13 #include <isl/space.h>
17 #include <isl/union_set.h>
18 #include <isl/union_map.h>
26 /* A pair of a node and an access from that node.
27 * "map" is the converted access relation.
28 * "projected_map" represents the converted access relation without
29 * any embedded access relation or access filters
35 isl_map
*projected_map
;
36 void project_out_access_filters(void);
37 na_pair(pdg::node
*n
, pdg::access
*a
) : node(n
), access(a
), map(NULL
),
38 projected_map(NULL
) {}
41 isl_map_free(projected_map
);
45 /* If the access has any embedded filters, then project them out
46 * from "projected_map", initializing "projected_map" from "map"
47 * if there is no "projected_map" yet.
49 void na_pair::project_out_access_filters(void)
54 if (access
->nested
.size() == 0)
58 projected_map
= isl_map_copy(map
);
60 space
= isl_space_domain(isl_map_get_space(projected_map
));
61 space
= isl_space_unwrap(space
);
62 proj
= isl_map_domain_map(isl_map_universe(space
));
64 projected_map
= isl_map_apply_domain(projected_map
, proj
);
67 static int precedes_level_nodes(na_pair
*first
, na_pair
*second
);
68 static int precedes_level_accesses(na_pair
*first
, na_pair
*second
);
70 /* Given a map from a domain to an orthogonal projection of an array
71 * (say, the rows of an array), mapping i to m(i), this function
72 * extends the range of the mapping to the original array and extends
73 * the domain of the mapping correspondingly such that (i,j) maps
74 * to (m(i),j), with (m(i),j) identifying an element of the array.
75 * The bounds on j are taken from the size of the array.
77 * The mapping from i to (i,j) is stored in the "extension" field
80 * The dependences computed using these extended access mappings,
81 * will map a (possibly) extended source domain to a (possibly)
82 * extended sink domain. One or both of these domains need to
83 * be transformed back to the original domains using the inverse
84 * of the corresponding extensions.
86 static isl_map
*extend_access(isl_map
*map
, na_pair
*na
)
88 pdg::array
*array
= na
->access
->array
;
89 unsigned n_out
= isl_map_dim(map
, isl_dim_out
);
90 assert(n_out
< array
->dims
.size());
91 unsigned s_dim
= array
->dims
.size() - n_out
;
92 isl_id
*array_id
= NULL
;
93 if (isl_map_has_tuple_id(map
, isl_dim_out
))
94 array_id
= isl_map_get_tuple_id(map
, isl_dim_out
);
95 isl_space
*space
= isl_map_get_space(map
);
96 space
= isl_space_drop_dims(space
, isl_dim_in
,
97 0, isl_space_dim(space
, isl_dim_in
));
98 space
= isl_space_drop_dims(space
, isl_dim_out
,
99 0, isl_space_dim(space
, isl_dim_out
));
100 space
= isl_space_add_dims(space
, isl_dim_in
, s_dim
);
101 space
= isl_space_add_dims(space
, isl_dim_out
, s_dim
);
102 isl_basic_map
*id
= isl_basic_map_identity(space
);
103 for (int i
= 0; i
< s_dim
; ++i
) {
106 id
= isl_basic_map_lower_bound_si(id
, isl_dim_out
, i
, 0);
107 v
= array
->dims
[n_out
+ i
] - 1;
108 id
= isl_basic_map_upper_bound_si(id
, isl_dim_out
, i
, v
);
110 map
= isl_map_product(map
, isl_map_from_basic_map(id
));
111 map
= isl_map_flatten_range(map
);
113 map
= isl_map_set_tuple_id(map
, isl_dim_out
, array_id
);
114 if (!na
->access
->extension
) {
115 isl_map
*ext
= isl_map_copy(map
);
116 ext
= isl_set_unwrap(isl_map_domain(ext
));
117 ext
= isl_map_reverse(isl_map_domain_map(ext
));
118 na
->access
->extension
= new pdg::IslMap(ext
);
120 if (!na
->access
->extended_map
)
121 na
->access
->extended_map
= new pdg::IslMap(isl_map_copy(map
));
125 /* If access "access" contains any nested accesses, then the domain
126 * of the access relation contains extra dimensions corresponding to
127 * the values of the nested accesses.
128 * Add these extra dimensions, with ranges given by the value_bounds
129 * of the corresponding array to domain "dom".
130 * If a nested access array does not have value_bounds, then we assume
131 * an infinite interval.
133 static isl_set
*append_nested_value_domains(isl_set
*dom
, pdg::access
*access
)
137 ctx
= isl_set_get_ctx(dom
);
138 for (int i
= 0; i
< access
->nested
.size(); ++i
) {
139 pdg::call_or_access
*coa
= access
->nested
[i
];
140 assert(coa
->type
== pdg::call_or_access::t_access
);
141 pdg::access
*nested
= coa
->access
;
143 if (nested
->array
->value_bounds
)
144 bounds
= nested
->array
->value_bounds
->get_isl_set(ctx
);
146 isl_space
*dim
= isl_set_get_space(dom
);
147 dim
= isl_space_drop_dims(dim
, isl_dim_set
,
148 0, isl_space_dim(dim
, isl_dim_set
));
149 dim
= isl_space_add_dims(dim
, isl_dim_set
, 1);
150 bounds
= isl_set_universe(dim
);
152 dom
= isl_set_product(dom
, bounds
);
157 /* Combine constraints of the "pure" mapping with the constraints
158 * on the domain. If the range of the mapping is of a dimension
159 * that is lower than the dimension of the accessed array,
160 * we extend the dimension of both domain and range of the mapping
161 * with the missing dimension. The size of domain and range
162 * in these dimensions is set to the extent of the array in the
163 * corresponding missing dimension. Each point in the original
164 * domain is therefore expanded to a hyperrectangle and each point
165 * in this hyperrectangle is mapped onto a single point in the array.
167 * If node->source is a wrapped map, then the iteration domain
168 * is the domain of this map.
170 static isl_map
*convert_access(na_pair
*na
)
172 isl_map
*map
= na
->access
->map
->get_isl_map();
173 isl_set
*dom
= na
->node
->source
->get_isl_set();
175 if (isl_set_is_wrapping(dom
)) {
176 dom
= isl_map_domain(isl_set_unwrap(dom
));
177 dom
= isl_set_coalesce(dom
);
180 dom
= append_nested_value_domains(dom
, na
->access
);
181 if (isl_map_dim(map
, isl_dim_in
) != isl_set_dim(dom
, isl_dim_set
))
183 map
= isl_map_intersect_domain(map
, dom
);
184 if (isl_map_dim(map
, isl_dim_out
) != na
->access
->array
->dims
.size())
185 map
= extend_access(map
, na
);
189 typedef std::map
<na_pair
*, isl_map
*> na_pair2map
;
191 struct add_dep_info
{
195 enum pdg::dependence::type dtype
;
197 na_pair
*read_na_pair
;
198 /* The comparison routine that was used during
199 * the dependence analysis.
201 isl_access_level_before precedes_level
;
202 /* Cache of memory based dependence relations.
203 * The key of the map refers to the write.
206 /* How many loops are shared by the current sink and source?
210 /* For each potential source, what's (up to now) the minimal
211 * and maximal number of shared loops?
212 * If not set, then we don't know yet.
214 std::map
<na_pair
*, int> min_n_shared
;
215 std::map
<na_pair
*, int> max_n_shared
;
217 /* Potential sources that are actually used. */
218 std::set
<na_pair
*> used
;
220 __isl_give isl_map
*get_mem_dep(na_pair
*write_na
);
221 void clear_mem_dep();
222 void set_read_na(na_pair
*read_na
);
223 void update_min_n_shared(na_pair
*source_na
);
228 /* Update min_n_shared of "source_na" to the current number of shared loops.
229 * The new value is always smaller than or equal to the old value (if any).
230 * If max_n_shared hasn't been set yet, then set it as well.
232 void add_dep_info::update_min_n_shared(na_pair
*source_na
)
234 if (max_n_shared
.find(source_na
) == max_n_shared
.end())
235 max_n_shared
[source_na
] = n_shared
;
236 min_n_shared
[source_na
] = n_shared
;
241 * __last_<stmt>_<access_nr>_valid
243 * corresponding to "na", with "na" attached as user pointer.
245 static __isl_give isl_id
*valid_bit_id(isl_ctx
*ctx
, na_pair
*na
)
249 snprintf(name
, sizeof(name
), "__last_%s_%d_valid",
250 na
->node
->name
->s
.c_str(), na
->access
->nr
);
251 return isl_id_alloc(ctx
, name
, na
);
256 * __last_<stmt>_<access_nr>_shared
258 * corresponding to "na", with "na" attached as user pointer.
260 static __isl_give isl_id
*create_shared_id(isl_ctx
*ctx
, na_pair
*na
)
264 snprintf(name
, sizeof(name
), "__last_%s_%d_shared",
265 na
->node
->name
->s
.c_str(), na
->access
->nr
);
266 return isl_id_alloc(ctx
, name
, na
);
269 /* Project out all the dimensions of the given type from "map" except "pos".
271 static __isl_give isl_map
*project_on(__isl_take isl_map
*map
,
272 enum isl_dim_type type
, unsigned pos
)
274 unsigned n
= isl_map_dim(map
, type
);
276 map
= isl_map_project_out(map
, type
, pos
+ 1, n
- (pos
+ 1));
277 map
= isl_map_project_out(map
, type
, 0, pos
);
282 /* Does output dimension "pos" have a fixed value in terms of the
283 * input dimensions (and parameters)?
285 static int has_fixed_value(__isl_keep isl_map
*map
, int pos
)
289 map
= isl_map_copy(map
);
290 map
= project_on(map
, isl_dim_out
, pos
);
291 sv
= isl_map_is_single_valued(map
);
297 /* Return the position of the parameter with the given "id" in "set",
298 * adding it if it wasn't there already.
300 static int find_or_add_param(__isl_keep isl_set
**set
, __isl_take isl_id
*id
)
304 pos
= isl_set_find_dim_by_id(*set
, isl_dim_param
, id
);
310 pos
= isl_set_dim(*set
, isl_dim_param
);
311 *set
= isl_set_add_dims(*set
, isl_dim_param
, 1);
312 *set
= isl_set_set_dim_id(*set
, isl_dim_param
, pos
, id
);
317 /* Add parameters to "set" identifying the last iteration of the access
318 * identified by "na".
320 * In particular, we add a parameter
322 * __last_<stmt>_<access_nr>_shared >= info->n_shared
326 * __last_<stmt>_<access_nr>_<i> = it_<i>
328 * with i ranging over the iterators, starting at info->n_shared,
329 * that are affected by the filters,
330 * except those that have a fixed value according to the memory based
332 * "na" is attached to the first two parameters, so that it can be recovered
333 * in refine_controls(). If the set already references some of these
334 * parameters, then we don't add the parameter again, but instead
335 * simply add the corresponding constraint.
337 static __isl_give isl_set
*add_parametrization(__isl_take isl_set
*set
,
338 na_pair
*na
, add_dep_info
*info
)
347 depth
= na
->node
->get_filter_depth();
348 mem
= info
->get_mem_dep(na
);
349 mem
= isl_map_reverse(mem
);
351 ctx
= isl_set_get_ctx(set
);
352 id
= create_shared_id(ctx
, na
);
353 pos
= find_or_add_param(&set
, id
);
354 set
= isl_set_lower_bound_si(set
, isl_dim_param
, pos
, info
->n_shared
);
356 for (int i
= info
->n_shared
; i
< depth
; ++i
) {
357 if (has_fixed_value(mem
, i
))
360 snprintf(name
, sizeof(name
), "__last_%s_%d_%d",
361 na
->node
->name
->s
.c_str(), na
->access
->nr
, i
);
363 id
= isl_id_alloc(ctx
, name
, NULL
);
364 pos
= find_or_add_param(&set
, id
);
366 set
= isl_set_equate(set
, isl_dim_param
, pos
, isl_dim_set
, i
);
373 /* Is the i-th parameter of "map" a control, i.e., a parameter
374 * introduced by add_parametrization()?
375 * In particular, is the parameter of the form __last_*?
377 static bool is_control(__isl_keep isl_map
*map
, int i
)
380 const char *prefix
= "__last_";
381 size_t prefix_len
= strlen(prefix
);
383 if (!isl_map_has_dim_id(map
, isl_dim_param
, i
))
385 name
= isl_map_get_dim_name(map
, isl_dim_param
, i
);
386 return strncmp(name
, prefix
, prefix_len
) == 0;
389 /* Is the i-th parameter of "set" a control, i.e., a parameter
390 * introduced by add_parametrization()?
391 * In particular, is the parameter of the form __last_*?
393 static bool is_control(__isl_keep isl_set
*set
, int i
)
396 const char *prefix
= "__last_";
397 size_t prefix_len
= strlen(prefix
);
399 if (!isl_set_has_dim_id(set
, isl_dim_param
, i
))
401 name
= isl_set_get_dim_name(set
, isl_dim_param
, i
);
402 return strncmp(name
, prefix
, prefix_len
) == 0;
405 /* Remove all controls that are redundant, i.e., that do not appear
406 * in any of the constraints.
407 * Set *has_controls to true if there are any controls that are not redundant.
