybe_new_ambient_fan_speed(struct bbc_fan_control
*fp
)
362 enum fan_action decision
= prioritize_fan_action(FAN_AMBIENT
);
365 if (decision
== FAN_SAME
)
369 if (decision
== FAN_FULLBLAST
) {
370 if (fp
->system_fan_speed
>= FAN_SPEED_MAX
)
373 fp
->system_fan_speed
= FAN_SPEED_MAX
;
375 if (decision
== FAN_FASTER
) {
376 if (fp
->system_fan_speed
>= FAN_SPEED_MAX
)
379 fp
->system_fan_speed
+= 2;
381 int orig_speed
= fp
->system_fan_speed
;
383 if (orig_speed
<= FAN_SPEED_MIN
||
384 orig_speed
<= (fp
->cpu_fan_speed
- 3))
387 fp
->system_fan_speed
-= 1;
394 static int maybe_new_cpu_fan_speed(struct bbc_fan_control
*fp
)
396 enum fan_action decision
= prioritize_fan_action(FAN_CPU
);
399 if (decision
== FAN_SAME
)
403 if (decision
== FAN_FULLBLAST
) {
404 if (fp
->cpu_fan_speed
>= FAN_SPEED_MAX
)
407 fp
->cpu_fan_speed
= FAN_SPEED_MAX
;
409 if (decision
== FAN_FASTER
) {
410 if (fp
->cpu_fan_speed
>= FAN_SPEED_MAX
)
413 fp
->cpu_fan_speed
+= 2;
414 if (fp
->system_fan_speed
<
415 (fp
->cpu_fan_speed
- 3))
416 fp
->system_fan_speed
=
417 fp
->cpu_fan_speed
- 3;
420 if (fp
->cpu_fan_speed
<= FAN_SPEED_MIN
)
423 fp
->cpu_fan_speed
-= 1;
430 static void maybe_new_fan_speeds(struct bbc_fan_control
*fp
)
434 new = maybe_new_ambient_fan_speed(fp
);
435 new |= maybe_new_cpu_fan_speed(fp
);
441 static void fans_full_blast(void)
443 struct bbc_fan_control
*fp
;
445 /* Since we will not be monitoring things anymore, put
446 * the fans on full blast.
448 for (fp
= all_bbc_fans
; fp
; fp
= fp
->next
) {
449 fp
->cpu_fan_speed
= FAN_SPEED_MAX
;
450 fp
->system_fan_speed
= FAN_SPEED_MAX
;
451 fp
->psupply_fan_on
= 1;
456 #define POLL_INTERVAL (5 * 1000)
457 static unsigned long last_warning_jiffies
;
458 static struct task_struct
*kenvctrld_task
;
460 static int kenvctrld(void *__unused
)
462 printk(KERN_INFO
"bbc_envctrl: kenvctrld starting...\n");
463 last_warning_jiffies
= jiffies
- WARN_INTERVAL
;
465 struct bbc_cpu_temperature
*tp
;
466 struct bbc_fan_control
*fp
;
468 msleep_interruptible(POLL_INTERVAL
);
469 if (kthread_should_stop())
472 for (tp
= all_bbc_temps
; tp
; tp
= tp
->next
) {
473 get_current_temps(tp
);
474 analyze_temps(tp
, &last_warning_jiffies
);
476 for (fp
= all_bbc_fans
; fp
; fp
= fp
->next
)
477 maybe_new_fan_speeds(fp
);
479 printk(KERN_INFO
"bbc_envctrl: kenvctrld exiting...\n");
486 static void attach_one_temp(struct linux_ebus_child
*echild
, int temp_idx
)
488 struct bbc_cpu_temperature
*tp
= kmalloc(sizeof(*tp
), GFP_KERNEL
);
492 memset(tp
, 0, sizeof(*tp
));
493 tp
->client
= bbc_i2c_attach(echild
);
499 tp
->index
= temp_idx
;
501 struct bbc_cpu_temperature
**tpp
= &all_bbc_temps
;
503 tpp
= &((*tpp
)->next
);
