2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
22 #include <isl/schedule.h>
23 #include <isl/schedule_node.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
29 #include "gpu_array_tile.h"
30 #include "gpu_group.h"
33 #include "ppcg_options.h"
37 struct gpu_array_info
;
39 /* Return the name of the outer array (of structs) accessed by "access".
41 static const char *get_outer_array_name(__isl_keep isl_map
*access
)
46 space
= isl_space_range(isl_map_get_space(access
));
47 while (space
&& isl_space_is_wrapping(space
))
48 space
= isl_space_domain(isl_space_unwrap(space
));
49 name
= isl_space_get_tuple_name(space
, isl_dim_set
);
50 isl_space_free(space
);
55 /* Collect all references to the given array and store pointers to them
58 static void collect_references(struct gpu_prog
*prog
,
59 struct gpu_array_info
*array
)
65 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
66 struct gpu_stmt
*stmt
= &prog
->stmts
[i
];
67 struct gpu_stmt_access
*access
;
69 for (access
= stmt
->accesses
; access
; access
= access
->next
) {
71 name
= get_outer_array_name(access
->access
);
72 if (name
&& !strcmp(array
->name
, name
))
78 array
->refs
= isl_alloc_array(prog
->ctx
, struct gpu_stmt_access
*, n
);
82 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
83 struct gpu_stmt
*stmt
= &prog
->stmts
[i
];
84 struct gpu_stmt_access
*access
;
86 for (access
= stmt
->accesses
; access
; access
= access
->next
) {
88 name
= get_outer_array_name(access
->access
);
89 if (!name
|| strcmp(array
->name
, name
))
92 array
->refs
[n
++] = access
;
97 /* Compute and return the extent of "array", taking into account the set of
100 * In particular, the extent in the outer dimension is taken
101 * from "accessed", while the extents in the remaining dimensions
102 * are taken from array->extent.
104 * The extent in the outer dimension cannot be taken from array->extent
105 * because that may be unbounded. Furthermore, even if it is bounded,
106 * it may be larger than the piece of the array that is being accessed.
108 static __isl_give isl_set
*compute_extent(struct pet_array
*array
,
109 __isl_keep isl_set
*accessed
)
116 extent
= isl_set_copy(array
->extent
);
118 n_index
= isl_set_dim(accessed
, isl_dim_set
);
122 extent
= isl_set_project_out(extent
, isl_dim_set
, 0, 1);
123 outer
= isl_set_copy(accessed
);
124 outer
= isl_set_project_out(outer
, isl_dim_set
, 1, n_index
- 1);
125 extent
= isl_set_flat_product(outer
, extent
);
126 id
= isl_set_get_tuple_id(accessed
);
127 extent
= isl_set_set_tuple_id(extent
, id
);
132 /* Is the array "array" being extracted a read-only scalar?
134 * That is, is "array" a scalar that is never possibly written to.
135 * An array containing structures is never considered to be a scalar.
137 static int is_read_only_scalar(struct gpu_array_info
*array
,
138 struct gpu_prog
*prog
)
141 isl_union_map
*write
;
144 if (array
->has_compound_element
)
146 if (array
->n_index
!= 0)
149 write
= isl_union_map_copy(prog
->may_write
);
150 space
= isl_set_universe(isl_space_copy(array
->space
));
151 write
= isl_union_map_intersect_range(write
,
152 isl_union_set_from_set(space
));
153 empty
= isl_union_map_is_empty(write
);
154 isl_union_map_free(write
);
159 /* Compute bounds on the host array "pa" based on the corresponding
160 * accessed elements in "arrays"
161 * and collect all references to the array.
162 * Store the results in "info".
164 * If the array is zero-dimensional and does not contain structures,
165 * i.e., if the array is a scalar, we check whether it is read-only.
166 * We also check whether the array is accessed at all.
168 static int extract_array_info(struct gpu_prog
*prog
,
169 struct gpu_array_info
*info
, struct pet_array
*pa
,
170 __isl_keep isl_union_set
*arrays
)
176 isl_set
*accessed
, *extent
;
178 n_index
= isl_set_dim(pa
->extent
, isl_dim_set
);
179 name
= isl_set_get_tuple_name(pa
->extent
);
180 bounds
= isl_alloc_array(prog
->ctx
, isl_pw_aff
*, n_index
);
184 info
->space
= isl_set_get_space(pa
->extent
);
185 info
->name
= strdup(name
);
186 info
->n_index
= n_index
;
187 info
->bound
= bounds
;
188 info
->linearize
= prog
->scop
->options
->linearize_device_arrays
;
190 info
->type
= strdup(pa
->element_type
);
191 info
->size
= pa
->element_size
;
192 info
->local
= pa
->declared
&& !pa
->exposed
;
193 info
->has_compound_element
= pa
->element_is_record
;
194 info
->read_only_scalar
= is_read_only_scalar(info
, prog
);
196 accessed
= isl_union_set_extract_set(arrays
,
197 isl_space_copy(info
->space
));
198 empty
= isl_set_is_empty(accessed
);
199 extent
= compute_extent(pa
, accessed
);
200 isl_set_free(accessed
);
201 info
->extent
= extent
;
204 info
->accessed
= !empty
;
205 for (i
= 0; i
< n_index
; ++i
) {
211 dom
= isl_set_copy(extent
);
212 dom
= isl_set_project_out(dom
, isl_dim_set
, i
+ 1,
214 dom
= isl_set_project_out(dom
, isl_dim_set
, 0, i
);
215 if (!isl_set_dim_has_upper_bound(dom
, isl_dim_set
, 0)) {
216 fprintf(stderr
, "unable to determine extent of '%s' "
217 "in dimension %d\n", info
->name
, i
);
218 dom
= isl_set_free(dom
);
220 bound
= isl_set_dim_max(dom
, 0);
221 dom
= isl_pw_aff_domain(isl_pw_aff_copy(bound
));
222 ls
= isl_local_space_from_space(isl_set_get_space(dom
));
223 one
= isl_aff_zero_on_domain(ls
);
224 one
= isl_aff_add_constant_si(one
, 1);
225 bound
= isl_pw_aff_add(bound
, isl_pw_aff_alloc(dom
, one
));
226 bound
= isl_pw_aff_gist(bound
, isl_set_copy(prog
->context
));
229 if (!isl_pw_aff_is_cst(bound
))
233 collect_references(prog
, info
);
238 /* Remove independence from the order constraints "order" on array "array".
239 * Since the pairs of iterations in the filter relation of an independence
240 * are guaranteed to be completely independent by the user, there is
241 * no need to ensure that live ranges are ordered along thong pairs.
242 * We make an exception for local variables, though, as the independence
243 * guarantee does not apply to those.
245 * The order constraints are used in two places.
246 * Those on scalars are used in check_scalar_live_ranges to check if
247 * we need to force the scalar to be private. Any non-local scalar
248 * should not be forced scalar if it only appears in independent loops.
249 * Those on non-scalars are added to the coincidence constraints
250 * in compute_schedule because we do not support any array expansion.
251 * Accesses to non-local arrays should not prevent a loop from being
252 * considered coincident so we should indeed remove those constraints
253 * from the order constraints.
255 static __isl_give isl_union_map
*remove_independences(struct gpu_prog
*prog
,
256 struct gpu_array_info
*array
, __isl_take isl_union_map
*order
)
260 for (i
= 0; i
< prog
->scop
->pet
->n_independence
; ++i
) {
261 struct pet_independence
*pi
= prog
->scop
->pet
->independences
[i
];
262 if (isl_union_set_contains(pi
->local
, array
->space
))
265 order
= isl_union_map_subtract(order
,
266 isl_union_map_copy(pi
->filter
));
272 /* For each array in "prog", store the (untagged) order dependences
273 * derived from the array in array->dep_order.
274 * In particular, consider all references that access the given array
275 * and take the order dependences that have one of these references
276 * as source. (Since an order dependence relates two references to
277 * the same array, the target of these order dependences will also
278 * be one of these references.)
279 * Additionally, store the union of these array->dep_order relations
280 * for all non-scalar arrays in prog->array_order.
282 void collect_order_dependences(struct gpu_prog
*prog
)
286 isl_union_map
*accesses
;
288 space
= isl_union_map_get_space(prog
->read
);
289 prog
->array_order
= isl_union_map_empty(space
);
291 accesses
= isl_union_map_copy(prog
->scop
->tagged_reads
);
292 accesses
= isl_union_map_union(accesses
,
293 isl_union_map_copy(prog
->scop
->tagged_may_writes
));
294 accesses
= isl_union_map_universe(accesses
);
295 accesses
= isl_union_map_apply_range(accesses
,
296 isl_union_map_copy(prog
->to_outer
));
298 for (i
= 0; i
< prog
->n_array
; ++i
) {
299 struct gpu_array_info
*array
= &prog
->array
[i
];
302 isl_union_map
*order
;
304 set
= isl_set_universe(isl_space_copy(array
->space
));
305 uset
= isl_union_set_from_set(set
);
306 uset
= isl_union_map_domain(
307 isl_union_map_intersect_range(isl_union_map_copy(accesses
),
309 order
= isl_union_map_copy(prog
->scop
->tagged_dep_order
);
310 order
= isl_union_map_intersect_domain(order
, uset
);
311 order
= isl_union_map_zip(order
);
312 order
= isl_union_set_unwrap(isl_union_map_domain(order
));
313 order
= remove_independences(prog
, array
, order
);
314 array
->dep_order
= order
;
316 if (gpu_array_is_scalar(array
) && !array
->has_compound_element
)
319 prog
->array_order
= isl_union_map_union(prog
->array_order
,
320 isl_union_map_copy(array
->dep_order
));
323 isl_union_map_free(accesses
);
326 /* Construct a gpu_array_info for each array referenced by prog->scop and
327 * collect them in prog->array.
329 * The sizes are based on the extents and the set of possibly accessed
330 * elements by "prog".
331 * If there are any member accesses involved, then they are first mapped
332 * to the outer arrays of structs.
334 * If we are allowing live range reordering, then also set
335 * the dep_order field. Otherwise leave it NULL.
337 static int collect_array_info(struct gpu_prog
*prog
)
341 isl_union_set
*arrays
;
343 arrays
= isl_union_map_range(isl_union_map_copy(prog
->read
));
344 arrays
= isl_union_set_union(arrays
,
345 isl_union_map_range(isl_union_map_copy(prog
->may_write
)));
347 arrays
= isl_union_set_apply(arrays
,
348 isl_union_map_copy(prog
->to_outer
));
350 arrays
= isl_union_set_coalesce(arrays
);
352 prog
->n_array
= prog
->scop
->pet
->n_array
;
353 prog
->array
= isl_calloc_array(prog
->ctx
,
354 struct gpu_array_info
, prog
->n_array
);
356 for (i
= 0; i
< prog
->scop
->pet
->n_array
; ++i
)
357 if (extract_array_info(prog
, &prog
->array
[i
],
358 prog
->scop
->pet
->arrays
[i
], arrays
) < 0)
361 isl_union_set_free(arrays
);
363 if (prog
->scop
->options
->live_range_reordering
)
364 collect_order_dependences(prog
);
369 static void free_array_info(struct gpu_prog
*prog
)
373 for (i
= 0; i
< prog
->n_array
; ++i
) {
374 int n_index
= prog
->array
[i
].n_index
;
375 free(prog
->array
[i
].type
);
376 free(prog
->array
[i
].name
);
377 for (j
= 0; j
< n_index
; ++j
)
378 isl_pw_aff_free(prog
->array
[i
].bound
[j
]);
379 isl_space_free(prog
->array
[i
].space
);
380 isl_set_free(prog
->array
[i
].extent
);
381 free(prog
->array
[i
].bound
);
382 free(prog
->array
[i
].refs
);
383 isl_union_map_free(prog
->array
[i
].dep_order
);
388 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
389 * as an array or through a pointer reference, but as a single data element.
390 * At the moment, scalars are represented as zero-dimensional arrays.
391 * Note that the single data element may be an entire structure.
393 int gpu_array_is_scalar(struct gpu_array_info
*array
)
395 return array
->n_index
== 0;
398 /* Is "array" a read-only scalar?
400 int gpu_array_is_read_only_scalar(struct gpu_array_info
*array
)
402 return array
->read_only_scalar
;
405 /* Does "array" need to be allocated on the device?
406 * If it is a read-only scalar, then it will be passed as an argument
407 * to the kernel and therefore does not require any allocation.
408 * If this device memory is not accessed at all, then it does not
409 * need to be allocated either.
411 int gpu_array_requires_device_allocation(struct gpu_array_info
*array
)
413 if (gpu_array_is_read_only_scalar(array
))
420 /* Return the set of parameter values for which the array has a positive
421 * size in all dimensions.
422 * If the sizes are only valid for some parameter values, then those
423 * constraints are also taken into account.
425 __isl_give isl_set
*gpu_array_positive_size_guard(struct gpu_array_info
*array
)
434 space
= isl_space_params(isl_space_copy(array
->space
));
435 guard
= isl_set_universe(space
);
437 for (i
= 0; i
< array
->n_index
; ++i
) {
439 isl_set
*guard_i
, *zero
;
441 bound
= isl_pw_aff_copy(array
->bound
[i
]);
442 guard_i
= isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound
));
443 zero
= isl_pw_aff_zero_set(bound
);
444 guard_i
= isl_set_subtract(guard_i
, zero
);
445 guard
= isl_set_intersect(guard
, guard_i
);
451 /* Internal data structure for extract_size_of_type.
452 * "type" specifies the name of the space that we want to extract.
453 * "res" is used to store the subset of that space.
455 struct ppcg_extract_size_data
{
460 /* This function is called for each set in a union_set.
461 * If the name of the set matches data->type, we store the
464 static isl_stat
extract_size_of_type(__isl_take isl_set
*size
, void *user
)
466 struct ppcg_extract_size_data
*data
= user
;
469 name
= isl_set_get_tuple_name(size
);
470 if (name
&& !strcmp(name
, data
->type
)) {
472 return isl_stat_error
;
479 /* Given a union map { kernel[i] -> *[...] },
480 * return the range in the space called "type" for the kernel with
481 * sequence number "id".
483 static __isl_give isl_set
*extract_sizes(__isl_keep isl_union_map
*sizes
,
484 const char *type
, int id
)
488 isl_union_set
*local_sizes
;
489 struct ppcg_extract_size_data data
= { type
, NULL
};
494 space
= isl_union_map_get_space(sizes
);
495 space
= isl_space_set_from_params(space
);
496 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
497 space
= isl_space_set_tuple_name(space
, isl_dim_set
, "kernel");
498 dom
= isl_set_universe(space
);
499 dom
= isl_set_fix_si(dom
, isl_dim_set
, 0, id
);
501 local_sizes
= isl_union_set_apply(isl_union_set_from_set(dom
),
502 isl_union_map_copy(sizes
));
503 isl_union_set_foreach_set(local_sizes
, &extract_size_of_type
, &data
);
504 isl_union_set_free(local_sizes
);
508 /* Given a singleton set, extract the first (at most *len) elements
509 * of the single integer tuple into *sizes and update *len if needed.
511 static void read_sizes_from_set(__isl_take isl_set
*set
, int *sizes
, int *len
)
519 dim
= isl_set_dim(set
, isl_dim_set
);
523 for (i
= 0; i
< *len
; ++i
) {
526 v
= isl_set_plain_get_val_if_fixed(set
, isl_dim_set
, i
);
529 sizes
[i
] = isl_val_get_num_si(v
);
536 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
537 * if the option debug->dump_sizes is set.
539 static void set_used_sizes(struct gpu_gen
*gen
, const char *type
, int id
,
546 if (!gen
->options
->debug
->dump_sizes
)
549 space
= isl_union_map_get_space(gen
->used_sizes
);
550 space
= isl_space_set_from_params(space
);
551 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
552 space
= isl_space_set_tuple_name(space
, isl_dim_set
, "kernel");
553 space
= isl_space_from_domain(space
);
554 space
= isl_space_add_dims(space
, isl_dim_out
, len
);
555 space
= isl_space_set_tuple_name(space
, isl_dim_out
, type
);
557 map
= isl_map_universe(space
);
558 map
= isl_map_fix_si(map
, isl_dim_in
, 0, id
);
559 for (i
= 0; i
< len
; ++i
)
560 map
= isl_map_fix_si(map
, isl_dim_out
, i
, sizes
[i
]);
562 gen
->used_sizes
= isl_union_map_add_map(gen
->used_sizes
, map
);
565 /* Extract user specified "tile" sizes from the "sizes" command line option,
566 * defaulting to option->tile_size in each dimension.
567 * *tile_len contains the maximum number of tile sizes needed.
568 * Update *tile_len to the number of specified tile sizes, if any, and
569 * return a pointer to the tile sizes (or NULL on error).
570 * Add the effectively used sizes to gen->used_sizes.
572 static int *read_tile_sizes(struct gpu_gen
*gen
, int *tile_len
)
578 tile_size
= isl_alloc_array(gen
->ctx
, int, *tile_len
);
581 for (n
= 0; n
< *tile_len
; ++n
)
582 tile_size
[n
] = gen
->options
->tile_size
;
584 size
= extract_sizes(gen
->sizes
, "tile", gen
->kernel_id
);
585 read_sizes_from_set(size
, tile_size
, tile_len
);
586 set_used_sizes(gen
, "tile", gen
->kernel_id
, tile_size
, *tile_len
);
591 /* Extract user specified "block" sizes from the "sizes" command line option,
592 * after filling in some potentially useful defaults.
594 static void read_block_sizes(struct ppcg_kernel
*kernel
,
595 __isl_keep isl_union_map
*sizes
)
599 if (kernel
->n_block
> 3)
601 switch (kernel
->n_block
) {
603 kernel
->block_dim
[0] = 512;
606 kernel
->block_dim
[0] = 32;
607 kernel
->block_dim
[1] = 16;
610 kernel
->block_dim
[0] = 32;
611 kernel
->block_dim
[1] = 4;
612 kernel
->block_dim
[2] = 4;
616 size
= extract_sizes(sizes
, "block", kernel
->id
);
617 read_sizes_from_set(size
, kernel
->block_dim
, &kernel
->n_block
);
620 /* Extract user specified "grid" sizes from the "sizes" command line option,
621 * after filling in some potentially useful defaults.
623 static void read_grid_sizes(struct ppcg_kernel
*kernel
,
624 __isl_keep isl_union_map
*sizes
)
628 if (kernel
->n_grid
> 2)
630 switch (kernel
->n_grid
) {
632 kernel
->grid_dim
[0] = 32768;
635 kernel
->grid_dim
[0] = 256;
636 kernel
->grid_dim
[1] = 256;
640 size
= extract_sizes(sizes
, "grid", kernel
->id
);
641 read_sizes_from_set(size
, kernel
->grid_dim
, &kernel
->n_grid
);
644 /* Extract user specified grid and block sizes from the gen->sizes
645 * command line option after filling in some potentially useful defaults.
646 * Store the extracted sizes in "kernel".
647 * Add the effectively used sizes to gen->used_sizes.
649 static void read_grid_and_block_sizes(struct ppcg_kernel
*kernel
,
652 read_block_sizes(kernel
, gen
->sizes
);
653 read_grid_sizes(kernel
, gen
->sizes
);
654 set_used_sizes(gen
, "block", kernel
->id
,
655 kernel
->block_dim
, kernel
->n_block
);
656 set_used_sizes(gen
, "grid", kernel
->id
,
657 kernel
->grid_dim
, kernel
->n_grid
);
660 static void *free_stmts(struct gpu_stmt
*stmts
, int n
)
667 for (i
= 0; i
< n
; ++i
) {
668 struct gpu_stmt_access
*access
, *next
;
670 for (access
= stmts
[i
].accesses
; access
; access
= next
) {
672 isl_id_free(access
->ref_id
);
673 isl_map_free(access
->access
);
674 isl_map_free(access
->tagged_access
);
678 isl_id_free(stmts
[i
].id
);
685 /* Add parameters p[i] with identifiers "ids" to "set",
686 * with bounds to 0 <= p[i] < size[i].
688 __isl_give isl_set
*add_bounded_parameters(__isl_take isl_set
*set
,
689 int *size
, __isl_keep isl_id_list
*ids
)
694 len
= isl_id_list_n_id(ids
);
695 nparam
= isl_set_dim(set
, isl_dim_param
);
696 set
= isl_set_add_dims(set
, isl_dim_param
, len
);
698 for (i
= 0; i
< len
; ++i
) {
701 id
= isl_id_list_get_id(ids
, i
);
702 set
= isl_set_set_dim_id(set
, isl_dim_param
, nparam
+ i
, id
);
703 set
= isl_set_lower_bound_si(set
, isl_dim_param
, nparam
+ i
, 0);
704 set
= isl_set_upper_bound_si(set
, isl_dim_param
,
705 nparam
+ i
, size
[i
] - 1);
711 /* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
714 * { : 0 <= p[i] < size[i] }
716 * or an overapproximation.
718 static __isl_give isl_set
*add_bounded_parameters_dynamic(
719 __isl_take isl_set
*set
, __isl_keep isl_multi_pw_aff
*size
,
720 __isl_keep isl_id_list
*ids
)
727 len
= isl_multi_pw_aff_dim(size
, isl_dim_out
);
728 nparam
= isl_set_dim(set
, isl_dim_param
);
729 set
= isl_set_add_dims(set
, isl_dim_param
, len
);
731 for (i
= 0; i
< len
; ++i
) {
734 id
= isl_id_list_get_id(ids
, i
);
735 set
= isl_set_set_dim_id(set
, isl_dim_param
, nparam
+ i
, id
);
738 space
= isl_space_params(isl_set_get_space(set
));
739 ls
= isl_local_space_from_space(space
);
740 for (i
= 0; i
< len
; ++i
) {
741 isl_pw_aff
*param
, *size_i
, *zero
;
744 param
= isl_pw_aff_var_on_domain(isl_local_space_copy(ls
),
745 isl_dim_param
, nparam
+ i
);
747 size_i
= isl_multi_pw_aff_get_pw_aff(size
, i
);
748 bound
= isl_pw_aff_lt_set(isl_pw_aff_copy(param
), size_i
);
749 bound
= isl_set_from_basic_set(isl_set_simple_hull(bound
));
750 set
= isl_set_intersect_params(set
, bound
);
752 zero
= isl_pw_aff_zero_on_domain(isl_local_space_copy(ls
));
753 bound
= isl_pw_aff_ge_set(param
, zero
);
754 set
= isl_set_intersect_params(set
, bound
);
756 isl_local_space_free(ls
);
761 /* Return the union of all tagged access relations in the group.
763 static __isl_give isl_union_map
*group_tagged_access_relation(
764 struct gpu_array_ref_group
*group
)
767 isl_union_map
*access
;
769 access
= isl_union_map_empty(isl_map_get_space(group
->access
));
770 for (i
= 0; i
< group
->n_ref
; ++i
) {
773 map_i
= isl_map_copy(group
->refs
[i
]->tagged_access
);
774 access
= isl_union_map_union(access
,
775 isl_union_map_from_map(map_i
));
781 /* Return the extent of "array", recomputed from the bounds.
782 * The recomputed extent may be simpler than the original extent.
