Linux v2.6.15-rc7
[pohmelfs.git] / fs / ext3 / balloc.c
blobae1148c24c53333fd13e7d18e3cd0fc306886db9
1 /*
2 * linux/fs/ext3/balloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10 * Big-endian to little-endian byte-swapping/bitmaps by
11 * David S. Miller (davem@caip.rutgers.edu), 1995
14 #include <linux/config.h>
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/jbd.h>
18 #include <linux/ext3_fs.h>
19 #include <linux/ext3_jbd.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
23 #include "bitmap.h"
26 * balloc.c contains the blocks allocation and deallocation routines
30 * The free blocks are managed by bitmaps. A file system contains several
31 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
32 * block for inodes, N blocks for the inode table and data blocks.
34 * The file system contains group descriptors which are located after the
35 * super block. Each descriptor contains the number of the bitmap block and
36 * the free blocks count in the block. The descriptors are loaded in memory
37 * when a file system is mounted (see ext3_read_super).
41 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
43 struct ext3_group_desc * ext3_get_group_desc(struct super_block * sb,
44 unsigned int block_group,
45 struct buffer_head ** bh)
47 unsigned long group_desc;
48 unsigned long offset;
49 struct ext3_group_desc * desc;
50 struct ext3_sb_info *sbi = EXT3_SB(sb);
52 if (block_group >= sbi->s_groups_count) {
53 ext3_error (sb, "ext3_get_group_desc",
54 "block_group >= groups_count - "
55 "block_group = %d, groups_count = %lu",
56 block_group, sbi->s_groups_count);
58 return NULL;
60 smp_rmb();
62 group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
63 offset = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
64 if (!sbi->s_group_desc[group_desc]) {
65 ext3_error (sb, "ext3_get_group_desc",
66 "Group descriptor not loaded - "
67 "block_group = %d, group_desc = %lu, desc = %lu",
68 block_group, group_desc, offset);
69 return NULL;
72 desc = (struct ext3_group_desc *) sbi->s_group_desc[group_desc]->b_data;
73 if (bh)
74 *bh = sbi->s_group_desc[group_desc];
75 return desc + offset;
79 * Read the bitmap for a given block_group, reading into the specified
80 * slot in the superblock's bitmap cache.
82 * Return buffer_head on success or NULL in case of failure.
84 static struct buffer_head *
85 read_block_bitmap(struct super_block *sb, unsigned int block_group)
87 struct ext3_group_desc * desc;
88 struct buffer_head * bh = NULL;
90 desc = ext3_get_group_desc (sb, block_group, NULL);
91 if (!desc)
92 goto error_out;
93 bh = sb_bread(sb, le32_to_cpu(desc->bg_block_bitmap));
94 if (!bh)
95 ext3_error (sb, "read_block_bitmap",
96 "Cannot read block bitmap - "
97 "block_group = %d, block_bitmap = %u",
98 block_group, le32_to_cpu(desc->bg_block_bitmap));
99 error_out:
100 return bh;
103 * The reservation window structure operations
104 * --------------------------------------------
105 * Operations include:
106 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
108 * We use sorted double linked list for the per-filesystem reservation
109 * window list. (like in vm_region).
111 * Initially, we keep those small operations in the abstract functions,
112 * so later if we need a better searching tree than double linked-list,
113 * we could easily switch to that without changing too much
114 * code.
116 #if 0
117 static void __rsv_window_dump(struct rb_root *root, int verbose,
118 const char *fn)
120 struct rb_node *n;
121 struct ext3_reserve_window_node *rsv, *prev;
122 int bad;
124 restart:
125 n = rb_first(root);
126 bad = 0;
127 prev = NULL;
129 printk("Block Allocation Reservation Windows Map (%s):\n", fn);
130 while (n) {
131 rsv = list_entry(n, struct ext3_reserve_window_node, rsv_node);
132 if (verbose)
133 printk("reservation window 0x%p "
134 "start: %d, end: %d\n",
135 rsv, rsv->rsv_start, rsv->rsv_end);
136 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
137 printk("Bad reservation %p (start >= end)\n",
138 rsv);
139 bad = 1;
141 if (prev && prev->rsv_end >= rsv->rsv_start) {
142 printk("Bad reservation %p (prev->end >= start)\n",
143 rsv);
144 bad = 1;
146 if (bad) {
147 if (!verbose) {
148 printk("Restarting reservation walk in verbose mode\n");
149 verbose = 1;
150 goto restart;
153 n = rb_next(n);
154 prev = rsv;
156 printk("Window map complete.\n");
157 if (bad)
158 BUG();
160 #define rsv_window_dump(root, verbose) \
161 __rsv_window_dump((root), (verbose), __FUNCTION__)
162 #else
163 #define rsv_window_dump(root, verbose) do {} while (0)
164 #endif
166 static int
167 goal_in_my_reservation(struct ext3_reserve_window *rsv, int goal,
168 unsigned int group, struct super_block * sb)
170 unsigned long group_first_block, group_last_block;
172 group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
173 group * EXT3_BLOCKS_PER_GROUP(sb);
174 group_last_block = group_first_block + EXT3_BLOCKS_PER_GROUP(sb) - 1;
176 if ((rsv->_rsv_start > group_last_block) ||
177 (rsv->_rsv_end < group_first_block))
178 return 0;
179 if ((goal >= 0) && ((goal + group_first_block < rsv->_rsv_start)
180 || (goal + group_first_block > rsv->_rsv_end)))
181 return 0;
182 return 1;
186 * Find the reserved window which includes the goal, or the previous one
187 * if the goal is not in any window.
188 * Returns NULL if there are no windows or if all windows start after the goal.
190 static struct ext3_reserve_window_node *
191 search_reserve_window(struct rb_root *root, unsigned long goal)
193 struct rb_node *n = root->rb_node;
194 struct ext3_reserve_window_node *rsv;
196 if (!n)
197 return NULL;
199 do {
200 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
202 if (goal < rsv->rsv_start)
203 n = n->rb_left;
204 else if (goal > rsv->rsv_end)
205 n = n->rb_right;
206 else
207 return rsv;
208 } while (n);
210 * We've fallen off the end of the tree: the goal wasn't inside
211 * any particular node. OK, the previous node must be to one
212 * side of the interval containing the goal. If it's the RHS,
213 * we need to back up one.