409 static __isl_give isl_map
*remove_redundant_controls(__isl_take isl_map
*dep
,
415 *has_controls
= false;
417 n_param
= isl_map_dim(dep
, isl_dim_param
);
418 for (i
= n_param
- 1; i
>= 0; --i
) {
419 if (!is_control(dep
, i
))
421 if (isl_map_involves_dims(dep
, isl_dim_param
, i
, 1))
422 *has_controls
= true;
424 dep
= isl_map_project_out(dep
, isl_dim_param
, i
, 1);
430 /* Rename controls of "dep" from
432 * __last_<source_stmt>_<source_acc_nr>_*
436 * __last_<source_stmt>_<source_acc_nr>_<sink_stmt>_<sink_acc_nr>_*
438 * "na" represents the sink.
440 static __isl_give isl_map
*rename_controls(__isl_take isl_map
*dep
, na_pair
*na
)
445 const char *underscore
;
447 n_param
= isl_map_dim(dep
, isl_dim_param
);
448 for (int i
= 0; i
< n_param
; ++i
) {
450 if (!is_control(dep
, i
))
452 name
= isl_map_get_dim_name(dep
, isl_dim_param
, i
);
453 underscore
= strrchr(name
, '_');
455 len
= underscore
+ 1 - name
;
456 memcpy(buf
, name
, len
);
457 snprintf(buf
+ len
, sizeof(buf
) - len
, "%s_%d_%s",
458 na
->node
->name
->s
.c_str(), na
->access
->nr
, name
+ len
);
459 dep
= isl_map_set_dim_name(dep
, isl_dim_param
, i
, buf
);
466 static isl_stat
extract_dep(__isl_take isl_map
*dep
, int must
,
467 void *dep_user
, void *user
);
470 /* Extract the single dependence relation from the result of
471 * dataflow analyis and assign it to *user.
473 static isl_stat
extract_dep(__isl_take isl_map
*dep
, int must
, void *dep_user
,
476 isl_map
**dep_p
= (isl_map
**) user
;
482 /* Return the memory based dependence relation from write_na
483 * to read_na_pair. If the "projected_map"
484 * fields are not NULL, then use the "projected_map"
485 * instead of the "map" of write_na and this->read_na_pair.
487 __isl_give isl_map
*add_dep_info::get_mem_dep(na_pair
*write_na
)
489 isl_access_info
*acc
;
491 isl_map
*read_map
, *write_map
;
494 if (mem_dep
.find(write_na
) != mem_dep
.end())
495 return isl_map_copy(mem_dep
[write_na
]);
497 if (read_na_pair
->projected_map
)
498 read_map
= isl_map_copy(read_na_pair
->projected_map
);
500 read_map
= isl_map_copy(read_na_pair
->map
);
501 acc
= isl_access_info_alloc(read_map
, read_na_pair
, precedes_level
, 1);
502 if (write_na
->projected_map
)
503 write_map
= isl_map_copy(write_na
->projected_map
);
505 write_map
= isl_map_copy(write_na
->map
);
506 acc
= isl_access_info_add_source(acc
, write_map
, 0, write_na
);
507 deps
= isl_access_info_compute_flow(acc
);
508 isl_flow_foreach(deps
, &extract_dep
, &dep
);
511 mem_dep
[write_na
] = isl_map_copy(dep
);
516 /* Clear the cache of memory based dependence relations.
518 void add_dep_info::clear_mem_dep()
520 na_pair2map::iterator it
;
522 for (it
= mem_dep
.begin(); it
!= mem_dep
.end(); ++it
)
523 isl_map_free(it
->second
);
527 /* Set read_na_pair to read_na.
529 * If the cache of memory based dependence relations contains any
530 * elements then they refer to a different read, so we need to clear
533 * We also clear the set of used potential sources and reset
534 * the data that keeps track of the number of shared loops between
535 * the sink (read_na_pair) and the sources.
537 void add_dep_info::set_read_na(na_pair
*read_na
)
542 min_n_shared
.clear();
543 max_n_shared
.clear();
544 read_na_pair
= read_na
;
547 add_dep_info::~add_dep_info()
552 /* Is the name of parameter "i" of "space" of the form __last_*_suffix?
554 static bool is_last_with_suffix(__isl_keep isl_space
*space
, int i
,
555 const char *suffix
, size_t suffix_len
)
557 const char *prefix
= "__last_";
558 size_t prefix_len
= strlen(prefix
);
562 if (!isl_space_has_dim_id(space
, isl_dim_param
, i
))
564 name
= isl_space_get_dim_name(space
, isl_dim_param
, i
);
565 if (strncmp(name
, prefix
, prefix_len
))
568 return len
> suffix_len
&& !strcmp(name
+ len
- suffix_len
, suffix
);
571 /* Is the name of parameter "i" of "space" of the form __last_*_valid?
572 * In practice, those are the parameters __last_*_valid, created
573 * in add_parametrization().
575 static bool is_valid_bit(__isl_keep isl_space
*space
, int i
)
577 const char *suffix
= "_valid";
579 return is_last_with_suffix(space
, i
, suffix
, strlen(suffix
));
582 /* Is the name of parameter "i" of "space" of the form __last_*_shared?
583 * In practice, those are the parameters __last_*_shared, created
584 * in add_parametrization().
586 static bool is_shared(__isl_keep isl_space
*space
, int i
)
588 const char *suffix
= "_shared";
589 size_t suffix_len
= strlen(suffix
);
591 return is_last_with_suffix(space
, i
, suffix
, strlen(suffix
));
594 /* Assuming "coa" is a (read) access, return the array being
597 static pdg::array
*get_filter_array(pdg::call_or_access
*coa
)
599 assert(coa
->type
== pdg::call_or_access::t_access
);
600 return coa
->access
->array
;
603 /* Compute a map between domain elements (i) of "map1" and range elements
604 * of "map2" (j) such that all the images of i in "map1" map to j through
605 * "map2" and such that there is at least one such image element.
607 * In other words, the result contains those pairs of elements such that
608 * map1(i) \cap map2^-1(j) is non-empty and map1(i) \subseteq map2^-1(j).
610 * Equivalently, compute
612 * (map1 . map2) \setminus
613 * (map1 . ((\range map1 \to \range map2) \setminus map2))
615 * If map1 is single valued, then we can do a simple join.
617 static __isl_give isl_union_map
*join_non_empty_subset(
618 __isl_take isl_union_map
*umap1
, __isl_take isl_union_map
*umap2
)
620 isl_union_set
*dom
, *ran
;
624 if (isl_union_map_is_single_valued(umap1
))
625 return isl_union_map_apply_range(umap1
, umap2
);
627 res
= isl_union_map_apply_range(isl_union_map_copy(umap1
),
628 isl_union_map_copy(umap2
));
629 dom
= isl_union_map_range(isl_union_map_copy(umap1
));
630 ran
= isl_union_map_range(isl_union_map_copy(umap2
));
631 univ
= isl_union_map_from_domain_and_range(dom
, ran
);
632 umap2
= isl_union_map_subtract(univ
, umap2
);
633 umap1
= isl_union_map_apply_range(umap1
, umap2
);
634 res
= isl_union_map_subtract(res
, umap1
);
639 /* Compute a map between domain elements (i) of "map1" and range elements
640 * of "map2" (j) such that the images of i in "map1" include all those
641 * elements that map to j through "map2" and such that there is
642 * at least one such image element.
644 * In other words, the result contains those pairs of elements such that
645 * map1(i) \cap map2^-1(j) is non-empty and map1(i) \supseteq map2^-1(j).
647 * Equivalently, compute
649 * (map1 . map2) \setminus
650 * (((\domain map1 \to \domain map2) \setminus map1) . map2)
652 * If map1 is single valued, then we can do a simple join.
654 static __isl_give isl_union_map
*join_non_empty_superset(
655 __isl_take isl_union_map
*umap1
, __isl_take isl_union_map
*umap2
)
657 isl_union_set
*dom
, *ran
;
661 if (isl_union_map_is_single_valued(umap2
))
662 return isl_union_map_apply_range(umap1
, umap2
);
664 res
= isl_union_map_apply_range(isl_union_map_copy(umap1
),
665 isl_union_map_copy(umap2
));
666 dom
= isl_union_map_domain(isl_union_map_copy(umap1
));
667 ran
= isl_union_map_domain(isl_union_map_copy(umap2
));
668 univ
= isl_union_map_from_domain_and_range(dom
, ran
);
669 umap1
= isl_union_map_subtract(univ
, umap1
);
670 umap1
= isl_union_map_apply_range(umap1
, umap2
);
671 res
= isl_union_map_subtract(res
, umap1
);
676 /* Return those elements in the domain of "umap" where "umap" is multi-valued.
678 * In particular, construct a mapping between domain elements of "umap"
679 * and pairs of corresponding image elements.
680 * Remove pairs of identical image elements from the range of this mapping.
681 * The result is a mapping between domain elements and pairs of different
682 * corresponding image elements. The domain of this mapping contains those
683 * domain elements of "umap" with at least two images.
685 static __isl_give isl_union_set
*multi_valued(__isl_keep isl_union_map
*umap
)
687 isl_union_map
*multi
, *id
;
689 multi
= isl_union_map_range_product(isl_union_map_copy(umap
),
690 isl_union_map_copy(umap
));
691 id
= isl_union_map_universe(isl_union_map_copy(multi
));
692 id
= isl_union_set_unwrap(isl_union_map_range(id
));
693 id
= isl_union_set_identity(isl_union_map_domain(id
));
694 multi
= isl_union_map_subtract_range(multi
, isl_union_map_wrap(id
));
695 return isl_union_map_domain(multi
);
698 /* Given two filter access relations, return a mapping between the domain
699 * elements of these access relations such that they access "the same filter".
700 * In particular, any pair of elements in the returned relation
701 * accesses at least one element in common, but if subset1 is set,
702 * then the set of elements accessed by the first is a subset of the
703 * set of elements accessed by the second. Similarly, if subset2 is set,
704 * then the set of elements accessed by the second is a subset of the
705 * set of elements accessed by the first. If both are set, then we further
706 * impose that both should access exactly one element.
707 * "space" is the space in which the result should live.
708 * Although "map1" and "map2" are allowed to have ranges in multiple spaces,
709 * their domains should live in a single space. "space" is the space
710 * of the relation between those two domains.
712 * Call the given maps A and B.
714 * A relation between domains elements of A and B that access at least
715 * one element in common can be obtained as
719 * To ensure that all elements accessed through A form a subset of
720 * the elements accessed through B, we compute join_non_empty_subset(A, B^-1).
722 * Ensuring that all elements accessed through B form a subset of
723 * the elements accessed through A is handled in a similar way.
725 * To remove those iterations that access more that one element,
726 * we compute those parts of the domains where A and B are multi-valued
727 * and subtract them from domain and range of the result.
729 static __isl_give isl_map
*compute_common_filter(__isl_keep isl_union_map
*map1
,
730 bool subset1
, __isl_keep isl_union_map
*map2
, bool subset2
,
731 __isl_keep isl_space
*space
)
733 isl_union_map
*reverse
, *common
;
737 reverse
= isl_union_map_reverse(isl_union_map_copy(map2
));
739 if (subset1
&& !subset2
) {
740 common
= join_non_empty_subset(isl_union_map_copy(map1
),
742 } else if (!subset1
&& subset2
) {
743 common
= join_non_empty_superset(isl_union_map_copy(map1
),
746 common
= isl_union_map_apply_range(isl_union_map_copy(map1
),
748 if (subset1
&& subset2
) {
749 bad
= multi_valued(map1
);
750 common
= isl_union_map_subtract_domain(common
, bad
);
751 bad
= multi_valued(map2
);
752 common
= isl_union_map_subtract_range(common
, bad
);
756 res
= isl_union_map_extract_map(common
, isl_space_copy(space
));
757 isl_union_map_free(common
);
761 /* Assuming "coa" is a (read) access, construct a union map from the domain
762 * of the access relation to the access relations of the corresponding
763 * writes. If we are unable to determine the corresponding writes, then
764 * return a map to the read access relation.
766 static __isl_give isl_union_map
*extract_access_map(pdg::call_or_access
*coa
)
768 assert(coa
->type
== pdg::call_or_access::t_access
);
769 return coa
->access
->extract_access_map();
772 /* Return a set that contains all possible filter values,
773 * where the possible values for a given filter is either as specified
774 * by the value_bounds property of the corresponding array or the universe.
776 static __isl_give isl_set
*compute_filter_bounds(pdg::node
*node
)
781 ctx
= isl_set_get_ctx(node
->source
->set
);
783 bounds
= isl_set_universe(isl_space_set_alloc(ctx
, 0, 0));
784 for (int i
= 0; i
< node
->filters
.size(); ++i
) {
787 pdg::call_or_access
*coa
= node
->filters
[i
];
788 assert(coa
->type
== pdg::call_or_access::t_access
);
789 array
= coa
->access
->array
;
790 if (array
->value_bounds
)
791 bnd
= array
->value_bounds
->get_isl_set();
793 bnd
= isl_set_universe(isl_space_set_alloc(ctx
, 0, 1));
794 bounds
= isl_set_flat_product(bounds
, bnd
);
800 /* Return either the filter values themselves or their complement,
801 * taken with respect to the bounds on the filter values.
