pn2adg: handle dynamic control variables in generated AST
[ppn.git] / da.cc
blob24521a85cd4c45124915a7698824647514fed5ef
1 #include <set>
2 #include <vector>
3 #include <iostream>
5 #include <isa/yaml.h>
6 #include <isa/pdg.h>
7 #include "da.h"
9 extern "C" {
10 #include "isl_util.h"
12 #include "isl/constraint.h"
13 #include <isl/set.h>
14 #include <isl/flow.h>
16 using pdg::PDG;
17 using namespace std;
19 namespace da {
21 /* A pair of a node and an access from that node.
22 * "map" is the converted access relation.
23 * "projected_map" represents the converted access relation without
24 * any embedded access relation or access filters
26 struct na_pair {
27 pdg::node *node;
28 pdg::access *access;
29 isl_map *map;
30 isl_map *projected_map;
31 void project_out_access_filters(void);
32 na_pair(pdg::node *n, pdg::access *a) : node(n), access(a), map(NULL),
33 projected_map(NULL) {}
34 ~na_pair() {
35 isl_map_free(map);
36 isl_map_free(projected_map);
40 /* If the access has any embedded filters, then project them out
41 * from "projected_map", initializing "projected_map" from "map"
42 * if there is no "projected_map" yet.
44 void na_pair::project_out_access_filters(void)
46 isl_space *space;
47 isl_map *proj;
49 if (access->nested.size() == 0)
50 return;
52 if (!projected_map)
53 projected_map = isl_map_copy(map);
55 space = isl_space_domain(isl_map_get_space(projected_map));
56 space = isl_space_unwrap(space);
57 proj = isl_map_domain_map(isl_map_universe(space));
59 projected_map = isl_map_apply_domain(projected_map, proj);
62 static int precedes_level_nodes(na_pair *first, na_pair *second);
63 static int precedes_level_accesses(na_pair *first, na_pair *second);
65 /* Given a map from a domain to an orthogonal projection of an array
66 * (say, the rows of an array), mapping i to m(i), this function
67 * extends the range of the mapping to the original array and extends
68 * the domain of the mapping correspondingly such that (i,j) maps
69 * to (m(i),j), with (m(i),j) identifying an element of the array.
70 * The bounds on j are taken from the size of the array.
72 * The mapping from i to (i,j) is stored in the "extension" field
73 * of the access.
75 * The dependences computed using these extended access mappings,
76 * will map a (possibly) extended source domain to a (possibly)
77 * extended sink domain. One or both of these domains need to
78 * be transformed back to the original domains using the inverse
79 * of the corresponding extensions.
81 static isl_map *extend_access(isl_map *map, na_pair *na)
83 pdg::array *array = na->access->array;
84 assert(isl_map_n_out(map) < array->dims.size());
85 unsigned s_dim = array->dims.size() - isl_map_n_out(map);
86 isl_id *array_id = NULL;
87 if (isl_map_has_tuple_id(map, isl_dim_out))
88 array_id = isl_map_get_tuple_id(map, isl_dim_out);
89 isl_space *dim = isl_map_get_space(map);
90 dim = isl_space_drop_dims(dim, isl_dim_in,
91 0, isl_space_dim(dim, isl_dim_in));
92 dim = isl_space_drop_dims(dim, isl_dim_out,
93 0, isl_space_dim(dim, isl_dim_out));
94 dim = isl_space_add_dims(dim, isl_dim_in, s_dim);
95 dim = isl_space_add_dims(dim, isl_dim_out, s_dim);
96 isl_basic_map *id = isl_basic_map_identity(isl_space_copy(dim));
97 isl_local_space *ls = isl_local_space_from_space(dim);
98 isl_int v;
99 isl_int_init(v);
100 for (int i = 0; i < s_dim; ++i) {
101 isl_constraint *c;
102 c = isl_inequality_alloc(isl_local_space_copy(ls));
103 isl_int_set_si(v, 1);
104 isl_constraint_set_coefficient(c, isl_dim_out, 0, v);
105 id = isl_basic_map_add_constraint(id, c);
106 c = isl_inequality_alloc(isl_local_space_copy(ls));
107 isl_int_set_si(v, -1);
108 isl_constraint_set_coefficient(c, isl_dim_out, 0, v);
109 isl_int_set_si(v, array->dims[isl_map_n_out(map)+i]-1);
110 isl_constraint_set_constant(c, v);
111 id = isl_basic_map_add_constraint(id, c);
113 isl_local_space_free(ls);
114 isl_int_clear(v);
115 map = isl_map_product(map, isl_map_from_basic_map(id));
116 map = isl_map_flatten_range(map);
117 if (array_id)
118 map = isl_map_set_tuple_id(map, isl_dim_out, array_id);
119 if (!na->access->extension) {
120 isl_map *ext = isl_map_copy(map);
121 ext = isl_set_unwrap(isl_map_domain(ext));
122 ext = isl_map_reverse(isl_map_domain_map(ext));
123 na->access->extension = new pdg::IslMap(ext);
125 if (!na->access->extended_map)
126 na->access->extended_map = new pdg::IslMap(isl_map_copy(map));
127 return map;
130 /* If access "access" contains any nested accesses, then the domain
131 * of the access relation contains extra dimensions corresponding to
132 * the values of the nested accesses.
133 * Add these extra dimensions, with ranges given by the value_bounds
134 * of the corresponding array to domain "dom".
135 * If a nested access array does not have value_bounds, then we assume
136 * an infinite interval.
138 static isl_set *append_nested_value_domains(isl_set *dom, pdg::access *access)
140 isl_ctx *ctx;
142 ctx = isl_set_get_ctx(dom);
143 for (int i = 0; i < access->nested.size(); ++i) {
144 pdg::call_or_access *coa = access->nested[i];
145 assert(coa->type == pdg::call_or_access::t_access);
146 pdg::access *nested = coa->access;
147 isl_set *bounds;
148 if (nested->array->value_bounds)
149 bounds = nested->array->value_bounds->get_isl_set(ctx);
150 else {
151 isl_space *dim = isl_set_get_space(dom);
152 dim = isl_space_drop_dims(dim, isl_dim_set,
153 0, isl_space_dim(dim, isl_dim_set));
154 dim = isl_space_add_dims(dim, isl_dim_set, 1);
155 bounds = isl_set_universe(dim);
157 dom = isl_set_product(dom, bounds);
159 return dom;
162 /* Combine constraints of the "pure" mapping with the constraints
163 * on the domain. If the range of the mapping is of a dimension
164 * that is lower than the dimension of the accessed array,
165 * we extend the dimension of both domain and range of the mapping
166 * with the missing dimension. The size of domain and range
167 * in these dimensions is set to the extent of the array in the
168 * corresponding missing dimension. Each point in the original
169 * domain is therefore expanded to a hyperrectangle and each point
170 * in this hyperrectangle is mapped onto a single point in the array.
172 * If node->source is a wrapped map, then the iteration domain
173 * is the domain of this map.
175 static isl_map *convert_access(na_pair *na)
177 isl_map *map = na->access->map->get_isl_map();
178 isl_set *dom = na->node->source->get_isl_set();
180 if (isl_set_is_wrapping(dom)) {
181 dom = isl_map_domain(isl_set_unwrap(dom));
182 dom = isl_set_coalesce(dom);
185 dom = append_nested_value_domains(dom, na->access);
186 if (isl_map_n_in(map) != isl_set_dim(dom, isl_dim_set))
187 assert(0);
188 map = isl_map_intersect_domain(map, dom);
189 if (isl_map_n_out(map) != na->access->array->dims.size())
190 map = extend_access(map, na);
191 return map;
194 typedef std::map<na_pair *, isl_map *> na_pair2map;
196 struct add_dep_info {
197 PDG *pdg;
198 pdg::array *a;
199 type t;
200 enum pdg::dependence::type dtype;
201 /* The sink. */
202 na_pair *read_na_pair;
203 /* The comparison routine that was used during
204 * the dependence analysis.
206 isl_access_level_before precedes_level;
207 /* Cache of memory based dependence relations.
208 * The key of the map refers to the write.
210 na_pair2map mem_dep;
211 /* How many loops are shared by the current sink and source?
212 * Initialized to -1.
214 int n_shared;
215 /* For each potential source, what's (up to now) the minimal
216 * and maximal number of shared loops?
217 * If not set, then we don't know yet.
219 std::map<na_pair *, int> min_n_shared;
220 std::map<na_pair *, int> max_n_shared;
222 /* Potential sources that are actually used. */
223 std::set<na_pair *> used;
225 __isl_give isl_map *get_mem_dep(na_pair *write_na);
226 void clear_mem_dep();
227 void set_read_na(na_pair *read_na);
228 void update_min_n_shared(na_pair *source_na);
230 ~add_dep_info();
233 /* Update min_n_shared of "source_na" to the current number of shared loops.
234 * The new value is always smaller than or equal to the old value (if any).
235 * If max_n_shared hasn't been set yet, then set it as well.
237 void add_dep_info::update_min_n_shared(na_pair *source_na)
239 if (max_n_shared.find(source_na) == max_n_shared.end())
240 max_n_shared[source_na] = n_shared;
241 min_n_shared[source_na] = n_shared;
244 /* Create an id
246 * __last_<stmt>_<access_nr>_valid
248 * corresponding to "na", with "na" attached as user pointer.
250 static __isl_give isl_id *valid_bit_id(isl_ctx *ctx, na_pair *na)
252 char name[60];
254 snprintf(name, sizeof(name), "__last_%s_%d_valid",
255 na->node->name->s.c_str(), na->access->nr);
256 return isl_id_alloc(ctx, name, na);
259 /* Create an id
261 * __last_<stmt>_<access_nr>_shared
263 * corresponding to "na", with "na" attached as user pointer.
265 static __isl_give isl_id *create_shared_id(isl_ctx *ctx, na_pair *na)
267 char name[60];
269 snprintf(name, sizeof(name), "__last_%s_%d_shared",
270 na->node->name->s.c_str(), na->access->nr);
271 return isl_id_alloc(ctx, name, na);
274 /* Project out all the dimensions of the given type from "map" except "pos".
276 static __isl_give isl_map *project_on(__isl_take isl_map *map,
277 enum isl_dim_type type, unsigned pos)
279 unsigned n = isl_map_dim(map, type);
281 map = isl_map_project_out(map, type, pos + 1, n - (pos + 1));
282 map = isl_map_project_out(map, type, 0, pos);
284 return map;
287 /* Does output dimension "pos" have a fixed value in terms of the
288 * input dimensions (and parameters)?
290 static int has_fixed_value(__isl_keep isl_map *map, int pos)
292 int sv;
294 map = isl_map_copy(map);
295 map = project_on(map, isl_dim_out, pos);
296 sv = isl_map_is_single_valued(map);
297 isl_map_free(map);
299 return sv;
302 /* Return the position of the parameter with the given "id" in "set",
303 * adding it if it wasn't there already.
305 static int find_or_add_param(__isl_keep isl_set **set, __isl_take isl_id *id)
307 int pos;
309 pos = isl_set_find_dim_by_id(*set, isl_dim_param, id);
310 if (pos >= 0) {
311 isl_id_free(id);
312 return pos;
315 pos = isl_set_dim(*set, isl_dim_param);
316 *set = isl_set_add_dims(*set, isl_dim_param, 1);
317 *set = isl_set_set_dim_id(*set, isl_dim_param, pos, id);
319 return pos;
322 /* Add parameters to "set" identifying the last iteration of the access
323 * identified by "na".
325 * In particular, we add a parameter
327 * __last_<stmt>_<access_nr>_shared >= info->n_shared
329 * and parameters
331 * __last_<stmt>_<access_nr>_<i> = it_<i>
333 * with i ranging over the iterators, starting at info->n_shared,
334 * that are affected by the filters,
335 * except those that have a fixed value according to the memory based
336 * dependence.
337 * "na" is attached to the first two parameters, so that it can be recovered
338 * in refine_controls(). If the set already references some of these
339 * parameters, then we don't add the parameter again, but instead
340 * simply add the corresponding constraint.
342 static __isl_give isl_set *add_parametrization(__isl_take isl_set *set,
343 na_pair *na, add_dep_info *info)
345 int pos;
346 isl_ctx *ctx;
347 isl_id *id;
348 char name[60];
349 int depth;
350 isl_map *mem;
352 depth = na->node->get_filter_depth();
353 mem = info->get_mem_dep(na);
354 mem = isl_map_reverse(mem);
356 ctx = isl_set_get_ctx(set);
357 id = create_shared_id(ctx, na);
358 pos = find_or_add_param(&set, id);
359 set = isl_set_lower_bound_si(set, isl_dim_param, pos, info->n_shared);
361 for (int i = info->n_shared; i < depth; ++i) {
362 if (has_fixed_value(mem, i))
363 continue;
365 snprintf(name, sizeof(name), "__last_%s_%d_%d",
366 na->node->name->s.c_str(), na->access->nr, i);
368 id = isl_id_alloc(ctx, name, NULL);
369 pos = find_or_add_param(&set, id);
371 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, i);
374 isl_map_free(mem);
375 return set;
378 /* Is the i-th parameter of "map" a control, i.e., a parameter
379 * introduced by add_parametrization()?
380 * In particular, is the parameter of the form __last_*?
382 static bool is_control(__isl_keep isl_map *map, int i)
384 const char *name;
385 const char *prefix = "__last_";
386 size_t prefix_len = strlen(prefix);
388 if (!isl_map_has_dim_id(map, isl_dim_param, i))
389 return false;
390 name = isl_map_get_dim_name(map, isl_dim_param, i);
391 return strncmp(name, prefix, prefix_len) == 0;
394 /* Is the i-th parameter of "set" a control, i.e., a parameter
395 * introduced by add_parametrization()?
396 * In particular, is the parameter of the form __last_*?
398 static bool is_control(__isl_keep isl_set *set, int i)
400 const char *name;
401 const char *prefix = "__last_";
402 size_t prefix_len = strlen(prefix);
404 if (!isl_set_has_dim_id(set, isl_dim_param, i))
405 return false;
406 name = isl_set_get_dim_name(set, isl_dim_param, i);
407 return strncmp(name, prefix, prefix_len) == 0;
410 /* Remove all controls that are redundant, i.e., that do not appear
411 * in any of the constraints.
412 * Set *has_controls to true if there are any controls that are not redundant.
414 static __isl_give isl_map *remove_redundant_controls(__isl_take isl_map *dep,
415 bool *has_controls)
417 int i;
418 int n_param;
420 *has_controls = false;
422 n_param = isl_map_dim(dep, isl_dim_param);
423 for (i = n_param - 1; i >= 0; --i) {
424 if (!is_control(dep, i))
425 continue;
426 if (isl_map_involves_dims(dep, isl_dim_param, i, 1))
427 *has_controls = true;
428 else
429 dep = isl_map_project_out(dep, isl_dim_param, i, 1);
432 return dep;
435 /* Rename controls of "dep" from
437 * __last_<source_stmt>_<source_acc_nr>_*
439 * to
441 * __last_<source_stmt>_<source_acc_nr>_<sink_stmt>_<sink_acc_nr>_*
443 * "na" represents the sink.