215 if (rsv->rsv_start > goal) {
216 n = rb_prev(&rsv->rsv_node);
217 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
219 return rsv;
222 void ext3_rsv_window_add(struct super_block *sb,
223 struct ext3_reserve_window_node *rsv)
225 struct rb_root *root = &EXT3_SB(sb)->s_rsv_window_root;
226 struct rb_node *node = &rsv->rsv_node;
227 unsigned int start = rsv->rsv_start;
229 struct rb_node ** p = &root->rb_node;
230 struct rb_node * parent = NULL;
231 struct ext3_reserve_window_node *this;
233 while (*p)
235 parent = *p;
236 this = rb_entry(parent, struct ext3_reserve_window_node, rsv_node);
238 if (start < this->rsv_start)
239 p = &(*p)->rb_left;
240 else if (start > this->rsv_end)
241 p = &(*p)->rb_right;
242 else
243 BUG();
246 rb_link_node(node, parent, p);
247 rb_insert_color(node, root);
250 static void rsv_window_remove(struct super_block *sb,
251 struct ext3_reserve_window_node *rsv)
253 rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
254 rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
255 rsv->rsv_alloc_hit = 0;
256 rb_erase(&rsv->rsv_node, &EXT3_SB(sb)->s_rsv_window_root);
259 static inline int rsv_is_empty(struct ext3_reserve_window *rsv)
261 /* a valid reservation end block could not be 0 */
262 return (rsv->_rsv_end == EXT3_RESERVE_WINDOW_NOT_ALLOCATED);
264 void ext3_init_block_alloc_info(struct inode *inode)
266 struct ext3_inode_info *ei = EXT3_I(inode);
267 struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info;
268 struct super_block *sb = inode->i_sb;
270 block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
271 if (block_i) {
272 struct ext3_reserve_window_node *rsv = &block_i->rsv_window_node;
274 rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
275 rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
278 * if filesystem is mounted with NORESERVATION, the goal
279 * reservation window size is set to zero to indicate
280 * block reservation is off
282 if (!test_opt(sb, RESERVATION))
283 rsv->rsv_goal_size = 0;
284 else
285 rsv->rsv_goal_size = EXT3_DEFAULT_RESERVE_BLOCKS;
286 rsv->rsv_alloc_hit = 0;
287 block_i->last_alloc_logical_block = 0;
288 block_i->last_alloc_physical_block = 0;
290 ei->i_block_alloc_info = block_i;
293 void ext3_discard_reservation(struct inode *inode)
295 struct ext3_inode_info *ei = EXT3_I(inode);
296 struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info;
297 struct ext3_reserve_window_node *rsv;
298 spinlock_t *rsv_lock = &EXT3_SB(inode->i_sb)->s_rsv_window_lock;
300 if (!block_i)
301 return;
303 rsv = &block_i->rsv_window_node;
304 if (!rsv_is_empty(&rsv->rsv_window)) {
305 spin_lock(rsv_lock);
306 if (!rsv_is_empty(&rsv->rsv_window))
307 rsv_window_remove(inode->i_sb, rsv);
308 spin_unlock(rsv_lock);
312 /* Free given blocks, update quota and i_blocks field */
313 void ext3_free_blocks_sb(handle_t *handle, struct super_block *sb,
314 unsigned long block, unsigned long count,
315 int *pdquot_freed_blocks)
317 struct buffer_head *bitmap_bh = NULL;
318 struct buffer_head *gd_bh;
319 unsigned long block_group;
320 unsigned long bit;
321 unsigned long i;
322 unsigned long overflow;
323 struct ext3_group_desc * desc;
324 struct ext3_super_block * es;
325 struct ext3_sb_info *sbi;
326 int err = 0, ret;
327 unsigned group_freed;
329 *pdquot_freed_blocks = 0;
330 sbi = EXT3_SB(sb);
331 es = sbi->s_es;
332 if (block < le32_to_cpu(es->s_first_data_block) ||
333 block + count < block ||
334 block + count > le32_to_cpu(es->s_blocks_count)) {
335 ext3_error (sb, "ext3_free_blocks",
336 "Freeing blocks not in datazone - "
337 "block = %lu, count = %lu", block, count);
338 goto error_return;
341 ext3_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1);
343 do_more:
344 overflow = 0;
345 block_group = (block - le32_to_cpu(es->s_first_data_block)) /
346 EXT3_BLOCKS_PER_GROUP(sb);
347 bit = (block - le32_to_cpu(es->s_first_data_block)) %
348 EXT3_BLOCKS_PER_GROUP(sb);
350 * Check to see if we are freeing blocks across a group
351 * boundary.
353 if (bit + count > EXT3_BLOCKS_PER_GROUP(sb)) {
354 overflow = bit + count - EXT3_BLOCKS_PER_GROUP(sb);
355 count -= overflow;
357 brelse(bitmap_bh);
358 bitmap_bh = read_block_bitmap(sb, block_group);
359 if (!bitmap_bh)
360 goto error_return;
361 desc = ext3_get_group_desc (sb, block_group, &gd_bh);
362 if (!desc)
363 goto error_return;
365 if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) ||
366 in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) ||
367 in_range (block, le32_to_cpu(desc->bg_inode_table),
368 sbi->s_itb_per_group) ||
369 in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table),
370 sbi->s_itb_per_group))
371 ext3_error (sb, "ext3_free_blocks",
372 "Freeing blocks in system zones - "
373 "Block = %lu, count = %lu",
374 block, count);
377 * We are about to start releasing blocks in the bitmap,
378 * so we need undo access.