784 static __isl_give isl_set
*array_extent(struct gpu_array_info
*array
)
792 id
= isl_set_get_tuple_id(array
->extent
);
793 space
= isl_set_get_space(array
->extent
);
794 extent
= isl_set_universe(isl_space_copy(space
));
795 ls
= isl_local_space_from_space(space
);
796 for (i
= 0; i
< array
->n_index
; ++i
) {
802 extent
= isl_set_lower_bound_si(extent
, isl_dim_set
, i
, 0);
804 aff
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
806 index
= isl_pw_aff_from_aff(aff
);
807 bound
= isl_pw_aff_copy(array
->bound
[i
]);
808 bound
= isl_pw_aff_from_range(bound
);
809 bound
= isl_pw_aff_add_dims(bound
, isl_dim_in
, array
->n_index
);
810 bound
= isl_pw_aff_set_tuple_id(bound
, isl_dim_in
,
812 lt
= isl_pw_aff_lt_set(index
, bound
);
813 extent
= isl_set_intersect(extent
, lt
);
815 isl_local_space_free(ls
);
821 /* Return a map from the first group->depth dimensions of the computed
822 * schedule to the array tile in
823 * global memory that corresponds to the shared memory copy.
825 * In particular, return a map
831 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
835 * 0 <= a <= array_size - 1 (2)
837 * Note that if some stride has been detected (i.e., when
838 * group->shared_tile->bound[i].shift is set), then a in (1) refers
839 * to the shifted and scaled down version.
841 * Constraints (1) are obtained by mapping the size constraints on the
842 * shared/private memory tile back to the access relation.
843 * Constraints (2) are obtained from the (recomputed) extent.
845 static __isl_give isl_map
*group_tile(struct gpu_array_ref_group
*group
)
848 int n_index
= group
->array
->n_index
;
854 space
= isl_multi_aff_get_space(group
->shared_tile
->tiling
);
855 space
= isl_space_range(space
);
856 local
= isl_set_universe(space
);
857 for (i
= 0; i
< n_index
; ++i
) {
860 local
= isl_set_lower_bound_si(local
, isl_dim_set
, i
, 0);
861 bound
= isl_val_copy(group
->shared_tile
->bound
[i
].size
);
862 bound
= isl_val_sub_ui(bound
, 1);
863 local
= isl_set_upper_bound_val(local
, isl_dim_set
, i
, bound
);
865 local
= isl_set_preimage_multi_aff(local
,
866 isl_multi_aff_copy(group
->shared_tile
->tiling
));
867 tile
= isl_set_unwrap(local
);
868 extent
= array_extent(group
->array
);
869 tile
= isl_map_intersect_range(tile
, extent
);
874 /* Given a mapping "iterator_map" from the AST schedule to a domain,
875 * return the corresponding mapping from the AST schedule to
876 * to the outer kernel->shared_schedule_dim dimensions of
877 * the schedule computed by PPCG for this kernel.
879 * Note that kernel->shared_schedule_dim is at least as large as
880 * the largest depth of any array reference group associated to the kernel.
881 * This is needed as the returned schedule is used to extract a mapping
882 * to the outer group->depth dimensions in transform_index.
884 static __isl_give isl_pw_multi_aff
*compute_sched_to_shared(
885 struct ppcg_kernel
*kernel
, __isl_take isl_pw_multi_aff
*iterator_map
)
887 isl_union_pw_multi_aff
*upma
;
888 isl_pw_multi_aff
*pma
;
891 space
= isl_space_range(isl_pw_multi_aff_get_space(iterator_map
));
892 space
= isl_space_from_domain(space
);
893 space
= isl_space_add_dims(space
, isl_dim_out
,
894 kernel
->shared_schedule_dim
);
896 upma
= isl_union_pw_multi_aff_copy(kernel
->shared_schedule
);
897 pma
= isl_union_pw_multi_aff_extract_pw_multi_aff(upma
, space
);
898 isl_union_pw_multi_aff_free(upma
);
900 return isl_pw_multi_aff_pullback_pw_multi_aff(pma
, iterator_map
);
903 /* If max_shared_memory is not set to infinity (-1), then make
904 * sure that the total amount of shared memory required by the
905 * array reference groups mapped to shared memory by "kernel"
906 * is no larger than this maximum.
908 * We apply a greedy approach and discard (keep in global memory)
909 * those groups that would result in a total memory size that
910 * is larger than the maximum.
912 * This function should be called after any function that may
913 * affect the decision on whether to place a reference group
914 * in private, shared or global memory.
916 static void check_shared_memory_bound(struct ppcg_kernel
*kernel
)
919 isl_val
*left
, *size
;
921 if (kernel
->options
->max_shared_memory
< 0)
924 left
= isl_val_int_from_si(kernel
->ctx
,
925 kernel
->options
->max_shared_memory
);
927 for (i
= 0; i
< kernel
->n_array
; ++i
) {
928 struct gpu_local_array_info
*local
= &kernel
->array
[i
];
930 for (j
= 0; j
< local
->n_group
; ++j
) {
931 struct gpu_array_ref_group
*group
;
933 group
= local
->groups
[j
];
934 if (group
->private_tile
)
936 if (!group
->shared_tile
)
939 size
= gpu_array_tile_size(group
->shared_tile
);
940 size
= isl_val_mul_ui(size
, local
->array
->size
);
942 if (isl_val_le(size
, left
)) {
943 left
= isl_val_sub(left
, size
);
949 gpu_array_tile_free(group
->shared_tile
);
956 /* Mark all arrays of "kernel" that have an array reference group
957 * that is not mapped to private or shared memory as
958 * accessing the corresponding global device memory.
960 static void mark_global_arrays(struct ppcg_kernel
*kernel
)
964 for (i
= 0; i
< kernel
->n_array
; ++i
) {
965 struct gpu_local_array_info
*local
= &kernel
->array
[i
];
969 for (j
= 0; j
< local
->n_group
; ++j
) {
970 if (gpu_array_ref_group_tile(local
->groups
[j
]))
974 local
->array
->global
= 1;
980 /* Compute a tiling for all the array reference groups in "kernel".
982 static void compute_group_tilings(struct ppcg_kernel
*kernel
)
986 for (i
= 0; i
< kernel
->n_array
; ++i
) {
987 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
989 for (j
= 0; j
< array
->n_group
; ++j
)
990 gpu_array_ref_group_compute_tiling(array
->groups
[j
]);
994 /* Compute the size of a bounding box around the origin and "set",
995 * where "set" is assumed to contain only non-negative elements.
996 * In particular, compute the maximal value of "set" in each direction
999 static __isl_give isl_multi_pw_aff
*extract_size(__isl_take isl_set
*set
,
1000 __isl_take isl_set
*context
)
1003 isl_multi_pw_aff
*mpa
;
1005 context
= isl_set_params(context
);
1006 n
= isl_set_dim(set
, isl_dim_set
);
1007 mpa
= isl_multi_pw_aff_zero(isl_set_get_space(set
));
1008 for (i
= 0; i
< n
; ++i
) {
1013 bound
= isl_set_dim_max(isl_set_copy(set
), i
);
1014 bound
= isl_pw_aff_coalesce(bound
);
1015 bound
= isl_pw_aff_gist(bound
, isl_set_copy(context
));
1017 space
= isl_pw_aff_get_domain_space(bound
);
1018 one
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
1019 one
= isl_aff_add_constant_si(one
, 1);
1020 bound
= isl_pw_aff_add(bound
, isl_pw_aff_from_aff(one
));
1021 mpa
= isl_multi_pw_aff_set_pw_aff(mpa
, i
, bound
);
1024 isl_set_free(context
);
1029 /* Compute the effective grid size as a list of the sizes in each dimension.
1031 * The grid size specified by the user or set by default
1032 * in read_grid_sizes() and applied by the block filter,
1033 * may be too large for the given code in the sense that
1034 * it may contain blocks that don't need to execute anything.
1035 * We therefore don't return this grid size, but instead the
1036 * smallest grid size that ensures that all blocks that actually
1037 * execute code are included in the grid.
1039 * We first extract a description of the grid, i.e., the possible values
1040 * of the block ids, from the domain elements in "domain" and
1041 * kernel->block_filter.
1042 * The block ids are parameters in kernel->block_filter.
1043 * We simply need to change them into set dimensions.
1045 * Then, for each block dimension, we compute the maximal value of the block id
1048 static __isl_give isl_multi_pw_aff
*extract_grid_size(
1049 struct ppcg_kernel
*kernel
, __isl_take isl_union_set
*domain
)
1054 domain
= isl_union_set_intersect(domain
,
1055 isl_union_set_copy(kernel
->block_filter
));
1056 grid
= isl_union_set_params(domain
);
1057 grid
= isl_set_from_params(grid
);
1058 grid
= isl_set_add_dims(grid
, isl_dim_set
, kernel
->n_grid
);
1059 for (i
= 0; i
< kernel
->n_grid
; ++i
) {
1063 id
= isl_id_list_get_id(kernel
->block_ids
, i
);
1064 pos
= isl_set_find_dim_by_id(grid
, isl_dim_param
, id
);
1067 grid
= isl_set_equate(grid
, isl_dim_param
, pos
, isl_dim_set
, i
);
1068 grid
= isl_set_project_out(grid
, isl_dim_param
, pos
, 1);
1071 return extract_size(grid
, isl_set_copy(kernel
->context
));
1074 /* Compute the size of a fixed bounding box around the origin and "set",
1075 * where "set" is assumed to contain only non-negative elements,
1076 * and store the results in "size".
1077 * In particular, compute the maximal value of "set" in each direction
1080 static void extract_fixed_size(__isl_take isl_set
*set
, int *size
)
1083 isl_local_space
*ls
;
1086 n
= isl_set_dim(set
, isl_dim_set
);
1087 ls
= isl_local_space_from_space(isl_set_get_space(set
));
1088 obj
= isl_aff_zero_on_domain(ls
);
1089 for (i
= 0; i
< n
; ++i
) {
1092 obj
= isl_aff_set_coefficient_si(obj
, isl_dim_in
, i
, 1);
1093 max
= isl_set_max_val(set
, obj
);
1094 size
[i
] = isl_val_get_num_si(max
) + 1;
1096 obj
= isl_aff_set_coefficient_si(obj
, isl_dim_in
, i
, 0);
1102 /* Compute the effective block size as a list of the sizes in each dimension
1103 * and store the sizes in kernel->block_dim.
1105 * The block size specified by the user or set by default
1106 * in read_block_sizes() and applied by the thread filter,
1107 * may be too large for the given code in the sense that
1108 * it may contain threads that don't need to execute anything.
1109 * We therefore update this block size in kernel->block_dim
1110 * to the smallest block size that ensures that all threads
1111 * that actually execute code are included in the block.
1113 * The possible values of the thread ids is obtained from
1114 * the domain elements "domain" and kernel->thread_filter.
1115 * The current implementation eliminates all parameters, ensuring
1116 * that the size is a fixed constant in each dimension.
1117 * In principle we could also compute parametric sizes.
1118 * We would have to make sure to project out all b%d and t%d parameters,
1121 static void extract_block_size(struct ppcg_kernel
*kernel
,
1122 __isl_take isl_union_set
*domain
)
1128 domain
= isl_union_set_intersect(domain
,
1129 isl_union_set_copy(kernel
->thread_filter
));
1130 block
= isl_union_set_params(domain
);
1131 block
= isl_set_from_params(block
);
1132 block
= isl_set_add_dims(block
, isl_dim_set
, kernel
->n_block
);
1133 for (i
= 0; i
< kernel
->n_block
; ++i
) {
1137 id
= isl_id_list_get_id(kernel
->thread_ids
, i
);
1138 pos
= isl_set_find_dim_by_id(block
, isl_dim_param
, id
);
1141 block
= isl_set_equate(block
, isl_dim_param
, pos
,
1144 nparam
= isl_set_dim(block
, isl_dim_param
);
1145 block
= isl_set_project_out(block
, isl_dim_param
, 0, nparam
);
1147 extract_fixed_size(block
, kernel
->block_dim
);
1150 struct ppcg_kernel
*ppcg_kernel_free(struct ppcg_kernel
*kernel
)
1157 isl_id_list_free(kernel
->block_ids
);
1158 isl_id_list_free(kernel
->thread_ids
);
1159 isl_multi_pw_aff_free(kernel
->grid_size
);
1160 isl_set_free(kernel
->context
);
1161 isl_union_set_free(kernel
->core
);
1162 isl_union_set_free(kernel
->arrays
);
1163 isl_space_free(kernel
->space
);
1164 isl_ast_node_free(kernel
->tree
);
1165 isl_union_set_free(kernel
->block_filter
);
1166 isl_union_set_free(kernel
->thread_filter
);
1167 isl_union_pw_multi_aff_free(kernel
->shared_schedule
);
1168 isl_union_set_free(kernel
->sync_writes
);
1170 for (i
= 0; i
< kernel
->n_array
; ++i
) {
1171 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
1173 for (j
= 0; j
< array
->n_group
; ++j
)
1174 gpu_array_ref_group_free(array
->groups
[j
]);
1175 free(array
->groups
);
1177 isl_pw_aff_list_free(array
->bound
);
1179 free(kernel
->array
);
1181 for (i
= 0; i
< kernel
->n_var
; ++i
) {
1182 free(kernel
->var
[i
].name
);
1183 isl_vec_free(kernel
->var
[i
].size
);
1192 /* Wrapper around ppcg_kernel_free for use as a isl_id_set_free_user callback.
1194 static void ppcg_kernel_free_wrap(void *user
)
1196 struct ppcg_kernel
*kernel
= user
;
1198 ppcg_kernel_free(kernel
);
1201 static void create_kernel_var(isl_ctx
*ctx
, struct gpu_array_ref_group
*group
,
1202 struct ppcg_kernel_var
*var
)
1205 struct gpu_array_tile
*tile
;
1209 var
->array
= group
->array
;
1211 tile
= group
->private_tile
;
1212 var
->type
= ppcg_access_private
;
1214 tile
= group
->shared_tile
;
1215 var
->type
= ppcg_access_shared
;
1218 p
= isl_printer_to_str(ctx
);
1219 p
= gpu_array_ref_group_print_name(group
, p
);
1220 var
->name
= isl_printer_get_str(p
);
1221 isl_printer_free(p
);
1223 var
->size
= isl_vec_alloc(ctx
, group
->array
->n_index
);
1225 for (j
= 0; j
< group
->array
->n_index
; ++j
)
1226 var
->size
= isl_vec_set_element_val(var
->size
, j
,
1227 isl_val_copy(tile
->bound
[j
].size
));
1230 static int create_kernel_vars(struct ppcg_kernel
*kernel
)
1235 for (i
= 0; i
< kernel
->n_array
; ++i
) {
1236 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
1238 for (j
= 0; j
< array
->n_group
; ++j
) {
1239 struct gpu_array_ref_group
*group
= array
->groups
[j
];
1240 if (group
->private_tile
|| group
->shared_tile
)
1246 kernel
->var
= isl_calloc_array(kernel
->ctx
, struct ppcg_kernel_var
, n
);
1251 for (i
= 0; i
< kernel
->n_array
; ++i
) {
1252 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
1254 for (j
= 0; j
< array
->n_group
; ++j
) {
1255 struct gpu_array_ref_group
*group
= array
->groups
[j
];
1256 if (!group
->private_tile
&& !group
->shared_tile
)
1258 create_kernel_var(kernel
->ctx
, group
, &kernel
->var
[n
]);
1266 /* Replace "pa" by the zero function defined over the universe domain
1267 * in the space of "pa".
1269 static __isl_give isl_pw_aff
*set_universally_zero(__isl_take isl_pw_aff
*pa
)
1274 space
= isl_space_domain(isl_pw_aff_get_space(pa
));
1275 isl_pw_aff_free(pa
);
1276 zero
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
1278 return isl_pw_aff_from_aff(zero
);
1281 /* The sizes of the arrays on the host that have been computed by
1282 * extract_array_info may depend on the parameters. Use the extra
1283 * constraints on the parameters that are valid at "host_domain"
1284 * to simplify these expressions and store the results in kernel->array.
1286 * We only need these localized bounds for arrays that are accessed
1287 * by the current kernel. If we have found at least one reference group
1288 * then the array is accessed by the kernel.
1290 * The resulting sizes may be functions that are nowhere defined
1291 * in case the access function cannot possibly access anything inside
1292 * the kernel for some reason. If so, they are replaced by the zero
1293 * function. Since the access function cannot actually access anything,
1294 * there is no harm in printing the array sizes as zero.
1296 static void localize_bounds(struct ppcg_kernel
*kernel
,
1297 __isl_keep isl_set
*host_domain
)
1302 context
= isl_set_copy(host_domain
);
1303 context
= isl_set_params(context
);
1305 for (i
= 0; i
< kernel
->n_array
; ++i
) {
1306 struct gpu_local_array_info
*local
= &kernel
->array
[i
];
1307 isl_pw_aff_list
*bound
;
1310 if (local
->n_group
== 0)
1313 n_index
= local
->array
->n_index
;
1314 bound
= isl_pw_aff_list_alloc(kernel
->ctx
, n_index
);
1316 for (j
= 0; j
< n_index
; ++j
) {
1320 pwaff
= isl_pw_aff_copy(local
->array
->bound
[j
]);
1321 pwaff
= isl_pw_aff_gist(pwaff
, isl_set_copy(context
));
1322 empty
= isl_pw_aff_is_empty(pwaff
);
1324 pwaff
= isl_pw_aff_free(pwaff
);
1326 pwaff
= set_universally_zero(pwaff
);
1327 bound
= isl_pw_aff_list_add(bound
, pwaff
);
1330 local
->n_index
= n_index
;
1331 local
->bound
= bound
;
1333 isl_set_free(context
);
1336 /* Create the array of gpu_local_array_info structures "array"
1337 * inside "kernel". The number of elements in this array is
1338 * the same as the number of arrays in "prog".
1339 * Initialize the "array" field of each local array to point
1340 * to the corresponding array in "prog".
1342 static struct ppcg_kernel
*ppcg_kernel_create_local_arrays(
1343 struct ppcg_kernel
*kernel
, struct gpu_prog
*prog
)
1348 ctx
= isl_set_get_ctx(prog
->context
);
1349 kernel
->array
= isl_calloc_array(ctx
,
1350 struct gpu_local_array_info
, prog
->n_array
);
1352 return ppcg_kernel_free(kernel
);
1353 kernel
->n_array
= prog
->n_array
;
1355 for (i
= 0; i
< prog
->n_array
; ++i
)
1356 kernel
->array
[i
].array
= &prog
->array
[i
];
1361 /* Does "kernel" need to be passed an argument corresponding to array "i"?
1363 * The argument is only needed if the kernel accesses this device memory.
1365 int ppcg_kernel_requires_array_argument(struct ppcg_kernel
*kernel
, int i
)
1367 return kernel
->array
[i
].global
;
1370 /* Find the element in gen->stmt that has the given "id".
1371 * Return NULL if no such gpu_stmt can be found.
1373 static struct gpu_stmt
*find_stmt(struct gpu_prog
*prog
, __isl_keep isl_id
*id
)
1377 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
1378 if (id
== prog
->stmts
[i
].id
)
1382 return i
< prog
->n_stmts
? &prog
->stmts
[i
] : NULL
;
1385 void ppcg_kernel_stmt_free(void *user
)
1388 struct ppcg_kernel_stmt
*stmt
= user
;
1393 switch (stmt
->type
) {
1394 case ppcg_kernel_copy
:
1395 isl_ast_expr_free(stmt
->u
.c
.index
);
1396 isl_ast_expr_free(stmt
->u
.c
.local_index
);
1398 case ppcg_kernel_domain
:
1399 isl_id_to_ast_expr_free(stmt
->u
.d
.ref2expr
);
1401 case ppcg_kernel_sync
:
1408 /* Return the gpu_stmt_access in the list "accesses" that corresponds
1411 static struct gpu_stmt_access
*find_access(struct gpu_stmt_access
*accesses
,
1412 __isl_keep isl_id
*ref_id
)
1414 struct gpu_stmt_access
*access
;
1416 for (access
= accesses
; access
; access
= access
->next
)
1417 if (access
->ref_id
== ref_id
)
1423 /* Return the index of the array called "name" in the list of arrays.
1425 static int find_array_index(struct ppcg_kernel
*kernel
, const char *name
)
1429 for (i
= 0; i
< kernel
->n_array
; ++i
)
1430 if (!strcmp(name
, kernel
->array
[i
].array
->name
))
1436 /* Internal data structure for the index and AST expression transformation
1437 * callbacks for pet_stmt_build_ast_exprs.
1439 * "kernel" is the kernel for which are computing AST expressions and
1440 * may be NULL if we are not inside a kernel.
1441 * "accesses" is the list of gpu_stmt_access in the statement.
1442 * "iterator_map" expresses the statement iterators in terms of
1443 * the AST loop iterators.
1444 * "sched2shared" expresses the outer shared_schedule_dim dimensions of
1445 * the kernel schedule in terms of the AST loop iterators and
1446 * may be NULL if we are not inside a kernel.
1448 * The following fields are set in transform_index and used in transform_expr.
1449 * "array" is the array that is being accessed.
1450 * "global" is set if the global array is accessed (rather than
1451 * shared/private memory).
1452 * "local_array" refers to information on the array specialized
1453 * to the current kernel.
1455 struct ppcg_transform_data
{
1456 struct ppcg_kernel
*kernel
;
1457 struct gpu_stmt_access
*accesses
;
1458 isl_pw_multi_aff
*iterator_map
;
1459 isl_pw_multi_aff
*sched2shared
;
1461 struct gpu_array_info
*array
;
1463 struct gpu_local_array_info
*local_array
;
1466 /* Return a pointer to the gpu_array_ref_group in "local"
1467 * that contains the reference "access".
1468 * Return NULL if no such group can be found.
1470 static struct gpu_array_ref_group
*find_ref_group(
1471 struct gpu_local_array_info
*local
, struct gpu_stmt_access
*access
)
1475 for (i
= 0; i
< local
->n_group
; ++i
) {
1476 struct gpu_array_ref_group
*group
= local
->groups
[i
];
1478 for (j
= 0; j
< group
->n_ref
; ++j
)
1479 if (group
->refs
[j
] == access
)
1486 /* Index transformation callback for pet_stmt_build_ast_exprs.
1488 * "index" expresses the array indices in terms of statement iterators
1490 * We first reformulate "index" in terms of the AST loop iterators.
1491 * Then we check if we are accessing the global array or
1492 * a shared/private copy. In particular, if we are not inside a kernel
1493 * then we must be accessing a global array.
1494 * In the former case, we simply return
1495 * the updated index. If "index" is an affine expression rather
1496 * than an array access, then we also return the updated index here.
1498 * If no reference groups have been computed for the array,
1499 * then we can only be accessing the global array.
1501 * Otherwise, we apply the tiling to the index.
1502 * This tiling is of the form
1506 * where D corresponds to the outer group->depth dimensions of
1507 * the kernel schedule.
