Use C89 struct initializers to workaround compilers that don't grok C99.
[portableproplib.git] / src / prop_rb.c
blob13e8d9e0d65a08af918756b52479e90e5bebd7a9
1 /* $NetBSD: prop_rb.c,v 1.9 2008/06/17 21:29:47 thorpej Exp $ */
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matt Thomas <matt@3am-software.com>.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 #include <prop/proplib.h>
33 #include "prop_object_impl.h"
34 #include "prop_rb_impl.h"
36 #undef KASSERT
37 #ifdef RBDEBUG
38 #define KASSERT(x) _PROP_ASSERT(x)
39 #else
40 #define KASSERT(x) /* nothing */
41 #endif
43 #ifndef __predict_false
44 #define __predict_false(x) (x)
45 #endif
47 static void rb_tree_reparent_nodes(struct rb_tree *, struct rb_node *,
48 unsigned int);
49 static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
50 static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
51 unsigned int);
52 #ifdef RBDEBUG
53 static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
54 const struct rb_node *, unsigned int);
55 static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
56 const struct rb_node *, bool);
57 #endif
59 #ifdef RBDEBUG
60 #define RBT_COUNT_INCR(rbt) (rbt)->rbt_count++
61 #define RBT_COUNT_DECR(rbt) (rbt)->rbt_count--
62 #else
63 #define RBT_COUNT_INCR(rbt) /* nothing */
64 #define RBT_COUNT_DECR(rbt) /* nothing */
65 #endif
67 #define RBUNCONST(a) ((void *)(unsigned long)(const void *)(a))
70 * Rather than testing for the NULL everywhere, all terminal leaves are
71 * pointed to this node (and that includes itself). Note that by setting
72 * it to be const, that on some architectures trying to write to it will
73 * cause a fault.
75 static const struct rb_node sentinel_node = {
76 { RBUNCONST(&sentinel_node),
77 RBUNCONST(&sentinel_node),
78 NULL },
79 #if BYTE_ORDER == LITTLE_ENDIAN
80 { { 0, 0, 0, 1 } }
81 #endif
82 #if BYTE_ORDER == BIG_ENDIAN
83 { { 1, 0, 0, 0 } }
84 #endif
87 void
88 _prop_rb_tree_init(struct rb_tree *rbt, const struct rb_tree_ops *ops)
90 RB_TAILQ_INIT(&rbt->rbt_nodes);
91 #ifdef RBDEBUG
92 rbt->rbt_count = 0;
93 #endif
94 rbt->rbt_ops = ops;
95 *((const struct rb_node **)&rbt->rbt_root) = &sentinel_node;
99 * Swap the location and colors of 'self' and its child @ which. The child
100 * can not be a sentinel node.
102 /*ARGSUSED*/
103 static void
104 rb_tree_reparent_nodes(struct rb_tree *rbt _PROP_ARG_UNUSED,
105 struct rb_node *old_father, unsigned int which)
107 const unsigned int other = which ^ RB_NODE_OTHER;
108 struct rb_node * const grandpa = old_father->rb_parent;
109 struct rb_node * const old_child = old_father->rb_nodes[which];
110 struct rb_node * const new_father = old_child;
111 struct rb_node * const new_child = old_father;
112 unsigned int properties;
114 KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);
116 KASSERT(!RB_SENTINEL_P(old_child));
117 KASSERT(old_child->rb_parent == old_father);
119 KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
120 KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
121 KASSERT(RB_ROOT_P(old_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
124 * Exchange descendant linkages.
126 grandpa->rb_nodes[old_father->rb_position] = new_father;
127 new_child->rb_nodes[which] = old_child->rb_nodes[other];
128 new_father->rb_nodes[other] = new_child;
131 * Update ancestor linkages
133 new_father->rb_parent = grandpa;
134 new_child->rb_parent = new_father;
137 * Exchange properties between new_father and new_child. The only
138 * change is that new_child's position is now on the other side.
140 properties = old_child->rb_properties;
141 new_father->rb_properties = old_father->rb_properties;
142 new_child->rb_properties = properties;
143 new_child->rb_position = other;
146 * Make sure to reparent the new child to ourself.