380 /* @@@ check errors */
381 BUFFER_TRACE(bitmap_bh, "getting undo access");
382 err = ext3_journal_get_undo_access(handle, bitmap_bh);
383 if (err)
384 goto error_return;
387 * We are about to modify some metadata. Call the journal APIs
388 * to unshare ->b_data if a currently-committing transaction is
389 * using it
391 BUFFER_TRACE(gd_bh, "get_write_access");
392 err = ext3_journal_get_write_access(handle, gd_bh);
393 if (err)
394 goto error_return;
396 jbd_lock_bh_state(bitmap_bh);
398 for (i = 0, group_freed = 0; i < count; i++) {
400 * An HJ special. This is expensive...
402 #ifdef CONFIG_JBD_DEBUG
403 jbd_unlock_bh_state(bitmap_bh);
405 struct buffer_head *debug_bh;
406 debug_bh = sb_find_get_block(sb, block + i);
407 if (debug_bh) {
408 BUFFER_TRACE(debug_bh, "Deleted!");
409 if (!bh2jh(bitmap_bh)->b_committed_data)
410 BUFFER_TRACE(debug_bh,
411 "No commited data in bitmap");
412 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
413 __brelse(debug_bh);
416 jbd_lock_bh_state(bitmap_bh);
417 #endif
418 if (need_resched()) {
419 jbd_unlock_bh_state(bitmap_bh);
420 cond_resched();
421 jbd_lock_bh_state(bitmap_bh);
423 /* @@@ This prevents newly-allocated data from being
424 * freed and then reallocated within the same
425 * transaction.
427 * Ideally we would want to allow that to happen, but to
428 * do so requires making journal_forget() capable of
429 * revoking the queued write of a data block, which
430 * implies blocking on the journal lock. *forget()
431 * cannot block due to truncate races.
433 * Eventually we can fix this by making journal_forget()
434 * return a status indicating whether or not it was able
435 * to revoke the buffer. On successful revoke, it is
436 * safe not to set the allocation bit in the committed
437 * bitmap, because we know that there is no outstanding
438 * activity on the buffer any more and so it is safe to
439 * reallocate it.
441 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
442 J_ASSERT_BH(bitmap_bh,
443 bh2jh(bitmap_bh)->b_committed_data != NULL);
444 ext3_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
445 bh2jh(bitmap_bh)->b_committed_data);
448 * We clear the bit in the bitmap after setting the committed
449 * data bit, because this is the reverse order to that which
450 * the allocator uses.
452 BUFFER_TRACE(bitmap_bh, "clear bit");
453 if (!ext3_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
454 bit + i, bitmap_bh->b_data)) {
455 jbd_unlock_bh_state(bitmap_bh);
456 ext3_error(sb, __FUNCTION__,
457 "bit already cleared for block %lu", block + i);
458 jbd_lock_bh_state(bitmap_bh);
459 BUFFER_TRACE(bitmap_bh, "bit already cleared");
460 } else {
461 group_freed++;
464 jbd_unlock_bh_state(bitmap_bh);
466 spin_lock(sb_bgl_lock(sbi, block_group));
467 desc->bg_free_blocks_count =
468 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
469 group_freed);
470 spin_unlock(sb_bgl_lock(sbi, block_group));
471 percpu_counter_mod(&sbi->s_freeblocks_counter, count);
473 /* We dirtied the bitmap block */
474 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
475 err = ext3_journal_dirty_metadata(handle, bitmap_bh);
477 /* And the group descriptor block */
478 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
479 ret = ext3_journal_dirty_metadata(handle, gd_bh);
480 if (!err) err = ret;
481 *pdquot_freed_blocks += group_freed;
483 if (overflow && !err) {
484 block += count;
485 count = overflow;
486 goto do_more;
488 sb->s_dirt = 1;
489 error_return:
490 brelse(bitmap_bh);
491 ext3_std_error(sb, err);
492 return;
495 /* Free given blocks, update quota and i_blocks field */
496 void ext3_free_blocks(handle_t *handle, struct inode *inode,
497 unsigned long block, unsigned long count)
499 struct super_block * sb;
500 int dquot_freed_blocks;
502 sb = inode->i_sb;
503 if (!sb) {
504 printk ("ext3_free_blocks: nonexistent device");
505 return;
507 ext3_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
508 if (dquot_freed_blocks)
509 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
510 return;
514 * For ext3 allocations, we must not reuse any blocks which are
515 * allocated in the bitmap buffer's "last committed data" copy. This
516 * prevents deletes from freeing up the page for reuse until we have
517 * committed the delete transaction.
519 * If we didn't do this, then deleting something and reallocating it as
520 * data would allow the old block to be overwritten before the
521 * transaction committed (because we force data to disk before commit).
522 * This would lead to corruption if we crashed between overwriting the
523 * data and committing the delete.
525 * @@@ We may want to make this allocation behaviour conditional on
526 * data-writes at some point, and disable it for metadata allocations or
527 * sync-data inodes.
529 static int ext3_test_allocatable(int nr, struct buffer_head *bh)
531 int ret;
532 struct journal_head *jh = bh2jh(bh);
534 if (ext3_test_bit(nr, bh->b_data))
535 return 0;
537 jbd_lock_bh_state(bh);
538 if (!jh->b_committed_data)
539 ret = 1;
540 else
541 ret = !ext3_test_bit(nr, jh->b_committed_data);
542 jbd_unlock_bh_state(bh);
543 return ret;
546 static int
547 bitmap_search_next_usable_block(int start, struct buffer_head *bh,
548 int maxblocks)
550 int next;
551 struct journal_head *jh = bh2jh(bh);
554 * The bitmap search --- search forward alternately through the actual
555 * bitmap and the last-committed copy until we find a bit free in
556 * both
558 while (start < maxblocks) {
559 next = ext3_find_next_zero_bit(bh->b_data, maxblocks, start);
560 if (next >= maxblocks)
561 return -1;
562 if (ext3_test_allocatable(next, bh))
563 return next;
564 jbd_lock_bh_state(bh);
565 if (jh->b_committed_data)
566 start = ext3_find_next_zero_bit(jh->b_committed_data,
567 maxblocks, next);
568 jbd_unlock_bh_state(bh);
570 return -1;
574 * Find an allocatable block in a bitmap. We honour both the bitmap and
575 * its last-committed copy (if that exists), and perform the "most
576 * appropriate allocation" algorithm of looking for a free block near
577 * the initial goal; then for a free byte somewhere in the bitmap; then
578 * for any free bit in the bitmap.