1508 * The index is of the form
1512 * We update the tiling to refer to the AST loop iterators
1516 * and modify index to keep track of those iterators
1520 * Combining these two yields a tiled index expression in terms
1521 * of the AST loop iterators
1525 static __isl_give isl_multi_pw_aff
*transform_index(
1526 __isl_take isl_multi_pw_aff
*index
, __isl_keep isl_id
*ref_id
,
1529 struct ppcg_transform_data
*data
= user
;
1530 struct gpu_stmt_access
*access
;
1531 struct gpu_array_ref_group
*group
;
1532 struct gpu_array_tile
*tile
;
1533 isl_pw_multi_aff
*iterator_map
;
1538 isl_multi_pw_aff
*tiling
;
1539 isl_pw_multi_aff
*pma
;
1540 isl_multi_pw_aff
*mpa
;
1541 isl_pw_multi_aff
*sched2depth
;
1545 iterator_map
= isl_pw_multi_aff_copy(data
->iterator_map
);
1546 index
= isl_multi_pw_aff_pullback_pw_multi_aff(index
, iterator_map
);
1551 access
= find_access(data
->accesses
, ref_id
);
1554 if (!isl_map_has_tuple_name(access
->access
, isl_dim_out
))
1557 name
= get_outer_array_name(access
->access
);
1558 i
= find_array_index(data
->kernel
, name
);
1560 isl_die(isl_multi_pw_aff_get_ctx(index
), isl_error_internal
,
1561 "cannot find array",
1562 return isl_multi_pw_aff_free(index
));
1563 data
->local_array
= &data
->kernel
->array
[i
];
1564 data
->array
= data
->local_array
->array
;
1566 group
= find_ref_group(data
->local_array
, access
);
1572 tile
= group
->private_tile
;
1574 tile
= group
->shared_tile
;
1575 data
->global
= !tile
;
1579 space
= isl_space_range(isl_multi_pw_aff_get_space(index
));
1580 space
= isl_space_map_from_set(space
);
1581 pma
= isl_pw_multi_aff_identity(space
);
1582 sched2depth
= isl_pw_multi_aff_copy(data
->sched2shared
);
1583 dim
= isl_pw_multi_aff_dim(sched2depth
, isl_dim_out
);
1584 sched2depth
= isl_pw_multi_aff_drop_dims(sched2depth
, isl_dim_out
,
1585 group
->depth
, dim
- group
->depth
);
1586 pma
= isl_pw_multi_aff_product(sched2depth
, pma
);
1587 tiling
= isl_multi_pw_aff_from_multi_aff(
1588 isl_multi_aff_copy(tile
->tiling
));
1589 tiling
= isl_multi_pw_aff_pullback_pw_multi_aff(tiling
, pma
);
1591 space
= isl_space_domain(isl_multi_pw_aff_get_space(index
));
1592 space
= isl_space_map_from_set(space
);
1593 mpa
= isl_multi_pw_aff_identity(space
);
1594 index
= isl_multi_pw_aff_range_product(mpa
, index
);
1595 index
= isl_multi_pw_aff_pullback_multi_pw_aff(tiling
, index
);
1600 /* Dereference "expr" by adding an index [0].
1601 * The original "expr" is assumed not to have any indices.
1603 * If "expr" is a member access, then the dereferencing needs
1604 * to be applied to the structure argument of this member access.
1606 static __isl_give isl_ast_expr
*dereference(__isl_take isl_ast_expr
*expr
)
1609 isl_ast_expr
*arg0
, *res
;
1610 isl_ast_expr_list
*list
;
1612 arg0
= isl_ast_expr_get_op_arg(expr
, 0);
1614 return isl_ast_expr_free(expr
);
1615 if (isl_ast_expr_get_type(arg0
) == isl_ast_expr_op
&&
1616 isl_ast_expr_get_op_type(arg0
) == isl_ast_op_member
) {
1619 arg
= isl_ast_expr_get_op_arg(arg0
, 0);
1620 arg
= dereference(arg
);
1621 arg0
= isl_ast_expr_set_op_arg(arg0
, 0, arg
);
1622 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg0
);
1626 isl_ast_expr_free(arg0
);
1628 ctx
= isl_ast_expr_get_ctx(expr
);
1629 res
= isl_ast_expr_from_val(isl_val_zero(ctx
));
1630 list
= isl_ast_expr_list_from_ast_expr(res
);
1631 res
= isl_ast_expr_get_op_arg(expr
, 0);
1632 res
= isl_ast_expr_access(res
, list
);
1633 isl_ast_expr_free(expr
);
1638 /* Linearize the index expression "expr" based on the array bounds
1641 * That is, transform expression
1643 * A[i_0][i_1]...[i_n]
1647 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
1649 * where b_0, b_1, ..., b_n are the bounds on the array.
1651 * If the base of "expr" is a member access, then the linearization needs
1652 * to be applied to the structure argument of this member access.
1654 * In the base case, if "expr" has no arguments (other than the name of
1655 * the array), then we are passing an entire array to a function.
1656 * In this case, there is nothing to linearize.
1657 * Note that at this point an expression with no arguments can
1658 * only be an entire array because the scalar case and
1659 * the case of single struct are handled by the caller.
1661 * If the number of specified index expressions in "expr"
1662 * is smaller than the dimension of the accessed array,
1663 * then the missing i_j also do not appear in the linearized expression.
1664 * Furthermore, since such an expression does not refer to a single
1665 * element while the default linearized expression would refer to
1666 * a single element, we return the expression
1668 * A + (..((i_0 * b_1 + i_1) ... ) * b_n]
1670 * instead. Note that because of the special case handling above,
1671 * we can assume here that here that there is at least one index expression.
1673 __isl_give isl_ast_expr
*gpu_local_array_info_linearize_index(
1674 struct gpu_local_array_info
*array
, __isl_take isl_ast_expr
*expr
)
1681 isl_ast_expr_list
*list
;
1682 isl_ast_build
*build
;
1684 arg0
= isl_ast_expr_get_op_arg(expr
, 0);
1685 if (isl_ast_expr_get_type(arg0
) == isl_ast_expr_op
&&
1686 isl_ast_expr_get_op_type(arg0
) == isl_ast_op_member
) {
1689 arg
= isl_ast_expr_get_op_arg(arg0
, 0);
1690 arg
= gpu_local_array_info_linearize_index(array
, arg
);
1691 arg0
= isl_ast_expr_set_op_arg(arg0
, 0, arg
);
1692 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg0
);
1696 isl_ast_expr_free(arg0
);
1698 if (isl_ast_expr_get_op_n_arg(expr
) == 1)
1701 ctx
= isl_ast_expr_get_ctx(expr
);
1702 context
= isl_set_universe(isl_space_params_alloc(ctx
, 0));
1703 build
= isl_ast_build_from_context(context
);
1705 n
= isl_ast_expr_get_op_n_arg(expr
);
1706 res
= isl_ast_expr_get_op_arg(expr
, 1);
1707 for (i
= 1; i
< array
->n_index
; ++i
) {
1708 isl_pw_aff
*bound_i
;
1709 isl_ast_expr
*expr_i
;
1711 bound_i
= isl_pw_aff_list_get_pw_aff(array
->bound
, i
);
1712 expr_i
= isl_ast_build_expr_from_pw_aff(build
, bound_i
);
1713 res
= isl_ast_expr_mul(res
, expr_i
);
1717 expr_i
= isl_ast_expr_get_op_arg(expr
, i
+ 1);
1718 res
= isl_ast_expr_add(res
, expr_i
);
1721 isl_ast_build_free(build
);
1723 if (1 + array
->n_index
> n
) {
1724 res
= isl_ast_expr_add(isl_ast_expr_get_op_arg(expr
, 0), res
);
1726 list
= isl_ast_expr_list_from_ast_expr(res
);
1727 res
= isl_ast_expr_get_op_arg(expr
, 0);
1728 res
= isl_ast_expr_access(res
, list
);
1731 isl_ast_expr_free(expr
);
1736 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
1738 * If the AST expression refers to an array that is not accessed
1739 * at all, then this means the value of the expression is not used,
1740 * so we might as well print zero (NULL pointer) instead.
1742 * If the AST expression refers to a global scalar that is not
1743 * a read-only scalar, then its address was passed to the kernel and
1744 * we need to dereference it.
1746 * If the AST expression refers to an access to a global array,
1747 * then we linearize the access exploiting the bounds in data->local_array.
1749 static __isl_give isl_ast_expr
*transform_expr(__isl_take isl_ast_expr
*expr
,
1750 __isl_keep isl_id
*id
, void *user
)
1752 struct ppcg_transform_data
*data
= user
;
1756 if (!data
->array
->accessed
) {
1759 ctx
= isl_ast_expr_get_ctx(expr
);
1760 isl_ast_expr_free(expr
);
1761 return isl_ast_expr_from_val(isl_val_zero(ctx
));
1763 if (gpu_array_is_read_only_scalar(data
->array
))
1767 if (data
->array
->n_index
== 0)
1768 return dereference(expr
);
1769 if (!data
->array
->linearize
)
1772 return gpu_local_array_info_linearize_index(data
->local_array
, expr
);
1775 /* This function is called for each instance of a user statement
1776 * in the kernel "kernel", identified by "gpu_stmt".
1777 * "kernel" may be NULL if we are not inside a kernel.
1779 * We attach a struct ppcg_kernel_stmt to the "node", containing
1780 * a computed AST expression for each access, through an annotation
1782 * These AST expressions are computed from iterator_map,
1783 * which expresses the domain
1784 * elements in terms of the generated loops, and sched2shared,
1785 * which expresses the outer shared_schedule_dim dimensions of
1786 * the kernel schedule computed by PPCG in terms of the generated loops.
1788 static __isl_give isl_ast_node
*create_domain_leaf(
1789 struct ppcg_kernel
*kernel
, __isl_take isl_ast_node
*node
,
1790 __isl_keep isl_ast_build
*build
, struct gpu_stmt
*gpu_stmt
)
1792 struct ppcg_transform_data data
;
1793 struct ppcg_kernel_stmt
*stmt
;
1796 isl_pw_multi_aff
*sched2shared
;
1798 isl_pw_multi_aff
*iterator_map
;
1799 isl_union_map
*schedule
;
1803 ctx
= isl_ast_node_get_ctx(node
);
1805 stmt
= isl_calloc_type(ctx
, struct ppcg_kernel_stmt
);
1807 return isl_ast_node_free(node
);
1809 schedule
= isl_ast_build_get_schedule(build
);
1810 map
= isl_map_reverse(isl_map_from_union_map(schedule
));
1811 iterator_map
= isl_pw_multi_aff_from_map(map
);
1813 sched2shared
= compute_sched_to_shared(kernel
,
1814 isl_pw_multi_aff_copy(iterator_map
));
1816 sched2shared
= NULL
;
1818 stmt
->type
= ppcg_kernel_domain
;
1819 stmt
->u
.d
.stmt
= gpu_stmt
;
1821 data
.kernel
= kernel
;
1822 data
.accesses
= stmt
->u
.d
.stmt
->accesses
;
1823 data
.iterator_map
= iterator_map
;
1824 data
.sched2shared
= sched2shared
;
1825 stmt
->u
.d
.ref2expr
= pet_stmt_build_ast_exprs(stmt
->u
.d
.stmt
->stmt
,
1826 build
, &transform_index
, &data
,
1827 &transform_expr
, &data
);
1829 isl_pw_multi_aff_free(iterator_map
);
1830 isl_pw_multi_aff_free(sched2shared
);
1832 id
= isl_id_alloc(ctx
, "user", stmt
);
1833 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
1834 return isl_ast_node_set_annotation(node
, id
);
1837 /* This function is called for each statement node in the AST
1838 * for copying to or from shared/private memory.
1839 * Attach a pointer to a ppcg_kernel_stmt representing the copy
1840 * statement to the node.
1841 * The statement name is "read" or "write", depending on whether we are
1842 * reading from global memory or writing to global memory.
1844 * The schedule is of the form
1848 * where D corresponds to the outer group->depth dimensions of
1849 * the kernel schedule, A to the global array and L to the outer
1850 * generated AST schedule.
1851 * We compute the inverse and strip off the type, resulting in
1855 * We combine this mapping with on the one hand the projection
1859 * and on the other hand the group tiling
1867 * and store the corresponding expressions in stmt->index and stmt->local_index,
1868 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
1870 static __isl_give isl_ast_node
*create_access_leaf(struct ppcg_kernel
*kernel
,
1871 struct gpu_array_ref_group
*group
, __isl_take isl_ast_node
*node
,
1872 __isl_keep isl_ast_build
*build
)
1874 struct ppcg_kernel_stmt
*stmt
;
1875 struct gpu_array_tile
*tile
;
1880 isl_pw_multi_aff
*pma
, *pma2
;
1883 stmt
= isl_calloc_type(kernel
->ctx
, struct ppcg_kernel_stmt
);
1885 return isl_ast_node_free(node
);
1887 access
= isl_map_from_union_map(isl_ast_build_get_schedule(build
));
1888 type
= isl_map_get_tuple_name(access
, isl_dim_in
);
1889 stmt
->u
.c
.read
= !strcmp(type
, "read");
1890 access
= isl_map_reverse(access
);
1891 pma
= isl_pw_multi_aff_from_map(access
);
1892 pma
= isl_pw_multi_aff_reset_tuple_id(pma
, isl_dim_out
);
1894 space
= isl_space_range(isl_pw_multi_aff_get_space(pma
));
1895 space
= isl_space_unwrap(space
);
1896 pma2
= isl_pw_multi_aff_range_map(space
);
1897 pma2
= isl_pw_multi_aff_pullback_pw_multi_aff(pma2
,
1898 isl_pw_multi_aff_copy(pma
));
1899 expr
= isl_ast_build_access_from_pw_multi_aff(build
, pma2
);
1900 stmt
->u
.c
.index
= expr
;
1902 tile
= gpu_array_ref_group_tile(group
);
1903 pma2
= isl_pw_multi_aff_from_multi_aff(
1904 isl_multi_aff_copy(tile
->tiling
));
1905 pma2
= isl_pw_multi_aff_pullback_pw_multi_aff(pma2
, pma
);
1906 expr
= isl_ast_build_access_from_pw_multi_aff(build
, pma2
);
1907 stmt
->u
.c
.local_index
= expr
;
1909 stmt
->u
.c
.array
= group
->array
;
1910 stmt
->u
.c
.local_array
= group
->local_array
;
1911 stmt
->type
= ppcg_kernel_copy
;
1913 id
= isl_id_alloc(kernel
->ctx
, NULL
, stmt
);
1914 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
1915 return isl_ast_node_set_annotation(node
, id
);
1918 /* Create a synchronization ppcg_kernel_stmt and
1919 * attach it to the node "node" representing the synchronization.
1921 static __isl_give isl_ast_node
*create_sync_leaf(
1922 struct ppcg_kernel
*kernel
, __isl_take isl_ast_node
*node
,
1923 __isl_keep isl_ast_build
*build
)
1925 struct ppcg_kernel_stmt
*stmt
;
1928 stmt
= isl_calloc_type(kernel
->ctx
, struct ppcg_kernel_stmt
);
1930 return isl_ast_node_free(node
);
1932 stmt
->type
= ppcg_kernel_sync
;
1933 id
= isl_id_alloc(kernel
->ctx
, NULL
, stmt
);
1934 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
1935 return isl_ast_node_set_annotation(node
, id
);
1938 /* Internal data structure for at_domain.
1940 * "prog" represents the entire scop.
1941 * "kernel" points to the kernel to which the current schedule node
1942 * belongs. It is set by before_mark and reset by after_mark.
1943 * It may be NULL if we are outside any kernel.
1945 struct ppcg_at_domain_data
{
1946 struct gpu_prog
*prog
;
1947 struct ppcg_kernel
*kernel
;
1950 /* This function is called for each instance of a user statement
1951 * in the kernel. This may be one of the original user statements
1952 * or a statement introduced by PPCG.
1954 * We first check if the statement id corresponds to a gpu statement,
1955 * which indicates the statement is an original user statement. Any statement
1956 * that is not an original user statement has been introduced by PPCG and
1957 * requires special handling.
1959 * If the user statement is one of the original user statements, then we call
1960 * create_domain_leaf. Otherwise, we check if it is a copy or synchronization
1961 * statement and call the appropriate functions. Statements that copy an array
1962 * to/from the device do not need any further treatment.
1964 static __isl_give isl_ast_node
*at_domain(__isl_take isl_ast_node
*node
,
1965 __isl_keep isl_ast_build
*build
, void *user
)
1967 struct ppcg_at_domain_data
*data
= user
;
1968 struct gpu_stmt
*gpu_stmt
;
1969 isl_ast_expr
*expr
, *arg
;
1975 expr
= isl_ast_node_user_get_expr(node
);
1976 arg
= isl_ast_expr_get_op_arg(expr
, 0);
1977 id
= isl_ast_expr_get_id(arg
);
1978 name
= isl_id_get_name(id
);
1979 p
= isl_id_get_user(id
);
1980 isl_ast_expr_free(expr
);
1981 isl_ast_expr_free(arg
);
1983 gpu_stmt
= find_stmt(data
->prog
, id
);
1984 is_sync
= gpu_tree_id_is_sync(id
, data
->kernel
);
1988 return create_domain_leaf(data
->kernel
, node
, build
, gpu_stmt
);
1990 if (!prefixcmp(name
, "to_device_") || !prefixcmp(name
, "from_device_"))
1993 return isl_ast_node_free(node
);
1994 if (!strcmp(name
, "read") || !strcmp(name
, "write")) {
1995 struct gpu_array_ref_group
*group
= p
;
1996 return create_access_leaf(data
->kernel
, group
, node
, build
);
1999 isl_die(data
->prog
->ctx
, isl_error_internal
,
2000 "unknown statement type",
2001 return isl_ast_node_free(node
));
2002 return create_sync_leaf(data
->kernel
, node
, build
);
2005 /* Given a set of wrapped references "ref", return the corresponding
2006 * access relations based on the tagged access relations "tagged".
2008 * The elements of "ref" are of the form
2012 * with D an iteration domains and R a reference.
2013 * The elements of "tagged" are of the form
2019 * Extend "tagged" to include the iteration domain in the range, i.e.,
2021 * [D -> R] -> [D -> A]
2023 * apply the result to "ref" and then unwrap the resulting set
2024 * to obtain relations of the form
2028 static __isl_give isl_union_map
*wrapped_reference_to_access(
2029 __isl_take isl_union_set
*ref
, __isl_take isl_union_map
*tagged
)
2031 isl_union_map
*tag2access
;
2033 tag2access
= isl_union_map_copy(tagged
);
2034 tag2access
= isl_union_map_universe(tag2access
);
2035 tag2access
= isl_union_set_unwrap(isl_union_map_domain(tag2access
));
2036 tag2access
= isl_union_map_domain_map(tag2access
);
2037 tag2access
= isl_union_map_range_product(tag2access
, tagged
);
2039 ref
= isl_union_set_coalesce(ref
);
2040 ref
= isl_union_set_apply(ref
, tag2access
);
2042 return isl_union_set_unwrap(ref
);
2045 /* Given an access relation "access" from one or more array reference groups,
2046 * remove those reads if ("read" is 1) or writes (if "read" is 0)
2047 * that are only needed to communicate data within
2048 * the same iteration of "sched".
2049 * "tagged" contains all tagged access relations to all
2050 * the array reference groups accessed by "access" from statement
2051 * instances scheduled by "sched".
2053 * If the access is a read then it is either an element of
2055 * live_in union (range flow)
2057 * where live_in and flow may be overapproximations, or
2058 * it reads an uninitialized value (that is not live-in because
2059 * there is an intermediate kill) or it reads a value that was
2060 * written within the same (compound) statement instance.
2061 * If the access is a write then it is either an element of
2063 * live_out union (domain flow)
2065 * or it writes a value that is never read (and is not live-out
2066 * because of an intermediate kill) or only
2067 * within the same (compound) statement instance.
2068 * In both cases, the access relation is also a subset of
2069 * the group access relation.
2071 * The cases where an uninitialized value is read or a value is written
2072 * that is never read or where the dataflow occurs within a statement
2073 * instance are also considered local and may also be removed.
2075 * Essentially, we compute the intersection of "access" with either
2077 * live_in union (range non-local-flow)
2081 * live_out union (domain non-local-flow)
2083 * We first construct a relation "local"
2085 * [[D -> R] -> [D' -> R']]
2087 * of pairs of domain iterations accessing the reference group
2088 * and references in the group that are coscheduled by "sched".
2090 * If this relation does not intersect the dataflow dependences,
2091 * then there is nothing we can possibly remove, unless the dataflow
2092 * dependences themselves only relate a subset of the accesses.
2093 * In particular, the accesses may not be involved in any dataflow
2094 * dependences, either because they are uninitialized reads/dead writes
2095 * or because the dataflow occurs inside a statement instance.
2097 * Since the computation below may break up the access relation
2098 * into smaller pieces, we only perform the intersection with
2099 * the non-local dependent accesses if the local pairs
2100 * intersect the dataflow dependences. Otherwise, we intersect
2101 * with the universe of the non-local dependent accesses.
2102 * This should at least remove accesses from statements that
2103 * do not participate in any dependences.
2105 * In particular, we remove the "local" dataflow dependences from
2106 * the set of all dataflow dependences, or at least those
2107 * that may contribute to a domain/range that intersects
2108 * the domain of "access".
2109 * Note that if the potential dataflow dependences are an overapproximation
2110 * of the actual dataflow dependences, then the result remains an
2111 * overapproximation of the non-local dataflow dependences.
2112 * Copying to/from global memory is only needed for the references
2113 * in the domain/range of the result or for accesses that are live out/in
2114 * for the entire scop.
2116 * We therefore map the domain/range of the "external" relation
2117 * to the corresponding access relation and take the union with
2118 * the live out/in relation.
2120 static __isl_give isl_union_map
*remove_local_accesses(
2121 struct gpu_prog
*prog
, __isl_take isl_union_map
*tagged
,
2122 __isl_take isl_union_map
*access
, __isl_take isl_union_map
*sched
,
2126 isl_union_pw_multi_aff
*tagger
;
2127 isl_union_set
*domain
, *access_domain
;
2128 isl_union_map
*local
, *external
, *universe
;
2129 isl_union_set
*tag_set
;
2131 if (isl_union_map_is_empty(access
)) {
2132 isl_union_map_free(sched
);
2133 isl_union_map_free(tagged
);
2137 tagger
= isl_union_pw_multi_aff_copy(prog
->scop
->tagger
);
2138 domain
= isl_union_map_domain(isl_union_map_copy(tagged
));
2139 tagger
= isl_union_pw_multi_aff_intersect_domain(tagger
,
2140 isl_union_set_copy(domain
));
2141 sched
= isl_union_map_preimage_domain_union_pw_multi_aff(sched
, tagger
);
2143 local
= isl_union_map_apply_range(sched
,
2144 isl_union_map_reverse(isl_union_map_copy(sched
)));
2145 local
= isl_union_map_intersect(local
,
2146 isl_union_map_copy(prog
->scop
->tagged_dep_flow
));
2148 empty
= isl_union_map_is_empty(local
);
2150 external
= isl_union_map_copy(prog
->scop
->tagged_dep_flow
);
2151 universe
= isl_union_map_universe(isl_union_map_copy(access
));
2152 access_domain
= isl_union_map_domain(universe
);
2153 domain
= isl_union_set_universe(domain
);
2154 universe
= isl_union_set_unwrap(domain
);
2155 universe
= isl_union_map_intersect_domain(universe
, access_domain
);
2156 domain
= isl_union_map_wrap(universe
);
2158 external
= isl_union_map_intersect_range(external
, domain
);
2160 external
= isl_union_map_intersect_domain(external
, domain
);
2161 external
= isl_union_map_intersect_params(external
,
2162 isl_set_copy(prog
->scop
->context
));
2163 external
= isl_union_map_subtract(external
, local
);
2166 tag_set
= isl_union_map_range(external
);
2167 external
= wrapped_reference_to_access(tag_set
, tagged
);
2168 external
= isl_union_map_union(external
,
2169 isl_union_map_copy(prog
->scop
->live_in
));
2171 tag_set
= isl_union_map_domain(external
);
2172 external
= wrapped_reference_to_access(tag_set
, tagged
);
2173 external
= isl_union_map_union(external
,
2174 isl_union_map_copy(prog
->scop
->live_out
));
2178 external
= isl_union_map_free(external
);
2180 external
= isl_union_map_universe(external
);
2182 access
= isl_union_map_intersect(access
, external
);
2187 /* Given an access relation "access" from "group", remove those reads
2188 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
2189 * communicate data within the same iteration of the schedule at the
2190 * position where the copying of the group is inserted.