445 static __isl_give isl_map *rename_controls(__isl_take isl_map *dep, na_pair *na)
447 char buf[100];
448 int n_param;
449 const char *name;
450 const char *underscore;
452 n_param = isl_map_dim(dep, isl_dim_param);
453 for (int i = 0; i < n_param; ++i) {
454 int len;
455 if (!is_control(dep, i))
456 continue;
457 name = isl_map_get_dim_name(dep, isl_dim_param, i);
458 underscore = strrchr(name, '_');
459 assert(underscore);
460 len = underscore + 1 - name;
461 memcpy(buf, name, len);
462 snprintf(buf + len, sizeof(buf) - len, "%s_%d_%s",
463 na->node->name->s.c_str(), na->access->nr, name + len);
464 dep = isl_map_set_dim_name(dep, isl_dim_param, i, buf);
467 return dep;
470 extern "C" {
471 static int extract_dep(__isl_take isl_map *dep, int must,
472 void *dep_user, void *user);
475 /* Extract the single dependence relation from the result of
476 * dataflow analyis and assign it to *user.
478 static int extract_dep(__isl_take isl_map *dep, int must, void *dep_user,
479 void *user)
481 isl_map **dep_p = (isl_map **) user;
482 assert(!*dep_p);
483 *dep_p = dep;
484 return 0;
487 /* Return the memory based dependence relation from write_na
488 * to read_na_pair. If the "projected_map"
489 * fields are not NULL, then use the "projected_map"
490 * instead of the "map" of write_na and this->read_na_pair.
492 __isl_give isl_map *add_dep_info::get_mem_dep(na_pair *write_na)
494 isl_access_info *acc;
495 isl_flow *deps;
496 isl_map *read_map, *write_map;
497 isl_map *dep = NULL;
499 if (mem_dep.find(write_na) != mem_dep.end())
500 return isl_map_copy(mem_dep[write_na]);
502 if (read_na_pair->projected_map)
503 read_map = isl_map_copy(read_na_pair->projected_map);
504 else
505 read_map = isl_map_copy(read_na_pair->map);
506 acc = isl_access_info_alloc(read_map, read_na_pair, precedes_level, 1);
507 if (write_na->projected_map)
508 write_map = isl_map_copy(write_na->projected_map);
509 else
510 write_map = isl_map_copy(write_na->map);
511 acc = isl_access_info_add_source(acc, write_map, 0, write_na);
512 deps = isl_access_info_compute_flow(acc);
513 isl_flow_foreach(deps, &extract_dep, &dep);
514 isl_flow_free(deps);
516 mem_dep[write_na] = isl_map_copy(dep);
518 return dep;
521 /* Clear the cache of memory based dependence relations.
523 void add_dep_info::clear_mem_dep()
525 na_pair2map::iterator it;
527 for (it = mem_dep.begin(); it != mem_dep.end(); ++it)
528 isl_map_free(it->second);
529 mem_dep.clear();
532 /* Set read_na_pair to read_na.
534 * If the cache of memory based dependence relations contains any
535 * elements then they refer to a different read, so we need to clear
536 * the cache.
538 * We also clear the set of used potential sources and reset
539 * the data that keeps track of the number of shared loops between
540 * the sink (read_na_pair) and the sources.
542 void add_dep_info::set_read_na(na_pair *read_na)
544 used.clear();
545 clear_mem_dep();
546 n_shared = -1;
547 min_n_shared.clear();
548 max_n_shared.clear();
549 read_na_pair = read_na;
552 add_dep_info::~add_dep_info()
554 clear_mem_dep();
557 /* Is the name of parameter "i" of "space" of the form __last_*_suffix?
559 static bool is_last_with_suffix(__isl_keep isl_space *space, int i,
560 const char *suffix, size_t suffix_len)
562 const char *prefix = "__last_";
563 size_t prefix_len = strlen(prefix);
564 const char *name;
565 size_t len;
567 if (!isl_space_has_dim_id(space, isl_dim_param, i))
568 return false;
569 name = isl_space_get_dim_name(space, isl_dim_param, i);
570 if (strncmp(name, prefix, prefix_len))
571 return false;
572 len = strlen(name);
573 return len > suffix_len && !strcmp(name + len - suffix_len, suffix);
576 /* Is the name of parameter "i" of "space" of the form __last_*_valid?
577 * In practice, those are the parameters __last_*_valid, created
578 * in add_parametrization().
580 static bool is_valid_bit(__isl_keep isl_space *space, int i)
582 const char *suffix = "_valid";
584 return is_last_with_suffix(space, i, suffix, strlen(suffix));
587 /* Is the name of parameter "i" of "space" of the form __last_*_shared?
588 * In practice, those are the parameters __last_*_shared, created
589 * in add_parametrization().
591 static bool is_shared(__isl_keep isl_space *space, int i)
593 const char *suffix = "_shared";
594 size_t suffix_len = strlen(suffix);
596 return is_last_with_suffix(space, i, suffix, strlen(suffix));
599 /* Assuming "coa" is a (read) access, return the array being
600 * accessed.
602 static pdg::array *get_filter_array(pdg::call_or_access *coa)
604 assert(coa->type == pdg::call_or_access::t_access);
605 return coa->access->array;
608 /* Compute a map between domain elements (i) of "map1" and range elements
609 * of "map2" (j) such that all the images of i in "map1" map to j through
610 * "map2" and such that there is at least one such image element.
612 * In other words, the result contains those pairs of elements such that
613 * map1(i) \cap map2^-1(j) is non-empty and map1(i) \subseteq map2^-1(j).
615 * Equivalently, compute
617 * (map1 . map2) \setminus
618 * (map1 . ((\range map1 \to \range map2) \setminus map2))
620 * If map1 is single valued, then we can do a simple join.
622 static __isl_give isl_union_map *join_non_empty_subset(
623 __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2)
625 isl_union_set *dom, *ran;
626 isl_union_map *univ;
627 isl_union_map *res;
629 if (isl_union_map_is_single_valued(umap1))
630 return isl_union_map_apply_range(umap1, umap2);
632 res = isl_union_map_apply_range(isl_union_map_copy(umap1),
633 isl_union_map_copy(umap2));
634 dom = isl_union_map_range(isl_union_map_copy(umap1));
635 ran = isl_union_map_range(isl_union_map_copy(umap2));
636 univ = isl_union_map_from_domain_and_range(dom, ran);
637 umap2 = isl_union_map_subtract(univ, umap2);
638 umap1 = isl_union_map_apply_range(umap1, umap2);
639 res = isl_union_map_subtract(res, umap1);
641 return res;
644 /* Compute a map between domain elements (i) of "map1" and range elements
645 * of "map2" (j) such that the images of i in "map1" include all those
646 * elements that map to j through "map2" and such that there is
647 * at least one such image element.
649 * In other words, the result contains those pairs of elements such that
650 * map1(i) \cap map2^-1(j) is non-empty and map1(i) \supseteq map2^-1(j).
652 * Equivalently, compute
654 * (map1 . map2) \setminus
655 * (((\domain map1 \to \domain map2) \setminus map1) . map2)
657 * If map1 is single valued, then we can do a simple join.
659 static __isl_give isl_union_map *join_non_empty_superset(
660 __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2)
662 isl_union_set *dom, *ran;
663 isl_union_map *univ;
664 isl_union_map *res;
666 if (isl_union_map_is_single_valued(umap2))
667 return isl_union_map_apply_range(umap1, umap2);
669 res = isl_union_map_apply_range(isl_union_map_copy(umap1),
670 isl_union_map_copy(umap2));
671 dom = isl_union_map_domain(isl_union_map_copy(umap1));
672 ran = isl_union_map_domain(isl_union_map_copy(umap2));
673 univ = isl_union_map_from_domain_and_range(dom, ran);
674 umap1 = isl_union_map_subtract(univ, umap1);
675 umap1 = isl_union_map_apply_range(umap1, umap2);
676 res = isl_union_map_subtract(res, umap1);
678 return res;
681 /* Return those elements in the domain of "umap" where "umap" is multi-valued.
683 * In particular, construct a mapping between domain elements of "umap"
684 * and pairs of corresponding image elements.
685 * Remove pairs of identical image elements from the range of this mapping.
686 * The result is a mapping between domain elements and pairs of different
687 * corresponding image elements. The domain of this mapping contains those
688 * domain elements of "umap" with at least two images.
690 static __isl_give isl_union_set *multi_valued(__isl_keep isl_union_map *umap)
692 isl_union_map *multi, *id;
694 multi = isl_union_map_range_product(isl_union_map_copy(umap),
695 isl_union_map_copy(umap));
696 id = isl_union_map_universe(isl_union_map_copy(multi));
697 id = isl_union_set_unwrap(isl_union_map_range(id));
698 id = isl_union_set_identity(isl_union_map_domain(id));
699 multi = isl_union_map_subtract_range(multi, isl_union_map_wrap(id));
700 return isl_union_map_domain(multi);
703 /* Given two filter access relations, return a mapping between the domain
704 * elements of these access relations such that they access "the same filter".
705 * In particular, any pair of elements in the returned relation
706 * accesses at least one element in common, but if subset1 is set,
707 * then the set of elements accessed by the first is a subset of the
708 * set of elements accessed by the second. Similarly, if subset2 is set,
709 * then the set of elements accessed by the second is a subset of the
710 * set of elements accessed by the first. If both are set, then we further
711 * impose that both should access exactly one element.
712 * "space" is the space in which the result should live.
713 * Although "map1" and "map2" are allowed to have ranges in multiple spaces,
714 * their domains should live in a single space. "space" is the space
715 * of the relation between those two domains.
717 * Call the given maps A and B.
719 * A relation between domains elements of A and B that access at least
720 * one element in common can be obtained as
722 * A . B^-1
724 * To ensure that all elements accessed through A form a subset of
725 * the elements accessed through B, we compute join_non_empty_subset(A, B^-1).
727 * Ensuring that all elements accessed through B form a subset of
728 * the elements accessed through A is handled in a similar way.
730 * To remove those iterations that access more that one element,
731 * we compute those parts of the domains where A and B are multi-valued
732 * and subtract them from domain and range of the result.
734 static __isl_give isl_map *compute_common_filter(__isl_keep isl_union_map *map1,
735 bool subset1, __isl_keep isl_union_map *map2, bool subset2,
736 __isl_keep isl_space *space)
738 isl_union_map *reverse, *common;
739 isl_union_set *bad;
740 isl_map *res;
742 reverse = isl_union_map_reverse(isl_union_map_copy(map2));
744 if (subset1 && !subset2) {
745 common = join_non_empty_subset(isl_union_map_copy(map1),
746 reverse);
747 } else if (!subset1 && subset2) {
748 common = join_non_empty_superset(isl_union_map_copy(map1),
749 reverse);
750 } else {
751 common = isl_union_map_apply_range(isl_union_map_copy(map1),
752 reverse);
753 if (subset1 && subset2) {
754 bad = multi_valued(map1);
755 common = isl_union_map_subtract_domain(common, bad);
756 bad = multi_valued(map2);
757 common = isl_union_map_subtract_range(common, bad);
761 res = isl_union_map_extract_map(common, isl_space_copy(space));
762 isl_union_map_free(common);
763 return res;
766 /* Assuming "coa" is a (read) access, construct a union map from the domain
767 * of the access relation to the access relations of the corresponding
768 * writes. If we are unable to determine the corresponding writes, then
769 * return a map to the read access relation.
771 static __isl_give isl_union_map *extract_access_map(pdg::call_or_access *coa)
773 assert(coa->type == pdg::call_or_access::t_access);
774 return coa->access->extract_access_map();
777 /* Return a set that contains all possible filter values,
778 * where the possible values for a given filter is either as specified
779 * by the value_bounds property of the corresponding array or the universe.
781 static __isl_give isl_set *compute_filter_bounds(pdg::node *node)
783 isl_ctx *ctx;
784 isl_set *bounds;
786 ctx = isl_set_get_ctx(node->source->set);
788 bounds = isl_set_universe(isl_space_set_alloc(ctx, 0, 0));
789 for (int i = 0; i < node->filters.size(); ++i) {
790 isl_set *bnd;
791 pdg::array *array;
792 pdg::call_or_access *coa = node->filters[i];
793 assert(coa->type == pdg::call_or_access::t_access);
794 array = coa->access->array;
795 if (array->value_bounds)
796 bnd = array->value_bounds->get_isl_set();
797 else
798 bnd = isl_set_universe(isl_space_set_alloc(ctx, 0, 1));
799 bounds = isl_set_flat_product(bounds, bnd);
802 return bounds;
805 /* Return either the filter values themselves or their complement,
806 * taken with respect to the bounds on the filter values.
808 static __isl_give isl_map *compute_filter_values(pdg::node *node,
809 bool complement)
811 isl_set *bounds;
812 isl_map *value;
813 isl_map *res;
815 value = isl_set_unwrap(node->source->get_isl_set());
816 if (!complement)
817 return value;
819 bounds = compute_filter_bounds(node);
820 res = isl_map_from_domain_and_range(
821 isl_map_domain(isl_map_copy(value)), bounds);
822 res = isl_map_subtract(res, value);
824 return res;
827 /* Equate the first "n" input and output dimensions of "map"
828 * and return the result.
830 static __isl_give isl_map *share(__isl_take isl_map *map, int n)
832 for (int i = 0; i < n; ++i)
833 map = isl_map_equate(map, isl_dim_in, i, isl_dim_out, i);
835 return map;
838 /* Return the set of source iterations of "na" either at the last
839 * iteration (if valid is set) or after the last iteration
840 * (if valid is not set). "id" represents the control variable
841 * corresponding to the number of shared loops (__last_<na>_shared).
843 * In particlar, if valid is set, we return the set
845 * { S[i] : i = __last_<na> and
846 * __last_<na>_shared >= info->n_shared }
848 * If valid is not set, we return the set
850 * { S[i] : (i >> __last_<na> and __last_<na>_shared >= info->n_shared) or
851 * __last_<na>_shared < info->n_shared }
853 * That is, the iterations after the last if there is a last iteration
854 * with at least info->n_shared shared loops
855 * or just any iteration if there is no such last iteration.
857 * The lexicographic order i >> __last_<na> is imposed on the loop iterators
858 * that are affected by any filters.
860 static __isl_give isl_set *source_iterations(na_pair *na,
861 __isl_keep isl_id *id, bool valid, add_dep_info *info)
863 isl_space *space;
864 isl_set *set, *invalid;
865 isl_map *map_after;
866 int pos;
867 int depth;
869 space = isl_set_get_space(na->node->source->set);
870 space = isl_space_domain(isl_space_unwrap(space));
872 set = isl_set_universe(space);
873 set = add_parametrization(set, na, info);
875 if (valid)
876 return set;
878 depth = na->node->get_filter_depth();
880 space = isl_space_map_from_set(isl_set_get_space(set));
881 map_after = isl_map_lex_lt_first(space, depth);
882 map_after = share(map_after, info->n_shared);
883 map_after = isl_map_intersect_domain(map_after, set);
884 set = isl_map_range(map_after);
886 invalid = isl_set_universe(isl_set_get_space(set));
887 pos = isl_set_find_dim_by_id(invalid, isl_dim_param, id);
888 assert(pos >= 0);
889 invalid = isl_set_upper_bound_si(invalid,
890 isl_dim_param, pos, info->n_shared - 1);
891 set = isl_set_union(set, invalid);
893 return set;
896 /* Look for a matching between the filters of node1 and those of node2.
897 * That is look for pairs of filters of the two nodes that are "the same".
898 * Return true if any such matching can be found. The correspondence between
899 * the filters is returned in *same_value_p, while the pairs of iterations
900 * where the filters are the same is returned in *same_filter_p.