580 static int
581 find_next_usable_block(int start, struct buffer_head *bh, int maxblocks)
583 int here, next;
584 char *p, *r;
586 if (start > 0) {
588 * The goal was occupied; search forward for a free
589 * block within the next XX blocks.
591 * end_goal is more or less random, but it has to be
592 * less than EXT3_BLOCKS_PER_GROUP. Aligning up to the
593 * next 64-bit boundary is simple..
595 int end_goal = (start + 63) & ~63;
596 if (end_goal > maxblocks)
597 end_goal = maxblocks;
598 here = ext3_find_next_zero_bit(bh->b_data, end_goal, start);
599 if (here < end_goal && ext3_test_allocatable(here, bh))
600 return here;
601 ext3_debug("Bit not found near goal\n");
604 here = start;
605 if (here < 0)
606 here = 0;
608 p = ((char *)bh->b_data) + (here >> 3);
609 r = memscan(p, 0, (maxblocks - here + 7) >> 3);
610 next = (r - ((char *)bh->b_data)) << 3;
612 if (next < maxblocks && next >= start && ext3_test_allocatable(next, bh))
613 return next;
616 * The bitmap search --- search forward alternately through the actual
617 * bitmap and the last-committed copy until we find a bit free in
618 * both
620 here = bitmap_search_next_usable_block(here, bh, maxblocks);
621 return here;
625 * We think we can allocate this block in this bitmap. Try to set the bit.
626 * If that succeeds then check that nobody has allocated and then freed the
627 * block since we saw that is was not marked in b_committed_data. If it _was_
628 * allocated and freed then clear the bit in the bitmap again and return
629 * zero (failure).
631 static inline int
632 claim_block(spinlock_t *lock, int block, struct buffer_head *bh)
634 struct journal_head *jh = bh2jh(bh);
635 int ret;
637 if (ext3_set_bit_atomic(lock, block, bh->b_data))
638 return 0;
639 jbd_lock_bh_state(bh);
640 if (jh->b_committed_data && ext3_test_bit(block,jh->b_committed_data)) {
641 ext3_clear_bit_atomic(lock, block, bh->b_data);
642 ret = 0;
643 } else {
644 ret = 1;
646 jbd_unlock_bh_state(bh);
647 return ret;
651 * If we failed to allocate the desired block then we may end up crossing to a
652 * new bitmap. In that case we must release write access to the old one via
653 * ext3_journal_release_buffer(), else we'll run out of credits.
655 static int
656 ext3_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
657 struct buffer_head *bitmap_bh, int goal, struct ext3_reserve_window *my_rsv)
659 int group_first_block, start, end;
661 /* we do allocation within the reservation window if we have a window */
662 if (my_rsv) {
663 group_first_block =
664 le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
665 group * EXT3_BLOCKS_PER_GROUP(sb);
666 if (my_rsv->_rsv_start >= group_first_block)
667 start = my_rsv->_rsv_start - group_first_block;
668 else
669 /* reservation window cross group boundary */
670 start = 0;
671 end = my_rsv->_rsv_end - group_first_block + 1;
672 if (end > EXT3_BLOCKS_PER_GROUP(sb))
673 /* reservation window crosses group boundary */
674 end = EXT3_BLOCKS_PER_GROUP(sb);
675 if ((start <= goal) && (goal < end))
676 start = goal;
677 else
678 goal = -1;
679 } else {
680 if (goal > 0)
681 start = goal;
682 else
683 start = 0;
684 end = EXT3_BLOCKS_PER_GROUP(sb);
687 BUG_ON(start > EXT3_BLOCKS_PER_GROUP(sb));
689 repeat:
690 if (goal < 0 || !ext3_test_allocatable(goal, bitmap_bh)) {
691 goal = find_next_usable_block(start, bitmap_bh, end);
692 if (goal < 0)
693 goto fail_access;
694 if (!my_rsv) {
695 int i;
697 for (i = 0; i < 7 && goal > start &&
698 ext3_test_allocatable(goal - 1,
699 bitmap_bh);
700 i++, goal--)
704 start = goal;
706 if (!claim_block(sb_bgl_lock(EXT3_SB(sb), group), goal, bitmap_bh)) {
708 * The block was allocated by another thread, or it was
709 * allocated and then freed by another thread
711 start++;
712 goal++;
713 if (start >= end)
714 goto fail_access;
715 goto repeat;
717 return goal;
718 fail_access:
719 return -1;
723 * find_next_reservable_window():
724 * find a reservable space within the given range.
725 * It does not allocate the reservation window for now:
726 * alloc_new_reservation() will do the work later.
728 * @search_head: the head of the searching list;
729 * This is not necessarily the list head of the whole filesystem
731 * We have both head and start_block to assist the search
732 * for the reservable space. The list starts from head,
733 * but we will shift to the place where start_block is,
734 * then start from there, when looking for a reservable space.
736 * @size: the target new reservation window size
738 * @group_first_block: the first block we consider to start
739 * the real search from
741 * @last_block:
742 * the maximum block number that our goal reservable space
743 * could start from. This is normally the last block in this
744 * group. The search will end when we found the start of next
745 * possible reservable space is out of this boundary.
746 * This could handle the cross boundary reservation window
747 * request.
749 * basically we search from the given range, rather than the whole
750 * reservation double linked list, (start_block, last_block)
751 * to find a free region that is of my size and has not
752 * been reserved.
755 static int find_next_reservable_window(
756 struct ext3_reserve_window_node *search_head,
757 struct ext3_reserve_window_node *my_rsv,
758 struct super_block * sb, int start_block,
759 int last_block)
761 struct rb_node *next;
762 struct ext3_reserve_window_node *rsv, *prev;
763 int cur;
764 int size = my_rsv->rsv_goal_size;
766 /* TODO: make the start of the reservation window byte-aligned */
767 /* cur = *start_block & ~7;*/
768 cur = start_block;
769 rsv = search_head;
770 if (!rsv)
771 return -1;
773 while (1) {
774 if (cur <= rsv->rsv_end)
775 cur = rsv->rsv_end + 1;
777 /* TODO?