148 if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
149 new_child->rb_nodes[which]->rb_parent = new_child;
150 new_child->rb_nodes[which]->rb_position = which;
153 KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
154 KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
155 KASSERT(RB_ROOT_P(new_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
158 bool
159 _prop_rb_tree_insert_node(struct rb_tree *rbt, struct rb_node *self)
161 struct rb_node *parent, *tmp;
162 rb_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
163 unsigned int position;
165 self->rb_properties = 0;
166 tmp = rbt->rbt_root;
168 * This is a hack. Because rbt->rbt_root is just a struct rb_node *,
169 * just like rb_node->rb_nodes[RB_NODE_LEFT], we can use this fact to
170 * avoid a lot of tests for root and know that even at root,
171 * updating rb_node->rb_parent->rb_nodes[rb_node->rb_position] will
172 * rbt->rbt_root.
174 /* LINTED: see above */
175 parent = (struct rb_node *)&rbt->rbt_root;
176 position = RB_NODE_LEFT;
179 * Find out where to place this new leaf.
181 while (!RB_SENTINEL_P(tmp)) {
182 const int diff = (*compare_nodes)(tmp, self);
183 if (__predict_false(diff == 0)) {
185 * Node already exists; don't insert.
187 return false;
189 parent = tmp;
190 KASSERT(diff != 0);
191 if (diff < 0) {
192 position = RB_NODE_LEFT;
193 } else {
194 position = RB_NODE_RIGHT;
196 tmp = parent->rb_nodes[position];
199 #ifdef RBDEBUG
201 struct rb_node *prev = NULL, *next = NULL;
203 if (position == RB_NODE_RIGHT)
204 prev = parent;
205 else if (tmp != rbt->rbt_root)
206 next = parent;
209 * Verify our sequential position
211 KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
212 KASSERT(next == NULL || !RB_SENTINEL_P(next));
213 if (prev != NULL && next == NULL)
214 next = TAILQ_NEXT(prev, rb_link);
215 if (prev == NULL && next != NULL)
216 prev = TAILQ_PREV(next, rb_node_qh, rb_link);
217 KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
218 KASSERT(next == NULL || !RB_SENTINEL_P(next));
219 KASSERT(prev == NULL
220 || (*compare_nodes)(prev, self) > 0);
221 KASSERT(next == NULL
222 || (*compare_nodes)(self, next) > 0);
224 #endif
227 * Initialize the node and insert as a leaf into the tree.
229 self->rb_parent = parent;
230 self->rb_position = position;
231 /* LINTED: rbt_root hack */
232 if (__predict_false(parent == (struct rb_node *) &rbt->rbt_root)) {
233 RB_MARK_ROOT(self);
234 } else {
235 KASSERT(position == RB_NODE_LEFT || position == RB_NODE_RIGHT);
236 KASSERT(!RB_ROOT_P(self)); /* Already done */
238 KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
239 self->rb_left = parent->rb_nodes[position];
240 self->rb_right = parent->rb_nodes[position];
241 parent->rb_nodes[position] = self;
242 KASSERT(self->rb_left == &sentinel_node &&
243 self->rb_right == &sentinel_node);
246 * Insert the new node into a sorted list for easy sequential access
248 RBT_COUNT_INCR(rbt);
249 #ifdef RBDEBUG
250 if (RB_ROOT_P(self)) {
251 RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
252 } else if (position == RB_NODE_LEFT) {
253 KASSERT((*compare_nodes)(self, self->rb_parent) > 0);
254 RB_TAILQ_INSERT_BEFORE(self->rb_parent, self, rb_link);
255 } else {
256 KASSERT((*compare_nodes)(self->rb_parent, self) > 0);
257 RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, self->rb_parent,
258 self, rb_link);
260 #endif
262 #if 0
264 * Validate the tree before we rebalance
266 _prop_rb_tree_check(rbt, false);
267 #endif
270 * Rebalance tree after insertion
272 rb_tree_insert_rebalance(rbt, self);
274 #if 0
276 * Validate the tree after we rebalanced
278 _prop_rb_tree_check(rbt, true);
279 #endif
281 return true;
284 static void
285 rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
287 RB_MARK_RED(self);
289 while (!RB_ROOT_P(self) && RB_RED_P(self->rb_parent)) {
290 const unsigned int which =
291 (self->rb_parent == self->rb_parent->rb_parent->rb_left
292 ? RB_NODE_LEFT
293 : RB_NODE_RIGHT);
294 const unsigned int other = which ^ RB_NODE_OTHER;
295 struct rb_node * father = self->rb_parent;
296 struct rb_node * grandpa = father->rb_parent;
297 struct rb_node * const uncle = grandpa->rb_nodes[other];
299 KASSERT(!RB_SENTINEL_P(self));
301 * We are red and our parent is red, therefore we must have a
302 * grandfather and he must be black.