803 static __isl_give isl_map
*compute_filter_values(pdg::node
*node
,
810 value
= isl_set_unwrap(node
->source
->get_isl_set());
814 bounds
= compute_filter_bounds(node
);
815 res
= isl_map_from_domain_and_range(
816 isl_map_domain(isl_map_copy(value
)), bounds
);
817 res
= isl_map_subtract(res
, value
);
822 /* Equate the first "n" input and output dimensions of "map"
823 * and return the result.
825 static __isl_give isl_map
*share(__isl_take isl_map
*map
, int n
)
827 for (int i
= 0; i
< n
; ++i
)
828 map
= isl_map_equate(map
, isl_dim_in
, i
, isl_dim_out
, i
);
833 /* Return the set of source iterations of "na" either at the last
834 * iteration (if valid is set) or after the last iteration
835 * (if valid is not set). "id" represents the control variable
836 * corresponding to the number of shared loops (__last_<na>_shared).
838 * In particlar, if valid is set, we return the set
840 * { S[i] : i = __last_<na> and
841 * __last_<na>_shared >= info->n_shared }
843 * If valid is not set, we return the set
845 * { S[i] : (i >> __last_<na> and __last_<na>_shared >= info->n_shared) or
846 * __last_<na>_shared < info->n_shared }
848 * That is, the iterations after the last if there is a last iteration
849 * with at least info->n_shared shared loops
850 * or just any iteration if there is no such last iteration.
852 * The lexicographic order i >> __last_<na> is imposed on the loop iterators
853 * that are affected by any filters.
855 static __isl_give isl_set
*source_iterations(na_pair
*na
,
856 __isl_keep isl_id
*id
, bool valid
, add_dep_info
*info
)
859 isl_set
*set
, *invalid
;
864 space
= isl_set_get_space(na
->node
->source
->set
);
865 space
= isl_space_domain(isl_space_unwrap(space
));
867 set
= isl_set_universe(space
);
868 set
= add_parametrization(set
, na
, info
);
873 depth
= na
->node
->get_filter_depth();
875 space
= isl_space_map_from_set(isl_set_get_space(set
));
876 map_after
= isl_map_lex_lt_first(space
, depth
);
877 map_after
= share(map_after
, info
->n_shared
);
878 map_after
= isl_map_intersect_domain(map_after
, set
);
879 set
= isl_map_range(map_after
);
881 invalid
= isl_set_universe(isl_set_get_space(set
));
882 pos
= isl_set_find_dim_by_id(invalid
, isl_dim_param
, id
);
884 invalid
= isl_set_upper_bound_si(invalid
,
885 isl_dim_param
, pos
, info
->n_shared
- 1);
886 set
= isl_set_union(set
, invalid
);
891 /* Look for a matching between the filters of node1 and those of node2.
892 * That is look for pairs of filters of the two nodes that are "the same".
893 * Return true if any such matching can be found. The correspondence between
894 * the filters is returned in *same_value_p, while the pairs of iterations
895 * where the filters are the same is returned in *same_filter_p.
896 * The first "n_shared" dimensions of these iterations are guaranteed
897 * to be equal to each other.
899 * Two filter accesses are considered "the same" if they access at least
900 * one element in common. Moreover, if valid1 is false then the set
901 * of elements accessed by an element from node1 should be a subset
902 * of the set of elements accessed by the corresponding element from node2.
903 * Similarly for valid2.
905 * We perform a greedy search, checking if two filters could possibly
906 * match given the matchings we have performed before and updating
907 * the matching if it is indeed possible.
909 * Note that this function only computes one of the possibly many matchings.
911 static bool compute_matching(pdg::node
*node1
, bool valid1
,
912 pdg::node
*node2
, bool valid2
, __isl_give isl_map
**same_filter_p
,
913 __isl_give isl_map
**same_value_p
, int n_shared
)
916 isl_space
*space1
, *space2
;
917 isl_map
*same_filter
;
920 space1
= isl_space_unwrap(isl_set_get_space(node1
->source
->set
));
921 space2
= isl_space_unwrap(isl_set_get_space(node2
->source
->set
));
922 space1
= isl_space_product(space1
, space2
);
923 space2
= isl_space_unwrap(isl_space_range(isl_space_copy(space1
)));
924 space1
= isl_space_unwrap(isl_space_domain(space1
));
926 same_filter
= isl_map_universe(isl_space_copy(space1
));
927 same_filter
= share(same_filter
, n_shared
);
928 same_value
= isl_map_universe(space2
);
930 for (int i
= 0; i
< node1
->filters
.size(); ++i
) {
931 isl_union_map
*map_i
;
932 pdg::call_or_access
*filter_i
= node1
->filters
[i
];
933 pdg::array
*array_i
= get_filter_array(filter_i
);
935 map_i
= extract_access_map(node1
->filters
[i
]);
937 for (int j
= 0; j
< node2
->filters
.size(); ++j
) {
938 pdg::call_or_access
*filter_j
;
939 filter_j
= node2
->filters
[j
];
940 pdg::array
*array_j
= get_filter_array(filter_j
);
941 isl_union_map
*map_j
;
942 isl_map
*same_filter_ij
;
944 if (array_i
!= array_j
)
947 map_j
= extract_access_map(node2
->filters
[j
]);
948 same_filter_ij
= compute_common_filter(map_i
, !valid1
,
951 same_filter_ij
= isl_map_intersect(same_filter_ij
,
952 isl_map_copy(same_filter
));
953 if (isl_map_is_empty(same_filter_ij
))
954 isl_map_free(same_filter_ij
);
957 isl_map_free(same_filter
);
958 same_filter
= same_filter_ij
;
959 same_value
= isl_map_equate(same_value
,
963 isl_union_map_free(map_j
);
966 isl_union_map_free(map_i
);
968 isl_space_free(space1
);
971 *same_value_p
= same_value
;
972 *same_filter_p
= same_filter
;
974 isl_map_free(same_value
);
975 isl_map_free(same_filter
);
976 *same_value_p
= NULL
;
977 *same_filter_p
= NULL
;
983 /* Given a set of sink iterations "sink", mappings "map1" and "map2"
984 * from two potential sources to this sink,
985 * the possible filter values "value1" and "value2" at those
986 * potential sources, a relation "same_filter" between the two
987 * potential sources expressing when some filters of the two
988 * potential sources are the same and the correponding matching
989 * "same_value" between the filter values,
990 * remove those elements from the sink that have
991 * corresponding pairs of potential source iterations that should
992 * have the same filter values but do not.
994 * Let us call the sink S, the potential sources A and B and the
995 * corresponding filters F and G.
997 * We start from the mappings A[..] -> S[..] and B[..] -> S[..],
1000 * S[..] -> [A[..] -> B[..]]
1002 * and intersect the range with the condition "same_filter" on A and B,
1003 * resulting in a mapping from sink iterations to pairs of potential
1004 * source iterations that should have the same filter values
1005 * (as specified by "same_value").
1007 * We subtract from the range of this mapping those pairs of
1008 * potential source iterations that actually have the same filter values.
1009 * The result is a mapping from sink iterations to pairs of potential
1010 * source iterations that should have the same filter values but do not.
1012 * The mapping between potential source iterations that have the
1013 * same filter values is obtained by combining the mappings
1014 * A[..] -> F[..] and B[..] -> G[..] into
1016 * [A[..] -> B[..]] -> [F[..] -> G[..]]
1018 * intersecting the range with "same_value" and then computing the domain.
1020 static __isl_give isl_set
*remove_conflict(__isl_take isl_set
*sink
,
1021 __isl_take isl_map
*map1
, __isl_take isl_map
*value1
,
1022 __isl_take isl_map
*map2
, __isl_take isl_map
*value2
,
1023 __isl_take isl_map
*same_filter
, __isl_take isl_map
*same_value
)
1025 isl_map
*value
, *conflict
;
1026 isl_set
*conflict_set
;
1028 conflict
= isl_map_domain_product(map1
, map2
);
1029 conflict
= isl_map_reverse(conflict
);
1031 conflict
= isl_map_intersect_range(conflict
, isl_map_wrap(same_filter
));
1033 value
= isl_map_product(value1
, value2
);
1034 value
= isl_map_intersect_range(value
, isl_map_wrap(same_value
));
1035 conflict
= isl_map_subtract_range(conflict
, isl_map_domain(value
));
1037 conflict_set
= isl_map_domain(conflict
);
1039 sink
= isl_set_subtract(sink
, conflict_set
);
1044 /* Remove inconsistencies from the set of sink iterations "sink"
1045 * based on two potential sources identified by "id1" and "id2"
1046 * (representing the number of shared loops),
1047 * in particular, on either the last iteration where the filters hold
1048 * (if valid? is set) or on later iterations (if valid? is not set).
1050 * Let us first consider the case where both "valid1" and "valid2" are set.
1051 * If the last iterations of the corresponding sources access the same
1052 * filters, then these filters should have the same value.
1053 * If a filter access accesses more than one element, then these elements
1054 * should all have the same value. It is therefore sufficient for the
1055 * two last iterations to access at least one element in common for there
1056 * to be a requirement that the corresponding values should be the same.
1057 * We therefore obtain the filter values, the mappings from the sink
1058 * to the last iterations, a matching between the
1059 * the filters of the corresponding sources and remove conflicts from "dep".
1061 * If one or both of the valid bits are not set, then we need to make
1062 * some changes. First the inconsistencies now do not arise from
1063 * the filter values at the last iteration, but from the filter values
1064 * lying _outside_ of the possible values for all iterations _after_
1065 * the "last" (i.e., the last iteration satisfying the filter constraints).
1066 * In case there is no last iteration with at least info->n_shared shared loops,
1067 * then the filter values should lie outside of the possible values
1068 * for any potential source iteration with info->n_shared shared loops.
1069 * Note however, that if the filter access relation accesses several
1070 * elements, then it is sufficient for one of those to have a value
1071 * outside of the possible values. We can therefore only consider
1072 * any inconsistencies for those cases where the set of accessed elements
1073 * forms a subset of the set of accessed elements through the other potential
1074 * source. If valid1 is not set, but valid2 is set, then we consider
1075 * those pairs of potential source iterations where the first accesses
1076 * a subset of the second and we impose that at least one of those
1077 * accessed elements has a valid outside the possible values.
1078 * Since those accessed elements form a subset of the elements accessed
1079 * by the other potential source, there is at least one element that
1080 * has a value outside of the posssible values on the first potential source
1081 * and a value belonging to the posssible values on the second potential source.
1082 * We can therefore impose that this value should exist.
1084 * If both valid1 and valid2 are not set, then we can only
1085 * impose a constraint on those pairs of iterations that access the same
1086 * single element. We then know that the value of this single element
1087 * accessed by both potential sources should lie outside of the possible
1088 * values on both sides.
1090 static __isl_give isl_set
*remove_inconsistencies(__isl_take isl_set
*sink
,
1091 add_dep_info
*info
, __isl_keep isl_id
*id1
, bool valid1
,
1092 __isl_keep isl_id
*id2
, bool valid2
)
1094 na_pair
*write1_na
, *write2_na
;
1096 isl_map
*value1
, *value2
;
1097 isl_map
*same_filter
;
1098 isl_map
*same_value
;
1099 isl_map
*mem1
, *mem2
;
1101 write1_na
= (na_pair
*) isl_id_get_user(id1
);
1102 write2_na
= (na_pair
*) isl_id_get_user(id2
);
1104 if (!compute_matching(write1_na
->node
, valid1
, write2_na
->node
, valid2
,
1105 &same_filter
, &same_value
, info
->n_shared
))
1108 value1
= compute_filter_values(write1_na
->node
, !valid1
);
1109 value2
= compute_filter_values(write2_na
->node
, !valid2
);
1111 mem1
= info
->get_mem_dep(write1_na
);
1112 source
= source_iterations(write1_na
, id1
, valid1
, info
);
1113 mem1
= share(mem1
, info
->n_shared
);
1114 mem1
= isl_map_intersect_domain(mem1
, source
);
1116 mem2
= info
->get_mem_dep(write2_na
);
1117 source
= source_iterations(write2_na
, id2
, valid2
, info
);
1118 mem2
= share(mem2
, info
->n_shared
);
1119 mem2
= isl_map_intersect_domain(mem2
, source
);
1121 sink
= remove_conflict(sink
, mem1
, value1
, mem2
, value2
,
1122 same_filter
, same_value
);
1127 /* Remove inconsistencies from the set of sink iterations "sink"
1128 * based on two potential sources identified by "id1" and "id2",
1129 * (representing the number of shared loops).
1131 static __isl_give isl_set
*remove_inconsistencies(__isl_take isl_set
*sink
,
1132 add_dep_info
*info
, __isl_keep isl_id
*id1
, __isl_keep isl_id
*id2
)
1134 sink
= remove_inconsistencies(sink
, info
, id1
, false, id2
, false);
1135 sink
= remove_inconsistencies(sink
, info
, id1
, false, id2
, true);
1136 sink
= remove_inconsistencies(sink
, info
, id1
, true, id2
, false);
1137 sink
= remove_inconsistencies(sink
, info
, id1
, true, id2
, true);
1141 /* Remove inconsistencies from the set of sink iterations "sink"
1142 * based on the potential source identified by "id"
1143 * (representing the number of shared loops),
1144 * in particular, on either the last iteration where the filters hold
1145 * (if valid is set) or on later iterations (if valid is not set).
