adg_xml.cc: directly include required headers
[ppn.git] / da.cc
blob0feedcb9a4e2aa8661efc790ce4b683b9fdd429d
1 #include <set>
2 #include <vector>
3 #include <iostream>
5 #include <isa/yaml.h>
6 #include <isa/pdg.h>
7 #include "da.h"
9 extern "C" {
10 #include "isl_util.h"
12 #include <isl/aff.h>
13 #include <isl/set.h>
14 #include <isl/union_set.h>
15 #include <isl/flow.h>
17 using pdg::PDG;
18 using namespace std;
20 namespace da {
22 /* A pair of a node and an access from that node.
23 * "map" is the converted access relation.
24 * "projected_map" represents the converted access relation without
25 * any embedded access relation or access filters
27 struct na_pair {
28 pdg::node *node;
29 pdg::access *access;
30 isl_map *map;
31 isl_map *projected_map;
32 void project_out_access_filters(void);
33 na_pair(pdg::node *n, pdg::access *a) : node(n), access(a), map(NULL),
34 projected_map(NULL) {}
35 ~na_pair() {
36 isl_map_free(map);
37 isl_map_free(projected_map);
41 /* If the access has any embedded filters, then project them out
42 * from "projected_map", initializing "projected_map" from "map"
43 * if there is no "projected_map" yet.
45 void na_pair::project_out_access_filters(void)
47 isl_space *space;
48 isl_map *proj;
50 if (access->nested.size() == 0)
51 return;
53 if (!projected_map)
54 projected_map = isl_map_copy(map);
56 space = isl_space_domain(isl_map_get_space(projected_map));
57 space = isl_space_unwrap(space);
58 proj = isl_map_domain_map(isl_map_universe(space));
60 projected_map = isl_map_apply_domain(projected_map, proj);
63 static int precedes_level_nodes(na_pair *first, na_pair *second);
64 static int precedes_level_accesses(na_pair *first, na_pair *second);
66 /* Given a map from a domain to an orthogonal projection of an array
67 * (say, the rows of an array), mapping i to m(i), this function
68 * extends the range of the mapping to the original array and extends
69 * the domain of the mapping correspondingly such that (i,j) maps
70 * to (m(i),j), with (m(i),j) identifying an element of the array.
71 * The bounds on j are taken from the size of the array.
73 * The mapping from i to (i,j) is stored in the "extension" field
74 * of the access.
76 * The dependences computed using these extended access mappings,
77 * will map a (possibly) extended source domain to a (possibly)
78 * extended sink domain. One or both of these domains need to
79 * be transformed back to the original domains using the inverse
80 * of the corresponding extensions.
82 static isl_map *extend_access(isl_map *map, na_pair *na)
84 pdg::array *array = na->access->array;
85 unsigned n_out = isl_map_dim(map, isl_dim_out);
86 assert(n_out < array->dims.size());
87 unsigned s_dim = array->dims.size() - n_out;
88 isl_id *array_id = NULL;
89 if (isl_map_has_tuple_id(map, isl_dim_out))
90 array_id = isl_map_get_tuple_id(map, isl_dim_out);
91 isl_space *space = isl_map_get_space(map);
92 space = isl_space_drop_dims(space, isl_dim_in,
93 0, isl_space_dim(space, isl_dim_in));
94 space = isl_space_drop_dims(space, isl_dim_out,
95 0, isl_space_dim(space, isl_dim_out));
96 space = isl_space_add_dims(space, isl_dim_in, s_dim);
97 space = isl_space_add_dims(space, isl_dim_out, s_dim);
98 isl_basic_map *id = isl_basic_map_identity(space);
99 for (int i = 0; i < s_dim; ++i) {
100 int v;
102 id = isl_basic_map_lower_bound_si(id, isl_dim_out, i, 0);
103 v = array->dims[n_out + i] - 1;
104 id = isl_basic_map_upper_bound_si(id, isl_dim_out, i, v);
106 map = isl_map_product(map, isl_map_from_basic_map(id));
107 map = isl_map_flatten_range(map);
108 if (array_id)
109 map = isl_map_set_tuple_id(map, isl_dim_out, array_id);
110 if (!na->access->extension) {
111 isl_map *ext = isl_map_copy(map);
112 ext = isl_set_unwrap(isl_map_domain(ext));
113 ext = isl_map_reverse(isl_map_domain_map(ext));
114 na->access->extension = new pdg::IslMap(ext);
116 if (!na->access->extended_map)
117 na->access->extended_map = new pdg::IslMap(isl_map_copy(map));
118 return map;
121 /* If access "access" contains any nested accesses, then the domain
122 * of the access relation contains extra dimensions corresponding to
123 * the values of the nested accesses.
124 * Add these extra dimensions, with ranges given by the value_bounds
125 * of the corresponding array to domain "dom".
126 * If a nested access array does not have value_bounds, then we assume
127 * an infinite interval.
129 static isl_set *append_nested_value_domains(isl_set *dom, pdg::access *access)
131 isl_ctx *ctx;
133 ctx = isl_set_get_ctx(dom);
134 for (int i = 0; i < access->nested.size(); ++i) {
135 pdg::call_or_access *coa = access->nested[i];
136 assert(coa->type == pdg::call_or_access::t_access);
137 pdg::access *nested = coa->access;
138 isl_set *bounds;
139 if (nested->array->value_bounds)
140 bounds = nested->array->value_bounds->get_isl_set(ctx);
141 else {
142 isl_space *dim = isl_set_get_space(dom);
143 dim = isl_space_drop_dims(dim, isl_dim_set,
144 0, isl_space_dim(dim, isl_dim_set));
145 dim = isl_space_add_dims(dim, isl_dim_set, 1);
146 bounds = isl_set_universe(dim);
148 dom = isl_set_product(dom, bounds);
150 return dom;
153 /* Combine constraints of the "pure" mapping with the constraints
154 * on the domain. If the range of the mapping is of a dimension
155 * that is lower than the dimension of the accessed array,
156 * we extend the dimension of both domain and range of the mapping
157 * with the missing dimension. The size of domain and range
158 * in these dimensions is set to the extent of the array in the
159 * corresponding missing dimension. Each point in the original
160 * domain is therefore expanded to a hyperrectangle and each point
161 * in this hyperrectangle is mapped onto a single point in the array.
163 * If node->source is a wrapped map, then the iteration domain
164 * is the domain of this map.
166 static isl_map *convert_access(na_pair *na)
168 isl_map *map = na->access->map->get_isl_map();
169 isl_set *dom = na->node->source->get_isl_set();
171 if (isl_set_is_wrapping(dom)) {
172 dom = isl_map_domain(isl_set_unwrap(dom));
173 dom = isl_set_coalesce(dom);
176 dom = append_nested_value_domains(dom, na->access);
177 if (isl_map_dim(map, isl_dim_in) != isl_set_dim(dom, isl_dim_set))
178 assert(0);
179 map = isl_map_intersect_domain(map, dom);
180 if (isl_map_dim(map, isl_dim_out) != na->access->array->dims.size())
181 map = extend_access(map, na);
182 return map;
185 typedef std::map<na_pair *, isl_map *> na_pair2map;
187 struct add_dep_info {
188 PDG *pdg;
189 pdg::array *a;
190 type t;
191 enum pdg::dependence::type dtype;
192 /* The sink. */
193 na_pair *read_na_pair;
194 /* The comparison routine that was used during
195 * the dependence analysis.
197 isl_access_level_before precedes_level;
198 /* Cache of memory based dependence relations.
199 * The key of the map refers to the write.
201 na_pair2map mem_dep;
202 /* How many loops are shared by the current sink and source?
203 * Initialized to -1.
205 int n_shared;
206 /* For each potential source, what's (up to now) the minimal
207 * and maximal number of shared loops?
208 * If not set, then we don't know yet.
210 std::map<na_pair *, int> min_n_shared;
211 std::map<na_pair *, int> max_n_shared;
213 /* Potential sources that are actually used. */
214 std::set<na_pair *> used;
216 __isl_give isl_map *get_mem_dep(na_pair *write_na);
217 void clear_mem_dep();
218 void set_read_na(na_pair *read_na);
219 void update_min_n_shared(na_pair *source_na);
221 ~add_dep_info();
224 /* Update min_n_shared of "source_na" to the current number of shared loops.
225 * The new value is always smaller than or equal to the old value (if any).
226 * If max_n_shared hasn't been set yet, then set it as well.
228 void add_dep_info::update_min_n_shared(na_pair *source_na)
230 if (max_n_shared.find(source_na) == max_n_shared.end())
231 max_n_shared[source_na] = n_shared;
232 min_n_shared[source_na] = n_shared;
235 /* Create an id
237 * __last_<stmt>_<access_nr>_valid
239 * corresponding to "na", with "na" attached as user pointer.
241 static __isl_give isl_id *valid_bit_id(isl_ctx *ctx, na_pair *na)
243 char name[60];
245 snprintf(name, sizeof(name), "__last_%s_%d_valid",
246 na->node->name->s.c_str(), na->access->nr);
247 return isl_id_alloc(ctx, name, na);
250 /* Create an id
252 * __last_<stmt>_<access_nr>_shared
254 * corresponding to "na", with "na" attached as user pointer.
256 static __isl_give isl_id *create_shared_id(isl_ctx *ctx, na_pair *na)
258 char name[60];
260 snprintf(name, sizeof(name), "__last_%s_%d_shared",
261 na->node->name->s.c_str(), na->access->nr);
262 return isl_id_alloc(ctx, name, na);
265 /* Project out all the dimensions of the given type from "map" except "pos".
267 static __isl_give isl_map *project_on(__isl_take isl_map *map,
268 enum isl_dim_type type, unsigned pos)
270 unsigned n = isl_map_dim(map, type);
272 map = isl_map_project_out(map, type, pos + 1, n - (pos + 1));
273 map = isl_map_project_out(map, type, 0, pos);
275 return map;
278 /* Does output dimension "pos" have a fixed value in terms of the
279 * input dimensions (and parameters)?
281 static int has_fixed_value(__isl_keep isl_map *map, int pos)
283 int sv;
285 map = isl_map_copy(map);
286 map = project_on(map, isl_dim_out, pos);
287 sv = isl_map_is_single_valued(map);
288 isl_map_free(map);
290 return sv;
293 /* Return the position of the parameter with the given "id" in "set",
294 * adding it if it wasn't there already.
296 static int find_or_add_param(__isl_keep isl_set **set, __isl_take isl_id *id)
298 int pos;
300 pos = isl_set_find_dim_by_id(*set, isl_dim_param, id);
301 if (pos >= 0) {
302 isl_id_free(id);
303 return pos;
306 pos = isl_set_dim(*set, isl_dim_param);
307 *set = isl_set_add_dims(*set, isl_dim_param, 1);
308 *set = isl_set_set_dim_id(*set, isl_dim_param, pos, id);
310 return pos;
313 /* Add parameters to "set" identifying the last iteration of the access
314 * identified by "na".
316 * In particular, we add a parameter
318 * __last_<stmt>_<access_nr>_shared >= info->n_shared
320 * and parameters
322 * __last_<stmt>_<access_nr>_<i> = it_<i>
324 * with i ranging over the iterators, starting at info->n_shared,
325 * that are affected by the filters,
326 * except those that have a fixed value according to the memory based
327 * dependence.
328 * "na" is attached to the first two parameters, so that it can be recovered
329 * in refine_controls(). If the set already references some of these
330 * parameters, then we don't add the parameter again, but instead
331 * simply add the corresponding constraint.
333 static __isl_give isl_set *add_parametrization(__isl_take isl_set *set,
334 na_pair *na, add_dep_info *info)
336 int pos;
337 isl_ctx *ctx;
338 isl_id *id;
339 char name[60];
340 int depth;
341 isl_map *mem;
343 depth = na->node->get_filter_depth();
344 mem = info->get_mem_dep(na);
345 mem = isl_map_reverse(mem);
347 ctx = isl_set_get_ctx(set);
348 id = create_shared_id(ctx, na);
349 pos = find_or_add_param(&set, id);
350 set = isl_set_lower_bound_si(set, isl_dim_param, pos, info->n_shared);
352 for (int i = info->n_shared; i < depth; ++i) {
353 if (has_fixed_value(mem, i))
354 continue;
356 snprintf(name, sizeof(name), "__last_%s_%d_%d",
357 na->node->name->s.c_str(), na->access->nr, i);
359 id = isl_id_alloc(ctx, name, NULL);
360 pos = find_or_add_param(&set, id);
362 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, i);
365 isl_map_free(mem);
366 return set;
369 /* Is the i-th parameter of "map" a control, i.e., a parameter
370 * introduced by add_parametrization()?
371 * In particular, is the parameter of the form __last_*?
373 static bool is_control(__isl_keep isl_map *map, int i)
375 const char *name;
376 const char *prefix = "__last_";
377 size_t prefix_len = strlen(prefix);
379 if (!isl_map_has_dim_id(map, isl_dim_param, i))
380 return false;
381 name = isl_map_get_dim_name(map, isl_dim_param, i);
382 return strncmp(name, prefix, prefix_len) == 0;
385 /* Is the i-th parameter of "set" a control, i.e., a parameter
386 * introduced by add_parametrization()?
387 * In particular, is the parameter of the form __last_*?
389 static bool is_control(__isl_keep isl_set *set, int i)
391 const char *name;
392 const char *prefix = "__last_";
393 size_t prefix_len = strlen(prefix);
395 if (!isl_set_has_dim_id(set, isl_dim_param, i))
396 return false;
397 name = isl_set_get_dim_name(set, isl_dim_param, i);
398 return strncmp(name, prefix, prefix_len) == 0;
401 /* Remove all controls that are redundant, i.e., that do not appear
402 * in any of the constraints.
403 * Set *has_controls to true if there are any controls that are not redundant.
405 static __isl_give isl_map *remove_redundant_controls(__isl_take isl_map *dep,
406 bool *has_controls)
408 int i;
409 int n_param;
411 *has_controls = false;
413 n_param = isl_map_dim(dep, isl_dim_param);
414 for (i = n_param - 1; i >= 0; --i) {
415 if (!is_control(dep, i))
416 continue;
417 if (isl_map_involves_dims(dep, isl_dim_param, i, 1))
418 *has_controls = true;
419 else
420 dep = isl_map_project_out(dep, isl_dim_param, i, 1);
423 return dep;
426 /* Rename controls of "dep" from
428 * __last_<source_stmt>_<source_acc_nr>_*
430 * to
432 * __last_<source_stmt>_<source_acc_nr>_<sink_stmt>_<sink_acc_nr>_*
434 * "na" represents the sink.
436 static __isl_give isl_map *rename_controls(__isl_take isl_map *dep, na_pair *na)
438 char buf[100];
439 int n_param;
440 const char *name;
441 const char *underscore;
443 n_param = isl_map_dim(dep, isl_dim_param);
444 for (int i = 0; i < n_param; ++i) {
445 int len;
446 if (!is_control(dep, i))
447 continue;
448 name = isl_map_get_dim_name(dep, isl_dim_param, i);
449 underscore = strrchr(name, '_');
450 assert(underscore);
451 len = underscore + 1 - name;
452 memcpy(buf, name, len);
453 snprintf(buf + len, sizeof(buf) - len, "%s_%d_%s",
454 na->node->name->s.c_str(), na->access->nr, name + len);
455 dep = isl_map_set_dim_name(dep, isl_dim_param, i, buf);
458 return dep;
461 extern "C" {
462 static isl_stat extract_dep(__isl_take isl_map *dep, int must,
463 void *dep_user, void *user);
466 /* Extract the single dependence relation from the result of
467 * dataflow analyis and assign it to *user.