508 /* Tell it to convert once every 5 seconds, clear all cfg
511 bbc_i2c_writeb(tp
->client
, 0x00, MAX1617_WR_CFG_BYTE
);
512 bbc_i2c_writeb(tp
->client
, 0x02, MAX1617_WR_CVRATE_BYTE
);
514 /* Program the hard temperature limits into the chip. */
515 bbc_i2c_writeb(tp
->client
, amb_temp_limits
[tp
->index
].high_pwroff
,
516 MAX1617_WR_AMB_HIGHLIM
);
517 bbc_i2c_writeb(tp
->client
, amb_temp_limits
[tp
->index
].low_pwroff
,
518 MAX1617_WR_AMB_LOWLIM
);
519 bbc_i2c_writeb(tp
->client
, cpu_temp_limits
[tp
->index
].high_pwroff
,
520 MAX1617_WR_CPU_HIGHLIM
);
521 bbc_i2c_writeb(tp
->client
, cpu_temp_limits
[tp
->index
].low_pwroff
,
522 MAX1617_WR_CPU_LOWLIM
);
524 get_current_temps(tp
);
525 tp
->prev_cpu_temp
= tp
->avg_cpu_temp
= tp
->curr_cpu_temp
;
526 tp
->prev_amb_temp
= tp
->avg_amb_temp
= tp
->curr_amb_temp
;
528 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SAME
;
529 tp
->fan_todo
[FAN_CPU
] = FAN_SAME
;
532 static void attach_one_fan(struct linux_ebus_child
*echild
, int fan_idx
)
534 struct bbc_fan_control
*fp
= kmalloc(sizeof(*fp
), GFP_KERNEL
);
538 memset(fp
, 0, sizeof(*fp
));
539 fp
->client
= bbc_i2c_attach(echild
);
548 struct bbc_fan_control
**fpp
= &all_bbc_fans
;
550 fpp
= &((*fpp
)->next
);
555 /* The i2c device controlling the fans is write-only.
556 * So the only way to keep track of the current power
557 * level fed to the fans is via software. Choose half
558 * power for cpu/system and 'on' fo the powersupply fan
561 fp
->psupply_fan_on
= 1;
562 fp
->cpu_fan_speed
= (FAN_SPEED_MAX
- FAN_SPEED_MIN
) / 2;
563 fp
->cpu_fan_speed
+= FAN_SPEED_MIN
;
564 fp
->system_fan_speed
= (FAN_SPEED_MAX
- FAN_SPEED_MIN
) / 2;
565 fp
->system_fan_speed
+= FAN_SPEED_MIN
;
570 int bbc_envctrl_init(void)
572 struct linux_ebus_child
*echild
;
577 while ((echild
= bbc_i2c_getdev(devidx
++)) != NULL
) {
578 if (!strcmp(echild
->prom_name
, "temperature"))
579 attach_one_temp(echild
, temp_index
++);
580 if (!strcmp(echild
->prom_name
, "fan-control"))
581 attach_one_fan(echild
, fan_index
++);
583 if (temp_index
!= 0 && fan_index
!= 0) {
584 kenvctrld_task
= kthread_run(kenvctrld
, NULL
, "kenvctrld");
585 if (IS_ERR(kenvctrld_task
))
586 return PTR_ERR(kenvctrld_task
);
592 static void destroy_one_temp(struct bbc_cpu_temperature
*tp
)
594 bbc_i2c_detach(tp
->client
);
598 static void destroy_one_fan(struct bbc_fan_control
*fp
)
600 bbc_i2c_detach(fp
->client
);
604 void bbc_envctrl_cleanup(void)
606 struct bbc_cpu_temperature
*tp
;
607 struct bbc_fan_control
*fp
;
609 kthread_stop(kenvctrld_task
);
613 struct bbc_cpu_temperature
*next
= tp
->next
;
614 destroy_one_temp(tp
);
617 all_bbc_temps
= NULL
;
621 struct bbc_fan_control
*next
= fp
->next
;