1147 * This function is very similar to the remove_inconsistencies
1148 * function above that considers two potential sources instead
1149 * of the sink and one potential source. The main differences
1150 * are that for the sink, the filters always hold and that the mapping
1151 * from sink iterations to sink iterations is computed in a different
1152 * (and fairly trivial) way.
1154 static __isl_give isl_set
*remove_inconsistencies(__isl_take isl_set
*sink
,
1155 add_dep_info
*info
, __isl_keep isl_id
*id
, bool valid
)
1157 na_pair
*read_na
, *write_na
;
1159 isl_map
*value1
, *value2
;
1160 isl_map
*same_filter
;
1161 isl_map
*same_value
;
1162 isl_map
*id_map
, *mem
;
1164 read_na
= info
->read_na_pair
;
1165 write_na
= (na_pair
*) isl_id_get_user(id
);
1167 if (!compute_matching(read_na
->node
, true, write_na
->node
, valid
,
1168 &same_filter
, &same_value
, info
->n_shared
))
1171 value1
= compute_filter_values(read_na
->node
, false);
1172 value2
= compute_filter_values(write_na
->node
, !valid
);
1174 id_map
= isl_set_identity(isl_set_copy(sink
));
1176 mem
= info
->get_mem_dep(write_na
);
1177 after
= source_iterations(write_na
, id
, valid
, info
);
1178 mem
= share(mem
, info
->n_shared
);
1179 mem
= isl_map_intersect_domain(mem
, after
);
1181 sink
= remove_conflict(sink
, id_map
, value1
, mem
, value2
,
1182 same_filter
, same_value
);
1187 /* Remove inconsistencies from the set of sink iterations "sink"
1188 * based on the potential source identified by "id"
1189 * (representing the number of shared loops).
1191 static __isl_give isl_set
*remove_inconsistencies(__isl_take isl_set
*sink
,
1192 add_dep_info
*info
, __isl_keep isl_id
*id
)
1194 sink
= remove_inconsistencies(sink
, info
, id
, false);
1195 sink
= remove_inconsistencies(sink
, info
, id
, true);
1199 /* Remove all parameters that were introduced by add_parametrization().
1201 static __isl_give isl_map
*remove_all_controls(__isl_take isl_map
*dep
)
1207 n_param
= isl_map_dim(dep
, isl_dim_param
);
1208 for (i
= n_param
- 1; i
>= 0; --i
) {
1209 if (!is_control(dep
, i
))
1211 dep
= isl_map_project_out(dep
, isl_dim_param
, i
, 1);
1213 dep
= isl_map_coalesce(dep
);
1218 /* Remove all parameters that were introduced by add_parametrization().
1220 static __isl_give isl_set
*remove_all_controls(__isl_take isl_set
*set
)
1226 n_param
= isl_set_dim(set
, isl_dim_param
);
1227 for (i
= n_param
- 1; i
>= 0; --i
) {
1228 if (!is_control(set
, i
))
1230 set
= isl_set_project_out(set
, isl_dim_param
, i
, 1);
1232 set
= isl_set_coalesce(set
);
1239 * { a -> b : (shared >= max and
1240 * the first max iterators are equal) or
1241 * (shared = max - 1 and
1242 * the first max - 1 iterators are equal and
1243 * dimension max - 1 of a is smaller than that of b) or
1246 * the first min iterators are equal and
1247 * dimension min of a is smaller than that of b) }
1249 static __isl_give isl_map
*compute_shared_map(__isl_take isl_space
*space
,
1250 __isl_keep isl_id
*shared_id
, int min
, int max
)
1252 isl_map
*shared_map
;
1255 shared_pos
= isl_space_find_dim_by_id(space
, isl_dim_param
, shared_id
);
1256 shared_map
= isl_map_universe(isl_space_copy(space
));
1257 shared_map
= isl_map_lower_bound_si(shared_map
, isl_dim_param
,
1259 shared_map
= share(shared_map
, max
);
1261 for (int i
= min
; i
< max
; ++i
) {
1262 isl_map
*shared_map_i
;
1264 shared_map_i
= isl_map_universe(isl_space_copy(space
));
1265 shared_map_i
= isl_map_fix_si(shared_map_i
, isl_dim_param
,
1267 shared_map_i
= share(shared_map_i
, i
);
1268 shared_map_i
= isl_map_order_lt(shared_map_i
, isl_dim_in
, i
,
1271 shared_map
= isl_map_union(shared_map
, shared_map_i
);
1274 isl_space_free(space
);
1279 /* Different parts of the final dependence relations may have been
1280 * created at different depths and may therefore have a different
1281 * number of dimensions of the last iterator. The __last_<na>_shared
1282 * value determines how many of the dimensions are implicitly equal
1283 * to those of the sink iteration. This function creates a set that
1284 * makes these equalities explicit, so that we can later remove
1285 * the __last_<na>_shared parameter. It also marks those parts
1286 * that have a number of shared iterators that is smaller than the minimum
1287 * as not having any last iteration.
1289 * In particular, we create a set in the space of the sink of the form
1291 * { s : __last_<na>_valid = 0 or
1292 * (__last_<na>_valid = 1 and
1293 * __last_<na>_<i> is a potential source iteration and
1294 * ((__last_<na>_shared >= max_shared and
1295 * the first max_shared iterators are equal) or
1296 * (__last_<na>_shared = max_shared - 1 and
1297 * the first max_shared - 1 iterators are equal and
1298 * iterator max_shared - 1 of the source is smaller) or
1300 * (__last_<na>_shared = min_shared and
1301 * the first min_shared iterators are equal and
1302 * iterator min_shared of the source is smaller))) }
1304 * That is, for those parts with __last_<na>_shared smaller than
1305 * max_n_shared[source_na], intersection with the set will introduce
1306 * __last_<na>_<i> parameters (assuming they don't have a known fixed value)
1307 * up until __last_<na>_shared and equate them to the corresponding iterators
1310 static __isl_give isl_set
*shared_refinement(__isl_keep isl_id
*shared_id
,
1317 isl_map
*shared_map
;
1318 int valid_pos
, shared_pos
;
1324 ctx
= isl_id_get_ctx(shared_id
);
1326 source_na
= (na_pair
*) isl_id_get_user(shared_id
);
1327 valid_id
= valid_bit_id(ctx
, source_na
);
1329 mem
= info
->get_mem_dep(source_na
);
1330 space
= isl_map_get_space(mem
);
1333 shared_pos
= isl_space_dim(space
, isl_dim_param
);
1334 space
= isl_space_add_dims(space
, isl_dim_param
, 1);
1335 space
= isl_space_set_dim_id(space
, isl_dim_param
,
1336 shared_pos
, isl_id_copy(shared_id
));
1338 shared_map
= compute_shared_map(isl_space_copy(space
), shared_id
,
1339 info
->min_n_shared
[source_na
], info
->max_n_shared
[source_na
]);
1341 domain
= isl_set_universe(isl_space_domain(space
));
1342 valid_pos
= find_or_add_param(&domain
, isl_id_copy(valid_id
));
1343 domain
= isl_set_fix_si(domain
, isl_dim_param
, valid_pos
, 1);
1344 domain
= add_parametrization(domain
, source_na
, info
);
1345 shared_map
= isl_map_intersect_domain(shared_map
, domain
);
1347 valid
= isl_map_range(shared_map
);
1348 invalid
= isl_set_universe(isl_set_get_space(valid
));
1349 shared_pos
= isl_set_find_dim_by_id(invalid
, isl_dim_param
, shared_id
);
1350 invalid
= isl_set_upper_bound_si(invalid
, isl_dim_param
, shared_pos
,
1351 info
->n_shared
- 1);
1353 valid_pos
= find_or_add_param(&invalid
, valid_id
);
1354 invalid
= isl_set_fix_si(invalid
, isl_dim_param
, valid_pos
, 0);
1356 return isl_set_union(valid
, invalid
);
1359 /* Different parts of the final dependence relations may have been
1360 * created at different depths and may therefore have a different
1361 * number of dimensions of the last iterator. The __last_*_shared
1362 * value determines how many of the dimensions are implicitly equal
1363 * to those of the sink iteration.
1365 * For each of the __last_*_shared parameters, explicitly add
1366 * the implicitly equal __last_*_i iterators by intersecting
1367 * the sink with the set computed by shared_refinement.
1368 * Finally, remove the __last_*_shared parameters.
1370 static __isl_give isl_map
*refine_shared(__isl_take isl_map
*dep
,
1374 isl_set
*refinement
;
1377 space
= isl_map_get_space(dep
);
1378 n_param
= isl_space_dim(space
, isl_dim_param
);
1380 refinement
= isl_set_universe(isl_space_range(isl_space_copy(space
)));
1382 for (int i
= 0; i
< n_param
; ++i
) {
1386 if (!is_shared(space
, i
))
1388 if (!isl_map_involves_dims(dep
, isl_dim_param
, i
, 1))
1391 id
= isl_space_get_dim_id(space
, isl_dim_param
, i
);
1392 ref_i
= shared_refinement(id
, info
);
1395 if (isl_set_is_wrapping(refinement
)) {
1396 isl_map
*map
= isl_set_unwrap(refinement
);
1397 map
= isl_map_intersect_domain(map
, ref_i
);
1398 refinement
= isl_map_wrap(map
);
1400 refinement
= isl_set_intersect(refinement
, ref_i
);
1402 dep
= isl_map_intersect_range(dep
, refinement
);
1404 isl_space_free(space
);
1406 space
= isl_map_get_space(dep
);
1407 n_param
= isl_space_dim(space
, isl_dim_param
);
1408 for (int i
= n_param
- 1; i
>= 0; --i
) {
1409 if (!is_shared(space
, i
))
1411 dep
= isl_map_project_out(dep
, isl_dim_param
, i
, 1);
1413 isl_space_free(space
);
1415 dep
= isl_map_coalesce(dep
);
1420 /* Compute the gist of "dep" with respect to the fact that
1422 * 0 <= __last_*_valid <= 1
1424 static __isl_give isl_map
*gist_valid(__isl_take isl_map
*dep
)
1430 space
= isl_space_params(isl_map_get_space(dep
));
1431 n_param
= isl_space_dim(space
, isl_dim_param
);
1433 valid
= isl_set_universe(isl_space_copy(space
));
1434 for (int i
= 0; i
< n_param
; ++i
) {
1435 if (!is_valid_bit(space
, i
))
1438 valid
= isl_set_lower_bound_si(valid
, isl_dim_param
, i
, 0);
1439 valid
= isl_set_upper_bound_si(valid
, isl_dim_param
, i
, 1);
1442 isl_space_free(space
);
1444 dep
= isl_map_gist_params(dep
, valid
);
1449 /* Simplify the constraints on the parameters introduced
1450 * in add_parametrization().
1451 * We first add __last_*_i iterators that are only implicitly referred
1452 * to through the __last_*_shared parameters.
1453 * Then, we remove all those parameters that turn out not be needed.
1454 * If there are any of those parameters left, then we compute the gist
1455 * with respect to the valid bit being either 0 or 1 and rename
1456 * the parameters to also include a reference to the sink.
1457 * The resulting relation is assigned to controlled_relation,
1458 * while the relation field is assigned the result of projecting out
1459 * all those parameters.
1461 static __isl_give isl_map
*simplify_controls(__isl_take isl_map
*dep
,
1462 add_dep_info
*info
, bool *has_controls
)
1468 dep
= refine_shared(dep
, info
);
1469 dep
= remove_redundant_controls(dep
, has_controls
);
1470 if (*has_controls
) {
1471 dep
= gist_valid(dep
);
1472 dep
= rename_controls(dep
, info
->read_na_pair
);
1478 /* Extract a single dependence from the result of dataflow analysis.
1480 * We first simplify the constraints on the parameters introduced
1481 * in add_parametrization().
1483 * If the dependence relation turns out to be empty, we simply return.
1484 * Otherwise, we create a corresponding pdg::dependence and keep track
1485 * of the fact that the potential source is actually used
1486 * so that we can remove any reference to potential sources that are
1487 * never used from the dependence relations.