469 static isl_stat extract_dep(__isl_take isl_map *dep, int must, void *dep_user,
470 void *user)
472 isl_map **dep_p = (isl_map **) user;
473 assert(!*dep_p);
474 *dep_p = dep;
475 return isl_stat_ok;
478 /* Return the memory based dependence relation from write_na
479 * to read_na_pair. If the "projected_map"
480 * fields are not NULL, then use the "projected_map"
481 * instead of the "map" of write_na and this->read_na_pair.
483 __isl_give isl_map *add_dep_info::get_mem_dep(na_pair *write_na)
485 isl_access_info *acc;
486 isl_flow *deps;
487 isl_map *read_map, *write_map;
488 isl_map *dep = NULL;
490 if (mem_dep.find(write_na) != mem_dep.end())
491 return isl_map_copy(mem_dep[write_na]);
493 if (read_na_pair->projected_map)
494 read_map = isl_map_copy(read_na_pair->projected_map);
495 else
496 read_map = isl_map_copy(read_na_pair->map);
497 acc = isl_access_info_alloc(read_map, read_na_pair, precedes_level, 1);
498 if (write_na->projected_map)
499 write_map = isl_map_copy(write_na->projected_map);
500 else
501 write_map = isl_map_copy(write_na->map);
502 acc = isl_access_info_add_source(acc, write_map, 0, write_na);
503 deps = isl_access_info_compute_flow(acc);
504 isl_flow_foreach(deps, &extract_dep, &dep);
505 isl_flow_free(deps);
507 mem_dep[write_na] = isl_map_copy(dep);
509 return dep;
512 /* Clear the cache of memory based dependence relations.
514 void add_dep_info::clear_mem_dep()
516 na_pair2map::iterator it;
518 for (it = mem_dep.begin(); it != mem_dep.end(); ++it)
519 isl_map_free(it->second);
520 mem_dep.clear();
523 /* Set read_na_pair to read_na.
525 * If the cache of memory based dependence relations contains any
526 * elements then they refer to a different read, so we need to clear
527 * the cache.
529 * We also clear the set of used potential sources and reset
530 * the data that keeps track of the number of shared loops between
531 * the sink (read_na_pair) and the sources.
533 void add_dep_info::set_read_na(na_pair *read_na)
535 used.clear();
536 clear_mem_dep();
537 n_shared = -1;
538 min_n_shared.clear();
539 max_n_shared.clear();
540 read_na_pair = read_na;
543 add_dep_info::~add_dep_info()
545 clear_mem_dep();
548 /* Is the name of parameter "i" of "space" of the form __last_*_suffix?
550 static bool is_last_with_suffix(__isl_keep isl_space *space, int i,
551 const char *suffix, size_t suffix_len)
553 const char *prefix = "__last_";
554 size_t prefix_len = strlen(prefix);
555 const char *name;
556 size_t len;
558 if (!isl_space_has_dim_id(space, isl_dim_param, i))
559 return false;
560 name = isl_space_get_dim_name(space, isl_dim_param, i);
561 if (strncmp(name, prefix, prefix_len))
562 return false;
563 len = strlen(name);
564 return len > suffix_len && !strcmp(name + len - suffix_len, suffix);
567 /* Is the name of parameter "i" of "space" of the form __last_*_valid?
568 * In practice, those are the parameters __last_*_valid, created
569 * in add_parametrization().
571 static bool is_valid_bit(__isl_keep isl_space *space, int i)
573 const char *suffix = "_valid";
575 return is_last_with_suffix(space, i, suffix, strlen(suffix));
578 /* Is the name of parameter "i" of "space" of the form __last_*_shared?
579 * In practice, those are the parameters __last_*_shared, created
580 * in add_parametrization().
582 static bool is_shared(__isl_keep isl_space *space, int i)
584 const char *suffix = "_shared";
585 size_t suffix_len = strlen(suffix);
587 return is_last_with_suffix(space, i, suffix, strlen(suffix));
590 /* Assuming "coa" is a (read) access, return the array being
591 * accessed.
593 static pdg::array *get_filter_array(pdg::call_or_access *coa)
595 assert(coa->type == pdg::call_or_access::t_access);
596 return coa->access->array;
599 /* Compute a map between domain elements (i) of "map1" and range elements
600 * of "map2" (j) such that all the images of i in "map1" map to j through
601 * "map2" and such that there is at least one such image element.
603 * In other words, the result contains those pairs of elements such that
604 * map1(i) \cap map2^-1(j) is non-empty and map1(i) \subseteq map2^-1(j).
606 * Equivalently, compute
608 * (map1 . map2) \setminus
609 * (map1 . ((\range map1 \to \range map2) \setminus map2))
611 * If map1 is single valued, then we can do a simple join.
613 static __isl_give isl_union_map *join_non_empty_subset(
614 __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2)
616 isl_union_set *dom, *ran;
617 isl_union_map *univ;
618 isl_union_map *res;
620 if (isl_union_map_is_single_valued(umap1))
621 return isl_union_map_apply_range(umap1, umap2);
623 res = isl_union_map_apply_range(isl_union_map_copy(umap1),
624 isl_union_map_copy(umap2));
625 dom = isl_union_map_range(isl_union_map_copy(umap1));
626 ran = isl_union_map_range(isl_union_map_copy(umap2));
627 univ = isl_union_map_from_domain_and_range(dom, ran);
628 umap2 = isl_union_map_subtract(univ, umap2);
629 umap1 = isl_union_map_apply_range(umap1, umap2);
630 res = isl_union_map_subtract(res, umap1);
632 return res;
635 /* Compute a map between domain elements (i) of "map1" and range elements
636 * of "map2" (j) such that the images of i in "map1" include all those
637 * elements that map to j through "map2" and such that there is
638 * at least one such image element.
640 * In other words, the result contains those pairs of elements such that
641 * map1(i) \cap map2^-1(j) is non-empty and map1(i) \supseteq map2^-1(j).
643 * Equivalently, compute
645 * (map1 . map2) \setminus
646 * (((\domain map1 \to \domain map2) \setminus map1) . map2)
648 * If map1 is single valued, then we can do a simple join.
650 static __isl_give isl_union_map *join_non_empty_superset(
651 __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2)
653 isl_union_set *dom, *ran;
654 isl_union_map *univ;
655 isl_union_map *res;
657 if (isl_union_map_is_single_valued(umap2))
658 return isl_union_map_apply_range(umap1, umap2);
660 res = isl_union_map_apply_range(isl_union_map_copy(umap1),
661 isl_union_map_copy(umap2));
662 dom = isl_union_map_domain(isl_union_map_copy(umap1));
663 ran = isl_union_map_domain(isl_union_map_copy(umap2));
664 univ = isl_union_map_from_domain_and_range(dom, ran);
665 umap1 = isl_union_map_subtract(univ, umap1);
666 umap1 = isl_union_map_apply_range(umap1, umap2);
667 res = isl_union_map_subtract(res, umap1);
669 return res;
672 /* Return those elements in the domain of "umap" where "umap" is multi-valued.
674 * In particular, construct a mapping between domain elements of "umap"
675 * and pairs of corresponding image elements.
676 * Remove pairs of identical image elements from the range of this mapping.
677 * The result is a mapping between domain elements and pairs of different
678 * corresponding image elements. The domain of this mapping contains those
679 * domain elements of "umap" with at least two images.
681 static __isl_give isl_union_set *multi_valued(__isl_keep isl_union_map *umap)
683 isl_union_map *multi, *id;
685 multi = isl_union_map_range_product(isl_union_map_copy(umap),
686 isl_union_map_copy(umap));
687 id = isl_union_map_universe(isl_union_map_copy(multi));
688 id = isl_union_set_unwrap(isl_union_map_range(id));
689 id = isl_union_set_identity(isl_union_map_domain(id));
690 multi = isl_union_map_subtract_range(multi, isl_union_map_wrap(id));
691 return isl_union_map_domain(multi);
694 /* Given two filter access relations, return a mapping between the domain
695 * elements of these access relations such that they access "the same filter".
696 * In particular, any pair of elements in the returned relation
697 * accesses at least one element in common, but if subset1 is set,
698 * then the set of elements accessed by the first is a subset of the
699 * set of elements accessed by the second. Similarly, if subset2 is set,
700 * then the set of elements accessed by the second is a subset of the
701 * set of elements accessed by the first. If both are set, then we further
702 * impose that both should access exactly one element.
703 * "space" is the space in which the result should live.
704 * Although "map1" and "map2" are allowed to have ranges in multiple spaces,
705 * their domains should live in a single space. "space" is the space
706 * of the relation between those two domains.
708 * Call the given maps A and B.
710 * A relation between domains elements of A and B that access at least
711 * one element in common can be obtained as
713 * A . B^-1
715 * To ensure that all elements accessed through A form a subset of
716 * the elements accessed through B, we compute join_non_empty_subset(A, B^-1).
718 * Ensuring that all elements accessed through B form a subset of
719 * the elements accessed through A is handled in a similar way.
721 * To remove those iterations that access more that one element,
722 * we compute those parts of the domains where A and B are multi-valued
723 * and subtract them from domain and range of the result.
725 static __isl_give isl_map *compute_common_filter(__isl_keep isl_union_map *map1,
726 bool subset1, __isl_keep isl_union_map *map2, bool subset2,
727 __isl_keep isl_space *space)
729 isl_union_map *reverse, *common;
730 isl_union_set *bad;
731 isl_map *res;
733 reverse = isl_union_map_reverse(isl_union_map_copy(map2));
735 if (subset1 && !subset2) {
736 common = join_non_empty_subset(isl_union_map_copy(map1),
737 reverse);
738 } else if (!subset1 && subset2) {
739 common = join_non_empty_superset(isl_union_map_copy(map1),
740 reverse);
741 } else {
742 common = isl_union_map_apply_range(isl_union_map_copy(map1),
743 reverse);
744 if (subset1 && subset2) {
745 bad = multi_valued(map1);
746 common = isl_union_map_subtract_domain(common, bad);
747 bad = multi_valued(map2);
748 common = isl_union_map_subtract_range(common, bad);
752 res = isl_union_map_extract_map(common, isl_space_copy(space));
753 isl_union_map_free(common);
754 return res;
757 /* Assuming "coa" is a (read) access, construct a union map from the domain
758 * of the access relation to the access relations of the corresponding
759 * writes. If we are unable to determine the corresponding writes, then
760 * return a map to the read access relation.
762 static __isl_give isl_union_map *extract_access_map(pdg::call_or_access *coa)
764 assert(coa->type == pdg::call_or_access::t_access);
765 return coa->access->extract_access_map();
768 /* Return a set that contains all possible filter values,
769 * where the possible values for a given filter is either as specified
770 * by the value_bounds property of the corresponding array or the universe.
772 static __isl_give isl_set *compute_filter_bounds(pdg::node *node)
774 isl_ctx *ctx;
775 isl_set *bounds;
777 ctx = isl_set_get_ctx(node->source->set);
779 bounds = isl_set_universe(isl_space_set_alloc(ctx, 0, 0));
780 for (int i = 0; i < node->filters.size(); ++i) {
781 isl_set *bnd;
782 pdg::array *array;
783 pdg::call_or_access *coa = node->filters[i];
784 assert(coa->type == pdg::call_or_access::t_access);
785 array = coa->access->array;
786 if (array->value_bounds)
787 bnd = array->value_bounds->get_isl_set();
788 else
789 bnd = isl_set_universe(isl_space_set_alloc(ctx, 0, 1));
790 bounds = isl_set_flat_product(bounds, bnd);
793 return bounds;
796 /* Return either the filter values themselves or their complement,
797 * taken with respect to the bounds on the filter values.
799 static __isl_give isl_map *compute_filter_values(pdg::node *node,
800 bool complement)
802 isl_set *bounds;
803 isl_map *value;
804 isl_map *res;
806 value = isl_set_unwrap(node->source->get_isl_set());
807 if (!complement)
808 return value;
810 bounds = compute_filter_bounds(node);
811 res = isl_map_from_domain_and_range(
812 isl_map_domain(isl_map_copy(value)), bounds);
813 res = isl_map_subtract(res, value);
815 return res;
818 /* Equate the first "n" input and output dimensions of "map"
819 * and return the result.
821 static __isl_give isl_map *share(__isl_take isl_map *map, int n)
823 for (int i = 0; i < n; ++i)
824 map = isl_map_equate(map, isl_dim_in, i, isl_dim_out, i);
826 return map;
829 /* Return the set of source iterations of "na" either at the last
830 * iteration (if valid is set) or after the last iteration
831 * (if valid is not set). "id" represents the control variable
832 * corresponding to the number of shared loops (__last_<na>_shared).
834 * In particlar, if valid is set, we return the set
836 * { S[i] : i = __last_<na> and
837 * __last_<na>_shared >= info->n_shared }
839 * If valid is not set, we return the set
841 * { S[i] : (i >> __last_<na> and __last_<na>_shared >= info->n_shared) or
842 * __last_<na>_shared < info->n_shared }
844 * That is, the iterations after the last if there is a last iteration
845 * with at least info->n_shared shared loops
846 * or just any iteration if there is no such last iteration.
848 * The lexicographic order i >> __last_<na> is imposed on the loop iterators
849 * that are affected by any filters.
851 static __isl_give isl_set *source_iterations(na_pair *na,
852 __isl_keep isl_id *id, bool valid, add_dep_info *info)
854 isl_space *space;
855 isl_set *set, *invalid;
856 isl_map *map_after;
857 int pos;
858 int depth;
860 space = isl_set_get_space(na->node->source->set);
861 space = isl_space_domain(isl_space_unwrap(space));
863 set = isl_set_universe(space);
864 set = add_parametrization(set, na, info);
866 if (valid)
867 return set;
869 depth = na->node->get_filter_depth();
871 space = isl_space_map_from_set(isl_set_get_space(set));
872 map_after = isl_map_lex_lt_first(space, depth);
873 map_after = share(map_after, info->n_shared);
874 map_after = isl_map_intersect_domain(map_after, set);
875 set = isl_map_range(map_after);
877 invalid = isl_set_universe(isl_set_get_space(set));
878 pos = isl_set_find_dim_by_id(invalid, isl_dim_param, id);
879 assert(pos >= 0);
880 invalid = isl_set_upper_bound_si(invalid,
881 isl_dim_param, pos, info->n_shared - 1);
882 set = isl_set_union(set, invalid);
884 return set;
887 /* Look for a matching between the filters of node1 and those of node2.
888 * That is look for pairs of filters of the two nodes that are "the same".
889 * Return true if any such matching can be found. The correspondence between
890 * the filters is returned in *same_value_p, while the pairs of iterations
891 * where the filters are the same is returned in *same_filter_p.
892 * The first "n_shared" dimensions of these iterations are guaranteed
893 * to be equal to each other.
895 * Two filter accesses are considered "the same" if they access at least
896 * one element in common. Moreover, if valid1 is false then the set
897 * of elements accessed by an element from node1 should be a subset
898 * of the set of elements accessed by the corresponding element from node2.
899 * Similarly for valid2.
901 * We perform a greedy search, checking if two filters could possibly
902 * match given the matchings we have performed before and updating
903 * the matching if it is indeed possible.