2191 * "node" points to this position, i.e., the depth at "node"
2192 * is equal to group->depth.
2194 * We extract a schedule that picks out the iterations of the outer
2195 * group->depth dimensions and call remove_local_accesses.
2197 static __isl_give isl_union_map
*remove_local_accesses_group(
2198 struct ppcg_kernel
*kernel
, struct gpu_array_ref_group
*group
,
2199 __isl_take isl_union_map
*access
, __isl_keep isl_schedule_node
*node
,
2202 isl_union_map
*sched
, *tagged
;
2204 if (isl_union_map_is_empty(access
))
2207 tagged
= group_tagged_access_relation(group
);
2208 sched
= isl_schedule_node_get_prefix_schedule_relation(node
);
2210 return remove_local_accesses(kernel
->prog
, tagged
, access
, sched
, read
);
2213 /* This function is called before the AST generator starts traversing
2214 * the schedule subtree of a node with mark "mark".
2216 * If the mark is called "kernel", store the kernel pointer in data->kernel
2217 * for use in at_domain.
2219 static int before_mark(__isl_keep isl_id
*mark
,
2220 __isl_keep isl_ast_build
*build
, void *user
)
2222 struct ppcg_at_domain_data
*data
= user
;
2226 if (!strcmp(isl_id_get_name(mark
), "kernel"))
2227 data
->kernel
= isl_id_get_user(mark
);
2231 /* This function is called after the AST generator has finished traversing
2232 * the schedule subtree of a mark node. "node" points to the corresponding
2235 * If the mark is called "kernel", then replace "node" by a user node
2236 * that "calls" the kernel, representing the launch of the kernel.
2237 * The original "node" is stored inside the kernel object so that
2238 * it can be used to print the device code.
2239 * Note that this assumes that a kernel is only launched once.
2240 * Also clear data->kernel.
2242 static __isl_give isl_ast_node
*after_mark(__isl_take isl_ast_node
*node
,
2243 __isl_keep isl_ast_build
*build
, void *user
)
2248 isl_ast_expr_list
*list
;
2249 struct ppcg_kernel
*kernel
;
2250 struct ppcg_at_domain_data
*data
= user
;
2252 ctx
= isl_ast_node_get_ctx(node
);
2253 id
= isl_ast_node_mark_get_id(node
);
2255 return isl_ast_node_free(node
);
2256 if (strcmp(isl_id_get_name(id
), "kernel") || !data
->kernel
) {
2260 kernel
= data
->kernel
;
2261 data
->kernel
= NULL
;
2262 kernel
->space
= isl_ast_build_get_schedule_space(build
);
2263 kernel
->tree
= isl_ast_node_mark_get_node(node
);
2264 isl_ast_node_free(node
);
2266 expr
= isl_ast_expr_from_id(isl_id_copy(id
));
2267 list
= isl_ast_expr_list_alloc(ctx
, 0);
2268 expr
= isl_ast_expr_call(expr
, list
);
2269 node
= isl_ast_node_alloc_user(expr
);
2270 node
= isl_ast_node_set_annotation(node
, id
);
2275 static isl_bool
update_depth(__isl_keep isl_schedule_node
*node
, void *user
)
2280 if (isl_schedule_node_get_type(node
) != isl_schedule_node_leaf
)
2281 return isl_bool_true
;
2282 node_depth
= isl_schedule_node_get_schedule_depth(node
);
2283 if (node_depth
> *depth
)
2284 *depth
= node_depth
;
2286 return isl_bool_false
;
2289 /* Use isl to generate code for both the host and the device
2291 * The device code is marked by "kernel" mark nodes in the schedule tree,
2292 * containing a pointer to a ppcg_kernel object.
2293 * The returned AST only contains the AST for the host code.
2294 * The ASTs for the device code are embedded in ppcg_kernel objects
2295 * attached to the leaf nodes that call "kernel".
2297 static __isl_give isl_ast_node
*generate_code(struct gpu_gen
*gen
,
2298 __isl_take isl_schedule
*schedule
)
2300 struct ppcg_at_domain_data data
;
2301 isl_ast_build
*build
;
2303 isl_id_list
*iterators
;
2306 data
.prog
= gen
->prog
;
2310 if (isl_schedule_foreach_schedule_node_top_down(schedule
, &update_depth
,
2313 build
= isl_ast_build_alloc(gen
->prog
->ctx
);
2314 iterators
= ppcg_scop_generate_names(gen
->prog
->scop
, depth
, "c");
2315 build
= isl_ast_build_set_iterators(build
, iterators
);
2316 build
= isl_ast_build_set_at_each_domain(build
, &at_domain
, &data
);
2317 build
= isl_ast_build_set_before_each_mark(build
, &before_mark
, &data
);
2318 build
= isl_ast_build_set_after_each_mark(build
, &after_mark
, &data
);
2319 if (gen
->prog
->scop
->options
->debug
->dump_final_schedule
)
2320 isl_schedule_dump(schedule
);
2321 tree
= isl_ast_build_node_from_schedule(build
, schedule
);
2322 isl_ast_build_free(build
);
2327 __isl_give isl_union_map
*extract_sizes_from_str(isl_ctx
*ctx
, const char *str
)
2331 return isl_union_map_read_from_str(ctx
, str
);
2334 /* Can "node" be tiled and then mapped to block and thread identifiers?
2335 * That is, is it permutable with at least one coincident dimension?
2337 static int is_permutable(__isl_keep isl_schedule_node
*node
)
2342 if (isl_schedule_node_get_type(node
) != isl_schedule_node_band
)
2344 if (!isl_schedule_node_band_get_permutable(node
))
2346 if (isl_schedule_node_band_n_member(node
) < 1)
2348 if (!isl_schedule_node_band_member_get_coincident(node
, 0))
2354 /* A isl_schedule_foreach_schedule_node_top_down callback
2355 * for setting *any_permutable and aborting the search
2356 * if "node" is a permutable band with coincident dimensions.
2357 * Otherwise, continue searching.
2359 static isl_bool
set_permutable(__isl_keep isl_schedule_node
*node
, void *user
)
2361 int *any_permutable
= user
;
2364 permutable
= is_permutable(node
);
2366 return isl_bool_error
;
2368 return isl_bool_true
;
2370 *any_permutable
= 1;
2372 return isl_bool_error
;
2375 /* Does "schedule" contain any permutable band with at least one coincident
2378 static int has_any_permutable_node(__isl_keep isl_schedule
*schedule
)
2380 int any_permutable
= 0;
2382 if (isl_schedule_foreach_schedule_node_top_down(schedule
,
2383 &set_permutable
, &any_permutable
) < 0 &&
2387 return any_permutable
;
2390 /* Is "node" a leaf or can it be tiled and then mapped to
2391 * block and thread identifiers?
2393 static int is_leaf_or_tilable(__isl_keep isl_schedule_node
*node
)
2395 if (isl_schedule_node_get_type(node
) == isl_schedule_node_leaf
)
2397 return is_permutable(node
);
2400 /* Is "node" the outermost node in its branch that can be tiled
2401 * and then mapped to block and thread identifiers?
2402 * If there are no such nodes in the branch and if "node" is a leaf,
2403 * then it is accepted too.
2405 static int is_outer_tilable(__isl_keep isl_schedule_node
*node
)
2408 isl_schedule_node
*ancestor
;
2410 tilable
= is_leaf_or_tilable(node
);
2417 ancestor
= isl_schedule_node_copy(node
);
2418 while (isl_schedule_node_has_parent(ancestor
)) {
2419 ancestor
= isl_schedule_node_parent(ancestor
);
2421 tilable
= is_permutable(ancestor
);
2422 if (tilable
< 0 || tilable
)
2426 isl_schedule_node_free(ancestor
);
2427 return tilable
< 0 ? -1 : !tilable
;
2430 /* Collect the references to all writes in "group".
2431 * Each reference is represented by a universe set in a space
2435 * with S[i,j] the statement instance space and R[] the array reference.
2437 static __isl_give isl_union_set
*group_tagged_writes(
2438 struct gpu_array_ref_group
*group
)
2442 isl_union_set
*writes
;
2444 space
= isl_map_get_space(group
->access
);
2445 writes
= isl_union_set_empty(space
);
2446 for (i
= 0; i
< group
->n_ref
; ++i
) {
2450 if (!group
->refs
[i
]->write
)
2453 space
= isl_map_get_space(group
->refs
[i
]->tagged_access
);
2454 space
= isl_space_domain(space
);
2455 writes_i
= isl_set_universe(space
);
2456 writes
= isl_union_set_add_set(writes
, writes_i
);
2462 /* Is there any write access in "group" that requires synchronization
2463 * on a write to global memory?
2464 * We currently take into account all writes that would require
2465 * synchronization at the thread level depth, but if the copying
2466 * for this group is performed at an outer level, then we do not
2467 * actually need to take into account dependences at intermediate levels.
2469 static int any_sync_writes_in_group(struct ppcg_kernel
*kernel
,
2470 struct gpu_array_ref_group
*group
)
2472 isl_union_set
*writes
;
2473 int empty
, disjoint
;
2475 empty
= isl_union_set_is_empty(kernel
->sync_writes
);
2481 writes
= group_tagged_writes(group
);
2482 disjoint
= isl_union_set_is_disjoint(kernel
->sync_writes
, writes
);
2483 isl_union_set_free(writes
);
2485 return disjoint
< 0 ? -1 : !disjoint
;
2488 /* Collect the references to all writes in "kernel" that write directly
2489 * to global or shared memory, i.e., that are not mapped to private memory.
2490 * Each reference is represented by a universe set in a space
2494 * with S[i,j] the statement instance space and R[] the array reference.
2496 static __isl_give isl_union_set
*collect_non_private_tagged_writes(
2497 struct ppcg_kernel
*kernel
)
2499 isl_union_set
*writes
;
2502 writes
= isl_union_set_empty(isl_union_set_get_space(kernel
->arrays
));
2504 for (i
= 0; i
< kernel
->n_array
; ++i
) {
2505 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
2507 for (j
= 0; j
< array
->n_group
; ++j
) {
2508 struct gpu_array_ref_group
*group
= array
->groups
[j
];
2509 isl_union_set
*writes_ij
;
2513 if (group
->private_tile
)
2515 writes_ij
= group_tagged_writes(group
);
2516 writes
= isl_union_set_union(writes
, writes_ij
);
2523 /* Are there any direct writes to global memory that require
2526 static int any_global_or_shared_sync_writes(struct ppcg_kernel
*kernel
)
2528 isl_union_set
*writes
;
2529 int empty
, disjoint
;
2531 empty
= isl_union_set_is_empty(kernel
->sync_writes
);
2537 writes
= collect_non_private_tagged_writes(kernel
);
2538 disjoint
= isl_union_set_is_disjoint(kernel
->sync_writes
, writes
);
2539 isl_union_set_free(writes
);
2541 return disjoint
< 0 ? -1 : !disjoint
;
2544 /* Construct an isl_multi_val for use as tile sizes for tiling "node"
2545 * from the elements in "tile_size".
2547 static __isl_give isl_multi_val
*construct_band_tiles_sizes(
2548 __isl_keep isl_schedule_node
*node
, int *tile_size
)
2558 ctx
= isl_schedule_node_get_ctx(node
);
2559 space
= isl_schedule_node_band_get_space(node
);
2560 n
= isl_schedule_node_band_n_member(node
);
2561 mv
= isl_multi_val_zero(space
);
2562 for (i
= 0; i
< n
; ++i
) {
2565 v
= isl_val_int_from_si(ctx
, tile_size
[i
]);
2566 mv
= isl_multi_val_set_val(mv
, i
, v
);
2572 /* Replace the partial schedule S of the band node "node" by
2580 * if scale_tile_loops is set, with f the integers in "factor".
2581 * The list that "factor" points to is assumed to contain at least
2582 * as many elements as the number of members in the band.
2584 static __isl_give isl_schedule_node
*snap_band_to_sizes(
2585 __isl_take isl_schedule_node
*node
, int *factor
,
2586 struct ppcg_options
*options
)
2590 mv
= construct_band_tiles_sizes(node
, factor
);
2591 node
= isl_schedule_node_band_scale_down(node
, isl_multi_val_copy(mv
));
2592 if (options
->scale_tile_loops
)
2593 node
= isl_schedule_node_band_scale(node
,
2594 isl_multi_val_copy(mv
));
2595 isl_multi_val_free(mv
);
2600 /* Tile "band" with tile size specified by "sizes".
2602 * Since the tile loops will be mapped to block ids, we forcibly
2603 * turn off tile loop scaling. We may want to enable tile loop scaling
2604 * at some later point, but then we would have to support the detection
2605 * of strides during the mapping to block ids.
2606 * Similarly, since the point loops will be mapped to thread ids,
2607 * we forcibly shift the point loops so that they start at zero.
2609 static __isl_give isl_schedule_node
*tile_band(
2610 __isl_take isl_schedule_node
*node
, __isl_take isl_multi_val
*sizes
)
2612 isl_ctx
*ctx
= isl_schedule_node_get_ctx(node
);
2616 scale_tile
= isl_options_get_tile_scale_tile_loops(ctx
);
2617 isl_options_set_tile_scale_tile_loops(ctx
, 0);
2618 shift_point
= isl_options_get_tile_shift_point_loops(ctx
);
2619 isl_options_set_tile_shift_point_loops(ctx
, 1);
2621 node
= isl_schedule_node_band_tile(node
, sizes
);
2623 isl_options_set_tile_scale_tile_loops(ctx
, scale_tile
);
2624 isl_options_set_tile_shift_point_loops(ctx
, shift_point
);
2629 /* Extract the set of parameter values and outer schedule dimensions
2630 * for which any statement instance
2631 * in the kernel inserted at "node" needs to be executed.
2632 * Intersect the set of parameter values derived from the host schedule
2633 * relation with the context of "prog".
2635 static __isl_give isl_set
*extract_context(__isl_keep isl_schedule_node
*node
,
2636 struct gpu_prog
*prog
)
2638 isl_union_map
*schedule
;
2639 isl_union_set
*schedule_domain
;
2643 schedule
= isl_schedule_node_get_prefix_schedule_relation(node
);
2644 schedule_domain
= isl_union_map_range(schedule
);
2645 empty
= isl_union_set_is_empty(schedule_domain
);
2647 isl_union_set_free(schedule_domain
);
2654 space
= isl_union_set_get_space(schedule_domain
);
2655 isl_union_set_free(schedule_domain
);
2656 space
= isl_space_set_from_params(space
);
2657 depth
= isl_schedule_node_get_schedule_depth(node
);
2658 space
= isl_space_add_dims(space
, isl_dim_set
, depth
);
2659 context
= isl_set_empty(space
);
2661 context
= isl_set_from_union_set(schedule_domain
);
2663 context
= isl_set_intersect_params(context
,
2664 isl_set_copy(prog
->context
));
2669 /* Return the set of outer array elements accessed by
2670 * by the statement instance in "domain" in "prog".
2672 static __isl_give isl_union_set
*accessed_by_domain(
2673 __isl_take isl_union_set
*domain
, struct gpu_prog
*prog
)
2675 isl_union_map
*access
;
2676 isl_union_set
*arrays
;
2678 access
= isl_union_map_union(isl_union_map_copy(prog
->read
),
2679 isl_union_map_copy(prog
->may_write
));
2680 access
= isl_union_map_intersect_domain(access
, domain
);
2681 arrays
= isl_union_map_range(access
);
2682 arrays
= isl_union_set_apply(arrays
,
2683 isl_union_map_copy(prog
->to_outer
));
2688 /* Return the number of outer band members of the band node "node"
2689 * that are marked coincident.
2691 static int n_outer_coincidence(__isl_keep isl_schedule_node
*node
)
2695 n
= isl_schedule_node_band_n_member(node
);
2697 for (i
= 0; i
< n
; ++i
)
2698 if (!isl_schedule_node_band_member_get_coincident(node
, i
))
2704 /* If the band node "node" has more than "n" members, then split off
2705 * the first "n" of them.
2707 static __isl_give isl_schedule_node
*split_band(
2708 __isl_take isl_schedule_node
*node
, int n
)
2712 dim
= isl_schedule_node_band_n_member(node
);
2714 node
= isl_schedule_node_band_split(node
, n
);
2719 /* Scale a band node that may have been split by split_band.
2720 * "sizes" are the scaling factors for the original node.
2721 * "node" either points to the original band node, or the outer
2722 * of the two pieces after splitting.
2724 * If the number of elements in "node" is smaller than the number of
2725 * elements in "sizes", then some splitting has occurred and we split
2726 * "sizes" in the same way.
2728 static __isl_give isl_schedule_node
*scale_band(
2729 __isl_take isl_schedule_node
*node
, __isl_take isl_multi_val
*sizes
)
2733 n
= isl_multi_val_dim(sizes
, isl_dim_set
);
2734 dim
= isl_schedule_node_band_n_member(node
);
2736 isl_multi_val
*sizes2
;
2738 sizes2
= isl_multi_val_copy(sizes
);
2739 sizes
= isl_multi_val_drop_dims(sizes
,
2740 isl_dim_set
, dim
, n
- dim
);
2741 sizes2
= isl_multi_val_drop_dims(sizes2
, isl_dim_set
, 0, dim
);
2742 node
= isl_schedule_node_child(node
, 0);
2743 node
= isl_schedule_node_band_scale(node
, sizes2
);
2744 node
= isl_schedule_node_parent(node
);
2747 return isl_schedule_node_band_scale(node
, sizes
);
2750 /* Return an isl_multi_aff, with as elements the parameters in "space"
2751 * that have the names specified by the elements in "names".
2752 * If (some of) these parameters do not already appear in "space",
2753 * then they are added first.
2755 static __isl_give isl_multi_aff
*parameter_vector(__isl_take isl_space
*space
,
2756 __isl_keep isl_id_list
*names
)
2759 isl_local_space
*ls
;
2763 space
= isl_space_free(space
);
2765 n
= isl_id_list_n_id(names
);
2766 for (i
= 0; i
< n
; ++i
) {
2770 id
= isl_id_list_get_id(names
, i
);
2771 pos
= isl_space_find_dim_by_id(space
, isl_dim_param
, id
);
2776 pos
= isl_space_dim(space
, isl_dim_param
);
2777 space
= isl_space_add_dims(space
, isl_dim_param
, 1);
2778 space
= isl_space_set_dim_id(space
, isl_dim_param
, pos
, id
);
2780 ma
= isl_multi_aff_zero(isl_space_copy(space
));
2781 ls
= isl_local_space_from_space(isl_space_domain(space
));
2782 for (i
= 0; i
< n
; ++i
) {
2787 id
= isl_id_list_get_id(names
, i
);
2788 pos
= isl_space_find_dim_by_id(space
, isl_dim_param
, id
);
2790 aff
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
2791 isl_dim_param
, pos
);
2792 ma
= isl_multi_aff_set_aff(ma
, i
, aff
);
2794 isl_local_space_free(ls
);
2799 /* Return constraints on the domain elements that equate a sequence of
2800 * parameters called "names", to the partial schedule
2801 * of "node" modulo the integers in "size".
2802 * The number of elements in the array "size" should be equal
2803 * to the number of elements in "names".
2804 * The number of members of the band node "node" should be smaller
2805 * than or equal to this number. If it is smaller, then the first
2806 * elements of "names" are equated to zero.
2808 static __isl_give isl_union_set
*set_schedule_modulo(
2809 __isl_keep isl_schedule_node
*node
, __isl_keep isl_id_list
*names
,
2815 isl_multi_union_pw_aff
*mupa
, *mupa2
;
2817 isl_union_set
*domain
;
2821 n
= isl_id_list_n_id(names
);
2823 return isl_schedule_node_get_universe_domain(node
);
2824 n_zero
= n
- isl_schedule_node_band_n_member(node
);
2826 mupa
= isl_schedule_node_band_get_partial_schedule(node
);
2827 mv
= construct_band_tiles_sizes(node
, size
+ n_zero
);
2828 mupa
= isl_multi_union_pw_aff_mod_multi_val(mupa
, mv
);
2830 space
= isl_multi_union_pw_aff_get_space(mupa
);
2831 space
= isl_space_params(space
);
2832 space
= isl_space_set_from_params(space
);
2833 space
= isl_space_add_dims(space
, isl_dim_set
, n_zero
);
2834 ma
= isl_multi_aff_zero(space
);
2836 domain
= isl_schedule_node_get_universe_domain(node
);
2837 mupa2
= isl_multi_union_pw_aff_multi_aff_on_domain(
2838 isl_union_set_copy(domain
), ma
);
2839 mupa
= isl_multi_union_pw_aff_range_product(mupa2
, mupa
);
2841 space
= isl_multi_union_pw_aff_get_space(mupa
);
2842 ma
= parameter_vector(space
, names
);
2844 mupa2
= isl_multi_union_pw_aff_multi_aff_on_domain(domain
, ma
);
2845 mupa
= isl_multi_union_pw_aff_sub(mupa
, mupa2
);
2847 return isl_multi_union_pw_aff_zero_union_set(mupa
);
2850 /* Insert a context node at "node" introducing the block and thread
2851 * identifiers along with their bounds, which are stored in kernel->grid_size
2852 * and kernel->block_dim.
2853 * Note that the bounds on the block identifiers may implicitly impose
2854 * constraints on the parameters. A guard needs to be inserted
2855 * in the schedule tree to ensure that those bounds hold at "node".
2856 * This guard is inserted in insert_guard.
2858 static __isl_give isl_schedule_node
*insert_context(struct ppcg_kernel
*kernel
,
2859 __isl_take isl_schedule_node
*node
)
2863 context
= isl_set_universe(isl_set_get_space(kernel
->context
));
2865 context
= add_bounded_parameters_dynamic(context
,
2866 kernel
->grid_size
, kernel
->block_ids
);
2867 context
= add_bounded_parameters(context
,
2868 kernel
->block_dim
, kernel
->thread_ids
);
2870 node
= isl_schedule_node_insert_context(node
, context
);
2875 /* Insert a guard that eliminates kernel launches where the kernel
2876 * obviously does not have any work to do.
2878 * In particular, eliminate kernel launches where there are obviously
2880 * Use the same block size constraints that are used to create the context
2881 * to ensure that all constraints implicit in the constructed context
2882 * are imposed by the guard.
2884 * Additionally, add other constraints that are valid
2885 * for each executed instance ("context"), as long as this does not result
2888 static __isl_give isl_schedule_node
*insert_guard(
2889 __isl_take isl_schedule_node
*node
, __isl_keep isl_set
*context
,
2890 __isl_keep isl_multi_pw_aff
*size
, struct ppcg_scop
*scop
)
2896 guard
= isl_set_copy(context
);
2897 guard
= isl_set_compute_divs(guard
);
2898 guard
= isl_set_from_basic_set(isl_set_simple_hull(guard
));
2900 nparam
= isl_set_dim(guard
, isl_dim_param
);
2901 n
= isl_multi_pw_aff_dim(size
, isl_dim_out
);
2902 ids
= ppcg_scop_generate_names(scop
, n
, "__ppcg_tmp");
2903 guard
= add_bounded_parameters_dynamic(guard
, size
, ids
);
2904 isl_id_list_free(ids
);
2905 guard
= isl_set_project_out(guard
, isl_dim_param
, nparam
, n
);
2907 node
= isl_schedule_node_insert_guard(node
, guard
);
2912 /* Does any array reference group mapping require the band that is mapped
2913 * to threads to be unrolled?