1489 static isl_stat
add_dep(__isl_take isl_map
*dep
, int must
, void *dep_user
,
1493 na_pair
*write_na
= (na_pair
*) dep_user
;
1494 add_dep_info
*info
= (struct add_dep_info
*)user
;
1495 isl_ctx
*ctx
= info
->pdg
->get_isl_ctx();
1498 dep
= isl_map_coalesce(dep
);
1499 dep
= simplify_controls(dep
, info
, &has_controls
);
1500 if (isl_map_is_empty(dep
)) {
1505 info
->used
.insert(write_na
);
1507 d
= new pdg::dependence
;
1509 d
->type
= info
->dtype
;
1510 d
->from
= write_na
->node
;
1511 d
->to
= info
->read_na_pair
->node
;
1512 d
->from_access
= write_na
->access
;
1513 d
->to_access
= info
->read_na_pair
->access
;
1515 if (d
->from_access
->extension
|| d
->to_access
->extension
)
1516 d
->extended_relation
=
1517 new pdg::IslMap(remove_all_controls(isl_map_copy(dep
)));
1518 if (d
->from_access
->extension
)
1519 dep
= isl_map_apply_domain(dep
,
1521 d
->from_access
->extension
->get_isl_map(ctx
)));
1522 if (d
->to_access
->extension
)
1523 dep
= isl_map_apply_range(dep
,
1525 d
->to_access
->extension
->get_isl_map(ctx
)));
1527 d
->controlled_relation
= new pdg::IslMap(isl_map_copy(dep
));
1528 d
->relation
= new pdg::IslMap(remove_all_controls(isl_map_copy(dep
)));
1529 info
->pdg
->dependences
.push_back(d
);
1534 /* This structure represents a set of filter index expressions
1535 * along with bounds on the correponding filter values.
1536 * The number of output dimensions in "value" is the same as
1537 * the number of elements in the "index" vector.
1540 std::vector
<isl_union_map
*> index
;
1544 /* Construct a da_filter object representing the filters in
1545 * na->node and na->access.
1547 static struct da_filter
*extract_filter(na_pair
*na
)
1549 da_filter
*filter
= new da_filter
;
1551 pdg::node
*node
= na
->node
;
1552 pdg::access
*access
= na
->access
;
1554 domain
= node
->source
->get_isl_set();
1555 if (isl_set_is_wrapping(domain
))
1556 filter
->value
= isl_set_unwrap(domain
);
1558 filter
->value
= isl_map_from_domain(domain
);
1560 for (int i
= 0; i
< node
->filters
.size(); ++i
)
1561 filter
->index
.push_back(extract_access_map(node
->filters
[i
]));
1563 if (access
->nested
.size() == 0)
1566 domain
= isl_map_domain(access
->map
->get_isl_map());
1567 filter
->value
= isl_map_flat_range_product(filter
->value
,
1568 isl_set_unwrap(domain
));
1570 for (int i
= 0; i
< access
->nested
.size(); ++i
)
1571 filter
->index
.push_back(extract_access_map(access
->nested
[i
]));
1576 static struct da_filter
*da_filter_free(struct da_filter
*filter
)
1580 for (int i
= 0; i
< filter
->index
.size(); ++i
)
1581 isl_union_map_free(filter
->index
[i
]);
1582 isl_map_free(filter
->value
);
1587 static void da_filter_dump(struct da_filter
*filter
)
1594 p
= isl_printer_to_file(isl_map_get_ctx(filter
->value
), stderr
);
1595 p
= isl_printer_start_line(p
);
1596 p
= isl_printer_print_str(p
, "value(");
1597 for (int i
= 0; i
< filter
->index
.size(); ++i
) {
1599 p
= isl_printer_print_str(p
, ", ");
1600 p
= isl_printer_print_union_map(p
, filter
->index
[i
]);
1602 p
= isl_printer_print_str(p
, ") in ");
1603 p
= isl_printer_print_map(p
, filter
->value
);
1604 p
= isl_printer_end_line(p
);
1606 isl_printer_free(p
);
1609 /* Look for a filter index expression in "filter" that is identical
1610 * to "index". Return the index of this index expression if it is
1611 * found and the number of elements in filter->index otherwise.
1613 static int da_filter_find_exact_match(struct da_filter
*filter
,
1614 __isl_keep isl_union_map
*index
)
1616 for (int i
= 0; i
< filter
->index
.size(); ++i
) {
1619 equal
= isl_union_map_is_equal(filter
->index
[i
], index
);
1626 return filter
->index
.size();
1629 /* Add the index expression "index" to "filter" with an unconstrained
1630 * filter value. To ease debugging we set the name of the new filter
1631 * value dimension to that of the array being accessed by "index".
1632 * Although the range of "index" is allowed to live in more than
1633 * one space, we assume that they are all wrapped maps to the same
1636 static struct da_filter
*da_filter_add(struct da_filter
*filter
,
1637 __isl_take isl_union_map
*index
)
1640 isl_union_map
*univ
;
1643 if (!filter
|| !index
)
1646 filter
->value
= isl_map_add_dims(filter
->value
, isl_dim_out
, 1);
1647 univ
= isl_union_map_universe(isl_union_map_copy(index
));
1648 univ
= isl_union_set_unwrap(isl_union_map_range(univ
));
1649 set
= isl_set_from_union_set(isl_union_map_range(univ
));
1650 id
= isl_set_get_tuple_id(set
);
1652 filter
->value
= isl_map_set_dim_id(filter
->value
, isl_dim_out
,
1653 filter
->index
.size(), id
);
1656 filter
->index
.push_back(index
);
1660 isl_union_map_free(index
);
1661 da_filter_free(filter
);
1665 /* Intersect the set of possible filter values in "filter" with "value".
1667 static struct da_filter
*da_filter_restrict(struct da_filter
*filter
,
1668 __isl_take isl_map
*value
)
1670 if (!filter
|| !value
)
1673 filter
->value
= isl_map_intersect(filter
->value
, value
);
1675 return da_filter_free(filter
);
1679 isl_map_free(value
);
1680 da_filter_free(filter
);
1684 /* Does "map" represent a total filter on "domain", i.e., one that is defined
1685 * on every element of "domain"?
1687 * Although the range of "map" may live in different spaces, we assume
1688 * that the domain of "map" lives in a single space.
1690 static int is_total_filter(__isl_keep isl_union_map
*map
,
1691 __isl_keep isl_set
*domain
)
1693 isl_union_set
*map_domain
;
1697 map_domain
= isl_union_map_domain(isl_union_map_copy(map
));
1698 set
= isl_set_from_union_set(map_domain
);
1699 total
= isl_set_is_subset(domain
, set
);
1705 /* Does "node" have only total filters on "domain"?
1707 static int all_total_filters(pdg::node
*node
, __isl_take isl_set
*domain
)
1711 for (int i
= 0; i
< node
->filters
.size(); ++i
) {
1712 isl_union_map
*map
= extract_access_map(node
->filters
[i
]);
1714 total
= is_total_filter(map
, domain
);
1715 isl_union_map_free(map
);
1721 isl_set_free(domain
);
1725 /* Does "node" have only total filters on the domain of "map"?
1727 static bool filters_total_on_domain(pdg::node
*node
, __isl_keep isl_map
*map
)
1729 return all_total_filters(node
, isl_map_domain(isl_map_copy(map
)));
1732 /* Does "node" have only total filters on the range of "map"?
1734 static bool filters_total_on_range(pdg::node
*node
, __isl_keep isl_map
*map
)
1736 return all_total_filters(node
, isl_map_range(isl_map_copy(map
)));
1739 /* Are the filters of "source_node" total on the range of "source_map"
1740 * and those of "sink_node" (if any) total on the domain of "soruce_map"?
1742 static bool total_filters(pdg::node
*source_node
, pdg::node
*sink_node
,
1743 __isl_keep isl_map
*source_map
)
1747 total
= filters_total_on_range(source_node
, source_map
);
1751 if (!isl_set_is_wrapping(sink_node
->source
->set
))
1754 total
= filters_total_on_domain(sink_node
, source_map
);
1761 /* Does "node" have any single valued filters?
1763 static int any_single_valued_filter(pdg::node
*node
)
1765 for (int i
= 0; i
< node
->filters
.size(); ++i
) {
1766 isl_union_map
*map
= extract_access_map(node
->filters
[i
]);
1769 sv
= isl_union_map_is_single_valued(map
);
1770 isl_union_map_free(map
);
1779 /* Construct a mapping from the source iterations to all source filter values
1780 * that allow some corresponding sink iteration(s) (according to "source_map")
1781 * to be executed. In other words, if any sink iteration is executed,
1782 * then we know that the filters of the corresponding source iterations
1783 * satisfy the returned relation.
1785 * The "filter" input represents what is known about the filter
1786 * values at the sink.
1788 * The "source" domain of the source is a wrapped map,
1789 * mapping iteration vectors to filter values.
1790 * We first construct a relation between the sink filter values (available
1791 * in "filter") and the source filter values. The purpose of this relation
1792 * is to find as much information about the source filter values
1793 * as possible. We can start with the value bounds on the arrays
1794 * accessed in the filters as they always hold.
1795 * Next, we loop over the source filters and check whether there
1796 * is any sink filter that covers the source filter.
1797 * In particular, for each source filter, we construct a map
1798 * from the source iteration domain to a wrapped access relation,
1799 * representing the write access relation that corresponds to
1800 * the filter read access. Note that if we were unable to determine this
1801 * write access, then the mapping returned by extract_access_map
1802 * maps to the original read access, which will not match with
1803 * any filter access relations of the sink.
1804 * We combine the constructed map with the proto-dependence
1805 * (source_map) to obtain a mapping from sink iterations to
1806 * access relations such that there is some source iteration that
1807 * may be the source of the given sink iteration (based on source_map)
1808 * and that the filter value at this source iteration was written by
1809 * that access. If the result is a subset of the mapping from the
1810 * sink iterations to the corresponding write access relation for some filter,
1811 * then we know that any constraint on this filter value also applies
1812 * to the source filter value. We therefore introduce an equality
1813 * in our mapping from sink filter values to source filter values.
1815 * When we apply the mapping from sink filter values to source filter values
1816 * to the mapping from source iterations to sink filter values, we
1817 * obtain a mapping from sink iterations to source filter values
1818 * that represents what we know about the source filter values.
1819 * That is, for each sink iteration in the domain of this map, if this
1820 * sink iteration is executed, then the actual source filter values
1821 * are an element of the image of the sink iteration.
1822 * In other words, the sink iteration is only executed if the source
1823 * filter values are an element of the image.
1824 * Mapping this relation back to the source through the proto-dependence
1825 * source_map, we obtain a relation from source iterations to all source
1826 * filter values for which any sink iteration is executed.
1827 * In particular, for values of the filters outside this relation,
1828 * no corresponding (according to source_map) sink is executed.
1830 static __isl_give isl_map
*known_filter_values(struct da_filter
*filter
,
1831 na_pair
*source_na
, __isl_keep isl_map
*source_map
)
1833 isl_space
*space
, *space2
;
1834 isl_map
*source_value
, *sink_value
;
1835 isl_map
*filter_map
;
1838 sink_value
= isl_map_copy(filter
->value
);
1840 space
= isl_set_get_space(source_na
->node
->source
->set
);
1841 space
= isl_space_range(isl_space_unwrap(space
));
1842 space2
= isl_space_range(isl_map_get_space(sink_value
));
1843 space
= isl_space_align_params(space
, isl_space_copy(space2
));
1844 space2
= isl_space_align_params(space2
, isl_space_copy(space
));
1845 space
= isl_space_map_from_domain_and_range(space2
, space
);
1846 filter_map
= isl_map_universe(space
);
1848 bounds
= compute_filter_bounds(source_na
->node
);
1849 filter_map
= isl_map_intersect_range(filter_map
, bounds
);
1851 for (int i
= 0; i
< source_na
->node
->filters
.size(); ++i
) {
1852 isl_union_map
*map_i
;
1853 map_i
= extract_access_map(source_na
->node
->filters
[i
]);
1854 map_i
= isl_union_map_apply_range(
1855 isl_union_map_from_map(isl_map_copy(source_map
)), map_i
);
1856 for (int j
= 0; j
< filter
->index
.size(); ++j
) {
1857 if (isl_union_map_is_subset(map_i
, filter
->index
[j
]))
1858 filter_map
= isl_map_equate(filter_map
,
1859 isl_dim_in
, j
, isl_dim_out
, i
);
1861 isl_union_map_free(map_i
);
1864 source_value
= isl_map_apply_range(sink_value
, filter_map
);
1865 source_value
= isl_map_apply_domain(source_value
,
1866 isl_map_copy(source_map
));
1867 source_value
= isl_map_coalesce(source_value
);
1869 return source_value
;
1872 /* Add a new output dimension to "map" with constraints that are the
1873 * same as those on output dimension "pos".
1875 * Given map { [i] -> [j] }, we first and an extra dimension,
1879 * extract out j_pos,
1881 * { [[i] -> [j_0,...,j_{pos-1},*,j_{pos+1},...,*]] -> [j_pos] }
1885 * { [[i] -> [j_0,...,j_{pos-1},*,j_{pos+1},...,*]] -> [j_pos,j_pos'] }
1887 * and then move the dimensions back
1889 * { [i] -> [j,j_pos'] }
1891 static __isl_give isl_map
*copy_dim(__isl_take isl_map
*map
, int pos
)
1895 pos_new
= isl_map_dim(map
, isl_dim_out
);
1896 pos
+= isl_map_dim(map
, isl_dim_in
);
1897 pos_new
+= isl_map_dim(map
, isl_dim_in
);
1898 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
1899 map
= isl_map_from_domain(isl_map_wrap(map
));
1900 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
1901 map
= isl_map_equate(map
, isl_dim_in
, pos
, isl_dim_out
, 0);
1902 map
= isl_map_eliminate(map
, isl_dim_in
, pos
, 1);
1903 map
= isl_map_range_product(map
, isl_map_copy(map
));
1904 map
= isl_map_equate(map
, isl_dim_in
, pos
, isl_dim_out
, 0);
1905 map
= isl_map_equate(map
, isl_dim_in
, pos_new
, isl_dim_out
, 1);
1906 map
= isl_set_unwrap(isl_map_domain(map
));
1911 /* Given constraints on the filter values "filter" at the sink iterations
1912 * "sink", derive additional constraints from the filter values of source
1913 * node "source_na". In particular, consider the iterations of "source_na"
1914 * that have _not_ been executed based on the constraints of the corresponding
1915 * last iteration parameters in "sink" and what this implies about the
1916 * filter values at those iterations.