905 * Note that this function only computes one of the possibly many matchings.
907 static bool compute_matching(pdg::node *node1, bool valid1,
908 pdg::node *node2, bool valid2, __isl_give isl_map **same_filter_p,
909 __isl_give isl_map **same_value_p, int n_shared)
911 bool any = false;
912 isl_space *space1, *space2;
913 isl_map *same_filter;
914 isl_map *same_value;
916 space1 = isl_space_unwrap(isl_set_get_space(node1->source->set));
917 space2 = isl_space_unwrap(isl_set_get_space(node2->source->set));
918 space1 = isl_space_product(space1, space2);
919 space2 = isl_space_unwrap(isl_space_range(isl_space_copy(space1)));
920 space1 = isl_space_unwrap(isl_space_domain(space1));
922 same_filter = isl_map_universe(isl_space_copy(space1));
923 same_filter = share(same_filter, n_shared);
924 same_value = isl_map_universe(space2);
926 for (int i = 0; i < node1->filters.size(); ++i) {
927 isl_union_map *map_i;
928 pdg::call_or_access *filter_i = node1->filters[i];
929 pdg::array *array_i = get_filter_array(filter_i);
931 map_i = extract_access_map(node1->filters[i]);
933 for (int j = 0; j < node2->filters.size(); ++j) {
934 pdg::call_or_access *filter_j;
935 filter_j = node2->filters[j];
936 pdg::array *array_j = get_filter_array(filter_j);
937 isl_union_map *map_j;
938 isl_map *same_filter_ij;
940 if (array_i != array_j)
941 continue;
943 map_j = extract_access_map(node2->filters[j]);
944 same_filter_ij = compute_common_filter(map_i, !valid1,
945 map_j, !valid2,
946 space1);
947 same_filter_ij = isl_map_intersect(same_filter_ij,
948 isl_map_copy(same_filter));
949 if (isl_map_is_empty(same_filter_ij))
950 isl_map_free(same_filter_ij);
951 else {
952 any = true;
953 isl_map_free(same_filter);
954 same_filter = same_filter_ij;
955 same_value = isl_map_equate(same_value,
956 isl_dim_in, i,
957 isl_dim_out, j);
959 isl_union_map_free(map_j);
962 isl_union_map_free(map_i);
964 isl_space_free(space1);
966 if (any) {
967 *same_value_p = same_value;
968 *same_filter_p = same_filter;
969 } else {
970 isl_map_free(same_value);
971 isl_map_free(same_filter);
972 *same_value_p = NULL;
973 *same_filter_p = NULL;
976 return any;
979 /* Given a set of sink iterations "sink", mappings "map1" and "map2"
980 * from two potential sources to this sink,
981 * the possible filter values "value1" and "value2" at those
982 * potential sources, a relation "same_filter" between the two
983 * potential sources expressing when some filters of the two
984 * potential sources are the same and the correponding matching
985 * "same_value" between the filter values,
986 * remove those elements from the sink that have
987 * corresponding pairs of potential source iterations that should
988 * have the same filter values but do not.
990 * Let us call the sink S, the potential sources A and B and the
991 * corresponding filters F and G.
993 * We start from the mappings A[..] -> S[..] and B[..] -> S[..],
994 * combine them into
996 * S[..] -> [A[..] -> B[..]]
998 * and intersect the range with the condition "same_filter" on A and B,
999 * resulting in a mapping from sink iterations to pairs of potential
1000 * source iterations that should have the same filter values
1001 * (as specified by "same_value").
1003 * We subtract from the range of this mapping those pairs of
1004 * potential source iterations that actually have the same filter values.
1005 * The result is a mapping from sink iterations to pairs of potential
1006 * source iterations that should have the same filter values but do not.
1008 * The mapping between potential source iterations that have the
1009 * same filter values is obtained by combining the mappings
1010 * A[..] -> F[..] and B[..] -> G[..] into
1012 * [A[..] -> B[..]] -> [F[..] -> G[..]]
1014 * intersecting the range with "same_value" and then computing the domain.
1016 static __isl_give isl_set *remove_conflict(__isl_take isl_set *sink,
1017 __isl_take isl_map *map1, __isl_take isl_map *value1,
1018 __isl_take isl_map *map2, __isl_take isl_map *value2,
1019 __isl_take isl_map *same_filter, __isl_take isl_map *same_value)
1021 isl_map *value, *conflict;
1022 isl_set *conflict_set;
1024 conflict = isl_map_domain_product(map1, map2);
1025 conflict = isl_map_reverse(conflict);
1027 conflict = isl_map_intersect_range(conflict, isl_map_wrap(same_filter));
1029 value = isl_map_product(value1, value2);
1030 value = isl_map_intersect_range(value, isl_map_wrap(same_value));
1031 conflict = isl_map_subtract_range(conflict, isl_map_domain(value));
1033 conflict_set = isl_map_domain(conflict);
1035 sink = isl_set_subtract(sink, conflict_set);
1037 return sink;
1040 /* Remove inconsistencies from the set of sink iterations "sink"
1041 * based on two potential sources identified by "id1" and "id2"
1042 * (representing the number of shared loops),
1043 * in particular, on either the last iteration where the filters hold
1044 * (if valid? is set) or on later iterations (if valid? is not set).
1046 * Let us first consider the case where both "valid1" and "valid2" are set.
1047 * If the last iterations of the corresponding sources access the same
1048 * filters, then these filters should have the same value.
1049 * If a filter access accesses more than one element, then these elements
1050 * should all have the same value. It is therefore sufficient for the
1051 * two last iterations to access at least one element in common for there
1052 * to be a requirement that the corresponding values should be the same.
1053 * We therefore obtain the filter values, the mappings from the sink
1054 * to the last iterations, a matching between the
1055 * the filters of the corresponding sources and remove conflicts from "dep".
1057 * If one or both of the valid bits are not set, then we need to make
1058 * some changes. First the inconsistencies now do not arise from
1059 * the filter values at the last iteration, but from the filter values
1060 * lying _outside_ of the possible values for all iterations _after_
1061 * the "last" (i.e., the last iteration satisfying the filter constraints).
1062 * In case there is no last iteration with at least info->n_shared shared loops,
1063 * then the filter values should lie outside of the possible values
1064 * for any potential source iteration with info->n_shared shared loops.
1065 * Note however, that if the filter access relation accesses several
1066 * elements, then it is sufficient for one of those to have a value
1067 * outside of the possible values. We can therefore only consider
1068 * any inconsistencies for those cases where the set of accessed elements
1069 * forms a subset of the set of accessed elements through the other potential
1070 * source. If valid1 is not set, but valid2 is set, then we consider
1071 * those pairs of potential source iterations where the first accesses
1072 * a subset of the second and we impose that at least one of those
1073 * accessed elements has a valid outside the possible values.
1074 * Since those accessed elements form a subset of the elements accessed
1075 * by the other potential source, there is at least one element that
1076 * has a value outside of the posssible values on the first potential source
1077 * and a value belonging to the posssible values on the second potential source.
1078 * We can therefore impose that this value should exist.
1080 * If both valid1 and valid2 are not set, then we can only
1081 * impose a constraint on those pairs of iterations that access the same
1082 * single element. We then know that the value of this single element
1083 * accessed by both potential sources should lie outside of the possible
1084 * values on both sides.
1086 static __isl_give isl_set *remove_inconsistencies(__isl_take isl_set *sink,
1087 add_dep_info *info, __isl_keep isl_id *id1, bool valid1,
1088 __isl_keep isl_id *id2, bool valid2)
1090 na_pair *write1_na, *write2_na;
1091 isl_set *source;
1092 isl_map *value1, *value2;
1093 isl_map *same_filter;
1094 isl_map *same_value;
1095 isl_map *mem1, *mem2;
1097 write1_na = (na_pair *) isl_id_get_user(id1);
1098 write2_na = (na_pair *) isl_id_get_user(id2);
1100 if (!compute_matching(write1_na->node, valid1, write2_na->node, valid2,
1101 &same_filter, &same_value, info->n_shared))
1102 return sink;
1104 value1 = compute_filter_values(write1_na->node, !valid1);
1105 value2 = compute_filter_values(write2_na->node, !valid2);
1107 mem1 = info->get_mem_dep(write1_na);
1108 source = source_iterations(write1_na, id1, valid1, info);
1109 mem1 = share(mem1, info->n_shared);
1110 mem1 = isl_map_intersect_domain(mem1, source);
1112 mem2 = info->get_mem_dep(write2_na);
1113 source = source_iterations(write2_na, id2, valid2, info);
1114 mem2 = share(mem2, info->n_shared);
1115 mem2 = isl_map_intersect_domain(mem2, source);
1117 sink = remove_conflict(sink, mem1, value1, mem2, value2,
1118 same_filter, same_value);
1120 return sink;
1123 /* Remove inconsistencies from the set of sink iterations "sink"
1124 * based on two potential sources identified by "id1" and "id2",
1125 * (representing the number of shared loops).
1127 static __isl_give isl_set *remove_inconsistencies(__isl_take isl_set *sink,
1128 add_dep_info *info, __isl_keep isl_id *id1, __isl_keep isl_id *id2)
1130 sink = remove_inconsistencies(sink, info, id1, false, id2, false);
1131 sink = remove_inconsistencies(sink, info, id1, false, id2, true);
1132 sink = remove_inconsistencies(sink, info, id1, true, id2, false);
1133 sink = remove_inconsistencies(sink, info, id1, true, id2, true);
1134 return sink;
1137 /* Remove inconsistencies from the set of sink iterations "sink"
1138 * based on the potential source identified by "id"
1139 * (representing the number of shared loops),
1140 * in particular, on either the last iteration where the filters hold
1141 * (if valid is set) or on later iterations (if valid is not set).
1143 * This function is very similar to the remove_inconsistencies
1144 * function above that considers two potential sources instead
1145 * of the sink and one potential source. The main differences
1146 * are that for the sink, the filters always hold and that the mapping
1147 * from sink iterations to sink iterations is computed in a different
1148 * (and fairly trivial) way.
1150 static __isl_give isl_set *remove_inconsistencies(__isl_take isl_set *sink,
1151 add_dep_info *info, __isl_keep isl_id *id, bool valid)
1153 na_pair *read_na, *write_na;
1154 isl_set *after;
1155 isl_map *value1, *value2;
1156 isl_map *same_filter;
1157 isl_map *same_value;
1158 isl_map *id_map, *mem;
1160 read_na = info->read_na_pair;
1161 write_na = (na_pair *) isl_id_get_user(id);
1163 if (!compute_matching(read_na->node, true, write_na->node, valid,
1164 &same_filter, &same_value, info->n_shared))
1165 return sink;
1167 value1 = compute_filter_values(read_na->node, false);
1168 value2 = compute_filter_values(write_na->node, !valid);
1170 id_map = isl_set_identity(isl_set_copy(sink));
1172 mem = info->get_mem_dep(write_na);
1173 after = source_iterations(write_na, id, valid, info);
1174 mem = share(mem, info->n_shared);
1175 mem = isl_map_intersect_domain(mem, after);
1177 sink = remove_conflict(sink, id_map, value1, mem, value2,
1178 same_filter, same_value);
1180 return sink;
1183 /* Remove inconsistencies from the set of sink iterations "sink"
1184 * based on the potential source identified by "id"
1185 * (representing the number of shared loops).
1187 static __isl_give isl_set *remove_inconsistencies(__isl_take isl_set *sink,
1188 add_dep_info *info, __isl_keep isl_id *id)
1190 sink = remove_inconsistencies(sink, info, id, false);
1191 sink = remove_inconsistencies(sink, info, id, true);
1192 return sink;
1195 /* Remove all parameters that were introduced by add_parametrization().
1197 static __isl_give isl_map *remove_all_controls(__isl_take isl_map *dep)
1199 int i;
1200 int n_param;
1201 const char *name;
1203 n_param = isl_map_dim(dep, isl_dim_param);
1204 for (i = n_param - 1; i >= 0; --i) {
1205 if (!is_control(dep, i))
1206 continue;
1207 dep = isl_map_project_out(dep, isl_dim_param, i, 1);
1209 dep = isl_map_coalesce(dep);
1211 return dep;
1214 /* Remove all parameters that were introduced by add_parametrization().
1216 static __isl_give isl_set *remove_all_controls(__isl_take isl_set *set)
1218 int i;
1219 int n_param;
1220 const char *name;
1222 n_param = isl_set_dim(set, isl_dim_param);
1223 for (i = n_param - 1; i >= 0; --i) {
1224 if (!is_control(set, i))
1225 continue;
1226 set = isl_set_project_out(set, isl_dim_param, i, 1);
1228 set = isl_set_coalesce(set);
1230 return set;
1233 /* Create the map
1235 * { a -> b : (shared >= max and
1236 * the first max iterators are equal) or
1237 * (shared = max - 1 and
1238 * the first max - 1 iterators are equal and
1239 * dimension max - 1 of a is smaller than that of b) or
1240 * ...
1241 * (shared = min and
1242 * the first min iterators are equal and
1243 * dimension min of a is smaller than that of b) }
1245 static __isl_give isl_map *compute_shared_map(__isl_take isl_space *space,
1246 __isl_keep isl_id *shared_id, int min, int max)
1248 isl_map *shared_map;
1249 int shared_pos;
1251 shared_pos = isl_space_find_dim_by_id(space, isl_dim_param, shared_id);
1252 shared_map = isl_map_universe(isl_space_copy(space));
1253 shared_map = isl_map_lower_bound_si(shared_map, isl_dim_param,
1254 shared_pos, max);
1255 shared_map = share(shared_map, max);
1257 for (int i = min; i < max; ++i) {
1258 isl_map *shared_map_i;
1260 shared_map_i = isl_map_universe(isl_space_copy(space));
1261 shared_map_i = isl_map_fix_si(shared_map_i, isl_dim_param,
1262 shared_pos, i);
1263 shared_map_i = share(shared_map_i, i);
1264 shared_map_i = isl_map_order_lt(shared_map_i, isl_dim_in, i,
1265 isl_dim_out, i);
1267 shared_map = isl_map_union(shared_map, shared_map_i);
1270 isl_space_free(space);
1272 return shared_map;
1275 /* Different parts of the final dependence relations may have been
1276 * created at different depths and may therefore have a different
1277 * number of dimensions of the last iterator. The __last_<na>_shared
1278 * value determines how many of the dimensions are implicitly equal
1279 * to those of the sink iteration. This function creates a set that
1280 * makes these equalities explicit, so that we can later remove
1281 * the __last_<na>_shared parameter. It also marks those parts
1282 * that have a number of shared iterators that is smaller than the minimum
1283 * as not having any last iteration.
1285 * In particular, we create a set in the space of the sink of the form
1287 * { s : __last_<na>_valid = 0 or
1288 * (__last_<na>_valid = 1 and
1289 * __last_<na>_<i> is a potential source iteration and
1290 * ((__last_<na>_shared >= max_shared and
1291 * the first max_shared iterators are equal) or
1292 * (__last_<na>_shared = max_shared - 1 and
1293 * the first max_shared - 1 iterators are equal and
1294 * iterator max_shared - 1 of the source is smaller) or
1295 * ...