2915 static int kernel_requires_unroll(struct ppcg_kernel
*kernel
)
2919 for (i
= 0; i
< kernel
->n_array
; ++i
) {
2920 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
2922 for (j
= 0; j
< array
->n_group
; ++j
) {
2923 struct gpu_array_ref_group
*group
= array
->groups
[j
];
2924 if (gpu_array_ref_group_requires_unroll(group
))
2932 /* Mark the given band node "node" for unrolling by the AST generator and
2933 * then sink it to the leaves of the schedule tree.
2934 * All dimensions of "node" are assumed to be coincident, such that this
2935 * sinking is a valid operation.
2937 static __isl_give isl_schedule_node
*unroll(__isl_take isl_schedule_node
*node
)
2941 n
= isl_schedule_node_band_n_member(node
);
2942 for (i
= 0; i
< n
; ++i
)
2943 node
= isl_schedule_node_band_member_set_ast_loop_type(node
, i
,
2944 isl_ast_loop_unroll
);
2946 node
= isl_schedule_node_band_sink(node
);
2951 /* Insert a synchronization node in the schedule tree of "node"
2952 * after the core computation of "kernel" at the level of the band
2953 * that is mapped to threads, except if that level is equal to
2954 * that of the band that is mapped to blocks or if there are no writes
2955 * to global or shared memory in the core computation that require
2957 * If there are any writes to shared memory and the shared memory
2958 * copying is performed at the same level, then synchronization
2959 * is needed between the core and the copying anyway, so we might
2960 * as well add it here. If the copying is performed at a higher
2961 * level, then different iterations of intermediate schedule dimensions
2962 * may have a different mapping from between shared memory elements and
2963 * threads, such that synchronization is required after the core.
2964 * "node" is assumed to point to the kernel node.
2966 static __isl_give isl_schedule_node
*add_sync(struct ppcg_kernel
*kernel
,
2967 __isl_take isl_schedule_node
*node
)
2972 need_sync
= any_global_or_shared_sync_writes(kernel
);
2974 return isl_schedule_node_free(node
);
2978 kernel_depth
= isl_schedule_node_get_schedule_depth(node
);
2980 node
= gpu_tree_move_down_to_thread(node
, kernel
->core
);
2981 if (kernel_depth
== isl_schedule_node_get_schedule_depth(node
))
2982 return gpu_tree_move_up_to_kernel(node
);
2984 node
= gpu_tree_ensure_following_sync(node
, kernel
);
2986 node
= gpu_tree_move_up_to_kernel(node
);
2991 /* Return a read ("read" is 1) or write access relation for "group"
2992 * with those accesses removed that are only needed to communicate data
2993 * within the subtree of the schedule rooted at "node".
2994 * Furthermore, include the prefix schedule at "node".
2995 * That is, return a relation of the form
2999 * with D the outer schedule dimensions at "node".
3001 static __isl_give isl_union_map
*anchored_non_local_accesses(
3002 struct ppcg_kernel
*kernel
, struct gpu_array_ref_group
*group
,
3003 __isl_take isl_schedule_node
*node
, int read
)
3005 isl_union_map
*access
;
3006 isl_union_map
*prefix
;
3008 access
= gpu_array_ref_group_access_relation(group
, read
, !read
);
3009 access
= remove_local_accesses_group(kernel
, group
, access
, node
, read
);
3010 prefix
= isl_schedule_node_get_prefix_schedule_relation(node
);
3011 access
= isl_union_map_range_product(prefix
, access
);
3016 /* Given an array reference group "group", create a mapping
3018 * read[D -> A] -> [D -> A]
3020 * if "read" is set or
3022 * write[D -> A] -> [D -> A]
3024 * if "read" is not set.
3025 * D corresponds to the outer group->depth dimensions of
3026 * the kernel schedule.
3028 static __isl_give isl_multi_aff
*create_from_access(isl_ctx
*ctx
,
3029 struct gpu_array_ref_group
*group
, int read
)
3034 space
= isl_space_copy(group
->array
->space
);
3035 space
= isl_space_from_range(space
);
3036 space
= isl_space_add_dims(space
, isl_dim_in
, group
->depth
);
3037 space
= isl_space_wrap(space
);
3038 space
= isl_space_map_from_set(space
);
3040 id
= isl_id_alloc(ctx
, read
? "read" : "write", group
);
3041 space
= isl_space_set_tuple_id(space
, isl_dim_in
, id
);
3043 return isl_multi_aff_identity(space
);
3046 /* If any writes in "group" require synchronization, then make sure
3047 * that there is a synchronization node for "kernel" after the node
3048 * following "node" in a sequence.
3050 * If "shared" is set and no synchronization is needed for
3051 * the writes to global memory, then add synchronization before
3052 * the kernel to protect shared memory from being overwritten
3053 * by the next iteration of the core computation.
3054 * No additional synchronization is needed to protect against
3055 * the next copy into shared memory because each element of
3056 * the shared memory tile is always copied by the same thread.
3058 static __isl_give isl_schedule_node
*add_group_write_sync(
3059 __isl_take isl_schedule_node
*node
, struct ppcg_kernel
*kernel
,
3060 struct gpu_array_ref_group
*group
, int shared
)
3064 need_sync
= any_sync_writes_in_group(kernel
, group
);
3066 return isl_schedule_node_free(node
);
3068 node
= isl_schedule_node_parent(node
);
3069 node
= isl_schedule_node_next_sibling(node
);
3070 node
= isl_schedule_node_child(node
, 0);
3071 node
= gpu_tree_ensure_following_sync(node
, kernel
);
3072 } else if (shared
) {
3073 node
= isl_schedule_node_parent(node
);
3074 node
= isl_schedule_node_parent(node
);
3075 node
= gpu_tree_move_down_to_depth(node
, group
->depth
,
3077 node
= gpu_tree_move_left_to_sync(node
, kernel
);
3083 /* Add copy statements to the schedule tree of "node"
3084 * for reading from global memory to private memory (if "read" is set) or
3085 * for writing back from private memory to global memory
3086 * (if "read" is not set) for the array reference group "group" that
3087 * is mapped to private memory.
3088 * On input, "node" points to the kernel node, and it is moved
3089 * back there on output.
3091 * The copies are performed in the order of the array elements.
3092 * The copy statement instances include a reference to the outer
3093 * group->depth dimensions of the kernel schedule for ease of
3094 * combining them with the group tiling.
3096 * That is, the extra schedule is of the form
3100 * where D corresponds to the outer group->depth dimensions of
3101 * the kernel schedule and A to the global array.
3102 * This schedule is unrolled because registers are not addressable.
3104 * The copying is inserted in the schedule tree through an extension
3109 * where the extra domain elements type[D -> A] are those accessed
3111 * A filter is inserted on type[D -> A] to ensure that the element
3112 * is read/written by the same thread that needs the element.
3113 * This filter is obtained by applying
3117 * to the thread filter for the core statements.
3119 * The extension is inserted before the core computation in case of a read
3120 * and after the core computation in case of a write.
3121 * In the latter case, we also make sure that there is a synchronization
3122 * node after the write to global memory, unless this write is performed
3123 * at the outer level of the kernel.
3124 * In principle, this synchronization could be inserted higher
3125 * in the schedule tree depending on where the corresponding reads
3126 * from global memory are performed.
3128 static __isl_give isl_schedule_node
*add_copies_group_private(
3129 struct ppcg_kernel
*kernel
, struct gpu_array_ref_group
*group
,
3130 __isl_take isl_schedule_node
*node
, int read
)
3132 isl_union_map
*access
;
3133 isl_union_map
*prefix
;
3134 isl_union_set
*domain
;
3136 isl_multi_aff
*from_access
;
3137 isl_multi_pw_aff
*mpa
;
3138 isl_multi_union_pw_aff
*mupa
;
3139 isl_schedule_node
*graft
;
3140 isl_union_set
*filter
;
3144 kernel_depth
= isl_schedule_node_get_schedule_depth(node
);
3145 node
= gpu_tree_move_down_to_depth(node
, group
->depth
, kernel
->core
);
3147 access
= anchored_non_local_accesses(kernel
, group
, node
, read
);
3148 empty
= isl_union_map_is_empty(access
);
3149 if (empty
< 0 || empty
) {
3150 isl_union_map_free(access
);
3152 return isl_schedule_node_free(node
);
3153 return gpu_tree_move_up_to_kernel(node
);
3156 group
->array
->global
= 1;
3157 group
->local_array
->global
= 1;
3159 from_access
= create_from_access(kernel
->ctx
, group
, read
);
3160 space
= isl_space_domain(isl_multi_aff_get_space(from_access
));
3161 access
= isl_union_map_preimage_range_multi_aff(access
, from_access
);
3163 filter
= isl_union_set_copy(kernel
->thread_filter
);
3164 filter
= isl_union_set_apply(filter
, isl_union_map_copy(access
));
3165 filter
= isl_union_set_detect_equalities(filter
);
3166 filter
= isl_union_set_coalesce(filter
);
3168 domain
= isl_union_map_range(access
);
3169 access
= isl_union_set_wrapped_domain_map(domain
);
3170 access
= isl_union_map_reverse(access
);
3171 access
= isl_union_map_coalesce(access
);
3172 graft
= isl_schedule_node_from_extension(access
);
3174 space
= isl_space_map_from_set(space
);
3175 mpa
= isl_multi_pw_aff_identity(space
);
3176 mpa
= isl_multi_pw_aff_range_factor_range(mpa
);
3177 mupa
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3179 graft
= isl_schedule_node_child(graft
, 0);
3180 graft
= isl_schedule_node_insert_partial_schedule(graft
, mupa
);
3181 graft
= unroll(graft
);
3183 graft
= isl_schedule_node_insert_filter(graft
, filter
);
3185 graft
= isl_schedule_node_parent(graft
);
3188 node
= isl_schedule_node_graft_before(node
, graft
);
3190 node
= isl_schedule_node_graft_after(node
, graft
);
3191 if (kernel_depth
< group
->depth
)
3192 node
= add_group_write_sync(node
, kernel
, group
, 0);
3195 node
= gpu_tree_move_up_to_kernel(node
);
3200 /* Add copy statements to the schedule tree of "node"
3201 * for reading from global memory to shared memory (if "read" is set) or
3202 * for writing back from shared memory to global memory
3203 * (if "read" is not set) for the array reference group "group" that
3204 * is mapped to shared memory.
3205 * On input, "node" points to the kernel node, and it is moved
3206 * back there on output.
3208 * The copies are performed in the order of the corresponding shared
3210 * The copy statement instances include a reference to the outer
3211 * group->depth dimensions of the kernel schedule for ease of
3212 * combining them with the group tiling.
3214 * If we are performing a read from global memory to shared memory and
3215 * if the array involved is not a scalar, then we copy
3216 * the entire tile to shared memory. This may result in some extra
3217 * elements getting copied, but it should lead to simpler code
3218 * (which means that fewer registers may be needed) and less divergence.
3220 * Otherwise, we only copy the elements that will be read or have been written
3223 * That is, the extra schedule is of the form
3227 * where D corresponds to the outer group->depth dimensions of
3228 * the kernel schedule, A to the global array and T is the corresponding
3229 * shared memory tile.
3231 * The copying is inserted in the schedule tree through an extension
3236 * where the extra domain elements type[D -> A] are those accessed
3237 * by the group. In the case of read from a non-scalar, this set
3238 * is replaced by the entire shared memory tile.
3240 * A filter is inserted on type[D -> A] to map the copy instances
3241 * to the threads. In particular, the thread identifiers are
3242 * equated to the position inside the shared memory tile (T)
3243 * modulo the block size.
3244 * We try to align the innermost tile dimension with the innermost
3245 * thread identifier (x) as a heuristic to improve coalescing.
3246 * In particular, if the dimension of the tile is greater than
3247 * the dimension of the block, then the schedule mapping to the tile
3248 * is broken up into two pieces and the filter is applied to the inner part.
3249 * If, on the other hand, the dimension of the tile is smaller than
3250 * the dimension of the block, then the initial thread identifiers
3251 * are equated to zero and the remaining thread identifiers are
3252 * matched to the memory tile.
3254 * The extension is inserted before the core computation in case of a read
3255 * and after the core computation in case of a write.
3256 * In the case of a read, we first need to make sure there is some
3257 * synchronization before the core computation such that we can put the read
3258 * from global memory to shared memory before that synchronization.
3259 * This ensures that all threads have finished copying into shared memory
3260 * before the shared memory is used.
3261 * We also need to make sure that there is a synchronization node after
3262 * the core computation to ensure that the next load into shared memory
3263 * only happens after all data has been used. There is no need for
3264 * this synchronization if we are at the outer level since then there
3265 * won't be a next load.
3266 * In the case of a write, we need to make sure there is some synchronization
3267 * after the core computation such taht we can put the write from shared
3268 * memory to global memory after that synchronization.
3269 * Unless we are at the outer level, we also need a synchronization node
3270 * after the write to ensure the data is saved to global memory
3271 * before the next iteration write to the same shared memory.
3272 * It also makes sure the data has arrived in global memory before
3273 * it is read in a subsequent iteration.
3275 static __isl_give isl_schedule_node
*add_copies_group_shared(
3276 struct ppcg_kernel
*kernel
, struct gpu_array_ref_group
*group
,
3277 __isl_take isl_schedule_node
*node
, int read
)
3279 struct gpu_array_tile
*tile
;
3280 isl_union_map
*access
;
3281 isl_union_set
*domain
;
3282 isl_union_set
*sync
;
3284 isl_multi_aff
*from_access
;
3285 isl_multi_pw_aff
*mpa
;
3286 isl_multi_union_pw_aff
*mupa
;
3287 isl_schedule_node
*graft
;
3288 isl_union_set
*filter
;
3293 kernel_depth
= isl_schedule_node_get_schedule_depth(node
);
3294 node
= gpu_tree_move_down_to_depth(node
, group
->depth
, kernel
->core
);
3296 access
= anchored_non_local_accesses(kernel
, group
, node
, read
);
3297 empty
= isl_union_map_is_empty(access
);
3298 if (empty
< 0 || empty
) {
3299 isl_union_map_free(access
);
3301 return isl_schedule_node_free(node
);
3302 return gpu_tree_move_up_to_kernel(node
);
3305 group
->array
->global
= 1;
3306 group
->local_array
->global
= 1;
3308 from_access
= create_from_access(kernel
->ctx
, group
, read
);
3310 tile
= gpu_array_ref_group_tile(group
);
3311 ma
= isl_multi_aff_copy(tile
->tiling
);
3312 ma
= isl_multi_aff_pullback_multi_aff(ma
,
3313 isl_multi_aff_copy(from_access
));
3314 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3315 mupa
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3317 domain
= isl_union_map_range(access
);
3319 if (read
&& !gpu_array_is_scalar(group
->array
)) {
3321 isl_union_set_free(domain
);
3322 map
= group_tile(group
);
3323 domain
= isl_union_set_from_set(isl_map_wrap(map
));
3326 domain
= isl_union_set_preimage_multi_aff(domain
, from_access
);
3327 access
= isl_union_set_wrapped_domain_map(domain
);
3328 access
= isl_union_map_reverse(access
);
3329 access
= isl_union_map_coalesce(access
);
3330 graft
= isl_schedule_node_from_extension(access
);
3332 graft
= isl_schedule_node_child(graft
, 0);
3334 graft
= isl_schedule_node_insert_partial_schedule(graft
, mupa
);
3336 if (tile
->n
> kernel
->n_block
&& kernel
->n_block
> 0) {
3337 graft
= isl_schedule_node_band_split(graft
,
3338 tile
->n
- kernel
->n_block
);
3339 graft
= isl_schedule_node_child(graft
, 0);
3341 if (tile
->n
< kernel
->n_block
)
3342 skip
= kernel
->n_block
- tile
->n
;
3345 filter
= set_schedule_modulo(graft
, kernel
->thread_ids
,
3347 if (!kernel
->options
->wrap
)
3348 graft
= snap_band_to_sizes(graft
, kernel
->block_dim
+ skip
,
3350 if (tile
->n
> kernel
->n_block
&& kernel
->n_block
> 0)
3351 graft
= isl_schedule_node_parent(graft
);
3352 graft
= isl_schedule_node_insert_filter(graft
, filter
);
3354 while (graft
&& isl_schedule_node_has_parent(graft
))
3355 graft
= isl_schedule_node_parent(graft
);
3358 if (kernel_depth
< group
->depth
)
3359 node
= gpu_tree_ensure_sync_after_core(node
, kernel
);
3360 node
= gpu_tree_move_left_to_sync(node
, kernel
);
3361 node
= isl_schedule_node_graft_before(node
, graft
);
3363 node
= gpu_tree_move_right_to_sync(node
, kernel
);
3364 node
= isl_schedule_node_graft_after(node
, graft
);
3365 if (kernel_depth
< group
->depth
)
3366 node
= add_group_write_sync(node
, kernel
, group
, 1);
3369 node
= gpu_tree_move_up_to_kernel(node
);
3374 /* Check whether the array reference group "group" is mapped to
3375 * private or shared memory and, if so,
3376 * add copy statements to the schedule tree of "node"
3377 * for reading from global memory to private or shared memory
3378 * (if "read" is set) or for writing back from private or shared memory
3379 * to global memory (if "read" is not set) for this group.
3380 * On input, "node" points to the kernel node, and it is moved
3381 * back there on output.
3383 static __isl_give isl_schedule_node
*add_copies_group(
3384 struct ppcg_kernel
*kernel
, struct gpu_array_ref_group
*group
,
3385 __isl_take isl_schedule_node
*node
, int read
)
3387 if (group
->private_tile
)
3388 return add_copies_group_private(kernel
, group
, node
, read
);
3389 if (group
->shared_tile
)
3390 return add_copies_group_shared(kernel
, group
, node
, read
);
3394 /* For each array reference group that is mapped to private or shared memory,
3395 * add copy statements to the schedule tree of "node"
3396 * for reading from global memory to private or shared memory
3397 * and for writing back.
3398 * On input, "node" points to the kernel node, and it is moved
3399 * back there on output.
3401 static __isl_give isl_schedule_node
*add_copies(struct ppcg_kernel
*kernel
,
3402 __isl_take isl_schedule_node
*node
)
3406 for (i
= 0; i
< kernel
->n_array
; ++i
) {
3407 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
3409 for (j
= 0; j
< array
->n_group
; ++j
) {
3410 struct gpu_array_ref_group
*group
= array
->groups
[j
];
3412 node
= add_copies_group(kernel
, group
, node
, 1);
3415 node
= add_copies_group(kernel
, group
, node
, 0);
3424 /* Mark all dimensions in the current band node atomic.
3426 static __isl_give isl_schedule_node
*atomic(__isl_take isl_schedule_node
*node
)
3430 n
= isl_schedule_node_band_n_member(node
);
3431 for (i
= 0; i
< n
; ++i
)
3432 node
= isl_schedule_node_band_member_set_ast_loop_type(node
, i
,
3433 isl_ast_loop_atomic
);
3438 /* Mark "node" atomic, if it is a band node.
3439 * Do the same for all ancestors.
3440 * Return a pointer to "node" (in the updated schedule tree).
3442 static __isl_give isl_schedule_node
*atomic_ancestors(
3443 __isl_take isl_schedule_node
*node
)
3449 if (!isl_schedule_node_has_parent(node
))
3452 pos
= isl_schedule_node_get_child_position(node
);
3453 node
= isl_schedule_node_parent(node
);
3454 if (isl_schedule_node_get_type(node
) == isl_schedule_node_band
)
3455 node
= atomic(node
);
3456 node
= atomic_ancestors(node
);
3457 node
= isl_schedule_node_child(node
, pos
);
3462 /* Collect all write references that require synchronization.
3463 * "node" is assumed to point to the kernel node.
3464 * Each reference is represented by a universe set in a space
3468 * with S[i,j] the statement instance space and R[] the array reference.
3470 * This function should be called before block and thread filters are added.
3472 * Synchronization is needed after a write if there is a subsequent read
3473 * within the same block that may not be performed by the same thread.
3474 * There should not be any dependences between different blocks,
3475 * so we start with the flow dependences within the same kernel invocation
3476 * and we subtract from these those dependences that are mapped
3477 * to the same iteration of the bands where synchronization is inserted.
3478 * We do not remove pairs of instances that are known to map to
3479 * the same thread across different iterations of the intermediate
3480 * bands because the read may be performed by a different thread
3481 * than the one that needs the value if shared memory is involved.
3483 * We also consider all pairs of possible writes that access the same
3484 * memory location and that may be mapped to the same block but not
3485 * to the same iteration of the intermediate bands.
3486 * In theory, it would be possible for one thread to still be in
3487 * a previous iteration of a loop in these bands.
3488 * A write to global memory in this delayed thread could then overwrite
3489 * a write from another thread that has already moved on to
3490 * the next iteration.
3492 * After computing the above writes paired off with reads or writes
3493 * that depend on them, we project onto the domain writes.
3494 * Sychronization is needed after writes to global memory
3495 * through these references.
3497 static __isl_give isl_union_set
*compute_sync_writes(
3498 struct ppcg_kernel
*kernel
, __isl_keep isl_schedule_node
*node
)
3500 isl_union_map
*local
;
3501 isl_union_map
*may_writes
, *shared_access
;
3502 isl_union_map
*kernel_prefix
, *thread_prefix
;
3503 isl_union_map
*equal
;
3504 isl_union_set
*wrap
;
3505 isl_union_set
*domain
;
3507 domain
= isl_schedule_node_get_universe_domain(node
);
3508 kernel_prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
3509 node
= isl_schedule_node_copy(node
);
3510 node
= gpu_tree_move_down_to_thread(node
, kernel
->core
);
3511 thread_prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
3512 isl_schedule_node_free(node
);
3514 may_writes
= isl_union_map_copy(kernel
->prog
->scop
->tagged_may_writes
);
3515 may_writes
= isl_union_map_curry(may_writes
);
3516 may_writes
= isl_union_map_intersect_domain(may_writes
, domain
);
3517 may_writes
= isl_union_map_uncurry(may_writes
);
3518 shared_access
= isl_union_map_copy(may_writes
);
3519 shared_access
= isl_union_map_apply_range(shared_access
,
3520 isl_union_map_reverse(may_writes
));
3522 local
= isl_union_map_copy(kernel
->prog
->scop
->tagged_dep_flow
);
3523 local
= isl_union_map_union(local
, shared_access
);
3524 local
= isl_union_map_zip(local
);
3526 equal
= isl_union_map_apply_range(kernel_prefix
,
3527 isl_union_map_reverse(isl_union_map_copy(kernel_prefix
)));
3528 wrap
= isl_union_map_wrap(equal
);
3529 local
= isl_union_map_intersect_domain(local
, wrap
);
3530 equal
= isl_union_map_apply_range(thread_prefix
,
3531 isl_union_map_reverse(isl_union_map_copy(thread_prefix
)));
3532 wrap
= isl_union_map_wrap(equal
);
3533 local
= isl_union_map_subtract_domain(local
, wrap
);
3535 local
= isl_union_map_zip(local
);
3536 local
= isl_union_map_universe(local
);
3538 return isl_union_map_domain(local
);
3541 /* Group the domain elements into a single space, named kernelX,
3542 * with X the kernel sequence number "kernel_id".
3544 static __isl_give isl_schedule_node
*group_statements(
3545 __isl_take isl_schedule_node
*node
, int kernel_id
)
3553 snprintf(buffer
, sizeof(buffer
), "kernel%d", kernel_id
);
3554 id
= isl_id_alloc(isl_schedule_node_get_ctx(node
), buffer
, NULL
);
3555 return isl_schedule_node_group(node
, id
);
3558 /* Create a ppcg_kernel representing the domain instances that reach "node"
3559 * and insert a mark node pointing to the ppcg_kernel before "node".