1918 * Essentially, we consider all pairs of sink iterations and filter
1919 * elements, together with the corresponding non-executed source iterations
1920 * and the possible values of those filters. We universally quantify
1921 * the non-executed source iterations so that we obtain the intersection
1922 * of the constraints on the filter values over all those source iterations
1923 * and then existentially quantify the filter elements to obtain constraints
1924 * that are valid for all filter elements.
1926 * In more details, the computation is performed as follows.
1928 * Compute a mapping from potential last iterations of the other source
1929 * to sink iterations, taking into account the contraints on
1930 * the last executed iterations encoded in the parameters of "sink",
1931 * but projecting out all parameters encoding last iterations from the result.
1932 * Include all earlier iterations of the other source, resulting in
1933 * a mapping with a domain that includes all potential iterations of the
1936 * Subtract these iterations from all possible iterations of the other
1937 * source for a given sink iteration, resulting in a mapping from
1938 * potential source iterations that are definitely not executed
1939 * to the corresponding sink iteration.
1941 * If this map is empty, then this means we can't find any iterations
1942 * of the other source that are certainly not executed and then we
1943 * can't derive any further information.
1944 * Similarly, if the filters of source_na->node are not total
1945 * on the set of non-executed iterations, then we cannot draw any conclusions.
1946 * (Note that we already tested that the filters on sink->node are total
1947 * on the domain of "source_map". By intersecting the set of corresponding
1948 * sink iterations with this domain, we ensure that this property also holds
1949 * on those sink iterations.)
1950 * Otherwise, keep track of those sink iterations without any corresponding
1951 * non-executed other source iterations. We will lose these sink iterations
1952 * in subsequent computations, so we need to add them back in at the end.
1954 * Compute bounds on the filter values at the non executed iterations
1955 * based on what we know about filters at the sink and the fact that
1956 * the iterations are not executed, meaning that the filter values
1957 * do not satisfy the constraints that allow the iteration to be executed.
1958 * The result is a mapping T -> V.
1960 * Note that we only know that there is some accessed filter element
1961 * that does not satisfy the constraints that allow the iteration to be
1962 * executed. We therefore project out those dimensions that correspond
1963 * to filters with an access relation that is not single-valued, i.e.,
1964 * one that may access more than one element for some iterations.
1965 * If there are no single-valued filters, then we can skip the rest of
1968 * Construct a mapping [K -> F] -> T, with K the sink iterations,
1969 * T the corresponding non-executed iterations of the other source and
1970 * F the filters accessed at those iterations.
1972 * Combine the above two mappings into a mapping [K -> F] -> V
1973 * such that the set of possible filter values (V) is the intersection
1974 * over all iterations of the other source that access the filter,
1975 * and such that there is at least one such iteration.
1976 * In other words, ensure that the range of [K -> F] -> T
1977 * is a non-empty subset of the range of V -> T.
1978 * We require a non-empty subset to ensure that the domain of
1979 * [K -> F] -> V is equal to the result of composing K -> T with T -> F.
1980 * Projecting out F from [K -> F] -> V, we obtain a map K -> V that is
1981 * the union of all possible values of the filters K -> F, i.e.,
1982 * the constraints that the values of K -> F satisfy.
1983 * If we didn't impose non-emptiness above, then the domain of [K -> F] -> V
1984 * would also include pairs that we are not interested in, related to
1985 * arbitrary values. Projecting out F would then also lead to arbitrary
1988 * Compose the mapping K -> T with the index expressions, pulling them
1990 * For each of these pulled back index expressions, we check if it
1991 * is equal to one of the sink filter index expressions. If not, we
1992 * add it to the sink filter index expressions.
1993 * In both cases, we keep track of the fact that this sink filter
1994 * should have a value that satisfies the constraints in K -> V.
1995 * We further check if there is any sink filter index expression
1996 * that is a (strict) subset of the pulled back index expression.
1997 * The value of any such sink filter should also satisfy those
1998 * constraints, so we duplicate the filter value in K -> V.
2000 * Finally, we intersect the possible filter values with the constraints
2001 * obtained above on the affected sink iterations and a universe range
2002 * on the unaffected sink iterations.
2004 static struct da_filter
*include_other_source(struct da_filter
*filter
,
2005 __isl_keep isl_map
*source_map
, __isl_keep isl_set
*sink
,
2006 na_pair
*source_na
, add_dep_info
*info
)
2008 isl_space
*space
, *space2
;
2009 isl_set
*source_domain
;
2011 isl_map
*may_run
, *not_run
;
2012 isl_map
*source_value
;
2013 isl_union_map
*usource
, *umap
;
2014 std::vector
<isl_union_map
*> index
;
2015 isl_union_map
*index_product
;
2017 isl_map
*filter_map
;
2018 isl_set
*unaffected_sink
;
2019 isl_map
*unaffected_value
;
2021 if (source_na
->node
->filters
.size() == 0)
2024 space
= isl_set_get_space(source_na
->node
->source
->set
);
2025 space
= isl_space_domain(isl_space_unwrap(space
));
2026 source_domain
= isl_set_universe(space
);
2027 source_domain
= add_parametrization(source_domain
, source_na
, info
);
2028 may_run
= isl_map_from_domain_and_range(source_domain
,
2029 isl_set_copy(sink
));
2030 may_run
= share(may_run
, info
->n_shared
);
2032 may_run
= remove_all_controls(may_run
);
2033 mem
= info
->get_mem_dep(source_na
);
2034 mem
= share(mem
, info
->n_shared
);
2035 mem
= isl_map_intersect_range(mem
,
2036 isl_map_domain(remove_all_controls(isl_map_copy(source_map
))));
2037 space
= isl_space_domain(isl_map_get_space(may_run
));
2038 may_run
= isl_map_apply_domain(may_run
, isl_map_lex_ge(space
));
2039 not_run
= isl_map_subtract(mem
, may_run
);
2041 if (isl_map_is_empty(not_run
) ||
2042 !any_single_valued_filter(source_na
->node
) ||
2043 !filters_total_on_domain(source_na
->node
, not_run
)) {
2044 isl_map_free(not_run
);
2048 not_run
= isl_map_reverse(not_run
);
2049 source_value
= known_filter_values(filter
, source_na
, not_run
);
2050 source_value
= isl_map_subtract(source_value
,
2051 isl_set_unwrap(source_na
->node
->source
->get_isl_set()));
2052 unaffected_sink
= isl_set_copy(sink
);
2053 unaffected_sink
= remove_all_controls(unaffected_sink
);
2054 unaffected_sink
= isl_set_subtract(unaffected_sink
,
2055 isl_map_domain(isl_map_copy(not_run
)));
2057 for (int i
= 0; i
< source_na
->node
->filters
.size(); ++i
) {
2061 map
= extract_access_map(source_na
->node
->filters
[i
]);
2062 sv
= isl_union_map_is_single_valued(map
);
2064 index
.push_back(map
);
2066 isl_union_map_free(map
);
2067 source_value
= isl_map_project_out(source_value
,
2068 isl_dim_out
, index
.size(), 1);
2072 index_product
= isl_union_map_copy(index
[0]);
2073 for (int i
= 1; i
< index
.size(); ++i
)
2074 index_product
= isl_union_map_range_product(index_product
,
2075 isl_union_map_copy(index
[1]));
2076 index_product
= isl_union_map_reverse(index_product
);
2077 index_product
= isl_union_map_domain_product(
2078 isl_union_map_from_map(isl_map_copy(not_run
)), index_product
);
2080 usource
= isl_union_map_from_map(source_value
);
2081 usource
= join_non_empty_subset(index_product
, usource
);
2082 umap
= isl_union_map_universe(isl_union_map_copy(usource
));
2083 umap
= isl_union_set_unwrap(isl_union_map_domain(umap
));
2084 umap
= isl_union_map_domain_map(umap
);
2085 usource
= isl_union_map_apply_domain(usource
, umap
);
2086 source_value
= isl_map_from_union_map(usource
);
2088 for (int i
= 0; i
< index
.size(); ++i
)
2089 index
[i
] = isl_union_map_apply_range(
2090 isl_union_map_from_map(isl_map_copy(not_run
)), index
[i
]);
2092 space
= isl_space_range(isl_map_get_space(source_value
));
2093 space2
= isl_space_range(isl_map_get_space(filter
->value
));
2094 space
= isl_space_align_params(space
, isl_space_copy(space2
));
2095 space2
= isl_space_align_params(space2
, isl_space_copy(space
));
2096 space
= isl_space_map_from_domain_and_range(space
, space2
);
2097 filter_map
= isl_map_universe(space
);
2099 for (int i
= 0; i
< index
.size(); ++i
) {
2100 int exact
= da_filter_find_exact_match(filter
, index
[i
]);
2102 if (exact
== filter
->index
.size()) {
2103 filter
= da_filter_add(filter
,
2104 isl_union_map_copy(index
[i
]));
2105 filter_map
= isl_map_add_dims(filter_map
,
2108 filter_map
= isl_map_equate(filter_map
, isl_dim_in
, i
,
2109 isl_dim_out
, exact
);
2110 for (int j
= 0; j
< filter
->index
.size(); ++j
) {
2115 if (!isl_union_map_is_subset(filter
->index
[j
],
2118 pos
= isl_map_dim(source_value
, isl_dim_out
);
2119 source_value
= copy_dim(source_value
, i
);
2120 filter_map
= isl_map_add_dims(filter_map
,
2122 filter_map
= isl_map_equate(filter_map
, isl_dim_in
, pos
,
2127 source_value
= isl_map_apply_range(source_value
, filter_map
);
2128 source_value
= isl_map_coalesce(source_value
);
2129 unaffected_value
= isl_map_from_domain(unaffected_sink
);
2130 unaffected_value
= isl_map_add_dims(unaffected_value
, isl_dim_out
,
2131 filter
->index
.size());
2132 source_value
= isl_map_union(source_value
, unaffected_value
);
2133 filter
= da_filter_restrict(filter
, source_value
);
2135 for (int i
= 0; i
< index
.size(); ++i
)
2136 isl_union_map_free(index
[i
]);
2137 isl_map_free(not_run
);
2142 /* Given constraints on the filter values "filter" at the sink iterations
2143 * "sink", derive additional constraints from the filter values of those
2144 * source nodes for which "sink" contains a reference to its last iteration,
2145 * for use in determining whether parametrization is needed on "source_map".
2146 * In particular, we try and derive extra information from the fact that
2147 * some iterations of those source nodes have _not_ been executed.
2149 static struct da_filter
*include_other_sources(struct da_filter
*filter
,
2150 __isl_keep isl_map
*source_map
, __isl_keep isl_set
*sink
,
2156 space
= isl_set_get_space(sink
);
2157 n_param
= isl_space_dim(space
, isl_dim_param
);
2158 for (int i
= 0; i
< n_param
; ++i
) {
2162 if (!is_shared(space
, i
))
2165 id
= isl_space_get_dim_id(space
, isl_dim_param
, i
);
2166 na
= (na_pair
*) isl_id_get_user(id
);
2169 filter
= include_other_source(filter
, source_map
, sink
,
2172 isl_space_free(space
);
2177 #define RESTRICT_ERROR -1
2178 #define RESTRICT_NO 0
2179 #define RESTRICT_EMPTY 1
2180 #define RESTRICT_INPUT 2
2181 #define RESTRICT_OUTPUT 3
2183 /* Given a map from sinks to potential sources (source_map)
2184 * and the set of sink iterations (sink),
2185 * check if any parametrization is needed on the sources.
2186 * That is, check whether the possible filter values at the sink
2187 * imply that the filter values at the source are always valid.
2188 * If so, the source is executed whenever the sink is executed
2189 * and no parametrization is required.
2191 * Return RESTRICT_NO if no parametrization is required.
2192 * Return RESTRICT_INPUT if parametrization is required on the input
2193 * of the computation of the last iteration.
2194 * Return RESTRICT_OUTPUT if parametrization is required on the output
2195 * of the computation of the last iteration. This means that we know
2196 * that the source will be executed, but we want to introduce a parameter
2197 * to represent the last iteration anyway, because the knowledge depends
2198 * on the parameters representing last iterations of other nodes.
2199 * Return RESTRICT_EMPTY if the potential sources cannot possibly
2200 * be executed, assuming that the sink is executed.
2202 * If there are no filters on the source, then obviously the source
2203 * is always executed.
2205 * If the filters of the sink and the source are not all total
2206 * on domain and range of "source_map", then we cannot draw any conclusion.
2207 * In principle, we could split up "source_map" according to whether
2208 * the filters would be total on the domain and range.