1296 * (__last_<na>_shared = min_shared and
1297 * the first min_shared iterators are equal and
1298 * iterator min_shared of the source is smaller))) }
1300 * That is, for those parts with __last_<na>_shared smaller than
1301 * max_n_shared[source_na], intersection with the set will introduce
1302 * __last_<na>_<i> parameters (assuming they don't have a known fixed value)
1303 * up until __last_<na>_shared and equate them to the corresponding iterators
1304 * of the sink.
1306 static __isl_give isl_set *shared_refinement(__isl_keep isl_id *shared_id,
1307 add_dep_info *info)
1309 isl_ctx *ctx;
1310 isl_space *space;
1311 isl_map *mem;
1312 na_pair *source_na;
1313 isl_map *shared_map;
1314 int valid_pos, shared_pos;
1315 isl_set *valid;
1316 isl_set *invalid;
1317 isl_set *domain;
1318 isl_id *valid_id;
1320 ctx = isl_id_get_ctx(shared_id);
1322 source_na = (na_pair *) isl_id_get_user(shared_id);
1323 valid_id = valid_bit_id(ctx, source_na);
1325 mem = info->get_mem_dep(source_na);
1326 space = isl_map_get_space(mem);
1327 isl_map_free(mem);
1329 shared_pos = isl_space_dim(space, isl_dim_param);
1330 space = isl_space_add_dims(space, isl_dim_param, 1);
1331 space = isl_space_set_dim_id(space, isl_dim_param,
1332 shared_pos, isl_id_copy(shared_id));
1334 shared_map = compute_shared_map(isl_space_copy(space), shared_id,
1335 info->min_n_shared[source_na], info->max_n_shared[source_na]);
1337 domain = isl_set_universe(isl_space_domain(space));
1338 valid_pos = find_or_add_param(&domain, isl_id_copy(valid_id));
1339 domain = isl_set_fix_si(domain, isl_dim_param, valid_pos, 1);
1340 domain = add_parametrization(domain, source_na, info);
1341 shared_map = isl_map_intersect_domain(shared_map, domain);
1343 valid = isl_map_range(shared_map);
1344 invalid = isl_set_universe(isl_set_get_space(valid));
1345 shared_pos = isl_set_find_dim_by_id(invalid, isl_dim_param, shared_id);
1346 invalid = isl_set_upper_bound_si(invalid, isl_dim_param, shared_pos,
1347 info->n_shared - 1);
1349 valid_pos = find_or_add_param(&invalid, valid_id);
1350 invalid = isl_set_fix_si(invalid, isl_dim_param, valid_pos, 0);
1352 return isl_set_union(valid, invalid);
1355 /* Different parts of the final dependence relations may have been
1356 * created at different depths and may therefore have a different
1357 * number of dimensions of the last iterator. The __last_*_shared
1358 * value determines how many of the dimensions are implicitly equal
1359 * to those of the sink iteration.
1361 * For each of the __last_*_shared parameters, explicitly add
1362 * the implicitly equal __last_*_i iterators by intersecting
1363 * the sink with the set computed by shared_refinement.
1364 * Finally, remove the __last_*_shared parameters.
1366 static __isl_give isl_map *refine_shared(__isl_take isl_map *dep,
1367 add_dep_info *info)
1369 isl_space *space;
1370 isl_set *refinement;
1371 int n_param;
1373 space = isl_map_get_space(dep);
1374 n_param = isl_space_dim(space, isl_dim_param);
1376 refinement = isl_set_universe(isl_space_range(isl_space_copy(space)));
1378 for (int i = 0; i < n_param; ++i) {
1379 isl_set *ref_i;
1380 isl_id *id;
1382 if (!is_shared(space, i))
1383 continue;
1384 if (!isl_map_involves_dims(dep, isl_dim_param, i, 1))
1385 continue;
1387 id = isl_space_get_dim_id(space, isl_dim_param, i);
1388 ref_i = shared_refinement(id, info);
1389 isl_id_free(id);
1391 if (isl_set_is_wrapping(refinement)) {
1392 isl_map *map = isl_set_unwrap(refinement);
1393 map = isl_map_intersect_domain(map, ref_i);
1394 refinement = isl_map_wrap(map);
1395 } else
1396 refinement = isl_set_intersect(refinement, ref_i);
1398 dep = isl_map_intersect_range(dep, refinement);
1400 isl_space_free(space);
1402 space = isl_map_get_space(dep);
1403 n_param = isl_space_dim(space, isl_dim_param);
1404 for (int i = n_param - 1; i >= 0; --i) {
1405 if (!is_shared(space, i))
1406 continue;
1407 dep = isl_map_project_out(dep, isl_dim_param, i, 1);
1409 isl_space_free(space);
1411 dep = isl_map_coalesce(dep);
1413 return dep;
1416 /* Compute the gist of "dep" with respect to the fact that
1418 * 0 <= __last_*_valid <= 1
1420 static __isl_give isl_map *gist_valid(__isl_take isl_map *dep)
1422 isl_space *space;
1423 isl_set *valid;
1424 int n_param;
1426 space = isl_space_params(isl_map_get_space(dep));
1427 n_param = isl_space_dim(space, isl_dim_param);
1429 valid = isl_set_universe(isl_space_copy(space));
1430 for (int i = 0; i < n_param; ++i) {
1431 if (!is_valid_bit(space, i))
1432 continue;
1434 valid = isl_set_lower_bound_si(valid, isl_dim_param, i, 0);
1435 valid = isl_set_upper_bound_si(valid, isl_dim_param, i, 1);
1438 isl_space_free(space);
1440 dep = isl_map_gist_params(dep, valid);
1442 return dep;
1445 /* Simplify the constraints on the parameters introduced
1446 * in add_parametrization().
1447 * We first add __last_*_i iterators that are only implicitly referred
1448 * to through the __last_*_shared parameters.
1449 * Then, we remove all those parameters that turn out not be needed.
1450 * If there are any of those parameters left, then we compute the gist
1451 * with respect to the valid bit being either 0 or 1 and rename
1452 * the parameters to also include a reference to the sink.
1453 * The resulting relation is assigned to controlled_relation,
1454 * while the relation field is assigned the result of projecting out
1455 * all those parameters.
1457 static __isl_give isl_map *simplify_controls(__isl_take isl_map *dep,
1458 add_dep_info *info, bool *has_controls)
1460 bool hs;
1462 if (!has_controls)
1463 has_controls = &hs;
1464 dep = refine_shared(dep, info);
1465 dep = remove_redundant_controls(dep, has_controls);
1466 if (*has_controls) {
1467 dep = gist_valid(dep);
1468 dep = rename_controls(dep, info->read_na_pair);
1471 return dep;
1474 /* Extract a single dependence from the result of dataflow analysis.
1476 * We first simplify the constraints on the parameters introduced
1477 * in add_parametrization().
1479 * If the dependence relation turns out to be empty, we simply return.
1480 * Otherwise, we create a corresponding pdg::dependence and keep track
1481 * of the fact that the potential source is actually used
1482 * so that we can remove any reference to potential sources that are
1483 * never used from the dependence relations.
1485 static isl_stat add_dep(__isl_take isl_map *dep, int must, void *dep_user,
1486 void *user)
1488 bool has_controls;
1489 na_pair *write_na = (na_pair *) dep_user;
1490 add_dep_info *info = (struct add_dep_info *)user;
1491 isl_ctx *ctx = info->pdg->get_isl_ctx();
1492 pdg::dependence *d;
1494 dep = isl_map_coalesce(dep);
1495 dep = simplify_controls(dep, info, &has_controls);
1496 if (isl_map_is_empty(dep)) {
1497 isl_map_free(dep);
1498 return isl_stat_ok;
1501 info->used.insert(write_na);
1503 d = new pdg::dependence;
1504 d->array = info->a;
1505 d->type = info->dtype;
1506 d->from = write_na->node;
1507 d->to = info->read_na_pair->node;
1508 d->from_access = write_na->access;
1509 d->to_access = info->read_na_pair->access;
1511 if (d->from_access->extension || d->to_access->extension)
1512 d->extended_relation =
1513 new pdg::IslMap(remove_all_controls(isl_map_copy(dep)));
1514 if (d->from_access->extension)
1515 dep = isl_map_apply_domain(dep,
1516 isl_map_reverse(
1517 d->from_access->extension->get_isl_map(ctx)));
1518 if (d->to_access->extension)
1519 dep = isl_map_apply_range(dep,
1520 isl_map_reverse(
1521 d->to_access->extension->get_isl_map(ctx)));
1522 if (has_controls)
1523 d->controlled_relation = new pdg::IslMap(isl_map_copy(dep));
1524 d->relation = new pdg::IslMap(remove_all_controls(isl_map_copy(dep)));
1525 info->pdg->dependences.push_back(d);
1526 isl_map_free(dep);
1527 return isl_stat_ok;
1530 /* This structure represents a set of filter index expressions
1531 * along with bounds on the correponding filter values.
1532 * The number of output dimensions in "value" is the same as
1533 * the number of elements in the "index" vector.
1535 struct da_filter {
1536 std::vector<isl_union_map *> index;
1537 isl_map *value;
1540 /* Construct a da_filter object representing the filters in
1541 * na->node and na->access.
1543 static struct da_filter *extract_filter(na_pair *na)
1545 da_filter *filter = new da_filter;
1546 isl_set *domain;
1547 pdg::node *node = na->node;
1548 pdg::access *access = na->access;
1550 domain = node->source->get_isl_set();
1551 if (isl_set_is_wrapping(domain))
1552 filter->value = isl_set_unwrap(domain);
1553 else
1554 filter->value = isl_map_from_domain(domain);
1556 for (int i = 0; i < node->filters.size(); ++i)
1557 filter->index.push_back(extract_access_map(node->filters[i]));
1559 if (access->nested.size() == 0)
1560 return filter;
1562 domain = isl_map_domain(access->map->get_isl_map());
1563 filter->value = isl_map_flat_range_product(filter->value,
1564 isl_set_unwrap(domain));
1566 for (int i = 0; i < access->nested.size(); ++i)
1567 filter->index.push_back(extract_access_map(access->nested[i]));
1569 return filter;
1572 static struct da_filter *da_filter_free(struct da_filter *filter)
1574 if (!filter)
1575 return NULL;
1576 for (int i = 0; i < filter->index.size(); ++i)
1577 isl_union_map_free(filter->index[i]);
1578 isl_map_free(filter->value);
1579 delete filter;
1580 return NULL;
1583 static void da_filter_dump(struct da_filter *filter)
1585 isl_printer *p;
1587 if (!filter)
1588 return;
1590 p = isl_printer_to_file(isl_map_get_ctx(filter->value), stderr);
1591 p = isl_printer_start_line(p);
1592 p = isl_printer_print_str(p, "value(");
1593 for (int i = 0; i < filter->index.size(); ++i) {
1594 if (i)
1595 p = isl_printer_print_str(p, ", ");
1596 p = isl_printer_print_union_map(p, filter->index[i]);
1598 p = isl_printer_print_str(p, ") in ");
1599 p = isl_printer_print_map(p, filter->value);
1600 p = isl_printer_end_line(p);
1602 isl_printer_free(p);
1605 /* Look for a filter index expression in "filter" that is identical
1606 * to "index". Return the index of this index expression if it is
1607 * found and the number of elements in filter->index otherwise.
1609 static int da_filter_find_exact_match(struct da_filter *filter,
1610 __isl_keep isl_union_map *index)
1612 for (int i = 0; i < filter->index.size(); ++i) {
1613 int equal;
1615 equal = isl_union_map_is_equal(filter->index[i], index);
1616 if (equal < 0)
1617 return -1;
1618 if (equal)
1619 return i;
1622 return filter->index.size();
1625 /* Add the index expression "index" to "filter" with an unconstrained
1626 * filter value. To ease debugging we set the name of the new filter
1627 * value dimension to that of the array being accessed by "index".
1628 * Although the range of "index" is allowed to live in more than
1629 * one space, we assume that they are all wrapped maps to the same
1630 * array space.
1632 static struct da_filter *da_filter_add(struct da_filter *filter,
1633 __isl_take isl_union_map *index)
1635 isl_id *id;
1636 isl_union_map *univ;
1637 isl_set *set;
1639 if (!filter || !index)
1640 goto error;
1642 filter->value = isl_map_add_dims(filter->value, isl_dim_out, 1);
1643 univ = isl_union_map_universe(isl_union_map_copy(index));
1644 univ = isl_union_set_unwrap(isl_union_map_range(univ));
1645 set = isl_set_from_union_set(isl_union_map_range(univ));
1646 id = isl_set_get_tuple_id(set);
1647 isl_set_free(set);
1648 filter->value = isl_map_set_dim_id(filter->value, isl_dim_out,
1649 filter->index.size(), id);
1650 if (!filter->value)
1651 goto error;
1652 filter->index.push_back(index);
1654 return filter;
1655 error:
1656 isl_union_map_free(index);
1657 da_filter_free(filter);
1658 return NULL;
1661 /* Intersect the set of possible filter values in "filter" with "value".
1663 static struct da_filter *da_filter_restrict(struct da_filter *filter,
1664 __isl_take isl_map *value)
1666 if (!filter || !value)
1667 goto error;
1669 filter->value = isl_map_intersect(filter->value, value);
1670 if (!filter->value)
1671 return da_filter_free(filter);
1673 return filter;
1674 error:
1675 isl_map_free(value);
1676 da_filter_free(filter);
1677 return NULL;
1680 /* Does "map" represent a total filter on "domain", i.e., one that is defined
1681 * on every element of "domain"?
1683 * Although the range of "map" may live in different spaces, we assume
1684 * that the domain of "map" lives in a single space.
1686 static int is_total_filter(__isl_keep isl_union_map *map,
1687 __isl_keep isl_set *domain)
1689 isl_union_set *map_domain;
1690 isl_set *set;
1691 int total;
1693 map_domain = isl_union_map_domain(isl_union_map_copy(map));
1694 set = isl_set_from_union_set(map_domain);
1695 total = isl_set_is_subset(domain, set);
1696 isl_set_free(set);
1698 return total;
1701 /* Does "node" have only total filters on "domain"?
1703 static int all_total_filters(pdg::node *node, __isl_take isl_set *domain)
1705 int total = 1;
1707 for (int i = 0; i < node->filters.size(); ++i) {
1708 isl_union_map *map = extract_access_map(node->filters[i]);
1710 total = is_total_filter(map, domain);
1711 isl_union_map_free(map);
1713 if (!total)
1714 break;
1717 isl_set_free(domain);
1718 return total;
1721 /* Does "node" have only total filters on the domain of "map"?
1723 static bool filters_total_on_domain(pdg::node *node, __isl_keep isl_map *map)
1725 return all_total_filters(node, isl_map_domain(isl_map_copy(map)));
1728 /* Does "node" have only total filters on the range of "map"?
1730 static bool filters_total_on_range(pdg::node *node, __isl_keep isl_map *map)
1732 return all_total_filters(node, isl_map_range(isl_map_copy(map)));
1735 /* Are the filters of "source_node" total on the range of "source_map"
1736 * and those of "sink_node" (if any) total on the domain of "soruce_map"?
1738 static bool total_filters(pdg::node *source_node, pdg::node *sink_node,
1739 __isl_keep isl_map *source_map)
1741 int total;
1743 total = filters_total_on_range(source_node, source_map);
1744 if (!total)
1745 return false;
1747 if (!isl_set_is_wrapping(sink_node->source->set))
1748 return true;
1750 total = filters_total_on_domain(sink_node, source_map);
1751 if (!total)
1752 return false;
1754 return true;
1757 /* Does "node" have any single valued filters?