304 KASSERT(RB_RED_P(self)
305 && RB_RED_P(father)
306 && RB_BLACK_P(grandpa));
308 if (RB_RED_P(uncle)) {
310 * Case 1: our uncle is red
311 * Simply invert the colors of our parent and
312 * uncle and make our grandparent red. And
313 * then solve the problem up at his level.
315 RB_MARK_BLACK(uncle);
316 RB_MARK_BLACK(father);
317 RB_MARK_RED(grandpa);
318 self = grandpa;
319 continue;
322 * Case 2&3: our uncle is black.
324 if (self == father->rb_nodes[other]) {
326 * Case 2: we are on the same side as our uncle
327 * Swap ourselves with our parent so this case
328 * becomes case 3. Basically our parent becomes our
329 * child.
331 rb_tree_reparent_nodes(rbt, father, other);
332 KASSERT(father->rb_parent == self);
333 KASSERT(self->rb_nodes[which] == father);
334 KASSERT(self->rb_parent == grandpa);
336 KASSERT(RB_RED_P(self) && RB_RED_P(father));
337 KASSERT(grandpa->rb_nodes[which] == father);
339 * Case 3: we are opposite a child of a black uncle.
340 * Swap our parent and grandparent. Since our grandfather
341 * is black, our father will become black and our new sibling
342 * (former grandparent) will become red.
344 rb_tree_reparent_nodes(rbt, grandpa, which);
345 KASSERT(self->rb_parent == father);
346 KASSERT(self->rb_parent->rb_nodes[self->rb_position ^ RB_NODE_OTHER] == grandpa);
347 KASSERT(RB_RED_P(self));
348 KASSERT(RB_BLACK_P(father));
349 KASSERT(RB_RED_P(grandpa));
350 break;
354 * Final step: Set the root to black.
356 RB_MARK_BLACK(rbt->rbt_root);
359 struct rb_node *
360 _prop_rb_tree_find(struct rb_tree *rbt, const void *key)
362 struct rb_node *parent = rbt->rbt_root;
363 rb_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
365 while (!RB_SENTINEL_P(parent)) {
366 const int diff = (*compare_key)(parent, key);
367 if (diff == 0)
368 return parent;
369 parent = parent->rb_nodes[diff > 0];
372 return NULL;
375 static void
376 rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, int rebalance)
378 const unsigned int which = self->rb_position;
379 struct rb_node *father = self->rb_parent;
381 KASSERT(rebalance || (RB_ROOT_P(self) || RB_RED_P(self)));
382 KASSERT(!rebalance || RB_BLACK_P(self));
383 KASSERT(RB_CHILDLESS_P(self));
384 KASSERT(rb_tree_check_node(rbt, self, NULL, false));
386 father->rb_nodes[which] = self->rb_left;
389 * Remove ourselves from the node list and decrement the count.
391 RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
392 RBT_COUNT_DECR(rbt);
394 if (rebalance)
395 rb_tree_removal_rebalance(rbt, father, which);
396 KASSERT(RB_ROOT_P(self) || rb_tree_check_node(rbt, father, NULL, true));
399 static void
400 rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
401 struct rb_node *standin)
403 unsigned int standin_which = standin->rb_position;
404 unsigned int standin_other = standin_which ^ RB_NODE_OTHER;
405 struct rb_node *standin_child;
406 struct rb_node *standin_father;
407 bool rebalance = RB_BLACK_P(standin);
409 if (standin->rb_parent == self) {
411 * As a child of self, any childen would be opposite of
412 * our parent (self).
414 KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
415 standin_child = standin->rb_nodes[standin_which];
416 } else {
418 * Since we aren't a child of self, any childen would be
419 * on the same side as our parent (self).