901 * The first "n_shared" dimensions of these iterations are guaranteed
902 * to be equal to each other.
904 * Two filter accesses are considered "the same" if they access at least
905 * one element in common. Moreover, if valid1 is false then the set
906 * of elements accessed by an element from node1 should be a subset
907 * of the set of elements accessed by the corresponding element from node2.
908 * Similarly for valid2.
910 * We perform a greedy search, checking if two filters could possibly
911 * match given the matchings we have performed before and updating
912 * the matching if it is indeed possible.
914 * Note that this function only computes one of the possibly many matchings.
916 static bool compute_matching(pdg::node *node1, bool valid1,
917 pdg::node *node2, bool valid2, __isl_give isl_map **same_filter_p,
918 __isl_give isl_map **same_value_p, int n_shared)
920 bool any = false;
921 isl_space *space1, *space2;
922 isl_map *same_filter;
923 isl_map *same_value;
925 space1 = isl_space_unwrap(isl_set_get_space(node1->source->set));
926 space2 = isl_space_unwrap(isl_set_get_space(node2->source->set));
927 space1 = isl_space_product(space1, space2);
928 space2 = isl_space_unwrap(isl_space_range(isl_space_copy(space1)));
929 space1 = isl_space_unwrap(isl_space_domain(space1));
931 same_filter = isl_map_universe(isl_space_copy(space1));
932 same_filter = share(same_filter, n_shared);
933 same_value = isl_map_universe(space2);
935 for (int i = 0; i < node1->filters.size(); ++i) {
936 isl_union_map *map_i;
937 pdg::call_or_access *filter_i = node1->filters[i];
938 pdg::array *array_i = get_filter_array(filter_i);
940 map_i = extract_access_map(node1->filters[i]);
942 for (int j = 0; j < node2->filters.size(); ++j) {
943 pdg::call_or_access *filter_j;
944 filter_j = node2->filters[j];
945 pdg::array *array_j = get_filter_array(filter_j);
946 isl_union_map *map_j;
947 isl_map *same_filter_ij;
949 if (array_i != array_j)
950 continue;
952 map_j = extract_access_map(node2->filters[j]);
953 same_filter_ij = compute_common_filter(map_i, !valid1,
954 map_j, !valid2,
955 space1);
956 same_filter_ij = isl_map_intersect(same_filter_ij,
957 isl_map_copy(same_filter));
958 if (isl_map_is_empty(same_filter_ij))
959 isl_map_free(same_filter_ij);
960 else {
961 any = true;
962 isl_map_free(same_filter);
963 same_filter = same_filter_ij;
964 same_value = isl_map_equate(same_value,
965 isl_dim_in, i,
966 isl_dim_out, j);
968 isl_union_map_free(map_j);
971 isl_union_map_free(map_i);
973 isl_space_free(space1);
975 if (any) {
976 *same_value_p = same_value;
977 *same_filter_p = same_filter;
978 } else {
979 isl_map_free(same_value);
980 isl_map_free(same_filter);
981 *same_value_p = NULL;
982 *same_filter_p = NULL;
985 return any;
988 /* Given a set of sink iterations "sink", mappings "map1" and "map2"
989 * from two potential sources to this sink,
990 * the possible filter values "value1" and "value2" at those
991 * potential sources, a relation "same_filter" between the two
992 * potential sources expressing when some filters of the two
993 * potential sources are the same and the correponding matching
994 * "same_value" between the filter values,
995 * remove those elements from the sink that have
996 * corresponding pairs of potential source iterations that should
997 * have the same filter values but do not.
999 * Let us call the sink S, the potential sources A and B and the
1000 * corresponding filters F and G.
1002 * We start from the mappings A[..] -> S[..] and B[..] -> S[..],
1003 * combine them into
1005 * S[..] -> [A[..] -> B[..]]
1007 * and intersect the range with the condition "same_filter" on A and B,
1008 * resulting in a mapping from sink iterations to pairs of potential
1009 * source iterations that should have the same filter values
1010 * (as specified by "same_value").
1012 * We subtract from the range of this mapping those pairs of
1013 * potential source iterations that actually have the same filter values.
1014 * The result is a mapping from sink iterations to pairs of potential
1015 * source iterations that should have the same filter values but do not.
1017 * The mapping between potential source iterations that have the
1018 * same filter values is obtained by combining the mappings
1019 * A[..] -> F[..] and B[..] -> G[..] into
1021 * [A[..] -> B[..]] -> [F[..] -> G[..]]
1023 * intersecting the range with "same_value" and then computing the domain.
1025 static __isl_give isl_set *remove_conflict(__isl_take isl_set *sink,
1026 __isl_take isl_map *map1, __isl_take isl_map *value1,
1027 __isl_take isl_map *map2, __isl_take isl_map *value2,
1028 __isl_take isl_map *same_filter, __isl_take isl_map *same_value)
1030 isl_map *value, *conflict;
1031 isl_set *conflict_set;
1033 conflict = isl_map_domain_product(map1, map2);
1034 conflict = isl_map_reverse(conflict);
1036 conflict = isl_map_intersect_range(conflict, isl_map_wrap(same_filter));
1038 value = isl_map_product(value1, value2);
1039 value = isl_map_intersect_range(value, isl_map_wrap(same_value));
1040 conflict = isl_map_subtract_range(conflict, isl_map_domain(value));
1042 conflict_set = isl_map_domain(conflict);
1044 sink = isl_set_subtract(sink, conflict_set);
1046 return sink;
1049 /* Remove inconsistencies from the set of sink iterations "sink"
1050 * based on two potential sources identified by "id1" and "id2"
1051 * (representing the number of shared loops),
1052 * in particular, on either the last iteration where the filters hold
1053 * (if valid? is set) or on later iterations (if valid? is not set).
1055 * Let us first consider the case where both "valid1" and "valid2" are set.
1056 * If the last iterations of the corresponding sources access the same
1057 * filters, then these filters should have the same value.
1058 * If a filter access accesses more than one element, then these elements
1059 * should all have the same value. It is therefore sufficient for the
1060 * two last iterations to access at least one element in common for there
1061 * to be a requirement that the corresponding values should be the same.
1062 * We therefore obtain the filter values, the mappings from the sink
1063 * to the last iterations, a matching between the
1064 * the filters of the corresponding sources and remove conflicts from "dep".
1066 * If one or both of the valid bits are not set, then we need to make
1067 * some changes. First the inconsistencies now do not arise from
1068 * the filter values at the last iteration, but from the filter values
1069 * lying _outside_ of the possible values for all iterations _after_
1070 * the "last" (i.e., the last iteration satisfying the filter constraints).
1071 * In case there is no last iteration with at least info->n_shared shared loops,
1072 * then the filter values should lie outside of the possible values
1073 * for any potential source iteration with info->n_shared shared loops.
1074 * Note however, that if the filter access relation accesses several
1075 * elements, then it is sufficient for one of those to have a value
1076 * outside of the possible values. We can therefore only consider
1077 * any inconsistencies for those cases where the set of accessed elements
1078 * forms a subset of the set of accessed elements through the other potential
1079 * source. If valid1 is not set, but valid2 is set, then we consider
1080 * those pairs of potential source iterations where the first accesses
1081 * a subset of the second and we impose that at least one of those
1082 * accessed elements has a valid outside the possible values.
1083 * Since those accessed elements form a subset of the elements accessed
1084 * by the other potential source, there is at least one element that
1085 * has a value outside of the posssible values on the first potential source
1086 * and a value belonging to the posssible values on the second potential source.
1087 * We can therefore impose that this value should exist.
1089 * If both valid1 and valid2 are not set, then we can only
1090 * impose a constraint on those pairs of iterations that access the same
1091 * single element. We then know that the value of this single element
1092 * accessed by both potential sources should lie outside of the possible
1093 * values on both sides.
1095 static __isl_give isl_set *remove_inconsistencies(__isl_take isl_set *sink,
1096 add_dep_info *info, __isl_keep isl_id *id1, bool valid1,
1097 __isl_keep isl_id *id2, bool valid2)
1099 na_pair *write1_na, *write2_na;
1100 isl_set *source;
1101 isl_map *value1, *value2;
1102 isl_map *same_filter;
1103 isl_map *same_value;
1104 isl_map *mem1, *mem2;
1106 write1_na = (na_pair *) isl_id_get_user(id1);
1107 write2_na = (na_pair *) isl_id_get_user(id2);
1109 if (!compute_matching(write1_na->node, valid1, write2_na->node, valid2,
1110 &same_filter, &same_value, info->n_shared))
1111 return sink;
1113 value1 = compute_filter_values(write1_na->node, !valid1);
1114 value2 = compute_filter_values(write2_na->node, !valid2);
1116 mem1 = info->get_mem_dep(write1_na);
1117 source = source_iterations(write1_na, id1, valid1, info);
1118 mem1 = share(mem1, info->n_shared);
1119 mem1 = isl_map_intersect_domain(mem1, source);
1121 mem2 = info->get_mem_dep(write2_na);
1122 source = source_iterations(write2_na, id2, valid2, info);
1123 mem2 = share(mem2, info->n_shared);
1124 mem2 = isl_map_intersect_domain(mem2, source);
1126 sink = remove_conflict(sink, mem1, value1, mem2, value2,
1127 same_filter, same_value);
1129 return sink;
1132 /* Remove inconsistencies from the set of sink iterations "sink"
1133 * based on two potential sources identified by "id1" and "id2",
1134 * (representing the number of shared loops).
1136 static __isl_give isl_set *remove_inconsistencies(__isl_take isl_set *sink,
1137 add_dep_info *info, __isl_keep isl_id *id1, __isl_keep isl_id *id2)
1139 sink = remove_inconsistencies(sink, info, id1, false, id2, false);
1140 sink = remove_inconsistencies(sink, info, id1, false, id2, true);
1141 sink = remove_inconsistencies(sink, info, id1, true, id2, false);
1142 sink = remove_inconsistencies(sink, info, id1, true, id2, true);
1143 return sink;
1146 /* Remove inconsistencies from the set of sink iterations "sink"
1147 * based on the potential source identified by "id"
1148 * (representing the number of shared loops),
1149 * in particular, on either the last iteration where the filters hold
1150 * (if valid is set) or on later iterations (if valid is not set).
1152 * This function is very similar to the remove_inconsistencies
1153 * function above that considers two potential sources instead
1154 * of the sink and one potential source. The main differences
1155 * are that for the sink, the filters always hold and that the mapping
1156 * from sink iterations to sink iterations is computed in a different
1157 * (and fairly trivial) way.
1159 static __isl_give isl_set *remove_inconsistencies(__isl_take isl_set *sink,
1160 add_dep_info *info, __isl_keep isl_id *id, bool valid)
1162 na_pair *read_na, *write_na;
1163 isl_set *after;
1164 isl_map *value1, *value2;
1165 isl_map *same_filter;
1166 isl_map *same_value;
1167 isl_map *id_map, *mem;
1169 read_na = info->read_na_pair;
1170 write_na = (na_pair *) isl_id_get_user(id);
1172 if (!compute_matching(read_na->node, true, write_na->node, valid,
1173 &same_filter, &same_value, info->n_shared))
1174 return sink;
1176 value1 = compute_filter_values(read_na->node, false);
1177 value2 = compute_filter_values(write_na->node, !valid);
1179 id_map = isl_set_identity(isl_set_copy(sink));
1181 mem = info->get_mem_dep(write_na);
1182 after = source_iterations(write_na, id, valid, info);
1183 mem = share(mem, info->n_shared);
1184 mem = isl_map_intersect_domain(mem, after);
1186 sink = remove_conflict(sink, id_map, value1, mem, value2,
1187 same_filter, same_value);
1189 return sink;
1192 /* Remove inconsistencies from the set of sink iterations "sink"
1193 * based on the potential source identified by "id"
1194 * (representing the number of shared loops).
1196 static __isl_give isl_set *remove_inconsistencies(__isl_take isl_set *sink,
1197 add_dep_info *info, __isl_keep isl_id *id)
1199 sink = remove_inconsistencies(sink, info, id, false);
1200 sink = remove_inconsistencies(sink, info, id, true);
1201 return sink;
1204 /* Remove all parameters that were introduced by add_parametrization().
1206 static __isl_give isl_map *remove_all_controls(__isl_take isl_map *dep)
1208 int i;
1209 int n_param;
1210 const char *name;
1212 n_param = isl_map_dim(dep, isl_dim_param);
1213 for (i = n_param - 1; i >= 0; --i) {
1214 if (!is_control(dep, i))
1215 continue;
1216 dep = isl_map_project_out(dep, isl_dim_param, i, 1);
1218 dep = isl_map_coalesce(dep);
1220 return dep;
1223 /* Remove all parameters that were introduced by add_parametrization().
1225 static __isl_give isl_set *remove_all_controls(__isl_take isl_set *set)
1227 int i;
1228 int n_param;
1229 const char *name;
1231 n_param = isl_set_dim(set, isl_dim_param);
1232 for (i = n_param - 1; i >= 0; --i) {
1233 if (!is_control(set, i))
1234 continue;
1235 set = isl_set_project_out(set, isl_dim_param, i, 1);
1237 set = isl_set_coalesce(set);
1239 return set;
1242 /* Create the map
1244 * { a -> b : (shared >= max and
1245 * the first max iterators are equal) or
1246 * (shared = max - 1 and
1247 * the first max - 1 iterators are equal and
1248 * dimension max - 1 of a is smaller than that of b) or
1249 * ...
1250 * (shared = min and
1251 * the first min iterators are equal and
1252 * dimension min of a is smaller than that of b) }
1254 static __isl_give isl_map *compute_shared_map(__isl_take isl_space *space,
1255 __isl_keep isl_id *shared_id, int min, int max)
1257 isl_map *shared_map;
1258 int shared_pos;
1260 shared_pos = isl_space_find_dim_by_id(space, isl_dim_param, shared_id);
1261 shared_map = isl_map_universe(isl_space_copy(space));
1262 shared_map = isl_map_lower_bound_si(shared_map, isl_dim_param,
1263 shared_pos, max);
1264 shared_map = share(shared_map, max);
1266 for (int i = min; i < max; ++i) {
1267 isl_map *shared_map_i;
1269 shared_map_i = isl_map_universe(isl_space_copy(space));
1270 shared_map_i = isl_map_fix_si(shared_map_i, isl_dim_param,
1271 shared_pos, i);
1272 shared_map_i = share(shared_map_i, i);
1273 shared_map_i = isl_map_order_lt(shared_map_i, isl_dim_in, i,
1274 isl_dim_out, i);
1276 shared_map = isl_map_union(shared_map, shared_map_i);
1279 isl_space_free(space);
1281 return shared_map;
1284 /* Different parts of the final dependence relations may have been
1285 * created at different depths and may therefore have a different
1286 * number of dimensions of the last iterator. The __last_<na>_shared
1287 * value determines how many of the dimensions are implicitly equal
1288 * to those of the sink iteration. This function creates a set that
1289 * makes these equalities explicit, so that we can later remove
1290 * the __last_<na>_shared parameter. It also marks those parts
1291 * that have a number of shared iterators that is smaller than the minimum
1292 * as not having any last iteration.
1294 * In particular, we create a set in the space of the sink of the form
1296 * { s : __last_<na>_valid = 0 or
1297 * (__last_<na>_valid = 1 and
1298 * __last_<na>_<i> is a potential source iteration and
1299 * ((__last_<na>_shared >= max_shared and
1300 * the first max_shared iterators are equal) or
1301 * (__last_<na>_shared = max_shared - 1 and
1302 * the first max_shared - 1 iterators are equal and
1303 * iterator max_shared - 1 of the source is smaller) or
1304 * ...