1759 static int any_single_valued_filter(pdg::node *node)
1761 for (int i = 0; i < node->filters.size(); ++i) {
1762 isl_union_map *map = extract_access_map(node->filters[i]);
1763 int sv;
1765 sv = isl_union_map_is_single_valued(map);
1766 isl_union_map_free(map);
1768 if (sv)
1769 return sv;
1772 return 0;
1775 /* Construct a mapping from the source iterations to all source filter values
1776 * that allow some corresponding sink iteration(s) (according to "source_map")
1777 * to be executed. In other words, if any sink iteration is executed,
1778 * then we know that the filters of the corresponding source iterations
1779 * satisfy the returned relation.
1781 * The "filter" input represents what is known about the filter
1782 * values at the sink.
1784 * The "source" domain of the source is a wrapped map,
1785 * mapping iteration vectors to filter values.
1786 * We first construct a relation between the sink filter values (available
1787 * in "filter") and the source filter values. The purpose of this relation
1788 * is to find as much information about the source filter values
1789 * as possible. We can start with the value bounds on the arrays
1790 * accessed in the filters as they always hold.
1791 * Next, we loop over the source filters and check whether there
1792 * is any sink filter that covers the source filter.
1793 * In particular, for each source filter, we construct a map
1794 * from the source iteration domain to a wrapped access relation,
1795 * representing the write access relation that corresponds to
1796 * the filter read access. Note that if we were unable to determine this
1797 * write access, then the mapping returned by extract_access_map
1798 * maps to the original read access, which will not match with
1799 * any filter access relations of the sink.
1800 * We combine the constructed map with the proto-dependence
1801 * (source_map) to obtain a mapping from sink iterations to
1802 * access relations such that there is some source iteration that
1803 * may be the source of the given sink iteration (based on source_map)
1804 * and that the filter value at this source iteration was written by
1805 * that access. If the result is a subset of the mapping from the
1806 * sink iterations to the corresponding write access relation for some filter,
1807 * then we know that any constraint on this filter value also applies
1808 * to the source filter value. We therefore introduce an equality
1809 * in our mapping from sink filter values to source filter values.
1811 * When we apply the mapping from sink filter values to source filter values
1812 * to the mapping from source iterations to sink filter values, we
1813 * obtain a mapping from sink iterations to source filter values
1814 * that represents what we know about the source filter values.
1815 * That is, for each sink iteration in the domain of this map, if this
1816 * sink iteration is executed, then the actual source filter values
1817 * are an element of the image of the sink iteration.
1818 * In other words, the sink iteration is only executed if the source
1819 * filter values are an element of the image.
1820 * Mapping this relation back to the source through the proto-dependence
1821 * source_map, we obtain a relation from source iterations to all source
1822 * filter values for which any sink iteration is executed.
1823 * In particular, for values of the filters outside this relation,
1824 * no corresponding (according to source_map) sink is executed.
1826 static __isl_give isl_map *known_filter_values(struct da_filter *filter,
1827 na_pair *source_na, __isl_keep isl_map *source_map)
1829 isl_space *space, *space2;
1830 isl_map *source_value, *sink_value;
1831 isl_map *filter_map;
1832 isl_set *bounds;
1834 sink_value = isl_map_copy(filter->value);
1836 space = isl_set_get_space(source_na->node->source->set);
1837 space = isl_space_range(isl_space_unwrap(space));
1838 space2 = isl_space_range(isl_map_get_space(sink_value));
1839 space = isl_space_align_params(space, isl_space_copy(space2));
1840 space2 = isl_space_align_params(space2, isl_space_copy(space));
1841 space = isl_space_map_from_domain_and_range(space2, space);
1842 filter_map = isl_map_universe(space);
1844 bounds = compute_filter_bounds(source_na->node);
1845 filter_map = isl_map_intersect_range(filter_map, bounds);
1847 for (int i = 0; i < source_na->node->filters.size(); ++i) {
1848 isl_union_map *map_i;
1849 map_i = extract_access_map(source_na->node->filters[i]);
1850 map_i = isl_union_map_apply_range(
1851 isl_union_map_from_map(isl_map_copy(source_map)), map_i);
1852 for (int j = 0; j < filter->index.size(); ++j) {
1853 if (isl_union_map_is_subset(map_i, filter->index[j]))
1854 filter_map = isl_map_equate(filter_map,
1855 isl_dim_in, j, isl_dim_out, i);
1857 isl_union_map_free(map_i);
1860 source_value = isl_map_apply_range(sink_value, filter_map);
1861 source_value = isl_map_apply_domain(source_value,
1862 isl_map_copy(source_map));
1863 source_value = isl_map_coalesce(source_value);
1865 return source_value;
1868 /* Add a new output dimension to "map" with constraints that are the
1869 * same as those on output dimension "pos".
1871 * Given map { [i] -> [j] }, we first and an extra dimension,
1873 * { [i] -> [j,*] }
1875 * extract out j_pos,
1877 * { [[i] -> [j_0,...,j_{pos-1},*,j_{pos+1},...,*]] -> [j_pos] }
1879 * create a copy
1881 * { [[i] -> [j_0,...,j_{pos-1},*,j_{pos+1},...,*]] -> [j_pos,j_pos'] }
1883 * and then move the dimensions back
1885 * { [i] -> [j,j_pos'] }
1887 static __isl_give isl_map *copy_dim(__isl_take isl_map *map, int pos)
1889 int pos_new;
1891 pos_new = isl_map_dim(map, isl_dim_out);
1892 pos += isl_map_dim(map, isl_dim_in);
1893 pos_new += isl_map_dim(map, isl_dim_in);
1894 map = isl_map_add_dims(map, isl_dim_out, 1);
1895 map = isl_map_from_domain(isl_map_wrap(map));
1896 map = isl_map_add_dims(map, isl_dim_out, 1);
1897 map = isl_map_equate(map, isl_dim_in, pos, isl_dim_out, 0);
1898 map = isl_map_eliminate(map, isl_dim_in, pos, 1);
1899 map = isl_map_range_product(map, isl_map_copy(map));
1900 map = isl_map_equate(map, isl_dim_in, pos, isl_dim_out, 0);
1901 map = isl_map_equate(map, isl_dim_in, pos_new, isl_dim_out, 1);
1902 map = isl_set_unwrap(isl_map_domain(map));
1904 return map;
1907 /* Given constraints on the filter values "filter" at the sink iterations
1908 * "sink", derive additional constraints from the filter values of source
1909 * node "source_na". In particular, consider the iterations of "source_na"
1910 * that have _not_ been executed based on the constraints of the corresponding
1911 * last iteration parameters in "sink" and what this implies about the
1912 * filter values at those iterations.
1914 * Essentially, we consider all pairs of sink iterations and filter
1915 * elements, together with the corresponding non-executed source iterations
1916 * and the possible values of those filters. We universally quantify
1917 * the non-executed source iterations so that we obtain the intersection
1918 * of the constraints on the filter values over all those source iterations
1919 * and then existentially quantify the filter elements to obtain constraints
1920 * that are valid for all filter elements.
1922 * In more details, the computation is performed as follows.
1924 * Compute a mapping from potential last iterations of the other source
1925 * to sink iterations, taking into account the contraints on
1926 * the last executed iterations encoded in the parameters of "sink",
1927 * but projecting out all parameters encoding last iterations from the result.
1928 * Include all earlier iterations of the other source, resulting in
1929 * a mapping with a domain that includes all potential iterations of the
1930 * other source.
1932 * Subtract these iterations from all possible iterations of the other
1933 * source for a given sink iteration, resulting in a mapping from
1934 * potential source iterations that are definitely not executed
1935 * to the corresponding sink iteration.
1937 * If this map is empty, then this means we can't find any iterations
1938 * of the other source that are certainly not executed and then we
1939 * can't derive any further information.
1940 * Similarly, if the filters of source_na->node are not total
1941 * on the set of non-executed iterations, then we cannot draw any conclusions.
1942 * (Note that we already tested that the filters on sink->node are total
1943 * on the domain of "source_map". By intersecting the set of corresponding
1944 * sink iterations with this domain, we ensure that this property also holds
1945 * on those sink iterations.)
1946 * Otherwise, keep track of those sink iterations without any corresponding
1947 * non-executed other source iterations. We will lose these sink iterations
1948 * in subsequent computations, so we need to add them back in at the end.
1950 * Compute bounds on the filter values at the non executed iterations
1951 * based on what we know about filters at the sink and the fact that
1952 * the iterations are not executed, meaning that the filter values
1953 * do not satisfy the constraints that allow the iteration to be executed.
1954 * The result is a mapping T -> V.
1956 * Note that we only know that there is some accessed filter element
1957 * that does not satisfy the constraints that allow the iteration to be
1958 * executed. We therefore project out those dimensions that correspond
1959 * to filters with an access relation that is not single-valued, i.e.,
1960 * one that may access more than one element for some iterations.
1961 * If there are no single-valued filters, then we can skip the rest of
1962 * the computation.
1964 * Construct a mapping [K -> F] -> T, with K the sink iterations,
1965 * T the corresponding non-executed iterations of the other source and
1966 * F the filters accessed at those iterations.
1968 * Combine the above two mappings into a mapping [K -> F] -> V
1969 * such that the set of possible filter values (V) is the intersection
1970 * over all iterations of the other source that access the filter,
1971 * and such that there is at least one such iteration.
1972 * In other words, ensure that the range of [K -> F] -> T
1973 * is a non-empty subset of the range of V -> T.
1974 * We require a non-empty subset to ensure that the domain of
1975 * [K -> F] -> V is equal to the result of composing K -> T with T -> F.
1976 * Projecting out F from [K -> F] -> V, we obtain a map K -> V that is
1977 * the union of all possible values of the filters K -> F, i.e.,
1978 * the constraints that the values of K -> F satisfy.
1979 * If we didn't impose non-emptiness above, then the domain of [K -> F] -> V
1980 * would also include pairs that we are not interested in, related to
1981 * arbitrary values. Projecting out F would then also lead to arbitrary
1982 * values.
1984 * Compose the mapping K -> T with the index expressions, pulling them
1985 * back to the sink.
1986 * For each of these pulled back index expressions, we check if it
1987 * is equal to one of the sink filter index expressions. If not, we
1988 * add it to the sink filter index expressions.
1989 * In both cases, we keep track of the fact that this sink filter
1990 * should have a value that satisfies the constraints in K -> V.
1991 * We further check if there is any sink filter index expression
1992 * that is a (strict) subset of the pulled back index expression.
1993 * The value of any such sink filter should also satisfy those
1994 * constraints, so we duplicate the filter value in K -> V.
1996 * Finally, we intersect the possible filter values with the constraints
1997 * obtained above on the affected sink iterations and a universe range
1998 * on the unaffected sink iterations.
2000 static struct da_filter *include_other_source(struct da_filter *filter,
2001 __isl_keep isl_map *source_map, __isl_keep isl_set *sink,
2002 na_pair *source_na, add_dep_info *info)
2004 isl_space *space, *space2;
2005 isl_set *source_domain;
2006 isl_map *mem;
2007 isl_map *may_run, *not_run;
2008 isl_map *source_value;
2009 isl_union_map *usource, *umap;
2010 std::vector<isl_union_map *> index;
2011 isl_union_map *index_product;
2012 isl_map *map;
2013 isl_map *filter_map;
2014 isl_set *unaffected_sink;
2015 isl_map *unaffected_value;
2017 if (source_na->node->filters.size() == 0)
2018 return filter;
2020 space = isl_set_get_space(source_na->node->source->set);
2021 space = isl_space_domain(isl_space_unwrap(space));
2022 source_domain = isl_set_universe(space);
2023 source_domain = add_parametrization(source_domain, source_na, info);
2024 may_run = isl_map_from_domain_and_range(source_domain,
2025 isl_set_copy(sink));
2026 may_run = share(may_run, info->n_shared);
2028 may_run = remove_all_controls(may_run);
2029 mem = info->get_mem_dep(source_na);
2030 mem = share(mem, info->n_shared);
2031 mem = isl_map_intersect_range(mem,
2032 isl_map_domain(remove_all_controls(isl_map_copy(source_map))));
2033 space = isl_space_domain(isl_map_get_space(may_run));
2034 may_run = isl_map_apply_domain(may_run, isl_map_lex_ge(space));
2035 not_run = isl_map_subtract(mem, may_run);
2037 if (isl_map_is_empty(not_run) ||
2038 !any_single_valued_filter(source_na->node) ||
2039 !filters_total_on_domain(source_na->node, not_run)) {
2040 isl_map_free(not_run);
2041 return filter;
2044 not_run = isl_map_reverse(not_run);
2045 source_value = known_filter_values(filter, source_na, not_run);
2046 source_value = isl_map_subtract(source_value,
2047 isl_set_unwrap(source_na->node->source->get_isl_set()));
2048 unaffected_sink = isl_set_copy(sink);
2049 unaffected_sink = remove_all_controls(unaffected_sink);
2050 unaffected_sink = isl_set_subtract(unaffected_sink,
2051 isl_map_domain(isl_map_copy(not_run)));
2053 for (int i = 0; i < source_na->node->filters.size(); ++i) {
2054 isl_union_map *map;
2055 int sv;
2057 map = extract_access_map(source_na->node->filters[i]);
2058 sv = isl_union_map_is_single_valued(map);
2059 if (sv) {
2060 index.push_back(map);
2061 } else {
2062 isl_union_map_free(map);
2063 source_value = isl_map_project_out(source_value,
2064 isl_dim_out, index.size(), 1);
2068 index_product = isl_union_map_copy(index[0]);
2069 for (int i = 1; i < index.size(); ++i)
2070 index_product = isl_union_map_range_product(index_product,
2071 isl_union_map_copy(index[1]));
2072 index_product = isl_union_map_reverse(index_product);
2073 index_product = isl_union_map_domain_product(
2074 isl_union_map_from_map(isl_map_copy(not_run)), index_product);
2076 usource = isl_union_map_from_map(source_value);
2077 usource = join_non_empty_subset(index_product, usource);
2078 umap = isl_union_map_universe(isl_union_map_copy(usource));
2079 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
2080 umap = isl_union_map_domain_map(umap);
2081 usource = isl_union_map_apply_domain(usource, umap);
2082 source_value = isl_map_from_union_map(usource);
2084 for (int i = 0; i < index.size(); ++i)
2085 index[i] = isl_union_map_apply_range(
2086 isl_union_map_from_map(isl_map_copy(not_run)), index[i]);
2088 space = isl_space_range(isl_map_get_space(source_value));
2089 space2 = isl_space_range(isl_map_get_space(filter->value));
2090 space = isl_space_align_params(space, isl_space_copy(space2));
2091 space2 = isl_space_align_params(space2, isl_space_copy(space));
2092 space = isl_space_map_from_domain_and_range(space, space2);
2093 filter_map = isl_map_universe(space);
2095 for (int i = 0; i < index.size(); ++i) {
2096 int exact = da_filter_find_exact_match(filter, index[i]);
2097 assert(exact >= 0);
2098 if (exact == filter->index.size()) {
2099 filter = da_filter_add(filter,
2100 isl_union_map_copy(index[i]));
2101 filter_map = isl_map_add_dims(filter_map,
2102 isl_dim_out, 1);
2104 filter_map = isl_map_equate(filter_map, isl_dim_in, i,
2105 isl_dim_out, exact);
2106 for (int j = 0; j < filter->index.size(); ++j) {
2107 int pos;
2109 if (j == exact)
2110 continue;
2111 if (!isl_union_map_is_subset(filter->index[j],
2112 index[i]))
2113 continue;
2114 pos = isl_map_dim(source_value, isl_dim_out);
2115 source_value = copy_dim(source_value, i);
2116 filter_map = isl_map_add_dims(filter_map,
2117 isl_dim_in, 1);
2118 filter_map = isl_map_equate(filter_map, isl_dim_in, pos,
2119 isl_dim_out, j);
2123 source_value = isl_map_apply_range(source_value, filter_map);
2124 source_value = isl_map_coalesce(source_value);
2125 unaffected_value = isl_map_from_domain(unaffected_sink);
2126 unaffected_value = isl_map_add_dims(unaffected_value, isl_dim_out,
2127 filter->index.size());
2128 source_value = isl_map_union(source_value, unaffected_value);
2129 filter = da_filter_restrict(filter, source_value);
2131 for (int i = 0; i < index.size(); ++i)
2132 isl_union_map_free(index[i]);
2133 isl_map_free(not_run);
2135 return filter;
2138 /* Given constraints on the filter values "filter" at the sink iterations
2139 * "sink", derive additional constraints from the filter values of those
2140 * source nodes for which "sink" contains a reference to its last iteration,
2141 * for use in determining whether parametrization is needed on "source_map".