778 * in the case we could not find a reservable space
779 * that is what is expected, during the re-search, we could
780 * remember what's the largest reservable space we could have
781 * and return that one.
783 * For now it will fail if we could not find the reservable
784 * space with expected-size (or more)...
786 if (cur > last_block)
787 return -1; /* fail */
789 prev = rsv;
790 next = rb_next(&rsv->rsv_node);
791 rsv = list_entry(next,struct ext3_reserve_window_node,rsv_node);
794 * Reached the last reservation, we can just append to the
795 * previous one.
797 if (!next)
798 break;
800 if (cur + size <= rsv->rsv_start) {
802 * Found a reserveable space big enough. We could
803 * have a reservation across the group boundary here
805 break;
809 * we come here either :
810 * when we reach the end of the whole list,
811 * and there is empty reservable space after last entry in the list.
812 * append it to the end of the list.
814 * or we found one reservable space in the middle of the list,
815 * return the reservation window that we could append to.
816 * succeed.
819 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
820 rsv_window_remove(sb, my_rsv);
823 * Let's book the whole avaliable window for now. We will check the
824 * disk bitmap later and then, if there are free blocks then we adjust
825 * the window size if it's larger than requested.
826 * Otherwise, we will remove this node from the tree next time
827 * call find_next_reservable_window.
829 my_rsv->rsv_start = cur;
830 my_rsv->rsv_end = cur + size - 1;
831 my_rsv->rsv_alloc_hit = 0;
833 if (prev != my_rsv)
834 ext3_rsv_window_add(sb, my_rsv);
836 return 0;
840 * alloc_new_reservation()--allocate a new reservation window
842 * To make a new reservation, we search part of the filesystem
843 * reservation list (the list that inside the group). We try to
844 * allocate a new reservation window near the allocation goal,
845 * or the beginning of the group, if there is no goal.
847 * We first find a reservable space after the goal, then from
848 * there, we check the bitmap for the first free block after
849 * it. If there is no free block until the end of group, then the
850 * whole group is full, we failed. Otherwise, check if the free
851 * block is inside the expected reservable space, if so, we
852 * succeed.
853 * If the first free block is outside the reservable space, then
854 * start from the first free block, we search for next available
855 * space, and go on.
857 * on succeed, a new reservation will be found and inserted into the list
858 * It contains at least one free block, and it does not overlap with other
859 * reservation windows.
861 * failed: we failed to find a reservation window in this group
863 * @rsv: the reservation
865 * @goal: The goal (group-relative). It is where the search for a
866 * free reservable space should start from.
867 * if we have a goal(goal >0 ), then start from there,
868 * no goal(goal = -1), we start from the first block
869 * of the group.
871 * @sb: the super block
872 * @group: the group we are trying to allocate in
873 * @bitmap_bh: the block group block bitmap
876 static int alloc_new_reservation(struct ext3_reserve_window_node *my_rsv,
877 int goal, struct super_block *sb,
878 unsigned int group, struct buffer_head *bitmap_bh)
880 struct ext3_reserve_window_node *search_head;
881 int group_first_block, group_end_block, start_block;
882 int first_free_block;
883 struct rb_root *fs_rsv_root = &EXT3_SB(sb)->s_rsv_window_root;
884 unsigned long size;
885 int ret;
886 spinlock_t *rsv_lock = &EXT3_SB(sb)->s_rsv_window_lock;
888 group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
889 group * EXT3_BLOCKS_PER_GROUP(sb);
890 group_end_block = group_first_block + EXT3_BLOCKS_PER_GROUP(sb) - 1;
892 if (goal < 0)
893 start_block = group_first_block;
894 else
895 start_block = goal + group_first_block;
897 size = my_rsv->rsv_goal_size;
899 if (!rsv_is_empty(&my_rsv->rsv_window)) {
901 * if the old reservation is cross group boundary
902 * and if the goal is inside the old reservation window,
903 * we will come here when we just failed to allocate from
904 * the first part of the window. We still have another part
905 * that belongs to the next group. In this case, there is no
906 * point to discard our window and try to allocate a new one
907 * in this group(which will fail). we should
908 * keep the reservation window, just simply move on.
910 * Maybe we could shift the start block of the reservation
911 * window to the first block of next group.
914 if ((my_rsv->rsv_start <= group_end_block) &&
915 (my_rsv->rsv_end > group_end_block) &&
916 (start_block >= my_rsv->rsv_start))
917 return -1;
919 if ((my_rsv->rsv_alloc_hit >
920 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
922 * if we previously allocation hit ration is greater than half
923 * we double the size of reservation window next time
924 * otherwise keep the same
926 size = size * 2;
927 if (size > EXT3_MAX_RESERVE_BLOCKS)
928 size = EXT3_MAX_RESERVE_BLOCKS;
929 my_rsv->rsv_goal_size= size;
933 spin_lock(rsv_lock);
935 * shift the search start to the window near the goal block
937 search_head = search_reserve_window(fs_rsv_root, start_block);
940 * find_next_reservable_window() simply finds a reservable window
941 * inside the given range(start_block, group_end_block).
943 * To make sure the reservation window has a free bit inside it, we
944 * need to check the bitmap after we found a reservable window.
946 retry:
947 ret = find_next_reservable_window(search_head, my_rsv, sb,
948 start_block, group_end_block);
950 if (ret == -1) {
951 if (!rsv_is_empty(&my_rsv->rsv_window))
952 rsv_window_remove(sb, my_rsv);
953 spin_unlock(rsv_lock);
954 return -1;
958 * On success, find_next_reservable_window() returns the
959 * reservation window where there is a reservable space after it.
960 * Before we reserve this reservable space, we need
961 * to make sure there is at least a free block inside this region.
963 * searching the first free bit on the block bitmap and copy of
964 * last committed bitmap alternatively, until we found a allocatable
965 * block. Search start from the start block of the reservable space
966 * we just found.