1305 * (__last_<na>_shared = min_shared and
1306 * the first min_shared iterators are equal and
1307 * iterator min_shared of the source is smaller))) }
1309 * That is, for those parts with __last_<na>_shared smaller than
1310 * max_n_shared[source_na], intersection with the set will introduce
1311 * __last_<na>_<i> parameters (assuming they don't have a known fixed value)
1312 * up until __last_<na>_shared and equate them to the corresponding iterators
1313 * of the sink.
1315 static __isl_give isl_set *shared_refinement(__isl_keep isl_id *shared_id,
1316 add_dep_info *info)
1318 isl_ctx *ctx;
1319 isl_space *space;
1320 isl_map *mem;
1321 na_pair *source_na;
1322 isl_map *shared_map;
1323 int valid_pos, shared_pos;
1324 isl_set *valid;
1325 isl_set *invalid;
1326 isl_set *domain;
1327 isl_id *valid_id;
1329 ctx = isl_id_get_ctx(shared_id);
1331 source_na = (na_pair *) isl_id_get_user(shared_id);
1332 valid_id = valid_bit_id(ctx, source_na);
1334 mem = info->get_mem_dep(source_na);
1335 space = isl_map_get_space(mem);
1336 isl_map_free(mem);
1338 shared_pos = isl_space_dim(space, isl_dim_param);
1339 space = isl_space_add_dims(space, isl_dim_param, 1);
1340 space = isl_space_set_dim_id(space, isl_dim_param,
1341 shared_pos, isl_id_copy(shared_id));
1343 shared_map = compute_shared_map(isl_space_copy(space), shared_id,
1344 info->min_n_shared[source_na], info->max_n_shared[source_na]);
1346 domain = isl_set_universe(isl_space_domain(space));
1347 valid_pos = find_or_add_param(&domain, isl_id_copy(valid_id));
1348 domain = isl_set_fix_si(domain, isl_dim_param, valid_pos, 1);
1349 domain = add_parametrization(domain, source_na, info);
1350 shared_map = isl_map_intersect_domain(shared_map, domain);
1352 valid = isl_map_range(shared_map);
1353 invalid = isl_set_universe(isl_set_get_space(valid));
1354 shared_pos = isl_set_find_dim_by_id(invalid, isl_dim_param, shared_id);
1355 invalid = isl_set_upper_bound_si(invalid, isl_dim_param, shared_pos,
1356 info->n_shared - 1);
1358 valid_pos = find_or_add_param(&invalid, valid_id);
1359 invalid = isl_set_fix_si(invalid, isl_dim_param, valid_pos, 0);
1361 return isl_set_union(valid, invalid);
1364 /* Different parts of the final dependence relations may have been
1365 * created at different depths and may therefore have a different
1366 * number of dimensions of the last iterator. The __last_*_shared
1367 * value determines how many of the dimensions are implicitly equal
1368 * to those of the sink iteration.
1370 * For each of the __last_*_shared parameters, explicitly add
1371 * the implicitly equal __last_*_i iterators by intersecting
1372 * the sink with the set computed by shared_refinement.
1373 * Finally, remove the __last_*_shared parameters.
1375 static __isl_give isl_map *refine_shared(__isl_take isl_map *dep,
1376 add_dep_info *info)
1378 isl_space *space;
1379 isl_set *refinement;
1380 int n_param;
1382 space = isl_map_get_space(dep);
1383 n_param = isl_space_dim(space, isl_dim_param);
1385 refinement = isl_set_universe(isl_space_range(isl_space_copy(space)));
1387 for (int i = 0; i < n_param; ++i) {
1388 isl_set *ref_i;
1389 isl_id *id;
1391 if (!is_shared(space, i))
1392 continue;
1393 if (!isl_map_involves_dims(dep, isl_dim_param, i, 1))
1394 continue;
1396 id = isl_space_get_dim_id(space, isl_dim_param, i);
1397 ref_i = shared_refinement(id, info);
1398 isl_id_free(id);
1400 if (isl_set_is_wrapping(refinement)) {
1401 isl_map *map = isl_set_unwrap(refinement);
1402 map = isl_map_intersect_domain(map, ref_i);
1403 refinement = isl_map_wrap(map);
1404 } else
1405 refinement = isl_set_intersect(refinement, ref_i);
1407 dep = isl_map_intersect_range(dep, refinement);
1409 isl_space_free(space);
1411 space = isl_map_get_space(dep);
1412 n_param = isl_space_dim(space, isl_dim_param);
1413 for (int i = n_param - 1; i >= 0; --i) {
1414 if (!is_shared(space, i))
1415 continue;
1416 dep = isl_map_project_out(dep, isl_dim_param, i, 1);
1418 isl_space_free(space);
1420 dep = isl_map_coalesce(dep);
1422 return dep;
1425 /* Compute the gist of "dep" with respect to the fact that
1427 * 0 <= __last_*_valid <= 1
1429 static __isl_give isl_map *gist_valid(__isl_take isl_map *dep)
1431 isl_space *space;
1432 isl_set *valid;
1433 int n_param;
1435 space = isl_space_params(isl_map_get_space(dep));
1436 n_param = isl_space_dim(space, isl_dim_param);
1438 valid = isl_set_universe(isl_space_copy(space));
1439 for (int i = 0; i < n_param; ++i) {
1440 if (!is_valid_bit(space, i))
1441 continue;
1443 valid = isl_set_lower_bound_si(valid, isl_dim_param, i, 0);
1444 valid = isl_set_upper_bound_si(valid, isl_dim_param, i, 1);
1447 isl_space_free(space);
1449 dep = isl_map_gist_params(dep, valid);
1451 return dep;
1454 /* Simplify the constraints on the parameters introduced
1455 * in add_parametrization().
1456 * We first add __last_*_i iterators that are only implicitly referred
1457 * to through the __last_*_shared parameters.
1458 * Then, we remove all those parameters that turn out not be needed.
1459 * If there are any of those parameters left, then we compute the gist
1460 * with respect to the valid bit being either 0 or 1 and rename
1461 * the parameters to also include a reference to the sink.
1462 * The resulting relation is assigned to controlled_relation,
1463 * while the relation field is assigned the result of projecting out
1464 * all those parameters.
1466 static __isl_give isl_map *simplify_controls(__isl_take isl_map *dep,
1467 add_dep_info *info, bool *has_controls)
1469 bool hs;
1471 if (!has_controls)
1472 has_controls = &hs;
1473 dep = refine_shared(dep, info);
1474 dep = remove_redundant_controls(dep, has_controls);
1475 if (*has_controls) {
1476 dep = gist_valid(dep);
1477 dep = rename_controls(dep, info->read_na_pair);
1480 return dep;
1483 /* Extract a single dependence from the result of dataflow analysis.
1485 * We first simplify the constraints on the parameters introduced
1486 * in add_parametrization().
1488 * If the dependence relation turns out to be empty, we simply return.
1489 * Otherwise, we create a corresponding pdg::dependence and keep track
1490 * of the fact that the potential source is actually used
1491 * so that we can remove any reference to potential sources that are
1492 * never used from the dependence relations.
1494 static int add_dep(__isl_take isl_map *dep, int must, void *dep_user, void *user)
1496 bool has_controls;
1497 na_pair *write_na = (na_pair *) dep_user;
1498 add_dep_info *info = (struct add_dep_info *)user;
1499 isl_ctx *ctx = info->pdg->get_isl_ctx();
1500 pdg::dependence *d;
1502 dep = isl_map_coalesce(dep);
1503 dep = simplify_controls(dep, info, &has_controls);
1504 if (isl_map_is_empty(dep)) {
1505 isl_map_free(dep);
1506 return 0;
1509 info->used.insert(write_na);
1511 d = new pdg::dependence;
1512 d->array = info->a;
1513 d->type = info->dtype;
1514 d->from = write_na->node;
1515 d->to = info->read_na_pair->node;
1516 d->from_access = write_na->access;
1517 d->to_access = info->read_na_pair->access;
1519 if (d->from_access->extension || d->to_access->extension)
1520 d->extended_relation =
1521 new pdg::IslMap(remove_all_controls(isl_map_copy(dep)));
1522 if (d->from_access->extension)
1523 dep = isl_map_apply_domain(dep,
1524 isl_map_reverse(
1525 d->from_access->extension->get_isl_map(ctx)));
1526 if (d->to_access->extension)
1527 dep = isl_map_apply_range(dep,
1528 isl_map_reverse(
1529 d->to_access->extension->get_isl_map(ctx)));
1530 if (has_controls)
1531 d->controlled_relation = new pdg::IslMap(isl_map_copy(dep));
1532 d->relation = new pdg::IslMap(remove_all_controls(isl_map_copy(dep)));
1533 info->pdg->dependences.push_back(d);
1534 isl_map_free(dep);
1535 return 0;
1538 /* This structure represents a set of filter index expressions
1539 * along with bounds on the correponding filter values.
1540 * The number of output dimensions in "value" is the same as
1541 * the number of elements in the "index" vector.
1543 struct da_filter {
1544 std::vector<isl_union_map *> index;
1545 isl_map *value;
1548 /* Construct a da_filter object representing the filters in
1549 * na->node and na->access.
1551 static struct da_filter *extract_filter(na_pair *na)
1553 da_filter *filter = new da_filter;
1554 isl_set *domain;
1555 pdg::node *node = na->node;
1556 pdg::access *access = na->access;
1558 domain = node->source->get_isl_set();
1559 if (isl_set_is_wrapping(domain))
1560 filter->value = isl_set_unwrap(domain);
1561 else
1562 filter->value = isl_map_from_domain(domain);
1564 for (int i = 0; i < node->filters.size(); ++i)
1565 filter->index.push_back(extract_access_map(node->filters[i]));
1567 if (access->nested.size() == 0)
1568 return filter;
1570 domain = isl_map_domain(access->map->get_isl_map());
1571 filter->value = isl_map_flat_range_product(filter->value,
1572 isl_set_unwrap(domain));
1574 for (int i = 0; i < access->nested.size(); ++i)
1575 filter->index.push_back(extract_access_map(access->nested[i]));
1577 return filter;
1580 static struct da_filter *da_filter_free(struct da_filter *filter)
1582 if (!filter)
1583 return NULL;
1584 for (int i = 0; i < filter->index.size(); ++i)
1585 isl_union_map_free(filter->index[i]);
1586 isl_map_free(filter->value);
1587 delete filter;
1588 return NULL;
1591 static void da_filter_dump(struct da_filter *filter)
1593 isl_printer *p;
1595 if (!filter)
1596 return;
1598 p = isl_printer_to_file(isl_map_get_ctx(filter->value), stderr);
1599 p = isl_printer_start_line(p);
1600 p = isl_printer_print_str(p, "value(");
1601 for (int i = 0; i < filter->index.size(); ++i) {
1602 if (i)
1603 p = isl_printer_print_str(p, ", ");
1604 p = isl_printer_print_union_map(p, filter->index[i]);
1606 p = isl_printer_print_str(p, ") in ");
1607 p = isl_printer_print_map(p, filter->value);
1608 p = isl_printer_end_line(p);
1610 isl_printer_free(p);
1613 /* Look for a filter index expression in "filter" that is identical
1614 * to "index". Return the index of this index expression if it is
1615 * found and the number of elements in filter->index otherwise.
1617 static int da_filter_find_exact_match(struct da_filter *filter,
1618 __isl_keep isl_union_map *index)
1620 for (int i = 0; i < filter->index.size(); ++i) {
1621 int equal;
1623 equal = isl_union_map_is_equal(filter->index[i], index);
1624 if (equal < 0)
1625 return -1;
1626 if (equal)
1627 return i;
1630 return filter->index.size();
1633 /* Add the index expression "index" to "filter" with an unconstrained
1634 * filter value. To ease debugging we set the name of the new filter
1635 * value dimension to that of the array being accessed by "index".
1636 * Although the range of "index" is allowed to live in more than
1637 * one space, we assume that they are all wrapped maps to the same
1638 * array space.
1640 static struct da_filter *da_filter_add(struct da_filter *filter,
1641 __isl_take isl_union_map *index)
1643 isl_id *id;
1644 isl_union_map *univ;
1645 isl_set *set;
1647 if (!filter || !index)
1648 goto error;
1650 filter->value = isl_map_add_dims(filter->value, isl_dim_out, 1);
1651 univ = isl_union_map_universe(isl_union_map_copy(index));
1652 univ = isl_union_set_unwrap(isl_union_map_range(univ));
1653 set = isl_set_from_union_set(isl_union_map_range(univ));
1654 id = isl_set_get_tuple_id(set);
1655 isl_set_free(set);
1656 filter->value = isl_map_set_dim_id(filter->value, isl_dim_out,
1657 filter->index.size(), id);
1658 if (!filter->value)
1659 goto error;
1660 filter->index.push_back(index);
1662 return filter;
1663 error:
1664 isl_union_map_free(index);
1665 da_filter_free(filter);
1666 return NULL;
1669 /* Intersect the set of possible filter values in "filter" with "value".
1671 static struct da_filter *da_filter_restrict(struct da_filter *filter,
1672 __isl_take isl_map *value)
1674 if (!filter || !value)
1675 goto error;
1677 filter->value = isl_map_intersect(filter->value, value);
1678 if (!filter->value)
1679 return da_filter_free(filter);
1681 return filter;
1682 error:
1683 isl_map_free(value);
1684 da_filter_free(filter);
1685 return NULL;
1688 /* Does "map" represent a total filter on "domain", i.e., one that is defined
1689 * on every element of "domain"?
1691 * Although the range of "map" may live in different spaces, we assume
1692 * that the domain of "map" lives in a single space.
1694 static int is_total_filter(__isl_keep isl_union_map *map,
1695 __isl_keep isl_set *domain)
1697 isl_union_set *map_domain;
1698 isl_set *set;
1699 int total;
1701 map_domain = isl_union_map_domain(isl_union_map_copy(map));
1702 set = isl_set_from_union_set(map_domain);
1703 total = isl_set_is_subset(domain, set);
1704 isl_set_free(set);
1706 return total;
1709 /* Does "node" have only total filters on "domain"?
1711 static int all_total_filters(pdg::node *node, __isl_take isl_set *domain)
1713 int total = 1;
1715 for (int i = 0; i < node->filters.size(); ++i) {
1716 isl_union_map *map = extract_access_map(node->filters[i]);
1718 total = is_total_filter(map, domain);
1719 isl_union_map_free(map);
1721 if (!total)
1722 break;
1725 isl_set_free(domain);
1726 return total;
1729 /* Does "node" have only total filters on the domain of "map"?
1731 static bool filters_total_on_domain(pdg::node *node, __isl_keep isl_map *map)
1733 return all_total_filters(node, isl_map_domain(isl_map_copy(map)));
1736 /* Does "node" have only total filters on the range of "map"?
1738 static bool filters_total_on_range(pdg::node *node, __isl_keep isl_map *map)
1740 return all_total_filters(node, isl_map_range(isl_map_copy(map)));
1743 /* Are the filters of "source_node" total on the range of "source_map"
1744 * and those of "sink_node" (if any) total on the domain of "soruce_map"?