2142 * In particular, we try and derive extra information from the fact that
2143 * some iterations of those source nodes have _not_ been executed.
2145 static struct da_filter *include_other_sources(struct da_filter *filter,
2146 __isl_keep isl_map *source_map, __isl_keep isl_set *sink,
2147 add_dep_info *info)
2149 isl_space *space;
2150 int n_param;
2152 space = isl_set_get_space(sink);
2153 n_param = isl_space_dim(space, isl_dim_param);
2154 for (int i = 0; i < n_param; ++i) {
2155 isl_id *id;
2156 na_pair *na;
2158 if (!is_shared(space, i))
2159 continue;
2161 id = isl_space_get_dim_id(space, isl_dim_param, i);
2162 na = (na_pair *) isl_id_get_user(id);
2163 isl_id_free(id);
2165 filter = include_other_source(filter, source_map, sink,
2166 na, info);
2168 isl_space_free(space);
2170 return filter;
2173 #define RESTRICT_ERROR -1
2174 #define RESTRICT_NO 0
2175 #define RESTRICT_EMPTY 1
2176 #define RESTRICT_INPUT 2
2177 #define RESTRICT_OUTPUT 3
2179 /* Given a map from sinks to potential sources (source_map)
2180 * and the set of sink iterations (sink),
2181 * check if any parametrization is needed on the sources.
2182 * That is, check whether the possible filter values at the sink
2183 * imply that the filter values at the source are always valid.
2184 * If so, the source is executed whenever the sink is executed
2185 * and no parametrization is required.
2187 * Return RESTRICT_NO if no parametrization is required.
2188 * Return RESTRICT_INPUT if parametrization is required on the input
2189 * of the computation of the last iteration.
2190 * Return RESTRICT_OUTPUT if parametrization is required on the output
2191 * of the computation of the last iteration. This means that we know
2192 * that the source will be executed, but we want to introduce a parameter
2193 * to represent the last iteration anyway, because the knowledge depends
2194 * on the parameters representing last iterations of other nodes.
2195 * Return RESTRICT_EMPTY if the potential sources cannot possibly
2196 * be executed, assuming that the sink is executed.
2198 * If there are no filters on the source, then obviously the source
2199 * is always executed.
2201 * If the filters of the sink and the source are not all total
2202 * on domain and range of "source_map", then we cannot draw any conclusion.
2203 * In principle, we could split up "source_map" according to whether
2204 * the filters would be total on the domain and range.
2206 * We first construct a mapping from source iterations to source filter
2207 * values that allow some corresponding sink iteration(s) (according to
2208 * "source_map") to be executed.
2209 * If this relation is a subset of the actual mapping from iteration
2210 * vectors to filter values at the source, then we know that a corresponding
2211 * sink is only executed when the source is executed and no parametrization
2212 * is required. However, we postpone the decision until we have considered
2213 * the other potential sources below.
2214 * If, on the other hand, the constructed relation is disjoint
2215 * from the source filter relation, then the sources cannot have
2216 * executed if the sink is executed. If so, we return
2217 * RESTRICT_EMPTY immediately.
2219 * Otherwise, we check if we can find out more information by considering
2220 * information derived from knowledge about the last iterations of other
2221 * nodes. If, by considering this extract information, we can find
2222 * that the potential source is never executed (given that the sink
2223 * is executed), then we return RESTRICT_EMPTY.
2224 * Otherwise, if we had already determined that the relation based
2225 * on only the sink is a subset of the filter values, then we return
2226 * RESTRICT_NO. If we can only draw this conclusion when taking into
2227 * account the other potential sources, then we return RESTRICT_OUTPUT.
2228 * Otherwise, we return RESTRICT_INPUT.
2230 static int need_parametrization(__isl_keep isl_map *source_map,
2231 __isl_keep isl_set *sink, na_pair *source_na, add_dep_info *info)
2233 bool filtered_source;
2234 isl_space *space;
2235 isl_map *source_value, *sink_value;
2236 da_filter *filter;
2237 na_pair *sink_na = info->read_na_pair;
2238 int res;
2240 if (isl_map_plain_is_empty(source_map) ||
2241 isl_set_plain_is_empty(sink))
2242 return RESTRICT_NO;
2244 filtered_source = isl_set_is_wrapping(source_na->node->source->set);
2246 if (!filtered_source)
2247 return RESTRICT_NO;
2249 if (!total_filters(source_na->node, sink_na->node, source_map))
2250 return RESTRICT_INPUT;
2252 filter = extract_filter(sink_na);
2253 res = -1;
2254 if (filter->index.size() != 0) {
2255 sink_value = known_filter_values(filter, source_na, source_map);
2256 source_value = isl_set_unwrap(
2257 source_na->node->source->get_isl_set());
2259 if (isl_map_is_disjoint(sink_value, source_value))
2260 res = RESTRICT_EMPTY;
2261 else if (isl_map_is_subset(sink_value, source_value))
2262 res = RESTRICT_NO;
2263 isl_map_free(source_value);
2264 isl_map_free(sink_value);
2267 if (res == RESTRICT_EMPTY) {
2268 da_filter_free(filter);
2269 return res;
2272 filter = include_other_sources(filter, source_map, sink, info);
2274 if (!filter)
2275 return RESTRICT_ERROR;
2276 if (filter->index.size() == 0) {
2277 da_filter_free(filter);
2278 return RESTRICT_INPUT;
2281 sink_value = known_filter_values(filter, source_na, source_map);
2282 source_value = isl_set_unwrap(source_na->node->source->get_isl_set());
2284 if (isl_map_is_disjoint(sink_value, source_value))
2285 res = RESTRICT_EMPTY;
2286 else if (res == RESTRICT_NO)
2288 else if (isl_map_is_subset(sink_value, source_value))
2289 res = RESTRICT_OUTPUT;
2290 else
2291 res = RESTRICT_INPUT;
2293 isl_map_free(source_value);
2294 isl_map_free(sink_value);
2295 da_filter_free(filter);
2297 return res;
2300 extern "C" {
2301 static __isl_give isl_restriction *do_restrict(
2302 __isl_keep isl_map *source_map, __isl_keep isl_set *sink,
2303 void *source_user, void *user);
2306 /* Add parameters corresponding to the last iteration of "na" to "set"
2307 * (assuming they don't already appear in "set")
2308 * and add constraints to them to express that there either is no
2309 * last iteration with info->n_shared shared loops
2310 * (__last_<na>_shared < info->n_shared) or that there is a last
2311 * iteration with at least info->n_shared shared loops
2312 * (__last_<na>_shared >= info->n_shared) and that the iteration is a possible
2313 * source of the current sink (based on the memory dependence between
2314 * the source and the sink).
2316 static __isl_give isl_set *set_parameter_bounds(__isl_take isl_set *set,
2317 na_pair *na, add_dep_info *info)
2319 isl_map *mem;
2320 isl_id *id;
2321 isl_set *valid;
2322 isl_set *invalid;
2323 isl_set *domain;
2324 int shared_pos;
2326 id = create_shared_id(isl_set_get_ctx(set), na);
2327 shared_pos = find_or_add_param(&set, id);
2329 valid = isl_set_copy(set);
2330 invalid = set;
2332 valid = isl_set_lower_bound_si(valid, isl_dim_param, shared_pos,
2333 info->n_shared);
2335 mem = info->get_mem_dep(na);
2336 domain = isl_set_universe(isl_space_domain(isl_map_get_space(mem)));
2337 domain = add_parametrization(domain, na, info);
2338 mem = isl_map_intersect_domain(mem, domain);
2339 valid = isl_set_intersect(valid, isl_map_range(mem));
2341 invalid = isl_set_upper_bound_si(invalid, isl_dim_param, shared_pos,
2342 info->n_shared - 1);
2344 return isl_set_union(valid, invalid);
2347 /* Check if there are any iterations of "source_na" in "source_map"
2348 * that are definitely executed, based solely on the possible filter values.
2349 * If so, add constraints to "sink" to indicate that the last execution
2350 * cannot be earlier than those definitely executed iterations.
2352 * We first compute the set of source iterations that are definitely
2353 * executed because there are no filter values that would prohibit
2354 * their execution. If there are no such source iterations then we are done.
2356 * Then we construct a map from sink iterations to associated (through
2357 * "source_map") definitely executed source iterations.
2359 * For those sink iterations that have a corresponding definitely
2360 * executed source iteration, we add constraints that express that
2361 * this last definitely executed source iteration is lexicographically
2362 * smaller than or equal to the last executed source iteration
2363 * (and that there definitely is a last executed source iteration).
2365 static __isl_give isl_set *mark_definite_source(__isl_take isl_set *sink,
2366 add_dep_info *info, na_pair *source_na, __isl_keep isl_map *source_map)
2368 isl_space *space;
2369 isl_set *dom;
2370 isl_map *invalid;
2371 isl_map *definite_source_map;
2372 isl_set *with_source;
2373 isl_map *map_after;
2374 int depth;
2376 dom = source_na->node->source->get_isl_set();
2377 dom = isl_map_domain(isl_set_unwrap(dom));
2378 invalid = compute_filter_values(source_na->node, true);
2379 dom = isl_set_subtract(dom, isl_map_domain(invalid));
2381 if (isl_set_is_empty(dom)) {
2382 isl_set_free(dom);
2383 return sink;
2386 space = isl_set_get_space(dom);
2388 definite_source_map = isl_map_copy(source_map);
2389 definite_source_map = isl_map_intersect_range(source_map, dom);
2391 dom = isl_map_domain(isl_map_copy(definite_source_map));
2393 with_source = isl_set_copy(sink);
2394 with_source = isl_set_intersect(with_source, isl_set_copy(dom));
2395 sink = isl_set_subtract(sink, dom);
2397 dom = isl_set_universe(isl_space_copy(space));
2398 dom = add_parametrization(dom, source_na, info);
2400 depth = source_na->node->get_filter_depth();
2402 space = isl_space_map_from_set(space);
2403 map_after = isl_map_lex_ge_first(space, depth);
2404 dom = isl_set_apply(dom, map_after);
2406 definite_source_map = isl_map_intersect_range(definite_source_map, dom);
2408 dom = isl_map_domain(definite_source_map);
2409 with_source = isl_set_intersect(with_source, dom);
2411 sink = isl_set_union(sink, with_source);
2413 return sink;
2416 /* Remove inconsistencies from the set of sink iterations "sink"
2417 * based on the current potential source "source_na" and other
2418 * potential sources referenced by "sink".
2420 * We first identify those iterations of "source_na" that are
2421 * definitely executed based solely on the possible filter values.
2423 * If the sink has filters, then we remove inconsistencies based
2424 * on the sink and the current potential source.
2426 * Finally, we go through the references to other potential sources
2427 * in "sink" and remove inconsistencies based on this other potential
2428 * source and the current potential source.
2430 static __isl_give isl_set *remove_inconsistencies(__isl_take isl_set *sink,
2431 add_dep_info *info, na_pair *source_na, __isl_keep isl_map *source_map)
2433 isl_space *space;
2434 isl_id *source_id;
2435 int n_param;
2437 source_id = create_shared_id(isl_map_get_ctx(source_map), source_na);
2439 sink = mark_definite_source(sink, info, source_na, source_map);
2441 if (isl_set_is_wrapping(info->read_na_pair->node->source->set))
2442 sink = remove_inconsistencies(sink, info, source_id);
2444 space = isl_set_get_space(sink);
2445 n_param = isl_space_dim(space, isl_dim_param);
2446 for (int i = 0; i < n_param; ++i) {
2447 isl_id *other_id;
2449 if (!is_shared(space, i))
2450 continue;
2451 other_id = isl_space_get_dim_id(space, isl_dim_param, i);
2453 if (other_id != source_id) {
2454 na_pair *other_na;
2456 other_na = (na_pair *) isl_id_get_user(other_id);
2457 sink = set_parameter_bounds(sink, other_na, info);
2458 sink = remove_inconsistencies(sink, info, other_id,
2459 source_id);
2462 isl_id_free(other_id);
2464 isl_space_free(space);
2466 isl_id_free(source_id);
2467 return sink;
2470 /* Compute a restriction for the given sink.
2471 * That is, add constraints to the parameters expressing
2472 * that the source is either not executed with info->n_shared shared
2473 * iterators (*_shared < info->n_shared)
2474 * or it is executed (*_shared >= info->n_shared) and then the last iteration
2475 * satisfies the corresponding memory based dependence.
2477 * Only do this for that part of "sink" that has any corresponding
2478 * sources in "source_map". The remaining part of "sink" is not affected.
2480 * Note that the "sink" set may have undergone a refinement based
2481 * on the _shared parameters and we want this refinement to also
2482 * be present in the sink restriction. We therefore need
2483 * to intersect the affected part with "sink".
2485 static __isl_give isl_set *compute_sink_restriction(
2486 __isl_keep isl_map *source_map, __isl_keep isl_set *sink,
2487 na_pair *source_na, add_dep_info *info)
2489 isl_set *with_source, *without_source;
2491 with_source = isl_map_domain(isl_map_copy(source_map));
2492 without_source = isl_set_subtract(isl_set_copy(sink),
2493 isl_set_copy(with_source));
2494 with_source = isl_set_intersect(with_source, isl_set_copy(sink));
2496 with_source = set_parameter_bounds(with_source, source_na, info);
2497 with_source = remove_inconsistencies(with_source, info, source_na,
2498 source_map);
2500 return isl_set_union(with_source, without_source);
2503 /* How many loops do "node1" and "node2" share?
2505 static int max_shared(pdg::node *node1, pdg::node *node2)
2507 int shared = 0;
2508 int size = node1->prefix.size();
2510 if (node2->prefix.size() < size)
2511 size = node2->prefix.size();
2513 for (int i = 0; i < size && node1->prefix[i] == node2->prefix[i]; ++i)
2514 if (node1->prefix[i] == -1)
2515 ++shared;
2517 return shared;
2520 /* Determine the number of shared loop iterators between sink
2521 * and source domains in "sink2source". That is, find out how
2522 * many of the initial input and output dimensions are equal
2523 * to each other. Return the result.