3560 * The band that "node" points to is the band that needs to be mapped
3561 * to block identifiers. The band that needs to be mapped to thread
3562 * identifiers should be marked by a "thread" mark by the caller.
3563 * This mark is removed by this function.
3564 * If "scale" is set, then the band that "node" points to is scaled
3567 * Mark all outer band nodes as atomic to ensure each kernel is only
3569 * If the domain elements that reach "node" live in more than one space,
3570 * then group the domain elements into a single space, named kernelX,
3571 * with X the kernel sequence number.
3573 * Insert a guard node governing the kernel node to ensure that
3574 * no kernels with zero blocks are launched.
3576 * Insert a context node describing the block and thread
3577 * identifiers inside the kernel mark.
3578 * The context node needs to be inserted after the effective block size
3579 * has been determined such that the bounds on the thread identifiers
3580 * would reflect the effective block size.
3581 * Insert a filter node inside the context node mapping the statement
3582 * instances to block identifiers. In particular, the block identifiers
3583 * are equated to the partial schedule of band that was marked for mapping
3584 * to blocks modulo the grid size.
3585 * Insert a filter node inside the "thread" mark mapping the statement
3586 * instances to thread identifiers. In particular, the thread identifiers
3587 * are equated to the partial schedule of band that was marked for mapping
3588 * to threads modulo the block size.
3590 * Compute array reference groups for all arrays, set the local
3591 * array bounds based on the set of domain instances that reach
3592 * the kernel node, check the total amount of shared memory used
3593 * and compute all group tilings.
3594 * The array reference groups are computed after the block filter
3595 * has been inserted because it affects the mapping to shared or
3596 * private memory. This computation also requires the thread filter
3597 * (in the ppcg_kernel object), but this thread filter should not
3598 * have been added to the schedule tree yet since the computation
3599 * requires the schedule of the band that needs to be mapped to
3600 * threads before the privatization is applied.
3602 * If any array reference group requires the band mapped to threads
3603 * to be unrolled, then we perform the required unrolling.
3605 * We save a copy of the schedule that may influence the mappings
3606 * to shared or private memory in kernel->shared_schedule.
3608 * Finally, we add synchronization and copy statements to the schedule tree,
3609 * remove the "thread" mark and create representations for the local
3610 * variables in the kernel.
3612 * We keep a copy of the isl_id that points to the kernel to ensure
3613 * that the kernel does not get destroyed if the schedule node
3614 * is freed due to some error condition.
3616 static __isl_give isl_schedule_node
*create_kernel(struct gpu_gen
*gen
,
3617 __isl_take isl_schedule_node
*node
, int scale
,
3618 __isl_keep isl_multi_val
*sizes
)
3620 struct ppcg_kernel
*kernel
;
3622 isl_schedule_node
*node_thread
;
3623 isl_union_map
*host_schedule
;
3624 isl_set
*host_domain
;
3625 isl_union_set
*domain
;
3626 int single_statement
;
3628 kernel
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel
);
3629 kernel
= ppcg_kernel_create_local_arrays(kernel
, gen
->prog
);
3631 return isl_schedule_node_free(node
);
3633 domain
= isl_schedule_node_get_domain(node
);
3634 single_statement
= isl_union_set_n_set(domain
) == 1;
3636 kernel
->ctx
= gen
->ctx
;
3637 kernel
->prog
= gen
->prog
;
3638 kernel
->options
= gen
->options
;
3639 kernel
->context
= extract_context(node
, gen
->prog
);
3640 kernel
->core
= isl_union_set_universe(isl_union_set_copy(domain
));
3641 kernel
->arrays
= accessed_by_domain(isl_union_set_copy(domain
),
3643 kernel
->n_grid
= n_outer_coincidence(node
);
3644 node_thread
= isl_schedule_node_copy(node
);
3645 node_thread
= gpu_tree_move_down_to_thread(node_thread
, kernel
->core
);
3646 node_thread
= isl_schedule_node_child(node_thread
, 0);
3647 kernel
->n_block
= n_outer_coincidence(node_thread
);
3648 isl_schedule_node_free(node_thread
);
3649 kernel
->id
= gen
->kernel_id
++;
3650 read_grid_and_block_sizes(kernel
, gen
);
3652 kernel
->sync_writes
= compute_sync_writes(kernel
, node
);
3654 host_schedule
= isl_schedule_node_get_prefix_schedule_union_map(node
);
3655 host_domain
= isl_set_from_union_set(isl_union_map_range(
3658 node
= atomic_ancestors(node
);
3660 id
= isl_id_alloc(gen
->ctx
, "kernel", kernel
);
3661 id
= isl_id_set_free_user(id
, &ppcg_kernel_free_wrap
);
3662 node
= isl_schedule_node_insert_mark(node
, isl_id_copy(id
));
3664 if (!single_statement
)
3665 node
= group_statements(node
, kernel
->id
);
3667 node
= isl_schedule_node_child(node
, 0);
3668 node
= split_band(node
, kernel
->n_grid
);
3669 kernel
->block_ids
= ppcg_scop_generate_names(gen
->prog
->scop
,
3670 kernel
->n_grid
, "b");
3671 kernel
->block_filter
= set_schedule_modulo(node
, kernel
->block_ids
,
3673 kernel
->grid_size
= extract_grid_size(kernel
,
3674 isl_union_set_copy(domain
));
3675 if (!kernel
->options
->wrap
)
3676 node
= snap_band_to_sizes(node
, kernel
->grid_dim
,
3679 node
= scale_band(node
, isl_multi_val_copy(sizes
));
3680 node
= isl_schedule_node_parent(node
);
3681 if (!single_statement
)
3682 node
= isl_schedule_node_parent(node
);
3683 node
= insert_guard(node
, kernel
->context
, kernel
->grid_size
,
3685 node
= gpu_tree_move_down_to_thread(node
, kernel
->core
);
3686 node
= isl_schedule_node_child(node
, 0);
3687 node
= split_band(node
, kernel
->n_block
);
3688 kernel
->thread_ids
= ppcg_scop_generate_names(gen
->prog
->scop
,
3689 kernel
->n_block
, "t");
3690 kernel
->thread_filter
= set_schedule_modulo(node
, kernel
->thread_ids
,
3692 extract_block_size(kernel
, domain
);
3694 node
= gpu_tree_move_up_to_kernel(node
);
3695 node
= isl_schedule_node_child(node
, 0);
3696 node
= insert_context(kernel
, node
);
3697 node
= isl_schedule_node_child(node
, 0);
3698 node
= isl_schedule_node_insert_filter(node
,
3699 isl_union_set_copy(kernel
->block_filter
));
3701 node
= gpu_tree_move_up_to_kernel(node
);
3703 if (gpu_group_references(kernel
, node
) < 0)
3704 node
= isl_schedule_node_free(node
);
3705 localize_bounds(kernel
, host_domain
);
3706 isl_set_free(host_domain
);
3708 check_shared_memory_bound(kernel
);
3709 mark_global_arrays(kernel
);
3710 compute_group_tilings(kernel
);
3712 node
= gpu_tree_move_down_to_thread(node
, kernel
->core
);
3713 node
= isl_schedule_node_child(node
, 0);
3714 if (!kernel
->options
->wrap
)
3715 node
= snap_band_to_sizes(node
, kernel
->block_dim
,
3717 node
= isl_schedule_node_insert_filter(node
,
3718 isl_union_set_copy(kernel
->thread_filter
));
3719 if (kernel_requires_unroll(kernel
)) {
3720 node
= isl_schedule_node_child(node
, 0);
3721 node
= unroll(node
);
3724 node
= gpu_tree_move_up_to_thread(node
);
3725 kernel
->shared_schedule_dim
=
3726 isl_schedule_node_get_schedule_depth(node
);
3727 kernel
->shared_schedule
=
3728 isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node
);
3730 node
= gpu_tree_move_up_to_kernel(node
);
3732 node
= add_sync(kernel
, node
);
3733 node
= add_copies(kernel
, node
);
3735 node
= gpu_tree_move_down_to_thread(node
, kernel
->core
);
3736 node
= isl_schedule_node_delete(node
);
3738 node
= gpu_tree_move_up_to_kernel(node
);
3740 if (create_kernel_vars(kernel
) < 0)
3741 node
= isl_schedule_node_free(node
);
3743 if (!single_statement
)
3744 node
= isl_schedule_node_parent(node
);
3745 node
= isl_schedule_node_parent(node
);
3751 /* Insert a zero-dimensional permutable band at "node".
3753 static __isl_give isl_schedule_node
*insert_empty_permutable_band(
3754 __isl_take isl_schedule_node
*node
)
3757 isl_schedule
*schedule
;
3758 isl_union_set
*domain
;
3759 isl_multi_union_pw_aff
*mupa
;
3761 schedule
= isl_schedule_node_get_schedule(node
);
3762 domain
= isl_schedule_get_domain(schedule
);
3763 space
= isl_union_set_get_space(domain
);
3764 isl_union_set_free(domain
);
3765 isl_schedule_free(schedule
);
3767 space
= isl_space_set_from_params(space
);
3768 mupa
= isl_multi_union_pw_aff_zero(space
);
3769 node
= isl_schedule_node_insert_partial_schedule(node
, mupa
);
3770 node
= isl_schedule_node_band_set_permutable(node
, 1);
3775 /* If "node" is the outermost permutable band that can be mapped to block and
3776 * thread identifiers in its branch (or a leaf with no such outer bands),
3777 * then mark the band as such, attaching a ppcg_kernel to the mark.
3779 * If "node" originally points to a leaf, then insert a zero-dimensional
3780 * permutable band such that we can assume that "node" always
3781 * points to a band node.
3783 * Tile "node" using user specified tile sizes, after splitting the band
3784 * if the number of specified tile sizes is smaller than the dimension
3785 * of the band. Mark the point band of this tiling as the band that
3786 * needs to be mapped to threads.
3787 * Create a kernel representing the domain instances that reach "node" and
3788 * insert a mark node pointing to the ppcg_kernel before the band node.
3790 static __isl_give isl_schedule_node
*mark_outer_permutable(
3791 __isl_take isl_schedule_node
*node
, void *user
)
3793 struct gpu_gen
*gen
= user
;
3799 isl_multi_val
*sizes
;
3801 outer
= is_outer_tilable(node
);
3803 return isl_schedule_node_free(node
);
3807 if (isl_schedule_node_get_type(node
) == isl_schedule_node_leaf
)
3808 node
= insert_empty_permutable_band(node
);
3810 tile_len
= isl_schedule_node_band_n_member(node
);
3811 tile_size
= read_tile_sizes(gen
, &tile_len
);
3813 return isl_schedule_node_free(node
);
3814 if (tile_len
< isl_schedule_node_band_n_member(node
))
3815 node
= isl_schedule_node_band_split(node
, tile_len
);
3816 sizes
= construct_band_tiles_sizes(node
, tile_size
);
3817 node
= tile_band(node
, isl_multi_val_copy(sizes
));
3818 node
= isl_schedule_node_child(node
, 0);
3819 id
= isl_id_alloc(gen
->ctx
, "thread", NULL
);
3820 node
= isl_schedule_node_insert_mark(node
, id
);
3821 node
= isl_schedule_node_parent(node
);
3823 scale
= gen
->options
->scale_tile_loops
;
3824 node
= create_kernel(gen
, node
, scale
, sizes
);
3825 isl_multi_val_free(sizes
);
3831 /* Does the subtree rooted at "node" have any suitably permutable band nodes?
3832 * That is, does it have any nodes that are permutable and that
3833 * have a least one coincident dimension?
3835 static int subtree_has_permutable_bands(__isl_keep isl_schedule_node
*node
)
3837 int any_parallelism
= 0;
3839 if (isl_schedule_node_foreach_descendant_top_down(node
, &set_permutable
,
3840 &any_parallelism
) < 0 &&
3844 return any_parallelism
;
3847 /* Mark all variables that are accessed by the statement instances in "domain"
3848 * and that are local to "prog" as requiring a declaration in the host code.
3850 static int declare_accessed_local_variables(struct gpu_prog
*prog
,
3851 __isl_keep isl_union_set
*domain
)
3853 isl_union_set
*arrays
;
3856 if (!ppcg_scop_any_hidden_declarations(prog
->scop
))
3858 arrays
= accessed_by_domain(isl_union_set_copy(domain
), prog
);
3860 for (i
= 0; i
< prog
->n_array
; ++i
) {
3865 if (!prog
->array
[i
].local
)
3867 space
= isl_set_get_space(prog
->array
[i
].extent
);
3868 set
= isl_union_set_extract_set(arrays
, space
);
3869 empty
= isl_set_plain_is_empty(set
);
3874 prog
->array
[i
].declare_local
= 1;
3877 isl_union_set_free(arrays
);
3880 isl_union_set_free(arrays
);
3884 /* If "node" points to a set node, then separate its children
3885 * into subtrees that have suitably permutable bands and
3886 * those that do not.
3887 * Adjust the schedule tree in order to execute the second group
3888 * after the first group and return a pointer to the first group,
3889 * assuming there are any such subtrees.
3890 * Mark all local variables in "prog" that are accessed by
3891 * the second group as requiring a declaration on the host.
3893 static __isl_give isl_schedule_node
*isolate_permutable_subtrees(
3894 __isl_take isl_schedule_node
*node
, struct gpu_prog
*prog
)
3897 isl_union_set
*filter
;
3902 if (isl_schedule_node_get_type(node
) != isl_schedule_node_set
)
3905 n
= isl_schedule_node_n_children(node
);
3907 return isl_schedule_node_free(node
);
3909 node
= isl_schedule_node_child(node
, 0);
3910 filter
= isl_schedule_node_filter_get_filter(node
);
3911 node
= isl_schedule_node_parent(node
);
3912 space
= isl_union_set_get_space(filter
);
3913 isl_union_set_free(filter
);
3914 filter
= isl_union_set_empty(space
);
3916 for (i
= 0; i
< n
; ++i
) {
3919 node
= isl_schedule_node_child(node
, i
);
3920 parallelism
= subtree_has_permutable_bands(node
);
3921 if (parallelism
< 0) {
3922 node
= isl_schedule_node_free(node
);
3923 } else if (!parallelism
) {
3924 isl_union_set
*filter_i
;
3925 filter_i
= isl_schedule_node_filter_get_filter(node
);
3926 filter
= isl_union_set_union(filter
, filter_i
);
3928 node
= isl_schedule_node_parent(node
);
3931 if (declare_accessed_local_variables(prog
, filter
) < 0)
3932 node
= isl_schedule_node_free(node
);
3933 node
= isl_schedule_node_order_after(node
, filter
);
3938 /* Replace any reference to an array element in the range of "copy"
3939 * by a reference to all array elements (defined by the extent of the array).
3941 static __isl_give isl_union_map
*approximate_copy_out(
3942 __isl_take isl_union_map
*copy
, struct gpu_prog
*prog
)
3947 res
= isl_union_map_empty(isl_union_map_get_space(copy
));
3949 for (i
= 0; i
< prog
->n_array
; ++i
) {
3952 isl_union_map
*copy_i
;
3953 isl_union_set
*extent
, *domain
;
3955 space
= isl_space_copy(prog
->array
[i
].space
);
3956 extent
= isl_union_set_from_set(isl_set_universe(space
));
3957 copy_i
= isl_union_map_copy(copy
);
3958 copy_i
= isl_union_map_intersect_range(copy_i
, extent
);
3959 set
= isl_set_copy(prog
->array
[i
].extent
);
3960 extent
= isl_union_set_from_set(set
);
3961 domain
= isl_union_map_domain(copy_i
);
3962 copy_i
= isl_union_map_from_domain_and_range(domain
, extent
);
3963 res
= isl_union_map_union(res
, copy_i
);
3966 isl_union_map_free(copy
);
3971 /* Insert "kernel" marks that point to a ppcg_kernel structure
3972 * in front of all outermost tilable band that (by construction)
3973 * have at least one parallel loop.
3975 static __isl_give isl_schedule_node
*mark_kernels(struct gpu_gen
*gen
,
3976 __isl_take isl_schedule_node
*node
)
3978 return isl_schedule_node_map_descendant(node
,
3979 &mark_outer_permutable
, gen
);
3982 /* Save the schedule "schedule" to a file called "filename".
3983 * The schedule is printed in block style.
3985 static void save_schedule(__isl_keep isl_schedule
*schedule
,
3986 const char *filename
)
3995 file
= fopen(filename
, "w");
3997 fprintf(stderr
, "Unable to open '%s' for writing\n", filename
);
4000 ctx
= isl_schedule_get_ctx(schedule
);
4001 p
= isl_printer_to_file(ctx
, file
);
4002 p
= isl_printer_set_yaml_style(p
, ISL_YAML_STYLE_BLOCK
);
4003 p
= isl_printer_print_schedule(p
, schedule
);
4004 isl_printer_free(p
);
4008 /* Load and return a schedule from a file called "filename".
4010 static __isl_give isl_schedule
*load_schedule(isl_ctx
*ctx
,
4011 const char *filename
)
4014 isl_schedule
*schedule
;
4016 file
= fopen(filename
, "r");
4018 fprintf(stderr
, "Unable to open '%s' for reading\n", filename
);
4021 schedule
= isl_schedule_read_from_file(ctx
, file
);
4027 /* Construct schedule constraints from the dependences in prog->scop and
4028 * the array order dependences in prog->array_order.
4030 * If live range reordering is allowed, then we need to make sure
4031 * that live ranges on arrays are not run in parallel since doing
4032 * so would require array expansion. We therefore add the array
4033 * order dependences to the coincidence dependences. Non-zero array
4034 * order dependences will then prevent a schedule dimension from being
4035 * considered parallel.
4036 * Live ranges derived from scalars are allowed to be run in parallel
4037 * since we force the scalars to be mapped to private memory in
4038 * check_scalar_live_ranges.
4039 * If live range reordering is allowed, then the false dependences
4040 * are not added to the validity constraints as that would prevent
4041 * reordering. Instead, the external false dependences that enforce that reads
4042 * from potentially live-in data precede any later write and
4043 * that writes of potentially live-out data follow any other earlier write
4044 * are added to the validity and the coincidence constraints.
4045 * The false dependences are still added to the proximity constraints
4046 * for consistency with the case where live range reordering is not allowed.
4047 * The coincidence constraints then consist of flow dependences,
4048 * external false dependences and array order dependences.
4049 * The independences can be filtered out from the first two sets.
4050 * They have already been filtered out from the array order dependences
4051 * on a per array basis in collect_order_dependences.
4052 * There is no need for a per array handling of the other two sets
4053 * as there should be no flow or external false dependence on local
4054 * variables that can be filtered out.
4056 static __isl_give isl_schedule_constraints
*construct_schedule_constraints(
4057 struct gpu_prog
*prog
)
4059 isl_union_set
*domain
;
4060 isl_union_map
*dep_raw
, *dep
;
4061 isl_union_map
*validity
, *proximity
, *coincidence
;
4062 isl_schedule_constraints
*sc
;
4064 domain
= isl_union_set_copy(prog
->scop
->domain
);
4065 sc
= isl_schedule_constraints_on_domain(domain
);
4066 sc
= isl_schedule_constraints_set_context(sc
,
4067 isl_set_copy(prog
->scop
->context
));
4068 if (prog
->scop
->options
->live_range_reordering
) {
4069 sc
= isl_schedule_constraints_set_conditional_validity(sc
,
4070 isl_union_map_copy(prog
->scop
->tagged_dep_flow
),
4071 isl_union_map_copy(prog
->scop
->tagged_dep_order
));
4072 proximity
= isl_union_map_copy(prog
->scop
->dep_flow
);
4073 validity
= isl_union_map_copy(proximity
);
4074 validity
= isl_union_map_union(validity
,
4075 isl_union_map_copy(prog
->scop
->dep_forced
));
4076 proximity
= isl_union_map_union(proximity
,
4077 isl_union_map_copy(prog
->scop
->dep_false
));
4078 coincidence
= isl_union_map_copy(validity
);
4079 coincidence
= isl_union_map_subtract(coincidence
,
4080 isl_union_map_copy(prog
->scop
->independence
));
4081 coincidence
= isl_union_map_union(coincidence
,
4082 isl_union_map_copy(prog
->array_order
));
4084 dep_raw
= isl_union_map_copy(prog
->scop
->dep_flow
);
4085 dep
= isl_union_map_copy(prog
->scop
->dep_false
);
4086 dep
= isl_union_map_union(dep
, dep_raw
);
4087 dep
= isl_union_map_coalesce(dep
);
4088 proximity
= isl_union_map_copy(dep
);
4089 coincidence
= isl_union_map_copy(dep
);
4092 sc
= isl_schedule_constraints_set_validity(sc
, validity
);
4093 sc
= isl_schedule_constraints_set_coincidence(sc
, coincidence
);
4094 sc
= isl_schedule_constraints_set_proximity(sc
, proximity
);
4096 if (prog
->scop
->options
->debug
->dump_schedule_constraints
)
4097 isl_schedule_constraints_dump(sc
);
4101 /* Compute an appropriate schedule based on the accesses in
4102 * gen->read and gen->write.
4104 * We derive schedule constraints from the dependences in gen->prog->scop
4105 * and then use isl to compute a schedule that has a parallel loop
4106 * in each tilable band.
4108 static __isl_give isl_schedule
*compute_schedule(struct gpu_gen
*gen
)
4110 isl_schedule_constraints
*sc
;
4111 isl_schedule
*schedule
;
4113 sc
= construct_schedule_constraints(gen
->prog
);
4114 schedule
= isl_schedule_constraints_compute_schedule(sc
);
4119 /* If the band node "node" has exactly one member then mark it permutable.
4121 static __isl_give isl_schedule_node
*band_set_permutable(
4122 __isl_take isl_schedule_node
*node
,
4123 __isl_keep isl_schedule_constraints
*sc
)
4125 if (isl_schedule_node_band_n_member(node
) == 1)
4126 node
= isl_schedule_node_band_set_permutable(node
, 1);
4131 /* Return the coincidence constraints between pairs of instances
4132 * that are scheduled together by the ancestors of "node".
4133 * That is, select those coincidence constraints that relate
4134 * pairs of instances that have the same value for the prefix schedule.
4135 * If the schedule depth is zero, then the prefix schedule does not
4136 * contain any information, so we intersect domain and range
4137 * of the schedule constraints with the reaching domain elements instead.
4139 static __isl_give isl_union_map
*get_local_coincidence(
4140 __isl_keep isl_schedule_node
*node
,
4141 __isl_keep isl_schedule_constraints
*sc
)
4143 isl_union_map
*coincidence
;
4144 isl_multi_union_pw_aff
*prefix
;
4145 isl_union_pw_multi_aff
*contraction
;
4147 coincidence
= isl_schedule_constraints_get_coincidence(sc
);
4148 contraction
= isl_schedule_node_get_subtree_contraction(node
);
4149 if (isl_schedule_node_get_schedule_depth(node
) == 0) {
4150 isl_union_set
*domain
;
4152 domain
= isl_schedule_node_get_domain(node
);
4153 domain
= isl_union_set_preimage_union_pw_multi_aff(domain
,
4155 coincidence
= isl_union_map_intersect_domain(coincidence
,
4156 isl_union_set_copy(domain
));
4157 coincidence
= isl_union_map_intersect_range(coincidence
,
4162 prefix
= isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node
);
4163 prefix
= isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix
,
4165 return isl_union_map_eq_at_multi_union_pw_aff(coincidence
, prefix
);
4168 /* For each member in the band node "node", determine whether
4169 * it is coincident with respect to the outer nodes and mark
4172 * That is, for each coincidence constraint between pairs
4173 * of instances that are scheduled together by the outer nodes,
4174 * check that domain and range are assigned the same value
4175 * by the band member. This test is performed by checking
4176 * that imposing the same value for the band member does not
4177 * remove any elements from the set of coincidence constraints.