1746 static bool total_filters(pdg::node *source_node, pdg::node *sink_node,
1747 __isl_keep isl_map *source_map)
1749 int total;
1751 total = filters_total_on_range(source_node, source_map);
1752 if (!total)
1753 return false;
1755 if (!isl_set_is_wrapping(sink_node->source->set))
1756 return true;
1758 total = filters_total_on_domain(sink_node, source_map);
1759 if (!total)
1760 return false;
1762 return true;
1765 /* Does "node" have any single valued filters?
1767 static int any_single_valued_filter(pdg::node *node)
1769 for (int i = 0; i < node->filters.size(); ++i) {
1770 isl_union_map *map = extract_access_map(node->filters[i]);
1771 int sv;
1773 sv = isl_union_map_is_single_valued(map);
1774 isl_union_map_free(map);
1776 if (sv)
1777 return sv;
1780 return 0;
1783 /* Construct a mapping from the source iterations to all source filter values
1784 * that allow some corresponding sink iteration(s) (according to "source_map")
1785 * to be executed. In other words, if any sink iteration is executed,
1786 * then we know that the filters of the corresponding source iterations
1787 * satisfy the returned relation.
1789 * The "filter" input represents what is known about the filter
1790 * values at the sink.
1792 * The "source" domain of the source is a wrapped map,
1793 * mapping iteration vectors to filter values.
1794 * We first construct a relation between the sink filter values (available
1795 * in "filter") and the source filter values. The purpose of this relation
1796 * is to find as much information about the source filter values
1797 * as possible. We can start with the value bounds on the arrays
1798 * accessed in the filters as they always hold.
1799 * Next, we loop over the source filters and check whether there
1800 * is any sink filter that covers the source filter.
1801 * In particular, for each source filter, we construct a map
1802 * from the source iteration domain to a wrapped access relation,
1803 * representing the write access relation that corresponds to
1804 * the filter read access. Note that if we were unable to determine this
1805 * write access, then the mapping returned by extract_access_map
1806 * maps to the original read access, which will not match with
1807 * any filter access relations of the sink.
1808 * We combine the constructed map with the proto-dependence
1809 * (source_map) to obtain a mapping from sink iterations to
1810 * access relations such that there is some source iteration that
1811 * may be the source of the given sink iteration (based on source_map)
1812 * and that the filter value at this source iteration was written by
1813 * that access. If the result is a subset of the mapping from the
1814 * sink iterations to the corresponding write access relation for some filter,
1815 * then we know that any constraint on this filter value also applies
1816 * to the source filter value. We therefore introduce an equality
1817 * in our mapping from sink filter values to source filter values.
1819 * When we apply the mapping from sink filter values to source filter values
1820 * to the mapping from source iterations to sink filter values, we
1821 * obtain a mapping from sink iterations to source filter values
1822 * that represents what we know about the source filter values.
1823 * That is, for each sink iteration in the domain of this map, if this
1824 * sink iteration is executed, then the actual source filter values
1825 * are an element of the image of the sink iteration.
1826 * In other words, the sink iteration is only executed if the source
1827 * filter values are an element of the image.
1828 * Mapping this relation back to the source through the proto-dependence
1829 * source_map, we obtain a relation from source iterations to all source
1830 * filter values for which any sink iteration is executed.
1831 * In particular, for values of the filters outside this relation,
1832 * no corresponding (according to source_map) sink is executed.
1834 static __isl_give isl_map *known_filter_values(struct da_filter *filter,
1835 na_pair *source_na, __isl_keep isl_map *source_map)
1837 isl_space *space, *space2;
1838 isl_map *source_value, *sink_value;
1839 isl_map *filter_map;
1840 isl_set *bounds;
1842 sink_value = isl_map_copy(filter->value);
1844 space = isl_set_get_space(source_na->node->source->set);
1845 space = isl_space_range(isl_space_unwrap(space));
1846 space2 = isl_space_range(isl_map_get_space(sink_value));
1847 space = isl_space_align_params(space, isl_space_copy(space2));
1848 space2 = isl_space_align_params(space2, isl_space_copy(space));
1849 space = isl_space_map_from_domain_and_range(space2, space);
1850 filter_map = isl_map_universe(space);
1852 bounds = compute_filter_bounds(source_na->node);
1853 filter_map = isl_map_intersect_range(filter_map, bounds);
1855 for (int i = 0; i < source_na->node->filters.size(); ++i) {
1856 isl_union_map *map_i;
1857 map_i = extract_access_map(source_na->node->filters[i]);
1858 map_i = isl_union_map_apply_range(
1859 isl_union_map_from_map(isl_map_copy(source_map)), map_i);
1860 for (int j = 0; j < filter->index.size(); ++j) {
1861 if (isl_union_map_is_subset(map_i, filter->index[j]))
1862 filter_map = isl_map_equate(filter_map,
1863 isl_dim_in, j, isl_dim_out, i);
1865 isl_union_map_free(map_i);
1868 source_value = isl_map_apply_range(sink_value, filter_map);
1869 source_value = isl_map_apply_domain(source_value,
1870 isl_map_copy(source_map));
1871 source_value = isl_map_coalesce(source_value);
1873 return source_value;
1876 /* Add a new output dimension to "map" with constraints that are the
1877 * same as those on output dimension "pos".
1879 * Given map { [i] -> [j] }, we first and an extra dimension,
1881 * { [i] -> [j,*] }
1883 * extract out j_pos,
1885 * { [[i] -> [j_0,...,j_{pos-1},*,j_{pos+1},...,*]] -> [j_pos] }
1887 * create a copy
1889 * { [[i] -> [j_0,...,j_{pos-1},*,j_{pos+1},...,*]] -> [j_pos,j_pos'] }
1891 * and then move the dimensions back
1893 * { [i] -> [j,j_pos'] }
1895 static __isl_give isl_map *copy_dim(__isl_take isl_map *map, int pos)
1897 int pos_new;
1899 pos_new = isl_map_dim(map, isl_dim_out);
1900 pos += isl_map_dim(map, isl_dim_in);
1901 pos_new += isl_map_dim(map, isl_dim_in);
1902 map = isl_map_add_dims(map, isl_dim_out, 1);
1903 map = isl_map_from_domain(isl_map_wrap(map));
1904 map = isl_map_add_dims(map, isl_dim_out, 1);
1905 map = isl_map_equate(map, isl_dim_in, pos, isl_dim_out, 0);
1906 map = isl_map_eliminate(map, isl_dim_in, pos, 1);
1907 map = isl_map_range_product(map, isl_map_copy(map));
1908 map = isl_map_equate(map, isl_dim_in, pos, isl_dim_out, 0);
1909 map = isl_map_equate(map, isl_dim_in, pos_new, isl_dim_out, 1);
1910 map = isl_set_unwrap(isl_map_domain(map));
1912 return map;
1915 /* Given constraints on the filter values "filter" at the sink iterations
1916 * "sink", derive additional constraints from the filter values of source
1917 * node "source_na". In particular, consider the iterations of "source_na"
1918 * that have _not_ been executed based on the constraints of the corresponding
1919 * last iteration parameters in "sink" and what this implies about the
1920 * filter values at those iterations.
1922 * Essentially, we consider all pairs of sink iterations and filter
1923 * elements, together with the corresponding non-executed source iterations
1924 * and the possible values of those filters. We universally quantify
1925 * the non-executed source iterations so that we obtain the intersection
1926 * of the constraints on the filter values over all those source iterations
1927 * and then existentially quantify the filter elements to obtain constraints
1928 * that are valid for all filter elements.
1930 * In more details, the computation is performed as follows.
1932 * Compute a mapping from potential last iterations of the other source
1933 * to sink iterations, taking into account the contraints on
1934 * the last executed iterations encoded in the parameters of "sink",
1935 * but projecting out all parameters encoding last iterations from the result.
1936 * Include all earlier iterations of the other source, resulting in
1937 * a mapping with a domain that includes all potential iterations of the
1938 * other source.
1940 * Subtract these iterations from all possible iterations of the other
1941 * source for a given sink iteration, resulting in a mapping from
1942 * potential source iterations that are definitely not executed
1943 * to the corresponding sink iteration.
1945 * If this map is empty, then this means we can't find any iterations
1946 * of the other source that are certainly not executed and then we
1947 * can't derive any further information.
1948 * Similarly, if the filters of source_na->node are not total
1949 * on the set of non-executed iterations, then we cannot draw any conclusions.
1950 * (Note that we already tested that the filters on sink->node are total
1951 * on the domain of "source_map". By intersecting the set of corresponding
1952 * sink iterations with this domain, we ensure that this property also holds
1953 * on those sink iterations.)
1954 * Otherwise, keep track of those sink iterations without any corresponding
1955 * non-executed other source iterations. We will lose these sink iterations
1956 * in subsequent computations, so we need to add them back in at the end.
1958 * Compute bounds on the filter values at the non executed iterations
1959 * based on what we know about filters at the sink and the fact that
1960 * the iterations are not executed, meaning that the filter values
1961 * do not satisfy the constraints that allow the iteration to be executed.
1962 * The result is a mapping T -> V.
1964 * Note that we only know that there is some accessed filter element
1965 * that does not satisfy the constraints that allow the iteration to be
1966 * executed. We therefore project out those dimensions that correspond
1967 * to filters with an access relation that is not single-valued, i.e.,
1968 * one that may access more than one element for some iterations.
1969 * If there are no single-valued filters, then we can skip the rest of
1970 * the computation.
1972 * Construct a mapping [K -> F] -> T, with K the sink iterations,
1973 * T the corresponding non-executed iterations of the other source and
1974 * F the filters accessed at those iterations.
1976 * Combine the above two mappings into a mapping [K -> F] -> V
1977 * such that the set of possible filter values (V) is the intersection
1978 * over all iterations of the other source that access the filter,
1979 * and such that there is at least one such iteration.
1980 * In other words, ensure that the range of [K -> F] -> T
1981 * is a non-empty subset of the range of V -> T.
1982 * We require a non-empty subset to ensure that the domain of
1983 * [K -> F] -> V is equal to the result of composing K -> T with T -> F.
1984 * Projecting out F from [K -> F] -> V, we obtain a map K -> V that is
1985 * the union of all possible values of the filters K -> F, i.e.,
1986 * the constraints that the values of K -> F satisfy.
1987 * If we didn't impose non-emptiness above, then the domain of [K -> F] -> V
1988 * would also include pairs that we are not interested in, related to
1989 * arbitrary values. Projecting out F would then also lead to arbitrary
1990 * values.
1992 * Compose the mapping K -> T with the index expressions, pulling them
1993 * back to the sink.
1994 * For each of these pulled back index expressions, we check if it
1995 * is equal to one of the sink filter index expressions. If not, we
1996 * add it to the sink filter index expressions.
1997 * In both cases, we keep track of the fact that this sink filter
1998 * should have a value that satisfies the constraints in K -> V.
1999 * We further check if there is any sink filter index expression
2000 * that is a (strict) subset of the pulled back index expression.
2001 * The value of any such sink filter should also satisfy those
2002 * constraints, so we duplicate the filter value in K -> V.
2004 * Finally, we intersect the possible filter values with the constraints
2005 * obtained above on the affected sink iterations and a universe range
2006 * on the unaffected sink iterations.
2008 static struct da_filter *include_other_source(struct da_filter *filter,
2009 __isl_keep isl_map *source_map, __isl_keep isl_set *sink,
2010 na_pair *source_na, add_dep_info *info)
2012 isl_space *space, *space2;
2013 isl_set *source_domain;
2014 isl_map *mem;
2015 isl_map *may_run, *not_run;
2016 isl_map *source_value;
2017 isl_union_map *usource, *umap;
2018 std::vector<isl_union_map *> index;
2019 isl_union_map *index_product;
2020 isl_map *map;
2021 isl_map *filter_map;
2022 isl_set *unaffected_sink;
2023 isl_map *unaffected_value;
2025 if (source_na->node->filters.size() == 0)
2026 return filter;
2028 space = isl_set_get_space(source_na->node->source->set);
2029 space = isl_space_domain(isl_space_unwrap(space));
2030 source_domain = isl_set_universe(space);
2031 source_domain = add_parametrization(source_domain, source_na, info);
2032 may_run = isl_map_from_domain_and_range(source_domain,
2033 isl_set_copy(sink));
2034 may_run = share(may_run, info->n_shared);
2036 may_run = remove_all_controls(may_run);
2037 mem = info->get_mem_dep(source_na);
2038 mem = share(mem, info->n_shared);
2039 mem = isl_map_intersect_range(mem,
2040 isl_map_domain(remove_all_controls(isl_map_copy(source_map))));
2041 space = isl_space_domain(isl_map_get_space(may_run));
2042 may_run = isl_map_apply_domain(may_run, isl_map_lex_ge(space));
2043 not_run = isl_map_subtract(mem, may_run);
2045 if (isl_map_is_empty(not_run) ||
2046 !any_single_valued_filter(source_na->node) ||
2047 !filters_total_on_domain(source_na->node, not_run)) {
2048 isl_map_free(not_run);
2049 return filter;
2052 not_run = isl_map_reverse(not_run);
2053 source_value = known_filter_values(filter, source_na, not_run);
2054 source_value = isl_map_subtract(source_value,
2055 isl_set_unwrap(source_na->node->source->get_isl_set()));
2056 unaffected_sink = isl_set_copy(sink);
2057 unaffected_sink = remove_all_controls(unaffected_sink);
2058 unaffected_sink = isl_set_subtract(unaffected_sink,
2059 isl_map_domain(isl_map_copy(not_run)));
2061 for (int i = 0; i < source_na->node->filters.size(); ++i) {
2062 isl_union_map *map;
2063 int sv;
2065 map = extract_access_map(source_na->node->filters[i]);
2066 sv = isl_union_map_is_single_valued(map);
2067 if (sv) {
2068 index.push_back(map);
2069 } else {
2070 isl_union_map_free(map);
2071 source_value = isl_map_project_out(source_value,
2072 isl_dim_out, index.size(), 1);
2076 index_product = isl_union_map_copy(index[0]);
2077 for (int i = 1; i < index.size(); ++i)
2078 index_product = isl_union_map_range_product(index_product,
2079 isl_union_map_copy(index[1]));
2080 index_product = isl_union_map_reverse(index_product);
2081 index_product = isl_union_map_domain_product(
2082 isl_union_map_from_map(isl_map_copy(not_run)), index_product);
2084 usource = isl_union_map_from_map(source_value);
2085 usource = join_non_empty_subset(index_product, usource);
2086 umap = isl_union_map_universe(isl_union_map_copy(usource));
2087 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
2088 umap = isl_union_map_domain_map(umap);
2089 usource = isl_union_map_apply_domain(usource, umap);
2090 source_value = isl_map_from_union_map(usource);
2092 for (int i = 0; i < index.size(); ++i)
2093 index[i] = isl_union_map_apply_range(
2094 isl_union_map_from_map(isl_map_copy(not_run)), index[i]);
2096 space = isl_space_range(isl_map_get_space(source_value));
2097 space2 = isl_space_range(isl_map_get_space(filter->value));
2098 space = isl_space_align_params(space, isl_space_copy(space2));
2099 space2 = isl_space_align_params(space2, isl_space_copy(space));
2100 space = isl_space_map_from_domain_and_range(space, space2);
2101 filter_map = isl_map_universe(space);
2103 for (int i = 0; i < index.size(); ++i) {
2104 int exact = da_filter_find_exact_match(filter, index[i]);
2105 assert(exact >= 0);
2106 if (exact == filter->index.size()) {
2107 filter = da_filter_add(filter,
2108 isl_union_map_copy(index[i]));
2109 filter_map = isl_map_add_dims(filter_map,
2110 isl_dim_out, 1);
2112 filter_map = isl_map_equate(filter_map, isl_dim_in, i,
2113 isl_dim_out, exact);
2114 for (int j = 0; j < filter->index.size(); ++j) {
2115 int pos;
2117 if (j == exact)
2118 continue;
2119 if (!isl_union_map_is_subset(filter->index[j],
2120 index[i]))
2121 continue;
2122 pos = isl_map_dim(source_value, isl_dim_out);
2123 source_value = copy_dim(source_value, i);
2124 filter_map = isl_map_add_dims(filter_map,
2125 isl_dim_in, 1);
2126 filter_map = isl_map_equate(filter_map, isl_dim_in, pos,
2127 isl_dim_out, j);
2131 source_value = isl_map_apply_range(source_value, filter_map);
2132 source_value = isl_map_coalesce(source_value);
2133 unaffected_value = isl_map_from_domain(unaffected_sink);
2134 unaffected_value = isl_map_add_dims(unaffected_value, isl_dim_out,
2135 filter->index.size());
2136 source_value = isl_map_union(source_value, unaffected_value);
2137 filter = da_filter_restrict(filter, source_value);
2139 for (int i = 0; i < index.size(); ++i)
2140 isl_union_map_free(index[i]);
2141 isl_map_free(not_run);
2143 return filter;
2146 /* Given constraints on the filter values "filter" at the sink iterations
2147 * "sink", derive additional constraints from the filter values of those
2148 * source nodes for which "sink" contains a reference to its last iteration,
2149 * for use in determining whether parametrization is needed on "source_map".