2525 * The first time this function is called for a given sink access
2526 * (info->n_shared is set to -1 in add_dep_info::set_read_na),
2527 * we check for equal dimensions up to the shared nesting depth.
2528 * Later call check dimensions up to the result of the previous call.
2530 static int extract_shared_levels(__isl_keep isl_map *sink2source,
2531 na_pair *source_na, add_dep_info *info)
2533 int i;
2534 int max;
2535 isl_space *space;
2537 max = info->n_shared;
2538 if (max < 0)
2539 max = max_shared(source_na->node, info->read_na_pair->node);
2541 if (max == 0)
2542 return info->n_shared = 0;
2544 space = isl_map_get_space(sink2source);
2545 for (i = 0; i < max; ++i) {
2546 isl_map *test;
2547 int subset;
2549 test = isl_map_universe(isl_space_copy(space));
2550 test = isl_map_equate(test, isl_dim_in, i, isl_dim_out, i);
2551 subset = isl_map_is_subset(sink2source, test);
2552 isl_map_free(test);
2554 if (!subset)
2555 break;
2557 isl_space_free(space);
2559 return i;
2562 /* The last iteration referred to by the sink may have been added
2563 * at a different nesting level. This means that __last_<na>_shared
2564 * is greater than or equal to a value greater than info->n_shared
2565 * and that therefore the iterators between info->n_shared and
2566 * __last_<na>_shared are not represented as they are implicitly
2567 * considered to be equal to the corresponding sink iterator.
2568 * For consistency, we need to explicitly add those iterators
2569 * and set them to be equal to the corresponding sink iterator.
2571 * In particular, we create a set in the space of the sink of the form
2573 * { s : __last_<na>_shared < info->n_shared or
2574 * (__last_<na>_<i> is a potential source iteration for s and
2575 * (__last_<na>_shared >= max_shared or
2576 * (__last_<na>_shared = max_shared - 1 and
2577 * the first max_shared - 1 iterators are equal and
2578 * iterator max_shared - 1 of the source is smaller) or
2579 * ...
2580 * (__last_<na>_shared = info->n_shared and
2581 * the first n_shared iterators are equal and
2582 * iterator n_shared of the source is smaller))) }
2584 * That is, for those parts with __last_<na>_shared smaller than
2585 * max_n_shared[source_na], intersection with the set will introduce
2586 * __last_<na>_<i> parameters (assuming they don't have a known fixed value)
2587 * up until __last_<na>_shared and equate them to the corresponding iterators
2588 * of the sink.
2590 static __isl_give isl_set *internal_shared_refinement(
2591 __isl_keep isl_id *shared_id, add_dep_info *info)
2593 isl_map *mem;
2594 na_pair *source_na;
2595 isl_set *domain;
2596 isl_map *shared_map;
2597 int shared_pos;
2598 isl_set *valid;
2599 isl_set *invalid;
2601 source_na = (na_pair *) isl_id_get_user(shared_id);
2603 mem = info->get_mem_dep(source_na);
2604 domain = isl_set_universe(isl_space_domain(isl_map_get_space(mem)));
2605 domain = add_parametrization(domain, source_na, info);
2606 mem = isl_map_intersect_domain(mem, domain);
2608 shared_map = compute_shared_map(isl_map_get_space(mem), shared_id,
2609 info->n_shared, info->max_n_shared[source_na]);
2611 mem = isl_map_intersect(mem, shared_map);
2613 valid = isl_map_range(mem);
2614 invalid = isl_set_universe(isl_set_get_space(valid));
2615 shared_pos = isl_set_find_dim_by_id(invalid, isl_dim_param, shared_id);
2616 invalid = isl_set_upper_bound_si(invalid, isl_dim_param, shared_pos,
2617 info->n_shared - 1);
2619 return isl_set_union(valid, invalid);
2622 /* The last iteration of some source referred to by the sink may have been
2623 * added at a different nesting level. This means that __last_*_shared
2624 * is greater than or equal to a value greater than info->n_shared
2625 * and that therefore the iterators between info->n_shared and
2626 * __last_*_shared are not represented as they are implicitly
2627 * considered to be equal to the corresponding sink iterator.
2628 * For consistency, we need to explicitly add those iterators
2629 * and set them to be equal to the corresponding sink iterator.
2631 * For each of the __last_*_shared parameters, explicitly add
2632 * the implicitly equal __last_*_i iterators by intersecting
2633 * the sink with the set computed by internal_shared_refinement.
2635 static __isl_give isl_set *refine_shared_internal(__isl_take isl_set *sink,
2636 add_dep_info *info)
2638 isl_space *space;
2639 isl_set *refinement;
2640 int n_param;
2642 space = isl_set_get_space(sink);
2643 refinement = isl_set_universe(isl_space_copy(space));
2645 n_param = isl_space_dim(space, isl_dim_param);
2646 for (int i = 0; i < n_param; ++i) {
2647 isl_set *ref_i;
2648 isl_id *id;
2650 if (!is_shared(space, i))
2651 continue;
2653 id = isl_space_get_dim_id(space, isl_dim_param, i);
2654 ref_i = internal_shared_refinement(id, info);
2655 isl_id_free(id);
2656 refinement = isl_set_intersect(refinement, ref_i);
2658 isl_space_free(space);
2660 sink = isl_set_intersect(sink, refinement);
2662 return sink;
2665 /* Given a map from sinks to potential sources (sink2source),
2666 * check if any parametrization is needed.
2667 * Depending on the result, return either a universe restriction,
2668 * an empty restriction (if the sources cannot have executed),
2669 * a restriction that parametrizes the source and the sink
2670 * of the input of the computation of the last source
2671 * or a restriction that parametrizes the source of the output.
2673 * sink_map maps the domain of sink2source to the sink iteration domain.
2674 * source_map maps the range of sink2source to the source iteration domain.
2676 * Before we check if we need any parametrization, we update the number of
2677 * shared loop levels and add possibly missing __last_*_i iterators
2678 * (in refine_shared_internal). If parametrization turns out to be required,
2679 * we also update the minimal number of shared loop levels for the given
2680 * source.
2682 static __isl_give isl_restriction *compute_restriction_core(
2683 __isl_keep isl_map *sink2source,
2684 __isl_take isl_map *sink_map, __isl_take isl_map *source_map,
2685 __isl_keep isl_set *sink, na_pair *source_na, add_dep_info *info)
2687 isl_space *space;
2688 isl_set *source_restr;
2689 isl_set *sink_restr;
2690 int need;
2692 sink2source = isl_map_copy(sink2source);
2693 sink = isl_set_copy(sink);
2695 sink2source = isl_map_apply_range(sink2source,
2696 isl_map_copy(source_map));
2697 sink2source = isl_map_apply_domain(sink2source,
2698 isl_map_copy(sink_map));
2699 sink = isl_set_apply(sink, isl_map_copy(sink_map));
2701 info->n_shared = extract_shared_levels(sink2source, source_na, info);
2702 sink = refine_shared_internal(sink, info);
2704 need = need_parametrization(sink2source, sink, source_na, info);
2705 if (need == RESTRICT_ERROR ||
2706 need == RESTRICT_NO || need == RESTRICT_EMPTY) {
2707 isl_map_free(source_map);
2708 isl_map_free(sink_map);
2709 isl_set_free(sink);
2710 if (need == RESTRICT_ERROR) {
2711 isl_map_free(sink2source);
2712 return NULL;
2713 } else if (need == RESTRICT_NO)
2714 return isl_restriction_none(sink2source);
2715 else
2716 return isl_restriction_empty(sink2source);
2719 info->update_min_n_shared(source_na);
2721 space = isl_map_get_space(source_map);
2722 source_restr = isl_set_universe(isl_space_range(space));
2724 source_restr = add_parametrization(source_restr, source_na, info);
2725 source_restr = isl_set_apply(source_restr, isl_map_reverse(source_map));
2727 if (need == RESTRICT_OUTPUT) {
2728 isl_map_free(sink_map);
2729 isl_set_free(sink);
2730 isl_map_free(sink2source);
2731 return isl_restriction_output(source_restr);
2734 sink_restr = compute_sink_restriction(sink2source, sink,
2735 source_na, info);
2736 sink_restr = isl_set_apply(sink_restr, isl_map_reverse(sink_map));
2738 isl_set_free(sink);
2739 isl_map_free(sink2source);
2741 return isl_restriction_input(source_restr, sink_restr);
2744 /* Compute a restriction for the given map from sinks to potential sources
2745 * (sink2source).
2747 * First check if the sink access has any filters. If so, compose the original
2748 * sink_map with a mapping that projects out these access filters.
2749 * Handle the source access similarly.
2750 * Then call compute_restriction_core to perform the main computation.
2752 static __isl_give isl_restriction *compute_restriction(
2753 __isl_keep isl_map *sink2source,
2754 __isl_take isl_map *sink_map, __isl_take isl_map *source_map,
2755 __isl_keep isl_set *sink, na_pair *source_na, add_dep_info *info)
2757 na_pair *sink_na = info->read_na_pair;
2759 if (sink_na->access->nested.size() > 0) {
2760 isl_space *space;
2761 isl_map *map;
2763 space = isl_space_range(isl_map_get_space(sink_map));
2764 space = isl_space_unwrap(space);
2765 map = isl_map_domain_map(isl_map_universe(space));
2767 sink_map = isl_map_apply_range(sink_map, map);
2770 if (source_na->access->nested.size() > 0) {
2771 isl_space *space;
2772 isl_map *map;
2774 space = isl_space_range(isl_map_get_space(source_map));
2775 space = isl_space_unwrap(space);
2776 map = isl_map_domain_map(isl_map_universe(space));
2778 source_map = isl_map_apply_range(source_map, map);
2781 return compute_restriction_core(sink2source, sink_map, source_map,
2782 sink, source_na, info);
2785 /* Compute a restriction for the given map from sinks to potential sources
2786 * (sink2source). We simply call compute_restriction to compute the
2787 * restriction. Since, unlike the case of do_restrict_domain_map bewloe,
2788 * we didn't encode the entire access relation in the domains of the input
2789 * to isl_access_info_compute_flow, we pass identity mappings on the source
2790 * and sink to compute_restriction.
2792 static __isl_give isl_restriction *do_restrict(__isl_keep isl_map *sink2source,
2793 __isl_keep isl_set *sink, void *source_user, void *user)
2795 na_pair *source_na = (na_pair *) source_user;
2796 add_dep_info *info = (struct add_dep_info *) user;
2797 isl_space *space;
2798 isl_map *source_map;
2799 isl_map *sink_map;
2801 space = isl_space_domain(isl_map_get_space(sink2source));
2802 sink_map = isl_map_identity(isl_space_map_from_set(space));
2803 space = isl_space_range(isl_map_get_space(sink2source));
2804 source_map = isl_map_identity(isl_space_map_from_set(space));
2806 return compute_restriction(sink2source, sink_map, source_map,
2807 sink, source_na, info);
2810 /* Does the iteration domain of any of the writes involve any filters?
2812 static bool any_filters(vector<na_pair> &writers)
2814 for (int i = 0; i < writers.size(); ++i)
2815 if (isl_set_is_wrapping(writers[i].node->source->set))
2816 return true;
2817 return false;
2820 /* Does any of the dependences starting at "first" have
2821 * controlled dependence relation?
2823 static bool any_controlled_dependences(PDG *pdg, int first)
2825 for (int i = first; i < pdg->dependences.size(); ++i)
2826 if (pdg->dependences[i]->controlled_relation)
2827 return true;
2829 return false;
2832 /* Remove parameters from "map" that start with "prefix".
2834 static __isl_give isl_map *remove_source(__isl_take isl_map *map,
2835 const char *prefix)
2837 int n = isl_map_dim(map, isl_dim_param);
2838 size_t len = strlen(prefix);
2840 for (int i = n - 1; i >= 0; --i) {
2841 const char *name;
2843 name = isl_map_get_dim_name(map, isl_dim_param, i);
2844 if (strncmp(name, prefix, len))
2845 continue;
2847 map = isl_map_project_out(map, isl_dim_param, i, 1);
2850 map = isl_map_coalesce(map);
2852 return map;
2855 /* Remove parameters from the dependences starting at "first"
2856 * that refer to any of the unused potential sources, i.e.,
2857 * those potential sources that are in writers, but not in info->used.
2859 * Since the current sink does not depend on those unused potential sources,
2860 * the corresponding dependence relations cannot depend on them and
2861 * any reference to them can simply be projected out.
2863 static void remove_unused_sources(PDG *pdg, int first,
2864 vector<na_pair> &writers, add_dep_info *info)
2866 char name[60];
2867 std::vector<na_pair *> unused;
2869 for (int i = 0; i < writers.size(); ++i) {
2870 if (info->used.find(&writers[i]) == info->used.end())
2871 unused.push_back(&writers[i]);
2874 if (unused.size() == 0)
2875 return;
2876 if (!any_controlled_dependences(pdg, first))
2877 return;
2879 for (int i = 0; i < unused.size(); ++i) {
2880 na_pair *na = unused[i];
2882 snprintf(name, sizeof(name), "__last_%s_%d_",
2883 na->node->name->s.c_str(), na->access->nr);
2885 for (int j = first; j < pdg->dependences.size(); ++j) {
2886 pdg::dependence *dep = pdg->dependences[j];
2887 isl_map *map;
2889 if (!dep->controlled_relation)
2890 continue;
2892 map = dep->controlled_relation->map;
2893 map = remove_source(map, name);
2894 dep->controlled_relation->map = map;
2899 /* Look for the unique write access that writes to the array accessed
2900 * by "a" and return an na_pair consisting of the node in which the
2901 * access is performed and the access itself.
2903 static na_pair find_unique_source(pdg::PDG* pdg, pdg::array *a)
2905 for (int i = 0; i < pdg->nodes.size(); ++i) {
2906 pdg::node *node = pdg->nodes[i];
2907 pdg::statement *s = pdg->nodes[i]->statement;
2908 for (int j = 0; j < s->accesses.size(); ++j) {
2909 pdg::access *access = s->accesses[j];
2910 if (access->array != a)
2911 continue;
2912 if (access->type != pdg::access::write)
2913 continue;
2914 return na_pair(node, access);
2918 assert(0);
2921 /* Add a dependence from (source_node, source_access) to
2922 * (sink_node, sink_access) to pdg->dependences, for the
2923 * case where the array being accessed is marked uniquely_defined.
2925 * Since the array is marked uniquely_defined, the value based
2926 * dependence is equal to the memory based dependence, so we
2927 * simply need to compose the access relations to obtain
2928 * the dependence relation.
2929 * This dependence relation is then specialized with respect to
2930 * the context and the iteration domain of the sink.
2932 static void add_unique_dep(PDG *pdg, pdg::node *source_node,
2933 pdg::access *source_access, pdg::node *sink_node,
2934 pdg::access *sink_access)
2936 pdg::dependence *d;
2937 isl_set *dom;
2938 isl_map *dep;
2939 isl_map *read;
2941 d = new pdg::dependence;
2942 d->array = source_access->array;
2943 d->type = pdg::dependence::flow;
2944 d->from = source_node;
2945 d->to = sink_node;
2946 d->from_access = source_access;
2947 d->to_access = sink_access;
2949 dep = source_access->map->get_isl_map();
2950 read = sink_access->map->get_isl_map();
2951 dep = isl_map_apply_range(dep, isl_map_reverse(read));
2952 dom = sink_node->source->get_isl_set();
2953 if (isl_set_is_wrapping(dom))
2954 dom = isl_map_domain(isl_set_unwrap(dom));
2955 dep = isl_map_intersect_range(dep, dom);
2956 dep = isl_map_intersect_params(dep, pdg->get_context_isl_set());
2957 d->relation = new pdg::IslMap(dep);
2959 pdg->dependences.push_back(d);
2962 /* Find the flow dependences associated to the array "a", which is marked
2963 * uniquely_defined, and add them to pdg->dependences.