968 spin_unlock(rsv_lock);
969 first_free_block = bitmap_search_next_usable_block(
970 my_rsv->rsv_start - group_first_block,
971 bitmap_bh, group_end_block - group_first_block + 1);
973 if (first_free_block < 0) {
975 * no free block left on the bitmap, no point
976 * to reserve the space. return failed.
978 spin_lock(rsv_lock);
979 if (!rsv_is_empty(&my_rsv->rsv_window))
980 rsv_window_remove(sb, my_rsv);
981 spin_unlock(rsv_lock);
982 return -1; /* failed */
985 start_block = first_free_block + group_first_block;
987 * check if the first free block is within the
988 * free space we just reserved
990 if (start_block >= my_rsv->rsv_start && start_block < my_rsv->rsv_end)
991 return 0; /* success */
993 * if the first free bit we found is out of the reservable space
994 * continue search for next reservable space,
995 * start from where the free block is,
996 * we also shift the list head to where we stopped last time
998 search_head = my_rsv;
999 spin_lock(rsv_lock);
1000 goto retry;
1004 * This is the main function used to allocate a new block and its reservation
1005 * window.
1007 * Each time when a new block allocation is need, first try to allocate from
1008 * its own reservation. If it does not have a reservation window, instead of
1009 * looking for a free bit on bitmap first, then look up the reservation list to
1010 * see if it is inside somebody else's reservation window, we try to allocate a
1011 * reservation window for it starting from the goal first. Then do the block
1012 * allocation within the reservation window.
1014 * This will avoid keeping on searching the reservation list again and
1015 * again when somebody is looking for a free block (without
1016 * reservation), and there are lots of free blocks, but they are all
1017 * being reserved.
1019 * We use a sorted double linked list for the per-filesystem reservation list.
1020 * The insert, remove and find a free space(non-reserved) operations for the
1021 * sorted double linked list should be fast.
1024 static int
1025 ext3_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1026 unsigned int group, struct buffer_head *bitmap_bh,
1027 int goal, struct ext3_reserve_window_node * my_rsv,
1028 int *errp)
1030 unsigned long group_first_block;
1031 int ret = 0;
1032 int fatal;
1034 *errp = 0;
1037 * Make sure we use undo access for the bitmap, because it is critical
1038 * that we do the frozen_data COW on bitmap buffers in all cases even
1039 * if the buffer is in BJ_Forget state in the committing transaction.
1041 BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1042 fatal = ext3_journal_get_undo_access(handle, bitmap_bh);
1043 if (fatal) {
1044 *errp = fatal;
1045 return -1;
1049 * we don't deal with reservation when
1050 * filesystem is mounted without reservation
1051 * or the file is not a regular file
1052 * or last attempt to allocate a block with reservation turned on failed
1054 if (my_rsv == NULL ) {
1055 ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh, goal, NULL);
1056 goto out;
1059 * goal is a group relative block number (if there is a goal)
1060 * 0 < goal < EXT3_BLOCKS_PER_GROUP(sb)
1061 * first block is a filesystem wide block number
1062 * first block is the block number of the first block in this group
1064 group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
1065 group * EXT3_BLOCKS_PER_GROUP(sb);
1068 * Basically we will allocate a new block from inode's reservation
1069 * window.
1071 * We need to allocate a new reservation window, if:
1072 * a) inode does not have a reservation window; or
1073 * b) last attempt to allocate a block from existing reservation
1074 * failed; or
1075 * c) we come here with a goal and with a reservation window
1077 * We do not need to allocate a new reservation window if we come here
1078 * at the beginning with a goal and the goal is inside the window, or
1079 * we don't have a goal but already have a reservation window.
1080 * then we could go to allocate from the reservation window directly.
1082 while (1) {
1083 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1084 !goal_in_my_reservation(&my_rsv->rsv_window, goal, group, sb)) {
1085 ret = alloc_new_reservation(my_rsv, goal, sb,
1086 group, bitmap_bh);
1087 if (ret < 0)
1088 break; /* failed */
1090 if (!goal_in_my_reservation(&my_rsv->rsv_window, goal, group, sb))
1091 goal = -1;
1093 if ((my_rsv->rsv_start >= group_first_block + EXT3_BLOCKS_PER_GROUP(sb))
1094 || (my_rsv->rsv_end < group_first_block))
1095 BUG();
1096 ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh, goal,
1097 &my_rsv->rsv_window);
1098 if (ret >= 0) {
1099 my_rsv->rsv_alloc_hit++;
1100 break; /* succeed */
1103 out:
1104 if (ret >= 0) {
1105 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1106 "bitmap block");
1107 fatal = ext3_journal_dirty_metadata(handle, bitmap_bh);
1108 if (fatal) {
1109 *errp = fatal;
1110 return -1;
1112 return ret;
1115 BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1116 ext3_journal_release_buffer(handle, bitmap_bh);
1117 return ret;
1120 static int ext3_has_free_blocks(struct ext3_sb_info *sbi)
1122 int free_blocks, root_blocks;
1124 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1125 root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count);
1126 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1127 sbi->s_resuid != current->fsuid &&
1128 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1129 return 0;
1131 return 1;
1135 * ext3_should_retry_alloc() is called when ENOSPC is returned, and if
1136 * it is profitable to retry the operation, this function will wait
1137 * for the current or commiting transaction to complete, and then
1138 * return TRUE.
1140 int ext3_should_retry_alloc(struct super_block *sb, int *retries)
1142 if (!ext3_has_free_blocks(EXT3_SB(sb)) || (*retries)++ > 3)
1143 return 0;
1145 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1147 return journal_force_commit_nested(EXT3_SB(sb)->s_journal);
1151 * ext3_new_block uses a goal block to assist allocation. If the goal is
1152 * free, or there is a free block within 32 blocks of the goal, that block
1153 * is allocated. Otherwise a forward search is made for a free block; within
1154 * each block group the search first looks for an entire free byte in the block
1155 * bitmap, and then for any free bit if that fails.
1156 * This function also updates quota and i_blocks field.