2150 * In particular, we try and derive extra information from the fact that
2151 * some iterations of those source nodes have _not_ been executed.
2153 static struct da_filter *include_other_sources(struct da_filter *filter,
2154 __isl_keep isl_map *source_map, __isl_keep isl_set *sink,
2155 add_dep_info *info)
2157 isl_space *space;
2158 int n_param;
2160 space = isl_set_get_space(sink);
2161 n_param = isl_space_dim(space, isl_dim_param);
2162 for (int i = 0; i < n_param; ++i) {
2163 isl_id *id;
2164 na_pair *na;
2166 if (!is_shared(space, i))
2167 continue;
2169 id = isl_space_get_dim_id(space, isl_dim_param, i);
2170 na = (na_pair *) isl_id_get_user(id);
2171 isl_id_free(id);
2173 filter = include_other_source(filter, source_map, sink,
2174 na, info);
2176 isl_space_free(space);
2178 return filter;
2181 #define RESTRICT_ERROR -1
2182 #define RESTRICT_NO 0
2183 #define RESTRICT_EMPTY 1
2184 #define RESTRICT_INPUT 2
2185 #define RESTRICT_OUTPUT 3
2187 /* Given a map from sinks to potential sources (source_map)
2188 * and the set of sink iterations (sink),
2189 * check if any parametrization is needed on the sources.
2190 * That is, check whether the possible filter values at the sink
2191 * imply that the filter values at the source are always valid.
2192 * If so, the source is executed whenever the sink is executed
2193 * and no parametrization is required.
2195 * Return RESTRICT_NO if no parametrization is required.
2196 * Return RESTRICT_INPUT if parametrization is required on the input
2197 * of the computation of the last iteration.
2198 * Return RESTRICT_OUTPUT if parametrization is required on the output
2199 * of the computation of the last iteration. This means that we know
2200 * that the source will be executed, but we want to introduce a parameter
2201 * to represent the last iteration anyway, because the knowledge depends
2202 * on the parameters representing last iterations of other nodes.
2203 * Return RESTRICT_EMPTY if the potential sources cannot possibly
2204 * be executed, assuming that the sink is executed.
2206 * If there are no filters on the source, then obviously the source
2207 * is always executed.
2209 * If the filters of the sink and the source are not all total
2210 * on domain and range of "source_map", then we cannot draw any conclusion.
2211 * In principle, we could split up "source_map" according to whether
2212 * the filters would be total on the domain and range.
2214 * We first construct a mapping from source iterations to source filter
2215 * values that allow some corresponding sink iteration(s) (according to
2216 * "source_map") to be executed.
2217 * If this relation is a subset of the actual mapping from iteration
2218 * vectors to filter values at the source, then we know that a corresponding
2219 * sink is only executed when the source is executed and no parametrization
2220 * is required. However, we postpone the decision until we have considered
2221 * the other potential sources below.
2222 * If, on the other hand, the constructed relation is disjoint
2223 * from the source filter relation, then the sources cannot have
2224 * executed if the sink is executed. If so, we return
2225 * RESTRICT_EMPTY immediately.
2227 * Otherwise, we check if we can find out more information by considering
2228 * information derived from knowledge about the last iterations of other
2229 * nodes. If, by considering this extract information, we can find
2230 * that the potential source is never executed (given that the sink
2231 * is executed), then we return RESTRICT_EMPTY.
2232 * Otherwise, if we had already determined that the relation based
2233 * on only the sink is a subset of the filter values, then we return
2234 * RESTRICT_NO. If we can only draw this conclusion when taking into
2235 * account the other potential sources, then we return RESTRICT_OUTPUT.
2236 * Otherwise, we return RESTRICT_INPUT.
2238 static int need_parametrization(__isl_keep isl_map *source_map,
2239 __isl_keep isl_set *sink, na_pair *source_na, add_dep_info *info)
2241 bool filtered_source;
2242 isl_space *space;
2243 isl_map *source_value, *sink_value;
2244 da_filter *filter;
2245 na_pair *sink_na = info->read_na_pair;
2246 int res;
2248 if (isl_map_plain_is_empty(source_map) ||
2249 isl_set_plain_is_empty(sink))
2250 return RESTRICT_NO;
2252 filtered_source = isl_set_is_wrapping(source_na->node->source->set);
2254 if (!filtered_source)
2255 return RESTRICT_NO;
2257 if (!total_filters(source_na->node, sink_na->node, source_map))
2258 return RESTRICT_INPUT;
2260 filter = extract_filter(sink_na);
2261 res = -1;
2262 if (filter->index.size() != 0) {
2263 sink_value = known_filter_values(filter, source_na, source_map);
2264 source_value = isl_set_unwrap(
2265 source_na->node->source->get_isl_set());
2267 if (isl_map_is_disjoint(sink_value, source_value))
2268 res = RESTRICT_EMPTY;
2269 else if (isl_map_is_subset(sink_value, source_value))
2270 res = RESTRICT_NO;
2271 isl_map_free(source_value);
2272 isl_map_free(sink_value);
2275 if (res == RESTRICT_EMPTY) {
2276 da_filter_free(filter);
2277 return res;
2280 filter = include_other_sources(filter, source_map, sink, info);
2282 if (!filter)
2283 return RESTRICT_ERROR;
2284 if (filter->index.size() == 0) {
2285 da_filter_free(filter);
2286 return RESTRICT_INPUT;
2289 sink_value = known_filter_values(filter, source_na, source_map);
2290 source_value = isl_set_unwrap(source_na->node->source->get_isl_set());
2292 if (isl_map_is_disjoint(sink_value, source_value))
2293 res = RESTRICT_EMPTY;
2294 else if (res == RESTRICT_NO)
2296 else if (isl_map_is_subset(sink_value, source_value))
2297 res = RESTRICT_OUTPUT;
2298 else
2299 res = RESTRICT_INPUT;
2301 isl_map_free(source_value);
2302 isl_map_free(sink_value);
2303 da_filter_free(filter);
2305 return res;
2308 extern "C" {
2309 static __isl_give isl_restriction *do_restrict(
2310 __isl_keep isl_map *source_map, __isl_keep isl_set *sink,
2311 void *source_user, void *user);
2314 /* Add parameters corresponding to the last iteration of "na" to "set"
2315 * (assuming they don't already appear in "set")
2316 * and add constraints to them to express that there either is no
2317 * last iteration with info->n_shared shared loops
2318 * (__last_<na>_shared < info->n_shared) or that there is a last
2319 * iteration with at least info->n_shared shared loops
2320 * (__last_<na>_shared >= info->n_shared) and that the iteration is a possible
2321 * source of the current sink (based on the memory dependence between
2322 * the source and the sink).
2324 static __isl_give isl_set *set_parameter_bounds(__isl_take isl_set *set,
2325 na_pair *na, add_dep_info *info)
2327 isl_map *mem;
2328 isl_id *id;
2329 isl_set *valid;
2330 isl_set *invalid;
2331 isl_set *domain;
2332 int shared_pos;
2334 id = create_shared_id(isl_set_get_ctx(set), na);
2335 shared_pos = find_or_add_param(&set, id);
2337 valid = isl_set_copy(set);
2338 invalid = set;
2340 valid = isl_set_lower_bound_si(valid, isl_dim_param, shared_pos,
2341 info->n_shared);
2343 mem = info->get_mem_dep(na);
2344 domain = isl_set_universe(isl_space_domain(isl_map_get_space(mem)));
2345 domain = add_parametrization(domain, na, info);
2346 mem = isl_map_intersect_domain(mem, domain);
2347 valid = isl_set_intersect(valid, isl_map_range(mem));
2349 invalid = isl_set_upper_bound_si(invalid, isl_dim_param, shared_pos,
2350 info->n_shared - 1);
2352 return isl_set_union(valid, invalid);
2355 /* Check if there are any iterations of "source_na" in "source_map"
2356 * that are definitely executed, based solely on the possible filter values.
2357 * If so, add constraints to "sink" to indicate that the last execution
2358 * cannot be earlier than those definitely executed iterations.
2360 * We first compute the set of source iterations that are definitely
2361 * executed because there are no filter values that would prohibit
2362 * their execution. If there are no such source iterations then we are done.
2364 * Then we construct a map from sink iterations to associated (through
2365 * "source_map") definitely executed source iterations.
2367 * For those sink iterations that have a corresponding definitely
2368 * executed source iteration, we add constraints that express that
2369 * this last definitely executed source iteration is lexicographically
2370 * smaller than or equal to the last executed source iteration
2371 * (and that there definitely is a last executed source iteration).
2373 static __isl_give isl_set *mark_definite_source(__isl_take isl_set *sink,
2374 add_dep_info *info, na_pair *source_na, __isl_keep isl_map *source_map)
2376 isl_space *space;
2377 isl_set *dom;
2378 isl_map *invalid;
2379 isl_map *definite_source_map;
2380 isl_set *with_source;
2381 isl_map *map_after;
2382 int depth;
2384 dom = source_na->node->source->get_isl_set();
2385 dom = isl_map_domain(isl_set_unwrap(dom));
2386 invalid = compute_filter_values(source_na->node, true);
2387 dom = isl_set_subtract(dom, isl_map_domain(invalid));
2389 if (isl_set_is_empty(dom)) {
2390 isl_set_free(dom);
2391 return sink;
2394 space = isl_set_get_space(dom);
2396 definite_source_map = isl_map_copy(source_map);
2397 definite_source_map = isl_map_intersect_range(source_map, dom);
2399 dom = isl_map_domain(isl_map_copy(definite_source_map));
2401 with_source = isl_set_copy(sink);
2402 with_source = isl_set_intersect(with_source, isl_set_copy(dom));
2403 sink = isl_set_subtract(sink, dom);
2405 dom = isl_set_universe(isl_space_copy(space));
2406 dom = add_parametrization(dom, source_na, info);
2408 depth = source_na->node->get_filter_depth();
2410 space = isl_space_map_from_set(space);
2411 map_after = isl_map_lex_ge_first(space, depth);
2412 dom = isl_set_apply(dom, map_after);
2414 definite_source_map = isl_map_intersect_range(definite_source_map, dom);
2416 dom = isl_map_domain(definite_source_map);
2417 with_source = isl_set_intersect(with_source, dom);
2419 sink = isl_set_union(sink, with_source);
2421 return sink;
2424 /* Remove inconsistencies from the set of sink iterations "sink"
2425 * based on the current potential source "source_na" and other
2426 * potential sources referenced by "sink".
2428 * We first identify those iterations of "source_na" that are
2429 * definitely executed based solely on the possible filter values.
2431 * If the sink has filters, then we remove inconsistencies based
2432 * on the sink and the current potential source.
2434 * Finally, we go through the references to other potential sources
2435 * in "sink" and remove inconsistencies based on this other potential
2436 * source and the current potential source.
2438 static __isl_give isl_set *remove_inconsistencies(__isl_take isl_set *sink,
2439 add_dep_info *info, na_pair *source_na, __isl_keep isl_map *source_map)
2441 isl_space *space;
2442 isl_id *source_id;
2443 int n_param;
2445 source_id = create_shared_id(isl_map_get_ctx(source_map), source_na);
2447 sink = mark_definite_source(sink, info, source_na, source_map);
2449 if (isl_set_is_wrapping(info->read_na_pair->node->source->set))
2450 sink = remove_inconsistencies(sink, info, source_id);
2452 space = isl_set_get_space(sink);
2453 n_param = isl_space_dim(space, isl_dim_param);
2454 for (int i = 0; i < n_param; ++i) {
2455 isl_id *other_id;
2457 if (!is_shared(space, i))
2458 continue;
2459 other_id = isl_space_get_dim_id(space, isl_dim_param, i);
2461 if (other_id != source_id) {
2462 na_pair *other_na;
2464 other_na = (na_pair *) isl_id_get_user(other_id);
2465 sink = set_parameter_bounds(sink, other_na, info);
2466 sink = remove_inconsistencies(sink, info, other_id,
2467 source_id);
2470 isl_id_free(other_id);
2472 isl_space_free(space);
2474 isl_id_free(source_id);
2475 return sink;
2478 /* Compute a restriction for the given sink.
2479 * That is, add constraints to the parameters expressing
2480 * that the source is either not executed with info->n_shared shared
2481 * iterators (*_shared < info->n_shared)
2482 * or it is executed (*_shared >= info->n_shared) and then the last iteration
2483 * satisfies the corresponding memory based dependence.
2485 * Only do this for that part of "sink" that has any corresponding
2486 * sources in "source_map". The remaining part of "sink" is not affected.
2488 * Note that the "sink" set may have undergone a refinement based
2489 * on the _shared parameters and we want this refinement to also
2490 * be present in the sink restriction. We therefore need
2491 * to intersect the affected part with "sink".
2493 static __isl_give isl_set *compute_sink_restriction(
2494 __isl_keep isl_map *source_map, __isl_keep isl_set *sink,
2495 na_pair *source_na, add_dep_info *info)
2497 isl_set *with_source, *without_source;
2499 with_source = isl_map_domain(isl_map_copy(source_map));
2500 without_source = isl_set_subtract(isl_set_copy(sink),
2501 isl_set_copy(with_source));
2502 with_source = isl_set_intersect(with_source, isl_set_copy(sink));
2504 with_source = set_parameter_bounds(with_source, source_na, info);
2505 with_source = remove_inconsistencies(with_source, info, source_na,
2506 source_map);
2508 return isl_set_union(with_source, without_source);
2511 /* How many loops do "node1" and "node2" share?
2513 static int max_shared(pdg::node *node1, pdg::node *node2)
2515 int shared = 0;
2516 int size = node1->prefix.size();
2518 if (node2->prefix.size() < size)
2519 size = node2->prefix.size();
2521 for (int i = 0; i < size && node1->prefix[i] == node2->prefix[i]; ++i)
2522 if (node1->prefix[i] == -1)
2523 ++shared;
2525 return shared;
2528 /* Determine the number of shared loop iterators between sink
2529 * and source domains in "sink2source". That is, find out how
2530 * many of the initial input and output dimensions are equal
2531 * to each other. Return the result.