421 KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
422 standin_child = standin->rb_nodes[standin_other];
426 * the node we are removing must have two children.
428 KASSERT(RB_TWOCHILDREN_P(self));
430 * If standin has a child, it must be red.
432 KASSERT(RB_SENTINEL_P(standin_child) || RB_RED_P(standin_child));
435 * Verify things are sane.
437 KASSERT(rb_tree_check_node(rbt, self, NULL, false));
438 KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
440 if (!RB_SENTINEL_P(standin_child)) {
442 * We know we have a red child so if we swap them we can
443 * void flipping standin's child to black afterwards.
445 KASSERT(rb_tree_check_node(rbt, standin_child, NULL, true));
446 rb_tree_reparent_nodes(rbt, standin,
447 standin_child->rb_position);
448 KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
449 KASSERT(rb_tree_check_node(rbt, standin_child, NULL, true));
451 * Since we are removing a red leaf, no need to rebalance.
453 rebalance = false;
455 * We know that standin can not be a child of self, so
456 * update before of that.
458 KASSERT(standin->rb_parent != self);
459 standin_which = standin->rb_position;
460 standin_other = standin_which ^ RB_NODE_OTHER;
462 KASSERT(RB_CHILDLESS_P(standin));
465 * If we are about to delete the standin's father, then when we call
466 * rebalance, we need to use ourselves as our father. Otherwise
467 * remember our original father. Also, if we are our standin's father
468 * we only need to reparent the standin's brother.
470 if (standin->rb_parent == self) {
472 * | R --> S |
473 * | Q S --> Q * |
474 * | --> |
476 standin_father = standin;
477 KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
478 KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
479 KASSERT(self->rb_nodes[standin_which] == standin);
481 * Make our brother our son.
483 standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
484 standin->rb_nodes[standin_other]->rb_parent = standin;
485 KASSERT(standin->rb_nodes[standin_other]->rb_position == standin_other);
486 } else {
488 * | P --> P |
489 * | S --> Q |
490 * | Q --> |
492 standin_father = standin->rb_parent;
493 standin_father->rb_nodes[standin_which] =
494 standin->rb_nodes[standin_which];
495 standin->rb_left = self->rb_left;
496 standin->rb_right = self->rb_right;
497 standin->rb_left->rb_parent = standin;
498 standin->rb_right->rb_parent = standin;
502 * Now copy the result of self to standin and then replace
503 * self with standin in the tree.
505 standin->rb_parent = self->rb_parent;
506 standin->rb_properties = self->rb_properties;
507 standin->rb_parent->rb_nodes[standin->rb_position] = standin;
510 * Remove ourselves from the node list and decrement the count.
512 RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
513 RBT_COUNT_DECR(rbt);
515 KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
516 KASSERT(rb_tree_check_node(rbt, standin_father, NULL, false));
518 if (!rebalance)
519 return;
521 rb_tree_removal_rebalance(rbt, standin_father, standin_which);
522 KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
526 * We could do this by doing
527 * rb_tree_node_swap(rbt, self, which);
528 * rb_tree_prune_node(rbt, self, false);
530 * But it's more efficient to just evalate and recolor the child.
532 /*ARGSUSED*/
533 static void
534 rb_tree_prune_blackred_branch(struct rb_tree *rbt _PROP_ARG_UNUSED,
535 struct rb_node *self, unsigned int which)
537 struct rb_node *parent = self->rb_parent;
538 struct rb_node *child = self->rb_nodes[which];
540 KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);
541 KASSERT(RB_BLACK_P(self) && RB_RED_P(child));
542 KASSERT(!RB_TWOCHILDREN_P(child));
543 KASSERT(RB_CHILDLESS_P(child));
544 KASSERT(rb_tree_check_node(rbt, self, NULL, false));
545 KASSERT(rb_tree_check_node(rbt, child, NULL, false));
548 * Remove ourselves from the tree and give our former child our
549 * properties (position, color, root).
551 parent->rb_nodes[self->rb_position] = child;
552 child->rb_parent = parent;
553 child->rb_properties = self->rb_properties;
556 * Remove ourselves from the node list and decrement the count.