2210 * We first construct a mapping from source iterations to source filter
2211 * values that allow some corresponding sink iteration(s) (according to
2212 * "source_map") to be executed.
2213 * If this relation is a subset of the actual mapping from iteration
2214 * vectors to filter values at the source, then we know that a corresponding
2215 * sink is only executed when the source is executed and no parametrization
2216 * is required. However, we postpone the decision until we have considered
2217 * the other potential sources below.
2218 * If, on the other hand, the constructed relation is disjoint
2219 * from the source filter relation, then the sources cannot have
2220 * executed if the sink is executed. If so, we return
2221 * RESTRICT_EMPTY immediately.
2223 * Otherwise, we check if we can find out more information by considering
2224 * information derived from knowledge about the last iterations of other
2225 * nodes. If, by considering this extract information, we can find
2226 * that the potential source is never executed (given that the sink
2227 * is executed), then we return RESTRICT_EMPTY.
2228 * Otherwise, if we had already determined that the relation based
2229 * on only the sink is a subset of the filter values, then we return
2230 * RESTRICT_NO. If we can only draw this conclusion when taking into
2231 * account the other potential sources, then we return RESTRICT_OUTPUT.
2232 * Otherwise, we return RESTRICT_INPUT.
2234 static int need_parametrization(__isl_keep isl_map
*source_map
,
2235 __isl_keep isl_set
*sink
, na_pair
*source_na
, add_dep_info
*info
)
2237 bool filtered_source
;
2239 isl_map
*source_value
, *sink_value
;
2241 na_pair
*sink_na
= info
->read_na_pair
;
2244 if (isl_map_plain_is_empty(source_map
) ||
2245 isl_set_plain_is_empty(sink
))
2248 filtered_source
= isl_set_is_wrapping(source_na
->node
->source
->set
);
2250 if (!filtered_source
)
2253 if (!total_filters(source_na
->node
, sink_na
->node
, source_map
))
2254 return RESTRICT_INPUT
;
2256 filter
= extract_filter(sink_na
);
2258 if (filter
->index
.size() != 0) {
2259 sink_value
= known_filter_values(filter
, source_na
, source_map
);
2260 source_value
= isl_set_unwrap(
2261 source_na
->node
->source
->get_isl_set());
2263 if (isl_map_is_disjoint(sink_value
, source_value
))
2264 res
= RESTRICT_EMPTY
;
2265 else if (isl_map_is_subset(sink_value
, source_value
))
2267 isl_map_free(source_value
);
2268 isl_map_free(sink_value
);
2271 if (res
== RESTRICT_EMPTY
) {
2272 da_filter_free(filter
);
2276 filter
= include_other_sources(filter
, source_map
, sink
, info
);
2279 return RESTRICT_ERROR
;
2280 if (filter
->index
.size() == 0) {
2281 da_filter_free(filter
);
2282 return RESTRICT_INPUT
;
2285 sink_value
= known_filter_values(filter
, source_na
, source_map
);
2286 source_value
= isl_set_unwrap(source_na
->node
->source
->get_isl_set());
2288 if (isl_map_is_disjoint(sink_value
, source_value
))
2289 res
= RESTRICT_EMPTY
;
2290 else if (res
== RESTRICT_NO
)
2292 else if (isl_map_is_subset(sink_value
, source_value
))
2293 res
= RESTRICT_OUTPUT
;
2295 res
= RESTRICT_INPUT
;
2297 isl_map_free(source_value
);
2298 isl_map_free(sink_value
);
2299 da_filter_free(filter
);
2305 static __isl_give isl_restriction
*do_restrict(
2306 __isl_keep isl_map
*source_map
, __isl_keep isl_set
*sink
,
2307 void *source_user
, void *user
);
2310 /* Add parameters corresponding to the last iteration of "na" to "set"
2311 * (assuming they don't already appear in "set")
2312 * and add constraints to them to express that there either is no
2313 * last iteration with info->n_shared shared loops
2314 * (__last_<na>_shared < info->n_shared) or that there is a last
2315 * iteration with at least info->n_shared shared loops
2316 * (__last_<na>_shared >= info->n_shared) and that the iteration is a possible
2317 * source of the current sink (based on the memory dependence between
2318 * the source and the sink).
2320 static __isl_give isl_set
*set_parameter_bounds(__isl_take isl_set
*set
,
2321 na_pair
*na
, add_dep_info
*info
)
2330 id
= create_shared_id(isl_set_get_ctx(set
), na
);
2331 shared_pos
= find_or_add_param(&set
, id
);
2333 valid
= isl_set_copy(set
);
2336 valid
= isl_set_lower_bound_si(valid
, isl_dim_param
, shared_pos
,
2339 mem
= info
->get_mem_dep(na
);
2340 domain
= isl_set_universe(isl_space_domain(isl_map_get_space(mem
)));
2341 domain
= add_parametrization(domain
, na
, info
);
2342 mem
= isl_map_intersect_domain(mem
, domain
);
2343 valid
= isl_set_intersect(valid
, isl_map_range(mem
));
2345 invalid
= isl_set_upper_bound_si(invalid
, isl_dim_param
, shared_pos
,
2346 info
->n_shared
- 1);
2348 return isl_set_union(valid
, invalid
);
2351 /* Check if there are any iterations of "source_na" in "source_map"
2352 * that are definitely executed, based solely on the possible filter values.
2353 * If so, add constraints to "sink" to indicate that the last execution
2354 * cannot be earlier than those definitely executed iterations.
2356 * We first compute the set of source iterations that are definitely
2357 * executed because there are no filter values that would prohibit
2358 * their execution. If there are no such source iterations then we are done.
2360 * Then we construct a map from sink iterations to associated (through
2361 * "source_map") definitely executed source iterations.
2363 * For those sink iterations that have a corresponding definitely
2364 * executed source iteration, we add constraints that express that
2365 * this last definitely executed source iteration is lexicographically
2366 * smaller than or equal to the last executed source iteration
2367 * (and that there definitely is a last executed source iteration).
2369 static __isl_give isl_set
*mark_definite_source(__isl_take isl_set
*sink
,
2370 add_dep_info
*info
, na_pair
*source_na
, __isl_keep isl_map
*source_map
)
2375 isl_map
*definite_source_map
;
2376 isl_set
*with_source
;
2380 dom
= source_na
->node
->source
->get_isl_set();
2381 dom
= isl_map_domain(isl_set_unwrap(dom
));
2382 invalid
= compute_filter_values(source_na
->node
, true);
2383 dom
= isl_set_subtract(dom
, isl_map_domain(invalid
));
2385 if (isl_set_is_empty(dom
)) {
2390 space
= isl_set_get_space(dom
);
2392 definite_source_map
= isl_map_copy(source_map
);
2393 definite_source_map
= isl_map_intersect_range(source_map
, dom
);
2395 dom
= isl_map_domain(isl_map_copy(definite_source_map
));
2397 with_source
= isl_set_copy(sink
);
2398 with_source
= isl_set_intersect(with_source
, isl_set_copy(dom
));
2399 sink
= isl_set_subtract(sink
, dom
);
2401 dom
= isl_set_universe(isl_space_copy(space
));
2402 dom
= add_parametrization(dom
, source_na
, info
);
2404 depth
= source_na
->node
->get_filter_depth();
2406 space
= isl_space_map_from_set(space
);
2407 map_after
= isl_map_lex_ge_first(space
, depth
);
2408 dom
= isl_set_apply(dom
, map_after
);
2410 definite_source_map
= isl_map_intersect_range(definite_source_map
, dom
);
2412 dom
= isl_map_domain(definite_source_map
);
2413 with_source
= isl_set_intersect(with_source
, dom
);
2415 sink
= isl_set_union(sink
, with_source
);
2420 /* Remove inconsistencies from the set of sink iterations "sink"
2421 * based on the current potential source "source_na" and other
2422 * potential sources referenced by "sink".
2424 * We first identify those iterations of "source_na" that are
2425 * definitely executed based solely on the possible filter values.
2427 * If the sink has filters, then we remove inconsistencies based
2428 * on the sink and the current potential source.
2430 * Finally, we go through the references to other potential sources
2431 * in "sink" and remove inconsistencies based on this other potential
2432 * source and the current potential source.
2434 static __isl_give isl_set
*remove_inconsistencies(__isl_take isl_set
*sink
,
2435 add_dep_info
*info
, na_pair
*source_na
, __isl_keep isl_map
*source_map
)
2441 source_id
= create_shared_id(isl_map_get_ctx(source_map
), source_na
);
2443 sink
= mark_definite_source(sink
, info
, source_na
, source_map
);
2445 if (isl_set_is_wrapping(info
->read_na_pair
->node
->source
->set
))
2446 sink
= remove_inconsistencies(sink
, info
, source_id
);
2448 space
= isl_set_get_space(sink
);
2449 n_param
= isl_space_dim(space
, isl_dim_param
);
2450 for (int i
= 0; i
< n_param
; ++i
) {
2453 if (!is_shared(space
, i
))
2455 other_id
= isl_space_get_dim_id(space
, isl_dim_param
, i
);
2457 if (other_id
!= source_id
) {
2460 other_na
= (na_pair
*) isl_id_get_user(other_id
);
2461 sink
= set_parameter_bounds(sink
, other_na
, info
);
2462 sink
= remove_inconsistencies(sink
, info
, other_id
,
2466 isl_id_free(other_id
);
2468 isl_space_free(space
);
2470 isl_id_free(source_id
);
2474 /* Compute a restriction for the given sink.
2475 * That is, add constraints to the parameters expressing
2476 * that the source is either not executed with info->n_shared shared
2477 * iterators (*_shared < info->n_shared)
2478 * or it is executed (*_shared >= info->n_shared) and then the last iteration
2479 * satisfies the corresponding memory based dependence.
2481 * Only do this for that part of "sink" that has any corresponding
2482 * sources in "source_map". The remaining part of "sink" is not affected.
2484 * Note that the "sink" set may have undergone a refinement based
2485 * on the _shared parameters and we want this refinement to also
2486 * be present in the sink restriction. We therefore need
2487 * to intersect the affected part with "sink".
2489 static __isl_give isl_set
*compute_sink_restriction(
2490 __isl_keep isl_map
*source_map
, __isl_keep isl_set
*sink
,
2491 na_pair
*source_na
, add_dep_info
*info
)
2493 isl_set
*with_source
, *without_source
;
2495 with_source
= isl_map_domain(isl_map_copy(source_map
));
2496 without_source
= isl_set_subtract(isl_set_copy(sink
),
2497 isl_set_copy(with_source
));
2498 with_source
= isl_set_intersect(with_source
, isl_set_copy(sink
));
2500 with_source
= set_parameter_bounds(with_source
, source_na
, info
);
2501 with_source
= remove_inconsistencies(with_source
, info
, source_na
,
2504 return isl_set_union(with_source
, without_source
);
2507 /* How many loops do "node1" and "node2" share?
2509 static int max_shared(pdg::node
*node1
, pdg::node
*node2
)
2512 int size
= node1
->prefix
.size();
2514 if (node2
->prefix
.size() < size
)
2515 size
= node2
->prefix
.size();
2517 for (int i
= 0; i
< size
&& node1
->prefix
[i
] == node2
->prefix
[i
]; ++i
)
2518 if (node1
->prefix
[i
] == -1)
2524 /* Determine the number of shared loop iterators between sink
2525 * and source domains in "sink2source". That is, find out how
2526 * many of the initial input and output dimensions are equal
2527 * to each other. Return the result.
2529 * The first time this function is called for a given sink access
2530 * (info->n_shared is set to -1 in add_dep_info::set_read_na),
2531 * we check for equal dimensions up to the shared nesting depth.
2532 * Later call check dimensions up to the result of the previous call.
2534 static int extract_shared_levels(__isl_keep isl_map
*sink2source
,
2535 na_pair
*source_na
, add_dep_info
*info
)
2541 max
= info
->n_shared
;
2543 max
= max_shared(source_na
->node
, info
->read_na_pair
->node
);
2546 return info
->n_shared
= 0;
2548 space
= isl_map_get_space(sink2source
);
2549 for (i
= 0; i
< max
; ++i
) {
2553 test
= isl_map_universe(isl_space_copy(space
));
2554 test
= isl_map_equate(test
, isl_dim_in
, i
, isl_dim_out
, i
);
2555 subset
= isl_map_is_subset(sink2source
, test
);
2561 isl_space_free(space
);
2566 /* The last iteration referred to by the sink may have been added
2567 * at a different nesting level. This means that __last_<na>_shared
2568 * is greater than or equal to a value greater than info->n_shared
2569 * and that therefore the iterators between info->n_shared and
2570 * __last_<na>_shared are not represented as they are implicitly
2571 * considered to be equal to the corresponding sink iterator.
2572 * For consistency, we need to explicitly add those iterators
2573 * and set them to be equal to the corresponding sink iterator.