2533 * The first time this function is called for a given sink access
2534 * (info->n_shared is set to -1 in add_dep_info::set_read_na),
2535 * we check for equal dimensions up to the shared nesting depth.
2536 * Later call check dimensions up to the result of the previous call.
2538 static int extract_shared_levels(__isl_keep isl_map *sink2source,
2539 na_pair *source_na, add_dep_info *info)
2541 int i;
2542 int max;
2543 isl_space *space;
2545 max = info->n_shared;
2546 if (max < 0)
2547 max = max_shared(source_na->node, info->read_na_pair->node);
2549 if (max == 0)
2550 return info->n_shared = 0;
2552 space = isl_map_get_space(sink2source);
2553 for (i = 0; i < max; ++i) {
2554 isl_map *test;
2555 int subset;
2557 test = isl_map_universe(isl_space_copy(space));
2558 test = isl_map_equate(test, isl_dim_in, i, isl_dim_out, i);
2559 subset = isl_map_is_subset(sink2source, test);
2560 isl_map_free(test);
2562 if (!subset)
2563 break;
2565 isl_space_free(space);
2567 return i;
2570 /* The last iteration referred to by the sink may have been added
2571 * at a different nesting level. This means that __last_<na>_shared
2572 * is greater than or equal to a value greater than info->n_shared
2573 * and that therefore the iterators between info->n_shared and
2574 * __last_<na>_shared are not represented as they are implicitly
2575 * considered to be equal to the corresponding sink iterator.
2576 * For consistency, we need to explicitly add those iterators
2577 * and set them to be equal to the corresponding sink iterator.
2579 * In particular, we create a set in the space of the sink of the form
2581 * { s : __last_<na>_shared < info->n_shared or
2582 * (__last_<na>_<i> is a potential source iteration for s and
2583 * (__last_<na>_shared >= max_shared or
2584 * (__last_<na>_shared = max_shared - 1 and
2585 * the first max_shared - 1 iterators are equal and
2586 * iterator max_shared - 1 of the source is smaller) or
2587 * ...
2588 * (__last_<na>_shared = info->n_shared and
2589 * the first n_shared iterators are equal and
2590 * iterator n_shared of the source is smaller))) }
2592 * That is, for those parts with __last_<na>_shared smaller than
2593 * max_n_shared[source_na], intersection with the set will introduce
2594 * __last_<na>_<i> parameters (assuming they don't have a known fixed value)
2595 * up until __last_<na>_shared and equate them to the corresponding iterators
2596 * of the sink.
2598 static __isl_give isl_set *internal_shared_refinement(
2599 __isl_keep isl_id *shared_id, add_dep_info *info)
2601 isl_map *mem;
2602 na_pair *source_na;
2603 isl_set *domain;
2604 isl_map *shared_map;
2605 int shared_pos;
2606 isl_set *valid;
2607 isl_set *invalid;
2609 source_na = (na_pair *) isl_id_get_user(shared_id);
2611 mem = info->get_mem_dep(source_na);
2612 domain = isl_set_universe(isl_space_domain(isl_map_get_space(mem)));
2613 domain = add_parametrization(domain, source_na, info);
2614 mem = isl_map_intersect_domain(mem, domain);
2616 shared_map = compute_shared_map(isl_map_get_space(mem), shared_id,
2617 info->n_shared, info->max_n_shared[source_na]);
2619 mem = isl_map_intersect(mem, shared_map);
2621 valid = isl_map_range(mem);
2622 invalid = isl_set_universe(isl_set_get_space(valid));
2623 shared_pos = isl_set_find_dim_by_id(invalid, isl_dim_param, shared_id);
2624 invalid = isl_set_upper_bound_si(invalid, isl_dim_param, shared_pos,
2625 info->n_shared - 1);
2627 return isl_set_union(valid, invalid);
2630 /* The last iteration of some source referred to by the sink may have been
2631 * added at a different nesting level. This means that __last_*_shared
2632 * is greater than or equal to a value greater than info->n_shared
2633 * and that therefore the iterators between info->n_shared and
2634 * __last_*_shared are not represented as they are implicitly
2635 * considered to be equal to the corresponding sink iterator.
2636 * For consistency, we need to explicitly add those iterators
2637 * and set them to be equal to the corresponding sink iterator.
2639 * For each of the __last_*_shared parameters, explicitly add
2640 * the implicitly equal __last_*_i iterators by intersecting
2641 * the sink with the set computed by internal_shared_refinement.
2643 static __isl_give isl_set *refine_shared_internal(__isl_take isl_set *sink,
2644 add_dep_info *info)
2646 isl_space *space;
2647 isl_set *refinement;
2648 int n_param;
2650 space = isl_set_get_space(sink);
2651 refinement = isl_set_universe(isl_space_copy(space));
2653 n_param = isl_space_dim(space, isl_dim_param);
2654 for (int i = 0; i < n_param; ++i) {
2655 isl_set *ref_i;
2656 isl_id *id;
2658 if (!is_shared(space, i))
2659 continue;
2661 id = isl_space_get_dim_id(space, isl_dim_param, i);
2662 ref_i = internal_shared_refinement(id, info);
2663 isl_id_free(id);
2664 refinement = isl_set_intersect(refinement, ref_i);
2666 isl_space_free(space);
2668 sink = isl_set_intersect(sink, refinement);
2670 return sink;
2673 /* Given a map from sinks to potential sources (sink2source),
2674 * check if any parametrization is needed.
2675 * Depending on the result, return either a universe restriction,
2676 * an empty restriction (if the sources cannot have executed),
2677 * a restriction that parametrizes the source and the sink
2678 * of the input of the computation of the last source
2679 * or a restriction that parametrizes the source of the output.
2681 * sink_map maps the domain of sink2source to the sink iteration domain.
2682 * source_map maps the range of sink2source to the source iteration domain.
2684 * Before we check if we need any parametrization, we update the number of
2685 * shared loop levels and add possibly missing __last_*_i iterators
2686 * (in refine_shared_internal). If parametrization turns out to be required,
2687 * we also update the minimal number of shared loop levels for the given
2688 * source.
2690 static __isl_give isl_restriction *compute_restriction_core(
2691 __isl_keep isl_map *sink2source,
2692 __isl_take isl_map *sink_map, __isl_take isl_map *source_map,
2693 __isl_keep isl_set *sink, na_pair *source_na, add_dep_info *info)
2695 isl_space *space;
2696 isl_set *source_restr;
2697 isl_set *sink_restr;
2698 int need;
2700 sink2source = isl_map_copy(sink2source);
2701 sink = isl_set_copy(sink);
2703 sink2source = isl_map_apply_range(sink2source,
2704 isl_map_copy(source_map));
2705 sink2source = isl_map_apply_domain(sink2source,
2706 isl_map_copy(sink_map));
2707 sink = isl_set_apply(sink, isl_map_copy(sink_map));
2709 info->n_shared = extract_shared_levels(sink2source, source_na, info);
2710 sink = refine_shared_internal(sink, info);
2712 need = need_parametrization(sink2source, sink, source_na, info);
2713 if (need == RESTRICT_ERROR ||
2714 need == RESTRICT_NO || need == RESTRICT_EMPTY) {
2715 isl_map_free(source_map);
2716 isl_map_free(sink_map);
2717 isl_set_free(sink);
2718 if (need == RESTRICT_ERROR) {
2719 isl_map_free(sink2source);
2720 return NULL;
2721 } else if (need == RESTRICT_NO)
2722 return isl_restriction_none(sink2source);
2723 else
2724 return isl_restriction_empty(sink2source);
2727 info->update_min_n_shared(source_na);
2729 space = isl_map_get_space(source_map);
2730 source_restr = isl_set_universe(isl_space_range(space));
2732 source_restr = add_parametrization(source_restr, source_na, info);
2733 source_restr = isl_set_apply(source_restr, isl_map_reverse(source_map));
2735 if (need == RESTRICT_OUTPUT) {
2736 isl_map_free(sink_map);
2737 isl_set_free(sink);
2738 isl_map_free(sink2source);
2739 return isl_restriction_output(source_restr);
2742 sink_restr = compute_sink_restriction(sink2source, sink,
2743 source_na, info);
2744 sink_restr = isl_set_apply(sink_restr, isl_map_reverse(sink_map));
2746 isl_set_free(sink);
2747 isl_map_free(sink2source);
2749 return isl_restriction_input(source_restr, sink_restr);
2752 /* Compute a restriction for the given map from sinks to potential sources
2753 * (sink2source).
2755 * First check if the sink access has any filters. If so, compose the original
2756 * sink_map with a mapping that projects out these access filters.
2757 * Handle the source access similarly.
2758 * Then call compute_restriction_core to perform the main computation.
2760 static __isl_give isl_restriction *compute_restriction(
2761 __isl_keep isl_map *sink2source,
2762 __isl_take isl_map *sink_map, __isl_take isl_map *source_map,
2763 __isl_keep isl_set *sink, na_pair *source_na, add_dep_info *info)
2765 na_pair *sink_na = info->read_na_pair;
2767 if (sink_na->access->nested.size() > 0) {
2768 isl_space *space;
2769 isl_map *map;
2771 space = isl_space_range(isl_map_get_space(sink_map));
2772 space = isl_space_unwrap(space);
2773 map = isl_map_domain_map(isl_map_universe(space));
2775 sink_map = isl_map_apply_range(sink_map, map);
2778 if (source_na->access->nested.size() > 0) {
2779 isl_space *space;
2780 isl_map *map;
2782 space = isl_space_range(isl_map_get_space(source_map));
2783 space = isl_space_unwrap(space);
2784 map = isl_map_domain_map(isl_map_universe(space));
2786 source_map = isl_map_apply_range(source_map, map);
2789 return compute_restriction_core(sink2source, sink_map, source_map,
2790 sink, source_na, info);
2793 /* Compute a restriction for the given map from sinks to potential sources
2794 * (sink2source). We simply call compute_restriction to compute the
2795 * restriction. Since, unlike the case of do_restrict_domain_map bewloe,
2796 * we didn't encode the entire access relation in the domains of the input
2797 * to isl_access_info_compute_flow, we pass identity mappings on the source
2798 * and sink to compute_restriction.
2800 static __isl_give isl_restriction *do_restrict(__isl_keep isl_map *sink2source,
2801 __isl_keep isl_set *sink, void *source_user, void *user)
2803 na_pair *source_na = (na_pair *) source_user;
2804 add_dep_info *info = (struct add_dep_info *) user;
2805 isl_space *space;
2806 isl_map *source_map;
2807 isl_map *sink_map;
2809 space = isl_space_domain(isl_map_get_space(sink2source));
2810 sink_map = isl_map_identity(isl_space_map_from_set(space));
2811 space = isl_space_range(isl_map_get_space(sink2source));
2812 source_map = isl_map_identity(isl_space_map_from_set(space));
2814 return compute_restriction(sink2source, sink_map, source_map,
2815 sink, source_na, info);
2818 /* Does the iteration domain of any of the writes involve any filters?
2820 static bool any_filters(vector<na_pair> &writers)
2822 for (int i = 0; i < writers.size(); ++i)
2823 if (isl_set_is_wrapping(writers[i].node->source->set))
2824 return true;
2825 return false;
2828 /* Does any of the dependences starting at "first" have
2829 * controlled dependence relation?
2831 static bool any_controlled_dependences(PDG *pdg, int first)
2833 for (int i = first; i < pdg->dependences.size(); ++i)
2834 if (pdg->dependences[i]->controlled_relation)
2835 return true;
2837 return false;
2840 /* Remove parameters from "map" that start with "prefix".
2842 static __isl_give isl_map *remove_source(__isl_take isl_map *map,
2843 const char *prefix)
2845 int n = isl_map_dim(map, isl_dim_param);
2846 size_t len = strlen(prefix);
2848 for (int i = n - 1; i >= 0; --i) {
2849 const char *name;
2851 name = isl_map_get_dim_name(map, isl_dim_param, i);
2852 if (strncmp(name, prefix, len))
2853 continue;
2855 map = isl_map_project_out(map, isl_dim_param, i, 1);
2858 map = isl_map_coalesce(map);
2860 return map;
2863 /* Remove parameters from the dependences starting at "first"
2864 * that refer to any of the unused potential sources, i.e.,
2865 * those potential sources that are in writers, but not in info->used.
2867 * Since the current sink does not depend on those unused potential sources,
2868 * the corresponding dependence relations cannot depend on them and
2869 * any reference to them can simply be projected out.
2871 static void remove_unused_sources(PDG *pdg, int first,
2872 vector<na_pair> &writers, add_dep_info *info)
2874 char name[60];
2875 std::vector<na_pair *> unused;
2877 for (int i = 0; i < writers.size(); ++i) {
2878 if (info->used.find(&writers[i]) == info->used.end())
2879 unused.push_back(&writers[i]);
2882 if (unused.size() == 0)
2883 return;
2884 if (!any_controlled_dependences(pdg, first))
2885 return;
2887 for (int i = 0; i < unused.size(); ++i) {
2888 na_pair *na = unused[i];
2890 snprintf(name, sizeof(name), "__last_%s_%d_",
2891 na->node->name->s.c_str(), na->access->nr);
2893 for (int j = first; j < pdg->dependences.size(); ++j) {
2894 pdg::dependence *dep = pdg->dependences[j];
2895 isl_map *map;
2897 if (!dep->controlled_relation)
2898 continue;
2900 map = dep->controlled_relation->map;
2901 map = remove_source(map, name);
2902 dep->controlled_relation->map = map;
2907 /* Look for the unique write access that writes to the array accessed
2908 * by "a" and return an na_pair consisting of the node in which the
2909 * access is performed and the access itself.
2911 static na_pair find_unique_source(pdg::PDG* pdg, pdg::array *a)
2913 for (int i = 0; i < pdg->nodes.size(); ++i) {
2914 pdg::node *node = pdg->nodes[i];
2915 pdg::statement *s = pdg->nodes[i]->statement;
2916 for (int j = 0; j < s->accesses.size(); ++j) {
2917 pdg::access *access = s->accesses[j];
2918 if (access->array != a)
2919 continue;
2920 if (access->type != pdg::access::write)
2921 continue;
2922 return na_pair(node, access);
2926 assert(0);
2929 /* Add a dependence from (source_node, source_access) to
2930 * (sink_node, sink_access) to pdg->dependences, for the
2931 * case where the array being accessed is marked uniquely_defined.
2933 * Since the array is marked uniquely_defined, the value based
2934 * dependence is equal to the memory based dependence, so we
2935 * simply need to compose the access relations to obtain
2936 * the dependence relation.
2937 * This dependence relation is then specialized with respect to
2938 * the context and the iteration domain of the sink.