558 RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
559 RBT_COUNT_DECR(rbt);
561 KASSERT(RB_ROOT_P(self) || rb_tree_check_node(rbt, parent, NULL, true));
562 KASSERT(rb_tree_check_node(rbt, child, NULL, true));
567 void
568 _prop_rb_tree_remove_node(struct rb_tree *rbt, struct rb_node *self)
570 struct rb_node *standin;
571 unsigned int which;
573 * In the following diagrams, we (the node to be removed) are S. Red
574 * nodes are lowercase. T could be either red or black.
576 * Remember the major axiom of the red-black tree: the number of
577 * black nodes from the root to each leaf is constant across all
578 * leaves, only the number of red nodes varies.
580 * Thus removing a red leaf doesn't require any other changes to a
581 * red-black tree. So if we must remove a node, attempt to rearrange
582 * the tree so we can remove a red node.
584 * The simpliest case is a childless red node or a childless root node:
586 * | T --> T | or | R --> * |
587 * | s --> * |
589 if (RB_CHILDLESS_P(self)) {
590 if (RB_RED_P(self) || RB_ROOT_P(self)) {
591 rb_tree_prune_node(rbt, self, false);
592 return;
594 rb_tree_prune_node(rbt, self, true);
595 return;
597 KASSERT(!RB_CHILDLESS_P(self));
598 if (!RB_TWOCHILDREN_P(self)) {
600 * The next simpliest case is the node we are deleting is
601 * black and has one red child.
603 * | T --> T --> T |
604 * | S --> R --> R |
605 * | r --> s --> * |
607 which = RB_LEFT_SENTINEL_P(self) ? RB_NODE_RIGHT : RB_NODE_LEFT;
608 KASSERT(RB_BLACK_P(self));
609 KASSERT(RB_RED_P(self->rb_nodes[which]));
610 KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
611 rb_tree_prune_blackred_branch(rbt, self, which);
612 return;
614 KASSERT(RB_TWOCHILDREN_P(self));
617 * We invert these because we prefer to remove from the inside of
618 * the tree.
620 which = self->rb_position ^ RB_NODE_OTHER;
623 * Let's find the node closes to us opposite of our parent
624 * Now swap it with ourself, "prune" it, and rebalance, if needed.
626 standin = _prop_rb_tree_iterate(rbt, self, which);
627 rb_tree_swap_prune_and_rebalance(rbt, self, standin);
630 static void
631 rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
632 unsigned int which)
634 KASSERT(!RB_SENTINEL_P(parent));
635 KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
636 KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);
638 while (RB_BLACK_P(parent->rb_nodes[which])) {
639 unsigned int other = which ^ RB_NODE_OTHER;
640 struct rb_node *brother = parent->rb_nodes[other];
642 KASSERT(!RB_SENTINEL_P(brother));
644 * For cases 1, 2a, and 2b, our brother's children must
645 * be black and our father must be black
647 if (RB_BLACK_P(parent)
648 && RB_BLACK_P(brother->rb_left)
649 && RB_BLACK_P(brother->rb_right)) {
651 * Case 1: Our brother is red, swap its position
652 * (and colors) with our parent. This is now case 2b.
654 * B -> D
655 * x d -> b E
656 * C E -> x C
658 if (RB_RED_P(brother)) {
659 KASSERT(RB_BLACK_P(parent));
660 rb_tree_reparent_nodes(rbt, parent, other);
661 KASSERT(!RB_SENTINEL_P(brother));
662 KASSERT(RB_BLACK_P(brother));
663 KASSERT(RB_RED_P(parent));
664 KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
665 KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
666 } else {
668 * Both our parent and brother are black.
669 * Change our brother to red, advance up rank
670 * and go through the loop again.
672 * B -> B
673 * A D -> A d
674 * C E -> C E
676 RB_MARK_RED(brother);
677 KASSERT(RB_BLACK_P(brother->rb_left));
678 KASSERT(RB_BLACK_P(brother->rb_right));
679 if (RB_ROOT_P(parent))
680 return;
681 KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
682 KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
683 which = parent->rb_position;
684 parent = parent->rb_parent;
686 } else if (RB_RED_P(parent)
687 && RB_BLACK_P(brother)
688 && RB_BLACK_P(brother->rb_left)
689 && RB_BLACK_P(brother->rb_right)) {
690 KASSERT(RB_BLACK_P(brother));
691 KASSERT(RB_BLACK_P(brother->rb_left));
692 KASSERT(RB_BLACK_P(brother->rb_right));
693 RB_MARK_BLACK(parent);
694 RB_MARK_RED(brother);
695 KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
696 break; /* We're done! */
697 } else {
698 KASSERT(RB_BLACK_P(brother));
699 KASSERT(!RB_CHILDLESS_P(brother));
701 * Case 3: our brother is black, our left nephew is
702 * red, and our right nephew is black. Swap our
703 * brother with our left nephew. This result in a
704 * tree that matches case 4.