4179 static __isl_give isl_schedule_node
*band_set_coincident(
4180 __isl_take isl_schedule_node
*node
,
4181 __isl_keep isl_schedule_constraints
*sc
)
4183 isl_union_map
*coincidence
;
4184 isl_union_pw_multi_aff
*contraction
;
4185 isl_multi_union_pw_aff
*partial
;
4188 coincidence
= get_local_coincidence(node
, sc
);
4190 partial
= isl_schedule_node_band_get_partial_schedule(node
);
4191 contraction
= isl_schedule_node_get_subtree_contraction(node
);
4192 partial
= isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial
,
4194 n
= isl_schedule_node_band_n_member(node
);
4195 for (i
= 0; i
< n
; ++i
) {
4196 isl_union_map
*coincidence_i
;
4197 isl_union_pw_aff
*upa
;
4198 isl_multi_union_pw_aff
*partial_i
;
4201 upa
= isl_multi_union_pw_aff_get_union_pw_aff(partial
, i
);
4202 partial_i
= isl_multi_union_pw_aff_from_union_pw_aff(upa
);
4203 coincidence_i
= isl_union_map_copy(coincidence
);
4204 coincidence_i
= isl_union_map_eq_at_multi_union_pw_aff(
4205 coincidence_i
, partial_i
);
4206 subset
= isl_union_map_is_subset(coincidence
, coincidence_i
);
4207 isl_union_map_free(coincidence_i
);
4211 node
= isl_schedule_node_band_member_set_coincident(node
, i
,
4215 node
= isl_schedule_node_free(node
);
4216 isl_multi_union_pw_aff_free(partial
);
4217 isl_union_map_free(coincidence
);
4222 /* If "node" is a band, then set its properties.
4224 * In particular, if the band has exactly one member, then mark it permutable.
4225 * Mark the band member coincident based on the coincidence constraints
4228 static __isl_give isl_schedule_node
*set_band_properties(
4229 __isl_take isl_schedule_node
*node
, void *user
)
4231 isl_schedule_constraints
*sc
= user
;
4233 if (isl_schedule_node_get_type(node
) != isl_schedule_node_band
)
4235 if (isl_schedule_node_band_n_member(node
) == 0)
4238 node
= band_set_permutable(node
, sc
);
4239 node
= band_set_coincident(node
, sc
);
4244 /* Return the original schedule with all bands marked permutable and
4245 * all band members marked coincident based on the coincidence constraints.
4246 * The bands are explicitly marked permutable so that they will be considered
4247 * by mark_outer_permutable.
4249 static __isl_give isl_schedule
*determine_properties_original_schedule(
4250 struct gpu_gen
*gen
)
4252 isl_schedule
*schedule
;
4253 isl_schedule_constraints
*sc
;
4255 schedule
= isl_schedule_copy(gen
->prog
->scop
->schedule
);
4256 sc
= construct_schedule_constraints(gen
->prog
);
4257 schedule
= isl_schedule_map_schedule_node(schedule
,
4258 &set_band_properties
, sc
);
4259 isl_schedule_constraints_free(sc
);
4264 /* Obtain a schedule for the scop, by reading it from
4265 * a file, by computing one or by determining the properties
4266 * of the original schedule.
4268 static __isl_give isl_schedule
*get_schedule(struct gpu_gen
*gen
)
4270 isl_schedule
*schedule
;
4272 if (gen
->options
->load_schedule_file
) {
4273 schedule
= load_schedule(gen
->ctx
,
4274 gen
->options
->load_schedule_file
);
4276 if (gen
->options
->reschedule
)
4277 schedule
= compute_schedule(gen
);
4279 schedule
= determine_properties_original_schedule(gen
);
4280 if (gen
->options
->save_schedule_file
)
4281 save_schedule(schedule
,
4282 gen
->options
->save_schedule_file
);
4284 if (gen
->options
->debug
->dump_schedule
)
4285 isl_schedule_dump(schedule
);
4290 /* Construct the string "<a>_<b>".
4292 static char *concat(isl_ctx
*ctx
, const char *a
, const char *b
)
4297 p
= isl_printer_to_str(ctx
);
4298 p
= isl_printer_print_str(p
, a
);
4299 p
= isl_printer_print_str(p
, "_");
4300 p
= isl_printer_print_str(p
, b
);
4301 s
= isl_printer_get_str(p
);
4302 isl_printer_free(p
);
4307 /* For each array in "prog" of which an element appears in "accessed" and
4308 * that is not a read only scalar, create a zero-dimensional universe set
4309 * of which the tuple id has name "<prefix>_<name of array>" and a user
4310 * pointer pointing to the array (gpu_array_info).
4312 * If the array is local to "prog", then make sure it will be declared
4315 * Return the list of these universe sets.
4317 static __isl_give isl_union_set_list
*create_copy_filters(struct gpu_prog
*prog
,
4318 const char *prefix
, __isl_take isl_union_set
*accessed
)
4322 isl_union_set_list
*filters
;
4325 filters
= isl_union_set_list_alloc(ctx
, 0);
4326 for (i
= 0; i
< prog
->n_array
; ++i
) {
4327 struct gpu_array_info
*array
= &prog
->array
[i
];
4329 isl_set
*accessed_i
;
4333 isl_union_set
*uset
;
4335 if (gpu_array_is_read_only_scalar(array
))
4338 space
= isl_space_copy(array
->space
);
4339 accessed_i
= isl_union_set_extract_set(accessed
, space
);
4340 empty
= isl_set_plain_is_empty(accessed_i
);
4341 isl_set_free(accessed_i
);
4343 filters
= isl_union_set_list_free(filters
);
4351 array
->declare_local
= 1;
4353 name
= concat(ctx
, prefix
, array
->name
);
4354 id
= name
? isl_id_alloc(ctx
, name
, array
) : NULL
;
4356 space
= isl_space_set_alloc(ctx
, 0, 0);
4357 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
4358 uset
= isl_union_set_from_set(isl_set_universe(space
));
4360 filters
= isl_union_set_list_add(filters
, uset
);
4362 isl_union_set_free(accessed
);
4367 /* Make sure that code for the statements in "filters" that
4368 * copy arrays to or from the device is only generated when
4369 * the size of the corresponding array is positive.
4370 * That is, add a set node underneath "graft" with "filters" as children
4371 * and for each child add a guard that the selects the parameter
4372 * values for which the corresponding array has a positive size.
4373 * The array is available in the user pointer of the statement identifier.
4374 * "depth" is the schedule depth of the position where "graft"
4377 static __isl_give isl_schedule_node
*insert_positive_size_guards(
4378 __isl_take isl_schedule_node
*graft
,
4379 __isl_take isl_union_set_list
*filters
, int depth
)
4383 graft
= isl_schedule_node_child(graft
, 0);
4384 graft
= isl_schedule_node_insert_set(graft
, filters
);
4385 n
= isl_schedule_node_n_children(graft
);
4386 for (i
= 0; i
< n
; ++i
) {
4387 isl_union_set
*filter
;
4388 isl_set
*domain
, *guard
;
4390 struct gpu_array_info
*array
;
4392 graft
= isl_schedule_node_child(graft
, i
);
4393 filter
= isl_schedule_node_filter_get_filter(graft
);
4394 domain
= isl_set_from_union_set(filter
);
4395 id
= isl_set_get_tuple_id(domain
);
4396 array
= isl_id_get_user(id
);
4398 isl_set_free(domain
);
4399 guard
= gpu_array_positive_size_guard(array
);
4400 guard
= isl_set_from_params(guard
);
4401 guard
= isl_set_add_dims(guard
, isl_dim_set
, depth
);
4402 graft
= isl_schedule_node_child(graft
, 0);
4403 graft
= isl_schedule_node_insert_guard(graft
, guard
);
4404 graft
= isl_schedule_node_parent(graft
);
4405 graft
= isl_schedule_node_parent(graft
);
4407 graft
= isl_schedule_node_parent(graft
);
4412 /* Create a graft for copying arrays to or from the device,
4413 * whenever the size of the array is strictly positive.
4414 * Each statement is called "<prefix>_<name of array>" and
4415 * the identifier has a user pointer pointing to the array.
4416 * The graft will be added at the position specified by "node".
4417 * "copy" contains the array elements that need to be copied.
4418 * Only arrays of which some elements need to be copied
4419 * will have a corresponding statement in the graph.
4420 * Note though that each such statement will copy the entire array.
4422 static __isl_give isl_schedule_node
*create_copy_device(struct gpu_prog
*prog
,
4423 __isl_keep isl_schedule_node
*node
, const char *prefix
,
4424 __isl_take isl_union_set
*copy
)
4429 isl_union_set
*all
, *domain
;
4430 isl_union_set_list
*filters
;
4431 isl_union_map
*extension
;
4432 isl_schedule_node
*graft
;
4435 depth
= isl_schedule_node_get_schedule_depth(node
);
4436 filters
= create_copy_filters(prog
, prefix
, copy
);
4437 all
= isl_union_set_list_union(isl_union_set_list_copy(filters
));
4439 space
= depth
< 0 ? NULL
: isl_space_set_alloc(ctx
, 0, depth
);
4440 domain
= isl_union_set_from_set(isl_set_universe(space
));
4441 extension
= isl_union_map_from_domain_and_range(domain
, all
);
4442 graft
= isl_schedule_node_from_extension(extension
);
4445 return isl_schedule_node_free(graft
);
4446 if (isl_union_set_list_n_union_set(filters
) == 0) {
4447 isl_union_set_list_free(filters
);
4451 return insert_positive_size_guards(graft
, filters
, depth
);
4454 /* Return (the universe spaces of) the arrays that are declared
4455 * inside the scop corresponding to "prog" and for which all
4456 * potential writes inside the scop form a subset of "domain".
4458 static __isl_give isl_union_set
*extract_local_accesses(struct gpu_prog
*prog
,
4459 __isl_keep isl_union_set
*domain
)
4462 isl_union_set
*local
;
4464 local
= isl_union_set_empty(isl_union_set_get_space(domain
));
4466 for (i
= 0; i
< prog
->n_array
; ++i
) {
4468 isl_union_map
*to_outer
;
4469 isl_union_map
*may_write
;
4470 isl_union_set
*write_domain
;
4471 isl_union_set
*fields
;
4474 if (!prog
->array
[i
].local
)
4477 set
= isl_set_universe(isl_space_copy(prog
->array
[i
].space
));
4478 to_outer
= isl_union_map_copy(prog
->to_outer
);
4479 to_outer
= isl_union_map_intersect_range(to_outer
,
4480 isl_union_set_from_set(isl_set_copy(set
)));
4481 fields
= isl_union_map_domain(to_outer
);
4482 may_write
= isl_union_map_copy(prog
->may_write
);
4483 may_write
= isl_union_map_intersect_range(may_write
, fields
);
4484 write_domain
= isl_union_map_domain(may_write
);
4485 subset
= isl_union_set_is_subset(write_domain
, domain
);
4486 isl_union_set_free(write_domain
);
4490 return isl_union_set_free(local
);
4491 } else if (subset
) {
4492 local
= isl_union_set_add_set(local
, set
);
4501 /* Internal data structure for node_may_persist.
4503 * "tagger" maps tagged iteration domains to the corresponding untagged
4506 * "may_persist_flow" is the set of all tagged dataflow dependences
4507 * with those dependences removed that either precede or follow
4508 * the kernel launch in a sequence.
4509 * "inner_band_flow" is the set of all tagged dataflow dependences
4510 * that are local to a given iteration of the outer band nodes
4511 * with respect to the current node.
4512 * "local_flow" is equal to "inner_band_flow", except that the domain
4513 * and the range have been intersected with intermediate filters
4514 * on children of sets or sequences.
4516 struct ppcg_may_persist_data
{
4517 isl_union_pw_multi_aff
*tagger
;
4519 isl_union_map
*local_flow
;
4520 isl_union_map
*inner_band_flow
;
4521 isl_union_map
*may_persist_flow
;
4524 /* Update the information in "data" based on the band ancestor "node".
4526 * In particular, we restrict the dependences in data->local_flow
4527 * to those dependence where the source and the sink occur in
4528 * the same iteration of the given band node.
4529 * We also update data->inner_band_flow to the new value of
4532 static int update_may_persist_at_band(__isl_keep isl_schedule_node
*node
,
4533 struct ppcg_may_persist_data
*data
)
4535 isl_multi_union_pw_aff
*partial
;
4536 isl_union_pw_multi_aff
*contraction
;
4537 isl_union_map
*flow
;
4539 if (isl_schedule_node_band_n_member(node
) == 0)
4542 partial
= isl_schedule_node_band_get_partial_schedule(node
);
4543 contraction
= isl_schedule_node_get_subtree_contraction(node
);
4544 partial
= isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial
,
4546 partial
= isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial
,
4547 isl_union_pw_multi_aff_copy(data
->tagger
));
4549 flow
= data
->local_flow
;
4550 flow
= isl_union_map_eq_at_multi_union_pw_aff(flow
, partial
);
4551 data
->local_flow
= flow
;
4553 isl_union_map_free(data
->inner_band_flow
);
4554 data
->inner_band_flow
= isl_union_map_copy(data
->local_flow
);
4559 /* Given a set of local reaching domain elements "domain",
4560 * expand them to the corresponding leaf domain elements using "contraction"
4561 * and insert the array references tags using data->tagger.
4563 static __isl_give isl_union_set
*expand_and_tag(
4564 __isl_take isl_union_set
*domain
,
4565 __isl_take isl_union_pw_multi_aff
*contraction
,
4566 struct ppcg_may_persist_data
*data
)
4568 domain
= isl_union_set_preimage_union_pw_multi_aff(domain
,
4570 domain
= isl_union_set_preimage_union_pw_multi_aff(domain
,
4571 isl_union_pw_multi_aff_copy(data
->tagger
));
4575 /* Given a filter node that is the child of a set or sequence node,
4576 * restrict data->local_flow to refer only to those elements
4577 * in the filter of the node.
4578 * "contraction" maps the leaf domain elements of the schedule tree
4579 * to the corresponding domain elements at (the parent of) "node".
4581 static int filter_flow(__isl_keep isl_schedule_node
*node
,
4582 struct ppcg_may_persist_data
*data
,
4583 __isl_take isl_union_pw_multi_aff
*contraction
)
4585 isl_union_set
*filter
;
4586 isl_union_map
*flow
;
4588 flow
= data
->local_flow
;
4589 filter
= isl_schedule_node_filter_get_filter(node
);
4590 filter
= expand_and_tag(filter
, contraction
, data
);
4591 flow
= isl_union_map_intersect_domain(flow
, isl_union_set_copy(filter
));
4592 flow
= isl_union_map_intersect_range(flow
, filter
);
4593 data
->local_flow
= flow
;
4598 /* Given a filter node "node", collect the filters on all preceding siblings
4599 * (which are also filter nodes), add them to "filters" and return the result.
4601 static __isl_give isl_union_set
*add_previous_filters(
4602 __isl_take isl_union_set
*filters
, __isl_keep isl_schedule_node
*node
)
4604 isl_schedule_node
*sibling
;
4606 sibling
= isl_schedule_node_copy(node
);
4607 while (sibling
&& isl_schedule_node_has_previous_sibling(sibling
)) {
4608 isl_union_set
*filter
;
4610 sibling
= isl_schedule_node_previous_sibling(sibling
);
4611 filter
= isl_schedule_node_filter_get_filter(sibling
);
4612 filters
= isl_union_set_union(filters
, filter
);
4614 isl_schedule_node_free(sibling
);
4616 return isl_union_set_free(filters
);
4621 /* Given a filter node "node", collect the filters on all following siblings
4622 * (which are also filter nodes), add them to "filters" and return the result.
4624 static __isl_give isl_union_set
*add_next_filters(
4625 __isl_take isl_union_set
*filters
, __isl_keep isl_schedule_node
*node
)
4627 isl_schedule_node
*sibling
;
4629 sibling
= isl_schedule_node_copy(node
);
4630 while (sibling
&& isl_schedule_node_has_next_sibling(sibling
)) {
4631 isl_union_set
*filter
;
4633 sibling
= isl_schedule_node_next_sibling(sibling
);
4634 filter
= isl_schedule_node_filter_get_filter(sibling
);
4635 filters
= isl_union_set_union(filters
, filter
);
4637 isl_schedule_node_free(sibling
);
4639 return isl_union_set_free(filters
);
4644 /* Remove those flow dependences from data->may_persist_flow
4645 * that flow between elements of "domain" within the same iteration
4646 * of all outer band nodes.
4647 * "contraction" maps the leaf domain elements of the schedule tree
4648 * to the corresponding elements "domain".
4650 static void remove_external_flow(struct ppcg_may_persist_data
*data
,
4651 __isl_take isl_union_set
*domain
,
4652 __isl_keep isl_union_pw_multi_aff
*contraction
)
4654 isl_union_map
*flow
;
4656 contraction
= isl_union_pw_multi_aff_copy(contraction
);
4657 domain
= expand_and_tag(domain
, contraction
, data
);
4658 flow
= isl_union_map_copy(data
->local_flow
);
4659 flow
= isl_union_map_intersect_domain(flow
, isl_union_set_copy(domain
));
4660 flow
= isl_union_map_intersect_range(flow
, domain
);
4662 data
->may_persist_flow
= isl_union_map_subtract(data
->may_persist_flow
,
4666 /* Update the information in "data" based on the filter ancestor "node".
4667 * We only need to modify anything if the filter is the child
4668 * of a set or sequence node.
4670 * In the case of a sequence, we remove the dependences between
4671 * statement instances that are both executed either before or
4672 * after the subtree that will be mapped to a kernel, within
4673 * the same iteration of outer bands.
4675 * In both cases, we restrict data->local_flow to the current child.
4677 static int update_may_persist_at_filter(__isl_keep isl_schedule_node
*node
,
4678 struct ppcg_may_persist_data
*data
)
4680 enum isl_schedule_node_type type
;
4681 isl_schedule_node
*parent
;
4683 isl_union_pw_multi_aff
*contraction
;
4684 isl_union_set
*before
, *after
, *filter
;
4685 isl_union_map
*flow
;
4687 type
= isl_schedule_node_get_parent_type(node
);
4688 if (type
!= isl_schedule_node_sequence
&& type
!= isl_schedule_node_set
)
4691 parent
= isl_schedule_node_copy(node
);
4692 parent
= isl_schedule_node_parent(parent
);
4693 contraction
= isl_schedule_node_get_subtree_contraction(parent
);
4694 isl_schedule_node_free(parent
);
4696 if (type
== isl_schedule_node_set
)
4697 return filter_flow(node
, data
, contraction
);
4699 filter
= isl_schedule_node_filter_get_filter(node
);
4700 space
= isl_union_set_get_space(filter
);
4701 isl_union_set_free(filter
);
4702 before
= isl_union_set_empty(space
);
4703 after
= isl_union_set_copy(before
);
4704 before
= add_previous_filters(before
, node
);
4705 after
= add_next_filters(after
, node
);
4707 remove_external_flow(data
, before
, contraction
);
4708 remove_external_flow(data
, after
, contraction
);
4710 return filter_flow(node
, data
, contraction
);
4713 /* Update the information in "data" based on the ancestor "node".
4715 static isl_stat
update_may_persist_at(__isl_keep isl_schedule_node
*node
,
4718 struct ppcg_may_persist_data
*data
= user
;
4720 switch (isl_schedule_node_get_type(node
)) {
4721 case isl_schedule_node_error
:
4722 return isl_stat_error
;
4723 case isl_schedule_node_context
:
4724 case isl_schedule_node_domain
:
4725 case isl_schedule_node_expansion
:
4726 case isl_schedule_node_extension
:
4727 case isl_schedule_node_guard
:
4728 case isl_schedule_node_leaf
:
4729 case isl_schedule_node_mark
:
4730 case isl_schedule_node_sequence
:
4731 case isl_schedule_node_set
:
4733 case isl_schedule_node_band
:
4734 if (update_may_persist_at_band(node
, data
) < 0)
4735 return isl_stat_error
;
4737 case isl_schedule_node_filter
:
4738 if (update_may_persist_at_filter(node
, data
) < 0)
4739 return isl_stat_error
;
4746 /* Determine the set of array elements that may need to be perserved
4747 * by a kernel constructed from the subtree at "node".
4748 * This includes the set of array elements that may need to be preserved
4749 * by the entire scop (prog->may_persist) and the elements for which
4750 * there is a potential flow dependence that may cross a kernel launch.
4752 * To determine the second set, we start from all flow dependences.
4753 * From this set of dependences, we remove those that cannot possibly
4754 * require data to be preserved by a kernel launch.
4755 * In particular, we consider the following sets of dependences.
4756 * - dependences of which the write occurs inside the kernel.
4757 * If the data is needed outside the kernel, then it will
4758 * be copied out immediately after the kernel launch, so there
4759 * is no need for any special care.
4760 * - dependences of which the read occurs inside the kernel and the
4761 * corresponding write occurs inside the same iteration of the
4762 * outer band nodes. This means that the data is needed in
4763 * the first kernel launch after the write, which is already
4764 * taken care of by the standard copy-in. That is, the data
4765 * do not need to be preserved by any intermediate call to
4767 * - dependences of which the write and the read either both occur
4768 * before the kernel launch or both occur after the kernel launch,
4769 * within the same iteration of the outer band nodes with respect
4770 * to the sequence that determines the ordering of the dependence
4771 * and the kernel launch. Such flow dependences cannot cross
4772 * any kernel launch.
4774 * For the remaining (tagged) dependences, we take the domain
4775 * (i.e., the tagged writes) and apply the tagged access relation
4776 * to obtain the accessed data elements.
4777 * These are then combined with the elements that may need to be
4778 * preserved by the entire scop.
4780 static __isl_give isl_union_set
*node_may_persist(
4781 __isl_keep isl_schedule_node
*node
, struct gpu_prog
*prog
)
4783 struct ppcg_may_persist_data data
;
4784 isl_schedule_node
*root
;
4785 isl_union_pw_multi_aff
*contraction
;
4786 isl_union_set
*domain
;
4787 isl_union_set
*persist
;
4788 isl_union_map
*flow
, *local_flow
;
4790 data
.tagger
= prog
->scop
->tagger
;
4792 flow
= isl_union_map_copy(prog
->scop
->tagged_dep_flow
);
4793 data
.local_flow
= isl_union_map_copy(flow
);
4794 data
.inner_band_flow
= isl_union_map_copy(flow
);
4795 data
.may_persist_flow
= flow
;
4796 if (isl_schedule_node_foreach_ancestor_top_down(node
,
4797 &update_may_persist_at
, &data
) < 0)
4798 data
.may_persist_flow
=
4799 isl_union_map_free(data
.may_persist_flow
);
4800 flow
= data
.may_persist_flow
;
4801 isl_union_map_free(data
.local_flow
);
4803 domain
= isl_schedule_node_get_domain(node
);
4804 contraction
= isl_schedule_node_get_subtree_contraction(node
);
4805 domain
= isl_union_set_preimage_union_pw_multi_aff(domain
,
4807 domain
= isl_union_set_preimage_union_pw_multi_aff(domain
,
4808 isl_union_pw_multi_aff_copy(data
.tagger
));
4809 flow
= isl_union_map_subtract_domain(flow
, isl_union_set_copy(domain
));
4810 local_flow
= data
.inner_band_flow
;
4811 local_flow
= isl_union_map_intersect_range(local_flow
, domain
);
4812 flow
= isl_union_map_subtract(flow
, local_flow
);
4814 persist
= isl_union_map_domain(flow
);
4815 persist
= isl_union_set_apply(persist
,
4816 isl_union_map_copy(prog
->scop
->tagged_may_writes
));
4817 persist
= isl_union_set_union(persist
,
4818 isl_union_set_copy(prog
->may_persist
));
4823 /* Add nodes for copying outer arrays in and out of the device
4824 * before and after the subtree "node", which contains one or more kernels.