2940 static void add_unique_dep(PDG *pdg, pdg::node *source_node,
2941 pdg::access *source_access, pdg::node *sink_node,
2942 pdg::access *sink_access)
2944 pdg::dependence *d;
2945 isl_set *dom;
2946 isl_map *dep;
2947 isl_map *read;
2949 d = new pdg::dependence;
2950 d->array = source_access->array;
2951 d->type = pdg::dependence::flow;
2952 d->from = source_node;
2953 d->to = sink_node;
2954 d->from_access = source_access;
2955 d->to_access = sink_access;
2957 dep = source_access->map->get_isl_map();
2958 read = sink_access->map->get_isl_map();
2959 dep = isl_map_apply_range(dep, isl_map_reverse(read));
2960 dom = sink_node->source->get_isl_set();
2961 if (isl_set_is_wrapping(dom))
2962 dom = isl_map_domain(isl_set_unwrap(dom));
2963 dep = isl_map_intersect_range(dep, dom);
2964 dep = isl_map_intersect_params(dep, pdg->get_context_isl_set());
2965 d->relation = new pdg::IslMap(dep);
2967 pdg->dependences.push_back(d);
2970 /* Find the flow dependences associated to the array "a", which is marked
2971 * uniquely_defined, and add them to pdg->dependences.
2973 * First determine the unique source and then iterate through all the reads,
2974 * adding dependences from the unique source to each of the reads.
2976 static void find_unique_deps(PDG *pdg, pdg::array *a)
2978 na_pair na = find_unique_source(pdg, a);
2980 for (int i = 0; i < pdg->nodes.size(); ++i) {
2981 pdg::node *node = pdg->nodes[i];
2982 pdg::statement *s = pdg->nodes[i]->statement;
2983 for (int j = 0; j < s->accesses.size(); ++j) {
2984 pdg::access *access = s->accesses[j];
2985 if (access->array != a)
2986 continue;
2987 if (access->type != pdg::access::read)
2988 continue;
2989 add_unique_dep(pdg, na.node, na.access, node, access);
2994 /* Find the dependence of type "t" associated to array "a" and add them
2995 * to pdg->dependences.
2997 * If we are looking for flow dependences for an array that is marked
2998 * uniquely_defined, then we do not need to compute anything, but instead
2999 * can simply read off the dependences in find_unique_deps.
3001 void find_deps(PDG* pdg, pdg::array *a, type t)
3003 isl_ctx *ctx = pdg->get_isl_ctx();
3004 int nparam = pdg->params.size();
3005 int selfinput = 0;
3006 int reuse = 0;
3007 int firstuse = 0;
3008 add_dep_info info = { pdg, a, t };
3009 isl_set *context;
3010 bool need_parametrization;
3012 switch (t) {
3013 case flow:
3014 info.dtype = pdg::dependence::flow;
3015 firstuse = 1;
3016 break;
3017 case anti:
3018 info.dtype = pdg::dependence::anti;
3019 break;
3020 case data_reuse:
3021 info.dtype = pdg::dependence::reuse;
3022 reuse = 1;
3023 firstuse = 1;
3024 break;
3025 case reuse_pair:
3026 info.dtype = pdg::dependence::reuse_pair;
3027 break;
3028 case output:
3029 info.dtype = pdg::dependence::output;
3030 break;
3033 a->analysis_performed.push_back(new pdg::dependence_type(info.dtype));
3035 if (t == flow && a->uniquely_defined) {
3036 find_unique_deps(pdg, a);
3037 return;
3040 vector<na_pair> readers;
3041 vector<na_pair> writers;
3042 for (int i = 0; i < pdg->nodes.size(); ++i) {
3043 pdg::node *node = pdg->nodes[i];
3044 pdg::statement *s = pdg->nodes[i]->statement;
3045 for (int j = 0; j < s->accesses.size(); ++j) {
3046 pdg::access *access = s->accesses[j];
3047 if (access->array != a)
3048 continue;
3049 switch (t) {
3050 case flow:
3051 case data_reuse:
3052 case anti:
3053 if ((access->type == pdg::access::read) ^ (t == anti))
3054 readers.push_back(na_pair(node, access));
3055 else
3056 writers.push_back(na_pair(node, access));
3057 break;
3058 case output:
3059 if (access->type == pdg::access::read)
3060 continue;
3061 case reuse_pair:
3062 readers.push_back(na_pair(node, access));
3063 writers.push_back(na_pair(node, access));
3064 break;
3069 int maxsize = (selfinput || reuse) ? writers.size() + readers.size()
3070 : writers.size();
3071 context = pdg->get_context_isl_set();
3072 info.precedes_level = (isl_access_level_before)
3073 ((t == reuse_pair) ? precedes_level_accesses
3074 : precedes_level_nodes);
3075 need_parametrization = any_filters(writers);
3076 for (int i = 0; i < writers.size(); ++i) {
3077 writers[i].map = convert_access(&writers[i]);
3078 writers[i].project_out_access_filters();
3080 for (int i = 0; i < readers.size(); ++i) {
3081 readers[i].map = convert_access(&readers[i]);
3082 readers[i].map = isl_map_intersect_params(readers[i].map,
3083 isl_set_copy(context));
3084 readers[i].project_out_access_filters();
3086 for (int i = 0; i < readers.size(); ++i) {
3087 isl_access_info *acc;
3088 int n_dep = pdg->dependences.size();
3090 acc = isl_access_info_alloc(isl_map_copy(readers[i].map),
3091 &readers[i], info.precedes_level, maxsize);
3092 if (need_parametrization)
3093 acc = isl_access_info_set_restrict(acc, &do_restrict, &info);
3094 for (int j = 0; j < writers.size(); ++j)
3095 acc = isl_access_info_add_source(acc,
3096 isl_map_copy(writers[j].map), 1, &writers[j]);
3097 if (selfinput && writers.size()) {
3098 pdg::node *readnode = readers[i].node;
3099 for (int j = 0; j < readers.size(); ++j) {
3100 if (readers[j].node == readnode)
3101 acc = isl_access_info_add_source(acc,
3102 isl_map_copy(readers[j].map), 1, &readers[j]);
3105 if (reuse) {
3106 for (int j = 0; j < readers.size(); ++j)
3107 acc = isl_access_info_add_source(acc,
3108 isl_map_copy(readers[j].map), 1, &readers[j]);
3110 info.set_read_na(&readers[i]);
3111 isl_flow *deps = isl_access_info_compute_flow(acc);
3112 isl_flow_foreach(deps, add_dep, &info);
3113 isl_map *no_source;
3114 no_source = isl_flow_get_no_source(deps, 1);
3115 no_source = isl_map_from_range(isl_map_domain(no_source));
3116 no_source = simplify_controls(no_source, &info, NULL);
3117 if (!isl_map_fast_is_empty(no_source) && firstuse) {
3118 pdg::dependence *d = new pdg::dependence;
3119 d->array = a;
3120 d->type = pdg::dependence::uninitialized;
3121 d->to = readers[i].node;
3122 d->to_access = readers[i].access;
3123 if (d->to_access->extension) {
3124 d->extended_relation = new pdg::IslMap(isl_map_copy(no_source));
3125 no_source = isl_map_apply_range(no_source,
3126 isl_map_reverse(
3127 d->to_access->extension->get_isl_map(ctx)));
3129 d->relation = new pdg::IslMap(isl_map_copy(no_source));
3130 pdg->dependences.push_back(d);
3132 isl_map_free(no_source);
3133 isl_flow_free(deps);
3134 remove_unused_sources(pdg, n_dep, writers, &info);
3136 isl_set_free(context);
3139 /* Add a dependence from "write" to "a" to a->sources.
3141 static void add_unique_source(pdg::access *a, pdg::access *write)
3143 isl_map *dep;
3144 isl_map *read;
3146 dep = isl_map_range_map(write->map->get_isl_map());
3147 read = isl_map_range_map(a->map->get_isl_map());
3148 dep = isl_map_apply_range(dep, isl_map_reverse(read));
3150 a->sources.push_back(new pdg::IslMap(dep));
3153 /* Look for the unique write access that writes to the array accessed
3154 * by "a" and then add a dependence from that write to a->sources.
3156 static void add_unique_source(pdg::PDG* pdg, pdg::access *a)
3158 na_pair na = find_unique_source(pdg, a->array);
3159 add_unique_source(a, na.access);
3162 extern "C" {
3163 static int add_source(__isl_take isl_map *dep, int must, void *dep_user,
3164 void *user);
3167 /* Add "dep" to a->sources, provided it is exact, and return 0.
3168 * Otherwise, return -1.
3170 static int add_source(__isl_take isl_map *dep, int must, void *dep_user,
3171 void *user)
3173 bool has_controls;
3174 pdg::access *a = (pdg::access *) user;
3176 dep = remove_redundant_controls(dep, &has_controls);
3177 if (has_controls) {
3178 isl_map_free(dep);
3179 return -1;
3182 a->sources.push_back(new pdg::IslMap(dep));
3184 return 0;
3187 extern "C" {
3188 static __isl_give isl_restriction *do_restrict_domain_map(
3189 __isl_keep isl_map *source_map, __isl_keep isl_set *sink,
3190 void *source_user, void *user);
3193 /* Compute a restriction for the given map from sinks to potential sources
3194 * (sink2source). We simply call compute_restriction to compute the
3195 * restriction. This function is used from within find_sources,
3196 * which encodes the entire access relation into the domains of
3197 * the access relations passed to isl_access_info_compute_flow.
3198 * That is, the access relations passed to isl_access_info_compute_flow
3199 * are the result of applying isl_map_range_map to the original access
3200 * relations. We therefore pass mappings that undo this encoding
3201 * to compute_restriction.
3203 static __isl_give isl_restriction *do_restrict_domain_map(
3204 __isl_keep isl_map *source_map, __isl_keep isl_set *sink,
3205 void *source_user, void *user)
3207 na_pair *source_na = (na_pair *) source_user;
3208 add_dep_info *info = (struct add_dep_info *) user;
3209 isl_space *space;
3210 isl_map *source_domain_map, *sink_domain_map;
3212 space = isl_space_range(isl_map_get_space(source_map));
3213 space = isl_space_unwrap(space);
3214 source_domain_map = isl_map_domain_map(isl_map_universe(space));
3215 space = isl_space_domain(isl_map_get_space(source_map));
3216 space = isl_space_unwrap(space);
3217 sink_domain_map = isl_map_domain_map(isl_map_universe(space));
3219 return compute_restriction(source_map, sink_domain_map,
3220 source_domain_map, sink, source_na, info);
3223 /* Find the sources of (read) access "a" in node "node".
3224 * If they are complete (no uninitialized accesses) and exact,
3225 * then put them in a->sources. Otherwise, discard them.
3227 * If the array is marked uniquely_defined, then we simply look
3228 * for the defining write in find_unique_source.
3230 * Otherwise, we look for all writes that write to the same array,
3231 * perform dependence analysis and then check whether
3232 * the result is complete and exact.
3234 * The sources record not only the node iteration, but also
3235 * the index of the array element. We therefore apply
3236 * isl_map_range_map to the access relations, to obtain
3237 * a relation from the access (iteration -> element)
3238 * to the array element and feed that to the dependence analysis engine.
3240 void find_sources(pdg::PDG* pdg, pdg::node *node, pdg::access *a)
3242 isl_set *context;
3243 isl_map *no_source;
3244 isl_access_info *acc;
3245 isl_flow *deps;
3246 vector<na_pair> writers;
3247 na_pair reader(node, a);
3248 add_dep_info info = { pdg, a->array, flow, pdg::dependence::flow };
3250 if (a->array->uniquely_defined) {
3251 add_unique_source(pdg, a);
3252 return;
3255 info.precedes_level = (isl_access_level_before) precedes_level_nodes;
3257 for (int i = 0; i < pdg->nodes.size(); ++i) {
3258 pdg::node *node = pdg->nodes[i];
3259 pdg::statement *s = pdg->nodes[i]->statement;
3260 for (int j = 0; j < s->accesses.size(); ++j) {
3261 pdg::access *access = s->accesses[j];
3262 if (access->array != a->array)
3263 continue;
3264 if (access->type != pdg::access::write)
3265 continue;
3266 writers.push_back(na_pair(node, access));
3270 context = pdg->get_context_isl_set();
3271 for (int i = 0; i < writers.size(); ++i) {
3272 writers[i].projected_map = convert_access(&writers[i]);
3273 writers[i].map = isl_map_copy(writers[i].projected_map);
3274 writers[i].map = isl_map_range_map(writers[i].map);
3275 writers[i].project_out_access_filters();
3277 reader.projected_map = convert_access(&reader);
3278 reader.projected_map = isl_map_intersect_params(reader.projected_map,
3279 context);
3280 reader.map = isl_map_range_map(isl_map_copy(reader.projected_map));
3281 reader.project_out_access_filters();
3283 acc = isl_access_info_alloc(isl_map_copy(reader.map),
3284 &reader, info.precedes_level, writers.size());
3285 for (int j = 0; j < writers.size(); ++j)
3286 acc = isl_access_info_add_source(acc,
3287 isl_map_copy(writers[j].map), 1, &writers[j]);
3289 if (any_filters(writers))
3290 acc = isl_access_info_set_restrict(acc,
3291 &do_restrict_domain_map, &info);
3293 info.set_read_na(&reader);
3294 deps = isl_access_info_compute_flow(acc);
3295 no_source = isl_flow_get_no_source(deps, 1);
3296 if (isl_map_plain_is_empty(no_source)) {
3297 if (isl_flow_foreach(deps, add_source, a) < 0) {
3298 for (int i = 0; i < a->sources.size(); ++i)
3299 delete a->sources[i];
3300 a->sources.resize(0);
3303 isl_map_free(no_source);
3304 isl_flow_free(deps);
3307 /* Find the source (if possible) of the filter "coa" in node "node".
3308 * We assume that the filter is an access rather than a function call.
3310 static void find_sources(pdg::PDG *pdg, pdg::node *node,
3311 pdg::call_or_access *coa)
3313 pdg::access *access;
3315 assert(coa->type == pdg::call_or_access::t_access);
3316 access = coa->access;
3318 find_sources(pdg, node, access);
3321 /* Compute the sources (if possible) for all the filters in all the
3322 * nodes and accesses in "pdg".
3324 void compute_filter_sources(pdg::PDG *pdg)
3326 for (int i = 0; i < pdg->nodes.size(); ++i) {
3327 pdg::node *node = pdg->nodes[i];
3328 pdg::statement *s = pdg->nodes[i]->statement;
3329 int n_filter = node->filters.size();
3331 for (int j = 0; j < n_filter; ++j)
3332 find_sources(pdg, node, node->filters[j]);
3334 for (int j = 0; j < s->accesses.size(); ++j) {
3335 pdg::access *access = s->accesses[j];
3337 for (int k = 0; k < access->nested.size(); ++k)
3338 find_sources(pdg, node, access->nested[k]);
3343 static int precedes_level_nodes(na_pair *first, na_pair *second)
3345 int d = 0;
3346 int cmp = 0;
3347 for (int i = 0; i < first->node->prefix.size(); ++i) {
3348 if (i >= second->node->prefix.size())
3349 break;
3350 cmp = first->node->prefix[i] - second->node->prefix[i];
3351 if (cmp)
3352 break;
3353 if (first->node->prefix[i] == -1)
3354 ++d;
3356 return 2*d + (cmp<0);
3359 static int precedes_level_accesses(na_pair *first, na_pair *second)
3361 int cmp = 0;
3362 int d = 0;
3363 for (int i = 0; i < first->node->prefix.size(); ++i) {
3364 if (i >= second->node->prefix.size())
3365 break;
3366 cmp = first->node->prefix[i] - second->node->prefix[i];
3367 if (cmp)
3368 break;
3369 if (first->node->prefix[i] == -1)
3370 ++d;
3372 /* same node; now compare accesses */
3373 if (!cmp)
3374 cmp = first->access->nr - second->access->nr;
3375 return 2*d + (cmp<0);