706 * B -> D
707 * A D -> B E
708 * c e -> A C
710 if (RB_BLACK_P(brother->rb_nodes[other])) {
711 KASSERT(RB_RED_P(brother->rb_nodes[which]));
712 rb_tree_reparent_nodes(rbt, brother, which);
713 KASSERT(brother->rb_parent == parent->rb_nodes[other]);
714 brother = parent->rb_nodes[other];
715 KASSERT(RB_RED_P(brother->rb_nodes[other]));
718 * Case 4: our brother is black and our right nephew
719 * is red. Swap our parent and brother locations and
720 * change our right nephew to black. (these can be
721 * done in either order so we change the color first).
722 * The result is a valid red-black tree and is a
723 * terminal case.
725 * B -> D
726 * A D -> B E
727 * c e -> A C
729 RB_MARK_BLACK(brother->rb_nodes[other]);
730 rb_tree_reparent_nodes(rbt, parent, other);
731 break; /* We're done! */
734 KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
737 struct rb_node *
738 _prop_rb_tree_iterate(struct rb_tree *rbt, struct rb_node *self,
739 unsigned int direction)
741 const unsigned int other = direction ^ RB_NODE_OTHER;
742 KASSERT(direction == RB_NODE_LEFT || direction == RB_NODE_RIGHT);
744 if (self == NULL) {
745 self = rbt->rbt_root;
746 if (RB_SENTINEL_P(self))
747 return NULL;
748 while (!RB_SENTINEL_P(self->rb_nodes[other]))
749 self = self->rb_nodes[other];
750 return self;
752 KASSERT(!RB_SENTINEL_P(self));
754 * We can't go any further in this direction. We proceed up in the
755 * opposite direction until our parent is in direction we want to go.
757 if (RB_SENTINEL_P(self->rb_nodes[direction])) {
758 while (!RB_ROOT_P(self)) {
759 if (other == self->rb_position)
760 return self->rb_parent;
761 self = self->rb_parent;
763 return NULL;
767 * Advance down one in current direction and go down as far as possible
768 * in the opposite direction.
770 self = self->rb_nodes[direction];
771 KASSERT(!RB_SENTINEL_P(self));
772 while (!RB_SENTINEL_P(self->rb_nodes[other]))
773 self = self->rb_nodes[other];
774 return self;
777 #ifdef RBDEBUG
778 static const struct rb_node *
779 rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
780 unsigned int direction)
782 const unsigned int other = direction ^ RB_NODE_OTHER;
783 KASSERT(direction == RB_NODE_LEFT || direction == RB_NODE_RIGHT);
785 if (self == NULL) {
786 self = rbt->rbt_root;
787 if (RB_SENTINEL_P(self))
788 return NULL;
789 while (!RB_SENTINEL_P(self->rb_nodes[other]))
790 self = self->rb_nodes[other];
791 return self;
793 KASSERT(!RB_SENTINEL_P(self));
795 * We can't go any further in this direction. We proceed up in the
796 * opposite direction until our parent is in direction we want to go.
798 if (RB_SENTINEL_P(self->rb_nodes[direction])) {
799 while (!RB_ROOT_P(self)) {
800 if (other == self->rb_position)
801 return self->rb_parent;
802 self = self->rb_parent;
804 return NULL;
808 * Advance down one in current direction and go down as far as possible
809 * in the opposite direction.