4825 * "domain" contains the original reaching domain elements before
4826 * the kernels were created, i.e., before the contraction that
4827 * may have been performed in creating the kernels has been applied.
4828 * "prefix" contains the prefix schedule at that point, in terms
4829 * of the same original reaching domain elements.
4831 * We first compute the sets of outer array elements that need
4832 * to be copied in and out and then graft in the nodes for
4833 * performing this copying.
4835 * In particular, for each array that is possibly written anywhere in
4836 * the subtree "node" and that may be used after "node"
4837 * or that may be visible outside the corresponding scop,
4838 * we copy out its entire extent.
4840 * Any array elements that is read without first being written inside
4841 * the subtree "node" needs to be copied in.
4842 * Furthermore, if there are any array elements that
4843 * are copied out, but that may not be written inside "node, then
4844 * they also need to be copied in to ensure that the value after execution
4845 * is the same as the value before execution, at least for those array
4846 * elements that may have their values preserved by the scop or that
4847 * may be written before "node" and read after "node".
4848 * In case the array elements are structures, we need to take into
4849 * account that all members of the structures need to be written
4850 * by "node" before we can avoid copying the data structure in.
4852 * Note that the may_write relation is intersected with the domain,
4853 * which has been intersected with the context.
4854 * This helps in those cases where the arrays are declared with a fixed size,
4855 * while the accesses are parametric and the context assigns a fixed value
4856 * to the parameters.
4858 * If an element from a local array is read without first being written,
4859 * then there is no point in copying it in since it cannot have been
4860 * written prior to the scop. Warn about the uninitialized read instead.
4862 static __isl_give isl_schedule_node
*add_to_from_device(
4863 __isl_take isl_schedule_node
*node
, __isl_take isl_union_set
*domain
,
4864 __isl_take isl_union_map
*prefix
, struct gpu_prog
*prog
)
4866 isl_union_set
*local
;
4867 isl_union_set
*to_device
, *from_device
, *may_persist
;
4868 isl_union_map
*may_write
, *must_write
, *copy_out
, *not_written
;
4869 isl_union_map
*read
, *copy_in
;
4870 isl_union_map
*tagged
;
4871 isl_union_map
*local_uninitialized
;
4872 isl_schedule_node
*graft
;
4874 tagged
= isl_union_map_copy(prog
->scop
->tagged_reads
);
4875 tagged
= isl_union_map_union(tagged
,
4876 isl_union_map_copy(prog
->scop
->tagged_may_writes
));
4878 may_write
= isl_union_map_copy(prog
->may_write
);
4879 may_write
= isl_union_map_intersect_domain(may_write
,
4880 isl_union_set_copy(domain
));
4881 may_write
= remove_local_accesses(prog
,
4882 isl_union_map_copy(tagged
), may_write
,
4883 isl_union_map_copy(prefix
), 0);
4884 may_write
= isl_union_map_apply_range(may_write
,
4885 isl_union_map_copy(prog
->to_outer
));
4886 may_write
= isl_union_map_apply_domain(may_write
,
4887 isl_union_map_copy(prefix
));
4888 may_write
= approximate_copy_out(may_write
, prog
);
4889 copy_out
= isl_union_map_copy(may_write
);
4890 may_write
= isl_union_map_apply_range(may_write
,
4891 isl_union_map_copy(prog
->to_inner
));
4892 must_write
= isl_union_map_copy(prog
->must_write
);
4893 must_write
= isl_union_map_apply_domain(must_write
,
4894 isl_union_map_copy(prefix
));
4895 may_persist
= node_may_persist(node
, prog
);
4896 may_write
= isl_union_map_intersect_range(may_write
, may_persist
);
4897 not_written
= isl_union_map_subtract(may_write
, must_write
);
4899 local
= extract_local_accesses(prog
, domain
);
4900 read
= isl_union_map_copy(prog
->read
);
4901 read
= isl_union_map_intersect_domain(read
, domain
);
4902 read
= remove_local_accesses(prog
, tagged
, read
,
4903 isl_union_map_copy(prefix
), 1);
4904 local
= isl_union_set_apply(local
, isl_union_map_copy(prog
->to_inner
));
4905 local_uninitialized
= isl_union_map_copy(prog
->scop
->live_in
);
4906 local_uninitialized
= isl_union_map_intersect_range(local_uninitialized
,
4908 local_uninitialized
= isl_union_map_intersect(local_uninitialized
,
4909 isl_union_map_copy(read
));
4910 if (!isl_union_map_is_empty(local_uninitialized
)) {
4912 "possibly uninitialized reads (not copied in):\n");
4913 isl_union_map_dump(local_uninitialized
);
4915 read
= isl_union_map_subtract(read
, local_uninitialized
);
4916 read
= isl_union_map_apply_domain(read
, prefix
);
4917 copy_in
= isl_union_map_union(read
, not_written
);
4918 copy_in
= isl_union_map_apply_range(copy_in
,
4919 isl_union_map_copy(prog
->to_outer
));
4921 graft
= create_copy_device(prog
, node
, "to_device",
4922 isl_union_map_range(copy_in
));
4923 node
= isl_schedule_node_graft_before(node
, graft
);
4924 graft
= create_copy_device(prog
, node
, "from_device",
4925 isl_union_map_range(copy_out
));
4926 node
= isl_schedule_node_graft_after(node
, graft
);
4931 /* Update "schedule" for mapping to a GPU device.
4933 * In particular, insert a context node, create kernels for
4934 * each outermost tilable band and introduce node for copying array
4935 * in and out of the device.
4936 * If the child of the initial root points to a set node,
4937 * then children of this node that do not contain any tilable bands
4938 * are separated from the other children and are not mapped to
4941 static __isl_give isl_schedule
*map_to_device(struct gpu_gen
*gen
,
4942 __isl_take isl_schedule
*schedule
)
4944 isl_schedule_node
*node
;
4946 isl_union_set
*domain
;
4947 isl_union_map
*prefix
;
4949 context
= isl_set_copy(gen
->prog
->context
);
4950 context
= isl_set_from_params(context
);
4951 schedule
= isl_schedule_insert_context(schedule
, context
);
4953 node
= isl_schedule_get_root(schedule
);
4954 isl_schedule_free(schedule
);
4955 node
= isl_schedule_node_child(node
, 0);
4956 if (isl_schedule_node_get_type(node
) == isl_schedule_node_context
)
4957 node
= isl_schedule_node_child(node
, 0);
4958 node
= isolate_permutable_subtrees(node
, gen
->prog
);
4959 domain
= isl_schedule_node_get_domain(node
);
4960 prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
4961 node
= mark_kernels(gen
, node
);
4962 node
= add_to_from_device(node
, domain
, prefix
, gen
->prog
);
4963 schedule
= isl_schedule_node_get_schedule(node
);
4964 isl_schedule_node_free(node
);
4969 /* Internal data structure for extract_access.
4970 * "next_access" points to the end of a linked list that is extended
4971 * by extract_access.
4972 * "single_expression" is set if the access expressions belong to
4973 * an expression statement (i.e., a statement without internal control).
4974 * "any_to_outer" maps all intermediate arrays to their outer arrays.
4976 struct ppcg_extract_access_data
{
4977 struct gpu_stmt_access
**next_access
;
4978 int single_expression
;
4979 isl_union_map
*any_to_outer
;
4982 /* Given a tagged access relation to a single array "tagged", extract it
4983 * as a map, taking into account that the input may be empty.
4984 * If the access relation is empty, then it does not contain
4985 * any space information, so we try to recover it from the index
4987 * The space of the index expression is of the form I -> A,
4988 * with I the statement instances and A the array, or [I -> F] -> A,
4989 * with F the filters corresponding to arguments.
4990 * We first drop F, if present, obtaining I -> A.
4991 * Then we construct I -> R, with R the reference tag,
4992 * combine the two into I -> [R -> A] and uncurry to obtain
4993 * the final result [I -> R] -> A.
4994 * Note that the index expression may have a lower dimension
4995 * than that of the array, but this dimension is not used
4996 * if the access relation is empty.
4998 static __isl_give isl_map
*extract_single_tagged_access(
4999 __isl_take isl_union_map
*tagged
, __isl_keep pet_expr
*expr
)
5003 isl_space
*space
, *space2
;
5004 isl_multi_pw_aff
*index
;
5006 empty
= isl_union_map_is_empty(tagged
);
5010 return isl_map_from_union_map(tagged
);
5011 isl_union_map_free(tagged
);
5013 index
= pet_expr_access_get_index(expr
);
5014 space
= isl_multi_pw_aff_get_space(index
);
5015 isl_multi_pw_aff_free(index
);
5016 if (isl_space_domain_is_wrapping(space
))
5017 space
= isl_space_domain_factor_domain(space
);
5018 space2
= isl_space_copy(space
);
5019 space2
= isl_space_from_domain(isl_space_domain(space
));
5020 id
= pet_expr_access_get_ref_id(expr
);
5021 space2
= isl_space_set_tuple_id(space2
, isl_dim_out
, id
);
5022 space
= isl_space_range_product(space2
, space
);
5023 space
= isl_space_uncurry(space
);
5025 return isl_map_empty(space
);
5027 isl_union_map_free(tagged
);
5031 /* Extract a gpu_stmt_access from "expr", append it to the list
5032 * that ends in *data->next_access and update the end of the list.
5033 * If the access expression performs a write, then it is considered
5034 * exact only if it appears in a single expression statement and
5035 * if its may access relation is equal to its must access relation.
5037 * The combined set of may accesses may be union if member accesses
5038 * are involved, but the entire set is derived from a single reference and
5039 * therefore from a single index expression. These accesses therefore
5040 * all map to the same outer array.
5042 static int extract_access(__isl_keep pet_expr
*expr
, void *user
)
5044 struct ppcg_extract_access_data
*data
= user
;
5045 isl_union_map
*tagged
;
5046 struct gpu_stmt_access
*access
;
5047 isl_ctx
*ctx
= pet_expr_get_ctx(expr
);
5048 isl_multi_pw_aff
*index
;
5050 access
= isl_alloc_type(ctx
, struct gpu_stmt_access
);
5052 access
->next
= NULL
;
5053 access
->read
= pet_expr_access_is_read(expr
);
5054 access
->write
= pet_expr_access_is_write(expr
);
5055 tagged
= pet_expr_access_get_tagged_may_read(expr
);
5056 tagged
= isl_union_map_union(tagged
,
5057 pet_expr_access_get_tagged_may_write(expr
));
5058 tagged
= isl_union_map_apply_range(tagged
,
5059 isl_union_map_copy(data
->any_to_outer
));
5060 if (!access
->write
) {
5061 access
->exact_write
= 1;
5062 } else if (!data
->single_expression
) {
5063 access
->exact_write
= 0;
5065 isl_union_map
*must
, *may
;
5066 may
= isl_union_map_copy(tagged
);
5067 may
= isl_union_map_domain_factor_domain(may
);
5068 must
= pet_expr_access_get_must_write(expr
);
5069 access
->exact_write
= isl_union_map_is_equal(must
, may
);
5070 isl_union_map_free(must
);
5071 isl_union_map_free(may
);
5073 index
= pet_expr_access_get_index(expr
);
5074 access
->n_index
= isl_multi_pw_aff_dim(index
, isl_dim_out
);
5075 isl_multi_pw_aff_free(index
);
5076 access
->ref_id
= pet_expr_access_get_ref_id(expr
);
5077 access
->tagged_access
= extract_single_tagged_access(tagged
, expr
);
5078 access
->access
= isl_map_copy(access
->tagged_access
);
5079 access
->access
= isl_map_domain_factor_domain(access
->access
);
5081 *data
->next_access
= access
;
5082 data
->next_access
= &(*data
->next_access
)->next
;
5084 if (!access
->access
)
5090 /* Construct a linked list of gpu_stmt_access objects,
5091 * one for each access expression in the statement body.
5092 * "any_to_outer" maps all intermediate arrays to their outer arrays.
5094 static int pet_stmt_extract_accesses(struct gpu_stmt
*stmt
,
5095 __isl_keep isl_union_map
*any_to_outer
)
5097 struct ppcg_extract_access_data data
;
5099 stmt
->accesses
= NULL
;
5100 data
.next_access
= &stmt
->accesses
;
5101 data
.single_expression
=
5102 pet_tree_get_type(stmt
->stmt
->body
) == pet_tree_expr
;
5103 data
.any_to_outer
= any_to_outer
;
5104 return pet_tree_foreach_access_expr(stmt
->stmt
->body
,
5105 &extract_access
, &data
);
5108 /* Return an array of gpu_stmt representing the statements in "scop".
5110 static struct gpu_stmt
*extract_stmts(isl_ctx
*ctx
, struct ppcg_scop
*scop
,
5111 __isl_keep isl_set
*context
, __isl_keep isl_union_map
*any_to_outer
)
5114 struct gpu_stmt
*stmts
;
5116 stmts
= isl_calloc_array(ctx
, struct gpu_stmt
, scop
->pet
->n_stmt
);
5120 for (i
= 0; i
< scop
->pet
->n_stmt
; ++i
) {
5121 struct gpu_stmt
*s
= &stmts
[i
];
5123 s
->id
= isl_set_get_tuple_id(scop
->pet
->stmts
[i
]->domain
);
5124 s
->stmt
= scop
->pet
->stmts
[i
];
5125 if (pet_stmt_extract_accesses(s
, any_to_outer
) < 0)
5126 return free_stmts(stmts
, i
+ 1);
5132 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
5134 static __isl_give isl_printer
*print_gpu(__isl_take isl_printer
*p
, void *user
)
5136 struct gpu_gen
*gen
= user
;
5138 return gen
->print(p
, gen
->prog
, gen
->tree
, &gen
->types
,
5142 /* Generate CUDA code for "scop" and print it to "p".
5143 * After generating an AST for the transformed scop as explained below,
5144 * we call "gen->print" to print the AST in the desired output format
5147 * If it turns out that it does not make sense to generate GPU code,
5148 * then we generate CPU code instead.
5150 * The GPU code is generated in a context where at least one
5151 * statement instance is executed. The corresponding guard (if any) is printed
5152 * around the entire generated GPU code, except for the declaration
5153 * of the arrays that are visible outside of the scop and that therefore
5154 * cannot be declared inside the body of any possible guard.
5156 * We first compute a schedule that respects the dependences
5157 * of the original program and select the outermost bands
5158 * of tilable dimensions that have at least one parallel loop.
5159 * If the --load-schedule is specified, then the loaded schedule
5160 * is used instead of a computed schedule.
5162 * Each of these bands B is then tiled according to "tile" sizes, resulting
5163 * in two nested bands, with a kernel marker on top
5171 * We then split off at most 2 parallel dimensions from the T band and
5172 * at most 3 parallel dimension from the P band
5185 * A filter is introduced in front of T1 that maps the domain instances
5186 * to block identifiers. Similarly, a filter is introduced in front of P1
5187 * that maps the domain instances to thread identifiers.
5189 * For each iteration of the T2 band and for each array, we compute
5190 * the array elements accessed by that iteration, construct a rectangular
5191 * box around it and shift it to the origin. The result is used
5192 * as shared memory for the array.
5194 * Copying and synchronization statements are added to this schedule tree.
5195 * In principle, these are added in front of the P1 band, but some of
5196 * them may get hoisted up to higher levels.
5198 * The entire AST is then generated from the single resulting schedule tree.
5199 * During the generation the subtrees at kernel nodes (K) are saved
5200 * aside and replaced by kernel calls. The result is printed as host code
5201 * while the saved subtrees are printed as device code.
5203 static __isl_give isl_printer
*generate(__isl_take isl_printer
*p
,
5204 struct gpu_gen
*gen
, struct ppcg_scop
*scop
,
5205 struct ppcg_options
*options
)
5207 struct gpu_prog
*prog
;
5209 isl_set
*context
, *guard
;
5210 isl_schedule
*schedule
;
5214 return isl_printer_free(p
);
5216 ctx
= isl_printer_get_ctx(p
);
5217 prog
= gpu_prog_alloc(ctx
, scop
);
5219 return isl_printer_free(p
);
5221 context
= isl_set_copy(prog
->context
);
5222 guard
= isl_union_set_params(isl_union_set_copy(prog
->scop
->domain
));
5223 prog
->context
= isl_set_intersect(prog
->context
, isl_set_copy(guard
));
5226 schedule
= get_schedule(gen
);
5228 any_permutable
= has_any_permutable_node(schedule
);
5229 if (any_permutable
< 0 || !any_permutable
) {
5230 isl_set_free(context
);
5231 isl_set_free(guard
);
5232 if (any_permutable
< 0)
5233 p
= isl_printer_free(p
);
5235 p
= print_cpu(p
, scop
, options
);
5236 isl_schedule_free(schedule
);
5238 schedule
= map_to_device(gen
, schedule
);
5239 gen
->tree
= generate_code(gen
, schedule
);
5240 p
= ppcg_print_exposed_declarations(p
, prog
->scop
);
5241 p
= ppcg_print_guarded(p
, guard
, context
, &print_gpu
, gen
);
5242 isl_ast_node_free(gen
->tree
);
5245 gpu_prog_free(prog
);
5250 /* Wrapper around generate for use as a ppcg_transform callback.
5252 static __isl_give isl_printer
*generate_wrap(__isl_take isl_printer
*p
,
5253 struct ppcg_scop
*scop
, void *user
)
5255 struct gpu_gen
*gen
= user
;
5257 return generate(p
, gen
, scop
, gen
->options
);
5260 /* Transform the code in the file called "input" by replacing
5261 * all scops by corresponding GPU code and write the results to "out".
5263 int generate_gpu(isl_ctx
*ctx
, const char *input
, FILE *out
,
5264 struct ppcg_options
*options
,
5265 __isl_give isl_printer
*(*print
)(__isl_take isl_printer
*p
,
5266 struct gpu_prog
*prog
, __isl_keep isl_ast_node
*tree
,
5267 struct gpu_types
*types
, void *user
), void *user
)
5274 gen
.sizes
= extract_sizes_from_str(ctx
, options
->sizes
);
5275 gen
.options
= options
;
5278 gen
.print_user
= user
;
5280 gen
.types
.name
= NULL
;
5282 if (options
->debug
->dump_sizes
) {
5283 isl_space
*space
= isl_space_params_alloc(ctx
, 0);
5284 gen
.used_sizes
= isl_union_map_empty(space
);
5287 r
= ppcg_transform(ctx
, input
, out
, options
, &generate_wrap
, &gen
);
5289 if (options
->debug
->dump_sizes
) {
5290 isl_union_map_dump(gen
.used_sizes
);
5291 isl_union_map_free(gen
.used_sizes
);
5294 isl_union_map_free(gen
.sizes
);
5295 for (i
= 0; i
< gen
.types
.n
; ++i
)
5296 free(gen
.types
.name
[i
]);
5297 free(gen
.types
.name
);
5302 /* Compute the set of inner array elements that may have their values
5303 * preserved by "prog". In particular, collect the array elements of
5304 * arrays that are not local to "prog" and remove those elements that
5305 * are definitely killed or definitely written by "prog".
5307 static __isl_give isl_union_set
*compute_may_persist(struct gpu_prog
*prog
)
5310 isl_union_set
*may_persist
, *killed
;
5311 isl_union_map
*must_kill
;
5313 may_persist
= isl_union_set_empty(isl_set_get_space(prog
->context
));
5314 for (i
= 0; i
< prog
->n_array
; ++i
) {
5317 if (prog
->array
[i
].local
)
5320 extent
= isl_set_copy(prog
->array
[i
].extent
);
5321 may_persist
= isl_union_set_add_set(may_persist
, extent
);
5324 may_persist
= isl_union_set_intersect_params(may_persist
,
5325 isl_set_copy(prog
->context
));
5326 may_persist
= isl_union_set_apply(may_persist
,
5327 isl_union_map_copy(prog
->to_inner
));
5328 must_kill
= isl_union_map_copy(prog
->tagged_must_kill
);
5329 killed
= isl_union_map_range(must_kill
);
5330 must_kill
= isl_union_map_copy(prog
->must_write
);
5331 killed
= isl_union_set_union(killed
, isl_union_map_range(must_kill
));
5333 may_persist
= isl_union_set_subtract(may_persist
, killed
);
5337 struct gpu_prog
*gpu_prog_alloc(isl_ctx
*ctx
, struct ppcg_scop
*scop
)
5339 struct gpu_prog
*prog
;
5346 prog
= isl_calloc_type(ctx
, struct gpu_prog
);
5351 prog
->context
= isl_set_copy(scop
->context
);
5352 prog
->n_stmts
= scop
->pet
->n_stmt
;
5353 prog
->any_to_outer
= pet_scop_compute_outer_to_any(scop
->pet
);
5354 prog
->any_to_outer
= isl_union_map_reverse(prog
->any_to_outer
);
5355 space
= isl_union_map_get_space(prog
->any_to_outer
);
5356 space
= isl_space_set_from_params(space
);
5357 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
5358 space
= isl_space_map_from_set(space
);
5359 id
= isl_map_identity(space
);
5360 prog
->any_to_outer
= isl_union_map_add_map(prog
->any_to_outer
, id
);
5361 prog
->stmts
= extract_stmts(ctx
, scop
,
5362 prog
->context
, prog
->any_to_outer
);
5363 prog
->read
= isl_union_map_copy(scop
->reads
);
5364 prog
->may_write
= isl_union_map_copy(scop
->may_writes
);
5365 prog
->must_write
= isl_union_map_copy(scop
->must_writes
);
5366 prog
->tagged_must_kill
= isl_union_map_copy(scop
->tagged_must_kills
);
5367 prog
->to_inner
= pet_scop_compute_outer_to_inner(scop
->pet
);
5368 prog
->to_outer
= isl_union_map_copy(prog
->to_inner
);
5369 prog
->to_outer
= isl_union_map_reverse(prog
->to_outer
);
5372 return gpu_prog_free(prog
);
5374 if (collect_array_info(prog
) < 0)
5375 return gpu_prog_free(prog
);
5376 prog
->may_persist
= compute_may_persist(prog
);
5381 void *gpu_prog_free(struct gpu_prog
*prog
)
5385 free_array_info(prog
);
5386 free_stmts(prog
->stmts
, prog
->n_stmts
);
5387 isl_union_map_free(prog
->any_to_outer
);
5388 isl_union_map_free(prog
->to_outer
);
5389 isl_union_map_free(prog
->to_inner
);
5390 isl_union_map_free(prog
->read
);
5391 isl_union_map_free(prog
->may_write
);
5392 isl_union_map_free(prog
->must_write
);
5393 isl_union_map_free(prog
->tagged_must_kill
);
5394 isl_union_map_free(prog
->array_order
);
5395 isl_union_set_free(prog
->may_persist
);
5396 isl_set_free(prog
->context
);