2965 * First determine the unique source and then iterate through all the reads,
2966 * adding dependences from the unique source to each of the reads.
2968 static void find_unique_deps(PDG *pdg, pdg::array *a)
2970 na_pair na = find_unique_source(pdg, a);
2972 for (int i = 0; i < pdg->nodes.size(); ++i) {
2973 pdg::node *node = pdg->nodes[i];
2974 pdg::statement *s = pdg->nodes[i]->statement;
2975 for (int j = 0; j < s->accesses.size(); ++j) {
2976 pdg::access *access = s->accesses[j];
2977 if (access->array != a)
2978 continue;
2979 if (access->type != pdg::access::read)
2980 continue;
2981 add_unique_dep(pdg, na.node, na.access, node, access);
2986 /* Find the dependence of type "t" associated to array "a" and add them
2987 * to pdg->dependences.
2989 * If we are looking for flow dependences for an array that is marked
2990 * uniquely_defined, then we do not need to compute anything, but instead
2991 * can simply read off the dependences in find_unique_deps.
2993 void find_deps(PDG* pdg, pdg::array *a, type t)
2995 isl_ctx *ctx = pdg->get_isl_ctx();
2996 int nparam = pdg->params.size();
2997 int selfinput = 0;
2998 int reuse = 0;
2999 int firstuse = 0;
3000 add_dep_info info = { pdg, a, t };
3001 isl_set *context;
3002 bool need_parametrization;
3004 switch (t) {
3005 case flow:
3006 info.dtype = pdg::dependence::flow;
3007 firstuse = 1;
3008 break;
3009 case anti:
3010 info.dtype = pdg::dependence::anti;
3011 break;
3012 case data_reuse:
3013 info.dtype = pdg::dependence::reuse;
3014 reuse = 1;
3015 firstuse = 1;
3016 break;
3017 case reuse_pair:
3018 info.dtype = pdg::dependence::reuse_pair;
3019 break;
3020 case output:
3021 info.dtype = pdg::dependence::output;
3022 break;
3025 a->analysis_performed.push_back(new pdg::dependence_type(info.dtype));
3027 if (t == flow && a->uniquely_defined) {
3028 find_unique_deps(pdg, a);
3029 return;
3032 vector<na_pair> readers;
3033 vector<na_pair> writers;
3034 for (int i = 0; i < pdg->nodes.size(); ++i) {
3035 pdg::node *node = pdg->nodes[i];
3036 pdg::statement *s = pdg->nodes[i]->statement;
3037 for (int j = 0; j < s->accesses.size(); ++j) {
3038 pdg::access *access = s->accesses[j];
3039 if (access->array != a)
3040 continue;
3041 switch (t) {
3042 case flow:
3043 case data_reuse:
3044 case anti:
3045 if ((access->type == pdg::access::read) ^ (t == anti))
3046 readers.push_back(na_pair(node, access));
3047 else
3048 writers.push_back(na_pair(node, access));
3049 break;
3050 case output:
3051 if (access->type == pdg::access::read)
3052 continue;
3053 case reuse_pair:
3054 readers.push_back(na_pair(node, access));
3055 writers.push_back(na_pair(node, access));
3056 break;
3061 int maxsize = (selfinput || reuse) ? writers.size() + readers.size()
3062 : writers.size();
3063 context = pdg->get_context_isl_set();
3064 info.precedes_level = (isl_access_level_before)
3065 ((t == reuse_pair) ? precedes_level_accesses
3066 : precedes_level_nodes);
3067 need_parametrization = any_filters(writers);
3068 for (int i = 0; i < writers.size(); ++i) {
3069 writers[i].map = convert_access(&writers[i]);
3070 writers[i].project_out_access_filters();
3072 for (int i = 0; i < readers.size(); ++i) {
3073 readers[i].map = convert_access(&readers[i]);
3074 readers[i].map = isl_map_intersect_params(readers[i].map,
3075 isl_set_copy(context));
3076 readers[i].project_out_access_filters();
3078 for (int i = 0; i < readers.size(); ++i) {
3079 isl_access_info *acc;
3080 int n_dep = pdg->dependences.size();
3082 acc = isl_access_info_alloc(isl_map_copy(readers[i].map),
3083 &readers[i], info.precedes_level, maxsize);
3084 if (need_parametrization)
3085 acc = isl_access_info_set_restrict(acc, &do_restrict, &info);
3086 for (int j = 0; j < writers.size(); ++j)
3087 acc = isl_access_info_add_source(acc,
3088 isl_map_copy(writers[j].map), 1, &writers[j]);
3089 if (selfinput && writers.size()) {
3090 pdg::node *readnode = readers[i].node;
3091 for (int j = 0; j < readers.size(); ++j) {
3092 if (readers[j].node == readnode)
3093 acc = isl_access_info_add_source(acc,
3094 isl_map_copy(readers[j].map), 1, &readers[j]);
3097 if (reuse) {
3098 for (int j = 0; j < readers.size(); ++j)
3099 acc = isl_access_info_add_source(acc,
3100 isl_map_copy(readers[j].map), 1, &readers[j]);
3102 info.set_read_na(&readers[i]);
3103 isl_flow *deps = isl_access_info_compute_flow(acc);
3104 isl_flow_foreach(deps, add_dep, &info);
3105 isl_map *no_source;
3106 no_source = isl_flow_get_no_source(deps, 1);
3107 no_source = isl_map_from_range(isl_map_domain(no_source));
3108 no_source = simplify_controls(no_source, &info, NULL);
3109 if (!isl_map_plain_is_empty(no_source) && firstuse) {
3110 pdg::dependence *d = new pdg::dependence;
3111 d->array = a;
3112 d->type = pdg::dependence::uninitialized;
3113 d->to = readers[i].node;
3114 d->to_access = readers[i].access;
3115 if (d->to_access->extension) {
3116 d->extended_relation = new pdg::IslMap(isl_map_copy(no_source));
3117 no_source = isl_map_apply_range(no_source,
3118 isl_map_reverse(
3119 d->to_access->extension->get_isl_map(ctx)));
3121 d->relation = new pdg::IslMap(isl_map_copy(no_source));
3122 pdg->dependences.push_back(d);
3124 isl_map_free(no_source);
3125 isl_flow_free(deps);
3126 remove_unused_sources(pdg, n_dep, writers, &info);
3128 isl_set_free(context);
3131 /* Add a dependence from "write" to "a" to a->sources.
3133 static void add_unique_source(pdg::access *a, pdg::access *write)
3135 isl_map *dep;
3136 isl_map *read;
3138 dep = isl_map_range_map(write->map->get_isl_map());
3139 read = isl_map_range_map(a->map->get_isl_map());
3140 dep = isl_map_apply_range(dep, isl_map_reverse(read));
3142 a->sources.push_back(new pdg::IslMap(dep));
3145 /* Look for the unique write access that writes to the array accessed
3146 * by "a" and then add a dependence from that write to a->sources.
3148 static void add_unique_source(pdg::PDG* pdg, pdg::access *a)
3150 na_pair na = find_unique_source(pdg, a->array);
3151 add_unique_source(a, na.access);
3154 extern "C" {
3155 static isl_stat add_source(__isl_take isl_map *dep, int must,
3156 void *dep_user, void *user);
3159 /* Add "dep" to a->sources, provided it is exact, and return isl_stat_ok.
3160 * Otherwise, return isl_stat_error.
3162 static isl_stat add_source(__isl_take isl_map *dep, int must, void *dep_user,
3163 void *user)
3165 bool has_controls;
3166 pdg::access *a = (pdg::access *) user;
3168 dep = remove_redundant_controls(dep, &has_controls);
3169 if (has_controls) {
3170 isl_map_free(dep);
3171 return isl_stat_error;
3174 a->sources.push_back(new pdg::IslMap(dep));
3176 return isl_stat_ok;
3179 extern "C" {
3180 static __isl_give isl_restriction *do_restrict_domain_map(
3181 __isl_keep isl_map *source_map, __isl_keep isl_set *sink,
3182 void *source_user, void *user);
3185 /* Compute a restriction for the given map from sinks to potential sources
3186 * (sink2source). We simply call compute_restriction to compute the
3187 * restriction. This function is used from within find_sources,
3188 * which encodes the entire access relation into the domains of
3189 * the access relations passed to isl_access_info_compute_flow.
3190 * That is, the access relations passed to isl_access_info_compute_flow
3191 * are the result of applying isl_map_range_map to the original access
3192 * relations. We therefore pass mappings that undo this encoding
3193 * to compute_restriction.
3195 static __isl_give isl_restriction *do_restrict_domain_map(
3196 __isl_keep isl_map *source_map, __isl_keep isl_set *sink,
3197 void *source_user, void *user)
3199 na_pair *source_na = (na_pair *) source_user;
3200 add_dep_info *info = (struct add_dep_info *) user;
3201 isl_space *space;
3202 isl_map *source_domain_map, *sink_domain_map;
3204 space = isl_space_range(isl_map_get_space(source_map));
3205 space = isl_space_unwrap(space);
3206 source_domain_map = isl_map_domain_map(isl_map_universe(space));
3207 space = isl_space_domain(isl_map_get_space(source_map));
3208 space = isl_space_unwrap(space);
3209 sink_domain_map = isl_map_domain_map(isl_map_universe(space));
3211 return compute_restriction(source_map, sink_domain_map,
3212 source_domain_map, sink, source_na, info);
3215 /* Find the sources of (read) access "a" in node "node".
3216 * If they are complete (no uninitialized accesses) and exact,
3217 * then put them in a->sources. Otherwise, discard them.
3219 * If the array is marked uniquely_defined, then we simply look
3220 * for the defining write in find_unique_source.
3222 * Otherwise, we look for all writes that write to the same array,
3223 * perform dependence analysis and then check whether
3224 * the result is complete and exact.
3226 * The sources record not only the node iteration, but also
3227 * the index of the array element. We therefore apply
3228 * isl_map_range_map to the access relations, to obtain
3229 * a relation from the access (iteration -> element)
3230 * to the array element and feed that to the dependence analysis engine.
3232 void find_sources(pdg::PDG* pdg, pdg::node *node, pdg::access *a)
3234 isl_set *context;
3235 isl_map *no_source;
3236 isl_access_info *acc;
3237 isl_flow *deps;
3238 vector<na_pair> writers;
3239 na_pair reader(node, a);
3240 add_dep_info info = { pdg, a->array, flow, pdg::dependence::flow };
3242 if (a->array->uniquely_defined) {
3243 add_unique_source(pdg, a);
3244 return;
3247 info.precedes_level = (isl_access_level_before) precedes_level_nodes;
3249 for (int i = 0; i < pdg->nodes.size(); ++i) {
3250 pdg::node *node = pdg->nodes[i];
3251 pdg::statement *s = pdg->nodes[i]->statement;
3252 for (int j = 0; j < s->accesses.size(); ++j) {
3253 pdg::access *access = s->accesses[j];
3254 if (access->array != a->array)
3255 continue;
3256 if (access->type != pdg::access::write)
3257 continue;
3258 writers.push_back(na_pair(node, access));
3262 context = pdg->get_context_isl_set();
3263 for (int i = 0; i < writers.size(); ++i) {
3264 writers[i].projected_map = convert_access(&writers[i]);
3265 writers[i].map = isl_map_copy(writers[i].projected_map);
3266 writers[i].map = isl_map_range_map(writers[i].map);
3267 writers[i].project_out_access_filters();
3269 reader.projected_map = convert_access(&reader);
3270 reader.projected_map = isl_map_intersect_params(reader.projected_map,
3271 context);
3272 reader.map = isl_map_range_map(isl_map_copy(reader.projected_map));
3273 reader.project_out_access_filters();
3275 acc = isl_access_info_alloc(isl_map_copy(reader.map),
3276 &reader, info.precedes_level, writers.size());
3277 for (int j = 0; j < writers.size(); ++j)
3278 acc = isl_access_info_add_source(acc,
3279 isl_map_copy(writers[j].map), 1, &writers[j]);
3281 if (any_filters(writers))
3282 acc = isl_access_info_set_restrict(acc,
3283 &do_restrict_domain_map, &info);
3285 info.set_read_na(&reader);
3286 deps = isl_access_info_compute_flow(acc);
3287 no_source = isl_flow_get_no_source(deps, 1);
3288 if (isl_map_plain_is_empty(no_source)) {
3289 if (isl_flow_foreach(deps, add_source, a) < 0) {
3290 for (int i = 0; i < a->sources.size(); ++i)
3291 delete a->sources[i];
3292 a->sources.resize(0);
3295 isl_map_free(no_source);
3296 isl_flow_free(deps);
3299 /* Find the source (if possible) of the filter "coa" in node "node".
3300 * We assume that the filter is an access rather than a function call.
3302 static void find_sources(pdg::PDG *pdg, pdg::node *node,
3303 pdg::call_or_access *coa)
3305 pdg::access *access;
3307 assert(coa->type == pdg::call_or_access::t_access);
3308 access = coa->access;
3310 find_sources(pdg, node, access);
3313 /* Compute the sources (if possible) for all the filters in all the
3314 * nodes and accesses in "pdg".
3316 void compute_filter_sources(pdg::PDG *pdg)
3318 for (int i = 0; i < pdg->nodes.size(); ++i) {
3319 pdg::node *node = pdg->nodes[i];
3320 pdg::statement *s = pdg->nodes[i]->statement;
3321 int n_filter = node->filters.size();
3323 for (int j = 0; j < n_filter; ++j)
3324 find_sources(pdg, node, node->filters[j]);
3326 for (int j = 0; j < s->accesses.size(); ++j) {
3327 pdg::access *access = s->accesses[j];
3329 for (int k = 0; k < access->nested.size(); ++k)
3330 find_sources(pdg, node, access->nested[k]);
3335 static int precedes_level_nodes(na_pair *first, na_pair *second)
3337 int d = 0;
3338 int cmp = 0;
3339 for (int i = 0; i < first->node->prefix.size(); ++i) {
3340 if (i >= second->node->prefix.size())
3341 break;
3342 cmp = first->node->prefix[i] - second->node->prefix[i];
3343 if (cmp)
3344 break;
3345 if (first->node->prefix[i] == -1)
3346 ++d;
3348 return 2*d + (cmp<0);
3351 static int precedes_level_accesses(na_pair *first, na_pair *second)
3353 int cmp = 0;
3354 int d = 0;
3355 for (int i = 0; i < first->node->prefix.size(); ++i) {
3356 if (i >= second->node->prefix.size())
3357 break;
3358 cmp = first->node->prefix[i] - second->node->prefix[i];
3359 if (cmp)
3360 break;
3361 if (first->node->prefix[i] == -1)
3362 ++d;
3364 /* same node; now compare accesses */
3365 if (!cmp)
3366 cmp = first->access->nr - second->access->nr;
3367 return 2*d + (cmp<0);