811 self = self->rb_nodes[direction];
812 KASSERT(!RB_SENTINEL_P(self));
813 while (!RB_SENTINEL_P(self->rb_nodes[other]))
814 self = self->rb_nodes[other];
815 return self;
818 static bool
819 rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
820 const struct rb_node *prev, bool red_check)
822 KASSERT(!self->rb_sentinel);
823 KASSERT(self->rb_left);
824 KASSERT(self->rb_right);
825 KASSERT(prev == NULL ||
826 (*rbt->rbt_ops->rbto_compare_nodes)(prev, self) > 0);
829 * Verify our relationship to our parent.
831 if (RB_ROOT_P(self)) {
832 KASSERT(self == rbt->rbt_root);
833 KASSERT(self->rb_position == RB_NODE_LEFT);
834 KASSERT(self->rb_parent->rb_nodes[RB_NODE_LEFT] == self);
835 KASSERT(self->rb_parent == (const struct rb_node *) &rbt->rbt_root);
836 } else {
837 KASSERT(self != rbt->rbt_root);
838 KASSERT(!RB_PARENT_SENTINEL_P(self));
839 if (self->rb_position == RB_NODE_LEFT) {
840 KASSERT((*rbt->rbt_ops->rbto_compare_nodes)(self, self->rb_parent) > 0);
841 KASSERT(self->rb_parent->rb_nodes[RB_NODE_LEFT] == self);
842 } else {
843 KASSERT((*rbt->rbt_ops->rbto_compare_nodes)(self, self->rb_parent) < 0);
844 KASSERT(self->rb_parent->rb_nodes[RB_NODE_RIGHT] == self);
849 * Verify our position in the linked list against the tree itself.
852 const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_NODE_LEFT);
853 const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
854 KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
855 if (next0 != TAILQ_NEXT(self, rb_link))
856 next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
857 KASSERT(next0 == TAILQ_NEXT(self, rb_link));
861 * The root must be black.
862 * There can never be two adjacent red nodes.
864 if (red_check) {
865 KASSERT(!RB_ROOT_P(self) || RB_BLACK_P(self));
866 if (RB_RED_P(self)) {
867 const struct rb_node *brother;
868 KASSERT(!RB_ROOT_P(self));
869 brother = self->rb_parent->rb_nodes[self->rb_position ^ RB_NODE_OTHER];
870 KASSERT(RB_BLACK_P(self->rb_parent));
872 * I'm red and have no children, then I must either
873 * have no brother or my brother also be red and
874 * also have no children. (black count == 0)
876 KASSERT(!RB_CHILDLESS_P(self)
877 || RB_SENTINEL_P(brother)
878 || RB_RED_P(brother)
879 || RB_CHILDLESS_P(brother));
881 * If I'm not childless, I must have two children
882 * and they must be both be black.
884 KASSERT(RB_CHILDLESS_P(self)
885 || (RB_TWOCHILDREN_P(self)
886 && RB_BLACK_P(self->rb_left)
887 && RB_BLACK_P(self->rb_right)));
889 * If I'm not childless, thus I have black children,
890 * then my brother must either be black or have two
891 * black children.
893 KASSERT(RB_CHILDLESS_P(self)
894 || RB_BLACK_P(brother)
895 || (RB_TWOCHILDREN_P(brother)
896 && RB_BLACK_P(brother->rb_left)
897 && RB_BLACK_P(brother->rb_right)));
898 } else {
900 * If I'm black and have one child, that child must
901 * be red and childless.
903 KASSERT(RB_CHILDLESS_P(self)
904 || RB_TWOCHILDREN_P(self)
905 || (!RB_LEFT_SENTINEL_P(self)
906 && RB_RIGHT_SENTINEL_P(self)
907 && RB_RED_P(self->rb_left)
908 && RB_CHILDLESS_P(self->rb_left))
909 || (!RB_RIGHT_SENTINEL_P(self)
910 && RB_LEFT_SENTINEL_P(self)
911 && RB_RED_P(self->rb_right)
912 && RB_CHILDLESS_P(self->rb_right)));
915 * If I'm a childless black node and my parent is
916 * black, my 2nd closet relative away from my parent
917 * is either red or has a red parent or red children.