1158 int ext3_new_block(handle_t *handle, struct inode *inode,
1159 unsigned long goal, int *errp)
1161 struct buffer_head *bitmap_bh = NULL;
1162 struct buffer_head *gdp_bh;
1163 int group_no;
1164 int goal_group;
1165 int ret_block;
1166 int bgi; /* blockgroup iteration index */
1167 int target_block;
1168 int fatal = 0, err;
1169 int performed_allocation = 0;
1170 int free_blocks;
1171 struct super_block *sb;
1172 struct ext3_group_desc *gdp;
1173 struct ext3_super_block *es;
1174 struct ext3_sb_info *sbi;
1175 struct ext3_reserve_window_node *my_rsv = NULL;
1176 struct ext3_block_alloc_info *block_i;
1177 unsigned short windowsz = 0;
1178 #ifdef EXT3FS_DEBUG
1179 static int goal_hits, goal_attempts;
1180 #endif
1181 unsigned long ngroups;
1183 *errp = -ENOSPC;
1184 sb = inode->i_sb;
1185 if (!sb) {
1186 printk("ext3_new_block: nonexistent device");
1187 return 0;
1191 * Check quota for allocation of this block.
1193 if (DQUOT_ALLOC_BLOCK(inode, 1)) {
1194 *errp = -EDQUOT;
1195 return 0;
1198 sbi = EXT3_SB(sb);
1199 es = EXT3_SB(sb)->s_es;
1200 ext3_debug("goal=%lu.\n", goal);
1202 * Allocate a block from reservation only when
1203 * filesystem is mounted with reservation(default,-o reservation), and
1204 * it's a regular file, and
1205 * the desired window size is greater than 0 (One could use ioctl
1206 * command EXT3_IOC_SETRSVSZ to set the window size to 0 to turn off
1207 * reservation on that particular file)
1209 block_i = EXT3_I(inode)->i_block_alloc_info;
1210 if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1211 my_rsv = &block_i->rsv_window_node;
1213 if (!ext3_has_free_blocks(sbi)) {
1214 *errp = -ENOSPC;
1215 goto out;
1219 * First, test whether the goal block is free.
1221 if (goal < le32_to_cpu(es->s_first_data_block) ||
1222 goal >= le32_to_cpu(es->s_blocks_count))
1223 goal = le32_to_cpu(es->s_first_data_block);
1224 group_no = (goal - le32_to_cpu(es->s_first_data_block)) /
1225 EXT3_BLOCKS_PER_GROUP(sb);
1226 gdp = ext3_get_group_desc(sb, group_no, &gdp_bh);
1227 if (!gdp)
1228 goto io_error;
1230 goal_group = group_no;
1231 retry:
1232 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1234 * if there is not enough free blocks to make a new resevation
1235 * turn off reservation for this allocation
1237 if (my_rsv && (free_blocks < windowsz)
1238 && (rsv_is_empty(&my_rsv->rsv_window)))
1239 my_rsv = NULL;
1241 if (free_blocks > 0) {
1242 ret_block = ((goal - le32_to_cpu(es->s_first_data_block)) %
1243 EXT3_BLOCKS_PER_GROUP(sb));
1244 bitmap_bh = read_block_bitmap(sb, group_no);
1245 if (!bitmap_bh)
1246 goto io_error;
1247 ret_block = ext3_try_to_allocate_with_rsv(sb, handle, group_no,
1248 bitmap_bh, ret_block, my_rsv, &fatal);
1249 if (fatal)
1250 goto out;
1251 if (ret_block >= 0)
1252 goto allocated;
1255 ngroups = EXT3_SB(sb)->s_groups_count;
1256 smp_rmb();
1259 * Now search the rest of the groups. We assume that
1260 * i and gdp correctly point to the last group visited.
1262 for (bgi = 0; bgi < ngroups; bgi++) {
1263 group_no++;
1264 if (group_no >= ngroups)
1265 group_no = 0;
1266 gdp = ext3_get_group_desc(sb, group_no, &gdp_bh);
1267 if (!gdp) {
1268 *errp = -EIO;
1269 goto out;
1271 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1273 * skip this group if the number of
1274 * free blocks is less than half of the reservation
1275 * window size.
1277 if (free_blocks <= (windowsz/2))
1278 continue;
1280 brelse(bitmap_bh);
1281 bitmap_bh = read_block_bitmap(sb, group_no);
1282 if (!bitmap_bh)
1283 goto io_error;
1284 ret_block = ext3_try_to_allocate_with_rsv(sb, handle, group_no,
1285 bitmap_bh, -1, my_rsv, &fatal);
1286 if (fatal)
1287 goto out;
1288 if (ret_block >= 0)
1289 goto allocated;
1292 * We may end up a bogus ealier ENOSPC error due to
1293 * filesystem is "full" of reservations, but
1294 * there maybe indeed free blocks avaliable on disk
1295 * In this case, we just forget about the reservations
1296 * just do block allocation as without reservations.
1298 if (my_rsv) {
1299 my_rsv = NULL;
1300 group_no = goal_group;
1301 goto retry;
1303 /* No space left on the device */
1304 *errp = -ENOSPC;
1305 goto out;
1307 allocated:
1309 ext3_debug("using block group %d(%d)\n",
1310 group_no, gdp->bg_free_blocks_count);
1312 BUFFER_TRACE(gdp_bh, "get_write_access");
1313 fatal = ext3_journal_get_write_access(handle, gdp_bh);
1314 if (fatal)
1315 goto out;
1317 target_block = ret_block + group_no * EXT3_BLOCKS_PER_GROUP(sb)
1318 + le32_to_cpu(es->s_first_data_block);
1320 if (target_block == le32_to_cpu(gdp->bg_block_bitmap) ||
1321 target_block == le32_to_cpu(gdp->bg_inode_bitmap) ||
1322 in_range(target_block, le32_to_cpu(gdp->bg_inode_table),
1323 EXT3_SB(sb)->s_itb_per_group))
1324 ext3_error(sb, "ext3_new_block",
1325 "Allocating block in system zone - "
1326 "block = %u", target_block);
1328 performed_allocation = 1;
1330 #ifdef CONFIG_JBD_DEBUG
1332 struct buffer_head *debug_bh;
1334 /* Record bitmap buffer state in the newly allocated block */
1335 debug_bh = sb_find_get_block(sb, target_block);
1336 if (debug_bh) {
1337 BUFFER_TRACE(debug_bh, "state when allocated");
1338 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1339 brelse(debug_bh);
1342 jbd_lock_bh_state(bitmap_bh);
1343 spin_lock(sb_bgl_lock(sbi, group_no));
1344 if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1345 if (ext3_test_bit(ret_block,
1346 bh2jh(bitmap_bh)->b_committed_data)) {
1347 printk("%s: block was unexpectedly set in "
1348 "b_committed_data\n", __FUNCTION__);
1351 ext3_debug("found bit %d\n", ret_block);
1352 spin_unlock(sb_bgl_lock(sbi, group_no));
1353 jbd_unlock_bh_state(bitmap_bh);
1354 #endif
1356 /* ret_block was blockgroup-relative. Now it becomes fs-relative */
1357 ret_block = target_block;
1359 if (ret_block >= le32_to_cpu(es->s_blocks_count)) {
1360 ext3_error(sb, "ext3_new_block",
1361 "block(%d) >= blocks count(%d) - "
1362 "block_group = %d, es == %p ", ret_block,
1363 le32_to_cpu(es->s_blocks_count), group_no, es);
1364 goto out;
1368 * It is up to the caller to add the new buffer to a journal
1369 * list of some description. We don't know in advance whether
1370 * the caller wants to use it as metadata or data.
1372 ext3_debug("allocating block %d. Goal hits %d of %d.\n",
1373 ret_block, goal_hits, goal_attempts);
1375 spin_lock(sb_bgl_lock(sbi, group_no));
1376 gdp->bg_free_blocks_count =
1377 cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count) - 1);
1378 spin_unlock(sb_bgl_lock(sbi, group_no));
1379 percpu_counter_mod(&sbi->s_freeblocks_counter, -1);
1381 BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1382 err = ext3_journal_dirty_metadata(handle, gdp_bh);
1383 if (!fatal)
1384 fatal = err;
1386 sb->s_dirt = 1;
1387 if (fatal)
1388 goto out;
1390 *errp = 0;
1391 brelse(bitmap_bh);
1392 return ret_block;
1394 io_error:
1395 *errp = -EIO;
1396 out:
1397 if (fatal) {
1398 *errp = fatal;
1399 ext3_std_error(sb, fatal);
1402 * Undo the block allocation
1404 if (!performed_allocation)
1405 DQUOT_FREE_BLOCK(inode, 1);
1406 brelse(bitmap_bh);
1407 return 0;
1410 unsigned long ext3_count_free_blocks(struct super_block *sb)
1412 unsigned long desc_count;
1413 struct ext3_group_desc *gdp;
1414 int i;
1415 unsigned long ngroups = EXT3_SB(sb)->s_groups_count;
1416 #ifdef EXT3FS_DEBUG
1417 struct ext3_super_block *es;
1418 unsigned long bitmap_count, x;
1419 struct buffer_head *bitmap_bh = NULL;
1421 es = EXT3_SB(sb)->s_es;
1422 desc_count = 0;
1423 bitmap_count = 0;
1424 gdp = NULL;
1426 smp_rmb();
1427 for (i = 0; i < ngroups; i++) {
1428 gdp = ext3_get_group_desc(sb, i, NULL);
1429 if (!gdp)
1430 continue;
1431 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1432 brelse(bitmap_bh);
1433 bitmap_bh = read_block_bitmap(sb, i);
1434 if (bitmap_bh == NULL)
1435 continue;
1437 x = ext3_count_free(bitmap_bh, sb->s_blocksize);
1438 printk("group %d: stored = %d, counted = %lu\n",
1439 i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1440 bitmap_count += x;
1442 brelse(bitmap_bh);
1443 printk("ext3_count_free_blocks: stored = %u, computed = %lu, %lu\n",
1444 le32_to_cpu(es->s_free_blocks_count), desc_count, bitmap_count);
1445 return bitmap_count;
1446 #else
1447 desc_count = 0;
1448 smp_rmb();
1449 for (i = 0; i < ngroups; i++) {
1450 gdp = ext3_get_group_desc(sb, i, NULL);
1451 if (!gdp)
1452 continue;
1453 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1456 return desc_count;
1457 #endif
1460 static inline int
1461 block_in_use(unsigned long block, struct super_block *sb, unsigned char *map)
1463 return ext3_test_bit ((block -
1464 le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block)) %
1465 EXT3_BLOCKS_PER_GROUP(sb), map);
1468 static inline int test_root(int a, int b)
1470 int num = b;
1472 while (a > num)
1473 num *= b;
1474 return num == a;
1477 static int ext3_group_sparse(int group)
1479 if (group <= 1)
1480 return 1;
1481 if (!(group & 1))
1482 return 0;
1483 return (test_root(group, 7) || test_root(group, 5) ||
1484 test_root(group, 3));
1488 * ext3_bg_has_super - number of blocks used by the superblock in group
1489 * @sb: superblock for filesystem
1490 * @group: group number to check
1492 * Return the number of blocks used by the superblock (primary or backup)
1493 * in this group. Currently this will be only 0 or 1.
1495 int ext3_bg_has_super(struct super_block *sb, int group)
1497 if (EXT3_HAS_RO_COMPAT_FEATURE(sb,EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER)&&
1498 !ext3_group_sparse(group))
1499 return 0;
1500 return 1;
1504 * ext3_bg_num_gdb - number of blocks used by the group table in group
1505 * @sb: superblock for filesystem
1506 * @group: group number to check
1508 * Return the number of blocks used by the group descriptor table
1509 * (primary or backup) in this group. In the future there may be a
1510 * different number of descriptor blocks in each group.
1512 unsigned long ext3_bg_num_gdb(struct super_block *sb, int group)
1514 if (EXT3_HAS_RO_COMPAT_FEATURE(sb,EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER)&&
1515 !ext3_group_sparse(group))
1516 return 0;
1517 return EXT3_SB(sb)->s_gdb_count;