919 if (!RB_ROOT_P(self)
920 && RB_CHILDLESS_P(self)
921 && RB_BLACK_P(self->rb_parent)) {
922 const unsigned int which = self->rb_position;
923 const unsigned int other = which ^ RB_NODE_OTHER;
924 const struct rb_node *relative0, *relative;
926 relative0 = rb_tree_iterate_const(rbt,
927 self, other);
928 KASSERT(relative0 != NULL);
929 relative = rb_tree_iterate_const(rbt,
930 relative0, other);
931 KASSERT(relative != NULL);
932 KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
933 #if 0
934 KASSERT(RB_RED_P(relative)
935 || RB_RED_P(relative->rb_left)
936 || RB_RED_P(relative->rb_right)
937 || RB_RED_P(relative->rb_parent));
938 #endif
942 * A grandparent's children must be real nodes and not
943 * sentinels. First check out grandparent.
945 KASSERT(RB_ROOT_P(self)
946 || RB_ROOT_P(self->rb_parent)
947 || RB_TWOCHILDREN_P(self->rb_parent->rb_parent));
949 * If we are have grandchildren on our left, then
950 * we must have a child on our right.
952 KASSERT(RB_LEFT_SENTINEL_P(self)
953 || RB_CHILDLESS_P(self->rb_left)
954 || !RB_RIGHT_SENTINEL_P(self));
956 * If we are have grandchildren on our right, then
957 * we must have a child on our left.
959 KASSERT(RB_RIGHT_SENTINEL_P(self)
960 || RB_CHILDLESS_P(self->rb_right)
961 || !RB_LEFT_SENTINEL_P(self));
964 * If we have a child on the left and it doesn't have two
965 * children make sure we don't have great-great-grandchildren on
966 * the right.
968 KASSERT(RB_TWOCHILDREN_P(self->rb_left)
969 || RB_CHILDLESS_P(self->rb_right)
970 || RB_CHILDLESS_P(self->rb_right->rb_left)
971 || RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
972 || RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
973 || RB_CHILDLESS_P(self->rb_right->rb_right)
974 || RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
975 || RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
978 * If we have a child on the right and it doesn't have two
979 * children make sure we don't have great-great-grandchildren on
980 * the left.
982 KASSERT(RB_TWOCHILDREN_P(self->rb_right)
983 || RB_CHILDLESS_P(self->rb_left)
984 || RB_CHILDLESS_P(self->rb_left->rb_left)
985 || RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
986 || RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
987 || RB_CHILDLESS_P(self->rb_left->rb_right)
988 || RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
989 || RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
992 * If we are fully interior node, then our predecessors and
993 * successors must have no children in our direction.
995 if (RB_TWOCHILDREN_P(self)) {
996 const struct rb_node *prev0;
997 const struct rb_node *next0;
999 prev0 = rb_tree_iterate_const(rbt, self, RB_NODE_LEFT);
1000 KASSERT(prev0 != NULL);
1001 KASSERT(RB_RIGHT_SENTINEL_P(prev0));
1003 next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
1004 KASSERT(next0 != NULL);
1005 KASSERT(RB_LEFT_SENTINEL_P(next0));
1009 return true;
1012 static unsigned int
1013 rb_tree_count_black(const struct rb_node *self)
1015 unsigned int left, right;
1017 if (RB_SENTINEL_P(self))
1018 return 0;
1020 left = rb_tree_count_black(self->rb_left);
1021 right = rb_tree_count_black(self->rb_right);
1023 KASSERT(left == right);
1025 return left + RB_BLACK_P(self);
1028 void
1029 _prop_rb_tree_check(const struct rb_tree *rbt, bool red_check)
1031 const struct rb_node *self;
1032 const struct rb_node *prev;
1033 unsigned int count;
1035 KASSERT(rbt->rbt_root == NULL || rbt->rbt_root->rb_position == RB_NODE_LEFT);
1037 prev = NULL;
1038 count = 0;
1039 TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1040 rb_tree_check_node(rbt, self, prev, false);
1041 count++;
1043 KASSERT(rbt->rbt_count == count);
1044 KASSERT(RB_SENTINEL_P(rbt->rbt_root)
1045 || rb_tree_count_black(rbt->rbt_root));
1048 * The root must be black.
1049 * There can never be two adjacent red nodes.
1051 if (red_check) {
1052 KASSERT(rbt->rbt_root == NULL || RB_BLACK_P(rbt->rbt_root));
1053 TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1054 rb_tree_check_node(rbt, self, NULL, true);
1058 #endif /* RBDEBUG */