2575 * In particular, we create a set in the space of the sink of the form
2577 * { s : __last_<na>_shared < info->n_shared or
2578 * (__last_<na>_<i> is a potential source iteration for s and
2579 * (__last_<na>_shared >= max_shared or
2580 * (__last_<na>_shared = max_shared - 1 and
2581 * the first max_shared - 1 iterators are equal and
2582 * iterator max_shared - 1 of the source is smaller) or
2584 * (__last_<na>_shared = info->n_shared and
2585 * the first n_shared iterators are equal and
2586 * iterator n_shared of the source is smaller))) }
2588 * That is, for those parts with __last_<na>_shared smaller than
2589 * max_n_shared[source_na], intersection with the set will introduce
2590 * __last_<na>_<i> parameters (assuming they don't have a known fixed value)
2591 * up until __last_<na>_shared and equate them to the corresponding iterators
2594 static __isl_give isl_set
*internal_shared_refinement(
2595 __isl_keep isl_id
*shared_id
, add_dep_info
*info
)
2600 isl_map
*shared_map
;
2605 source_na
= (na_pair
*) isl_id_get_user(shared_id
);
2607 mem
= info
->get_mem_dep(source_na
);
2608 domain
= isl_set_universe(isl_space_domain(isl_map_get_space(mem
)));
2609 domain
= add_parametrization(domain
, source_na
, info
);
2610 mem
= isl_map_intersect_domain(mem
, domain
);
2612 shared_map
= compute_shared_map(isl_map_get_space(mem
), shared_id
,
2613 info
->n_shared
, info
->max_n_shared
[source_na
]);
2615 mem
= isl_map_intersect(mem
, shared_map
);
2617 valid
= isl_map_range(mem
);
2618 invalid
= isl_set_universe(isl_set_get_space(valid
));
2619 shared_pos
= isl_set_find_dim_by_id(invalid
, isl_dim_param
, shared_id
);
2620 invalid
= isl_set_upper_bound_si(invalid
, isl_dim_param
, shared_pos
,
2621 info
->n_shared
- 1);
2623 return isl_set_union(valid
, invalid
);
2626 /* The last iteration of some source referred to by the sink may have been
2627 * added at a different nesting level. This means that __last_*_shared
2628 * is greater than or equal to a value greater than info->n_shared
2629 * and that therefore the iterators between info->n_shared and
2630 * __last_*_shared are not represented as they are implicitly
2631 * considered to be equal to the corresponding sink iterator.
2632 * For consistency, we need to explicitly add those iterators
2633 * and set them to be equal to the corresponding sink iterator.
2635 * For each of the __last_*_shared parameters, explicitly add
2636 * the implicitly equal __last_*_i iterators by intersecting
2637 * the sink with the set computed by internal_shared_refinement.
2639 static __isl_give isl_set
*refine_shared_internal(__isl_take isl_set
*sink
,
2643 isl_set
*refinement
;
2646 space
= isl_set_get_space(sink
);
2647 refinement
= isl_set_universe(isl_space_copy(space
));
2649 n_param
= isl_space_dim(space
, isl_dim_param
);
2650 for (int i
= 0; i
< n_param
; ++i
) {
2654 if (!is_shared(space
, i
))
2657 id
= isl_space_get_dim_id(space
, isl_dim_param
, i
);
2658 ref_i
= internal_shared_refinement(id
, info
);
2660 refinement
= isl_set_intersect(refinement
, ref_i
);
2662 isl_space_free(space
);
2664 sink
= isl_set_intersect(sink
, refinement
);
2669 /* Given a map from sinks to potential sources (sink2source),
2670 * check if any parametrization is needed.
2671 * Depending on the result, return either a universe restriction,
2672 * an empty restriction (if the sources cannot have executed),
2673 * a restriction that parametrizes the source and the sink
2674 * of the input of the computation of the last source
2675 * or a restriction that parametrizes the source of the output.
2677 * sink_map maps the domain of sink2source to the sink iteration domain.
2678 * source_map maps the range of sink2source to the source iteration domain.
2680 * Before we check if we need any parametrization, we update the number of
2681 * shared loop levels and add possibly missing __last_*_i iterators
2682 * (in refine_shared_internal). If parametrization turns out to be required,
2683 * we also update the minimal number of shared loop levels for the given
2686 static __isl_give isl_restriction
*compute_restriction_core(
2687 __isl_keep isl_map
*sink2source
,
2688 __isl_take isl_map
*sink_map
, __isl_take isl_map
*source_map
,
2689 __isl_keep isl_set
*sink
, na_pair
*source_na
, add_dep_info
*info
)
2692 isl_set
*source_restr
;
2693 isl_set
*sink_restr
;
2696 sink2source
= isl_map_copy(sink2source
);
2697 sink
= isl_set_copy(sink
);
2699 sink2source
= isl_map_apply_range(sink2source
,
2700 isl_map_copy(source_map
));
2701 sink2source
= isl_map_apply_domain(sink2source
,
2702 isl_map_copy(sink_map
));
2703 sink
= isl_set_apply(sink
, isl_map_copy(sink_map
));
2705 info
->n_shared
= extract_shared_levels(sink2source
, source_na
, info
);
2706 sink
= refine_shared_internal(sink
, info
);
2708 need
= need_parametrization(sink2source
, sink
, source_na
, info
);
2709 if (need
== RESTRICT_ERROR
||
2710 need
== RESTRICT_NO
|| need
== RESTRICT_EMPTY
) {
2711 isl_map_free(source_map
);
2712 isl_map_free(sink_map
);
2714 if (need
== RESTRICT_ERROR
) {
2715 isl_map_free(sink2source
);
2717 } else if (need
== RESTRICT_NO
)
2718 return isl_restriction_none(sink2source
);
2720 return isl_restriction_empty(sink2source
);
2723 info
->update_min_n_shared(source_na
);
2725 space
= isl_map_get_space(source_map
);
2726 source_restr
= isl_set_universe(isl_space_range(space
));
2728 source_restr
= add_parametrization(source_restr
, source_na
, info
);
2729 source_restr
= isl_set_apply(source_restr
, isl_map_reverse(source_map
));
2731 if (need
== RESTRICT_OUTPUT
) {
2732 isl_map_free(sink_map
);
2734 isl_map_free(sink2source
);
2735 return isl_restriction_output(source_restr
);
2738 sink_restr
= compute_sink_restriction(sink2source
, sink
,
2740 sink_restr
= isl_set_apply(sink_restr
, isl_map_reverse(sink_map
));
2743 isl_map_free(sink2source
);
2745 return isl_restriction_input(source_restr
, sink_restr
);
2748 /* Compute a restriction for the given map from sinks to potential sources
2751 * First check if the sink access has any filters. If so, compose the original
2752 * sink_map with a mapping that projects out these access filters.
2753 * Handle the source access similarly.
2754 * Then call compute_restriction_core to perform the main computation.
2756 static __isl_give isl_restriction
*compute_restriction(
2757 __isl_keep isl_map
*sink2source
,
2758 __isl_take isl_map
*sink_map
, __isl_take isl_map
*source_map
,
2759 __isl_keep isl_set
*sink
, na_pair
*source_na
, add_dep_info
*info
)
2761 na_pair
*sink_na
= info
->read_na_pair
;
2763 if (sink_na
->access
->nested
.size() > 0) {
2767 space
= isl_space_range(isl_map_get_space(sink_map
));
2768 space
= isl_space_unwrap(space
);
2769 map
= isl_map_domain_map(isl_map_universe(space
));
2771 sink_map
= isl_map_apply_range(sink_map
, map
);
2774 if (source_na
->access
->nested
.size() > 0) {
2778 space
= isl_space_range(isl_map_get_space(source_map
));
2779 space
= isl_space_unwrap(space
);
2780 map
= isl_map_domain_map(isl_map_universe(space
));
2782 source_map
= isl_map_apply_range(source_map
, map
);
2785 return compute_restriction_core(sink2source
, sink_map
, source_map
,
2786 sink
, source_na
, info
);
2789 /* Compute a restriction for the given map from sinks to potential sources
2790 * (sink2source). We simply call compute_restriction to compute the
2791 * restriction. Since, unlike the case of do_restrict_domain_map bewloe,
2792 * we didn't encode the entire access relation in the domains of the input
2793 * to isl_access_info_compute_flow, we pass identity mappings on the source
2794 * and sink to compute_restriction.
2796 static __isl_give isl_restriction
*do_restrict(__isl_keep isl_map
*sink2source
,
2797 __isl_keep isl_set
*sink
, void *source_user
, void *user
)
2799 na_pair
*source_na
= (na_pair
*) source_user
;
2800 add_dep_info
*info
= (struct add_dep_info
*) user
;
2802 isl_map
*source_map
;
2805 space
= isl_space_domain(isl_map_get_space(sink2source
));
2806 sink_map
= isl_map_identity(isl_space_map_from_set(space
));
2807 space
= isl_space_range(isl_map_get_space(sink2source
));
2808 source_map
= isl_map_identity(isl_space_map_from_set(space
));
2810 return compute_restriction(sink2source
, sink_map
, source_map
,
2811 sink
, source_na
, info
);
2814 /* Does the iteration domain of any of the writes involve any filters?
2816 static bool any_filters(vector
<na_pair
> &writers
)
2818 for (int i
= 0; i
< writers
.size(); ++i
)
2819 if (isl_set_is_wrapping(writers
[i
].node
->source
->set
))
2824 /* Does any of the dependences starting at "first" have
2825 * controlled dependence relation?
2827 static bool any_controlled_dependences(PDG
*pdg
, int first
)
2829 for (int i
= first
; i
< pdg
->dependences
.size(); ++i
)
2830 if (pdg
->dependences
[i
]->controlled_relation
)
2836 /* Remove parameters from "map" that start with "prefix".
2838 static __isl_give isl_map
*remove_source(__isl_take isl_map
*map
,
2841 int n
= isl_map_dim(map
, isl_dim_param
);
2842 size_t len
= strlen(prefix
);
2844 for (int i
= n
- 1; i
>= 0; --i
) {
2847 name
= isl_map_get_dim_name(map
, isl_dim_param
, i
);
2848 if (strncmp(name
, prefix
, len
))
2851 map
= isl_map_project_out(map
, isl_dim_param
, i
, 1);
2854 map
= isl_map_coalesce(map
);
2859 /* Remove parameters from the dependences starting at "first"
2860 * that refer to any of the unused potential sources, i.e.,
2861 * those potential sources that are in writers, but not in info->used.
2863 * Since the current sink does not depend on those unused potential sources,
2864 * the corresponding dependence relations cannot depend on them and
2865 * any reference to them can simply be projected out.
2867 static void remove_unused_sources(PDG
*pdg
, int first
,
2868 vector
<na_pair
> &writers
, add_dep_info
*info
)
2871 std::vector
<na_pair
*> unused
;
2873 for (int i
= 0; i
< writers
.size(); ++i
) {
2874 if (info
->used
.find(&writers
[i
]) == info
->used
.end())
2875 unused
.push_back(&writers
[i
]);
2878 if (unused
.size() == 0)
2880 if (!any_controlled_dependences(pdg
, first
))
2883 for (int i
= 0; i
< unused
.size(); ++i
) {
2884 na_pair
*na
= unused
[i
];
2886 snprintf(name
, sizeof(name
), "__last_%s_%d_",
2887 na
->node
->name
->s
.c_str(), na
->access
->nr
);
2889 for (int j
= first
; j
< pdg
->dependences
.size(); ++j
) {
2890 pdg::dependence
*dep
= pdg
->dependences
[j
];
2893 if (!dep
->controlled_relation
)
2896 map
= dep
->controlled_relation
->map
;
2897 map
= remove_source(map
, name
);
2898 dep
->controlled_relation
->map
= map
;
2903 /* Look for the unique write access that writes to the array accessed
2904 * by "a" and return an na_pair consisting of the node in which the
2905 * access is performed and the access itself.
2907 static na_pair
find_unique_source(pdg::PDG
* pdg
, pdg::array
*a
)
2909 for (int i
= 0; i
< pdg
->nodes
.size(); ++i
) {
2910 pdg::node
*node
= pdg
->nodes
[i
];
2911 pdg::statement
*s
= pdg
->nodes
[i
]->statement
;
2912 for (int j
= 0; j
< s
->accesses
.size(); ++j
) {
2913 pdg::access
*access
= s
->accesses
[j
];
2914 if (access
->array
!= a
)
2916 if (access
->type
!= pdg::access::write
)
2918 return na_pair(node
, access
);
2925 /* Add a dependence from (source_node, source_access) to
2926 * (sink_node, sink_access) to pdg->dependences, for the
2927 * case where the array being accessed is marked uniquely_defined.
2929 * Since the array is marked uniquely_defined, the value based
2930 * dependence is equal to the memory based dependence, so we
2931 * simply need to compose the access relations to obtain
2932 * the dependence relation.
2933 * This dependence relation is then specialized with respect to
2934 * the context and the iteration domain of the sink.
2936 static void add_unique_dep(PDG
*pdg
, pdg::node
*source_node
,
2937 pdg::access
*source_access
, pdg::node
*sink_node
,
2938 pdg::access
*sink_access
)
2945 d
= new pdg::dependence
;
2946 d
->array
= source_access
->array
;
2947 d
->type
= pdg::dependence::flow
;
2948 d
->from
= source_node
;
2950 d
->from_access
= source_access
;
2951 d
->to_access
= sink_access
;
2953 dep
= source_access
->map
->get_isl_map();
2954 read
= sink_access
->map
->get_isl_map();
2955 dep
= isl_map_apply_range(dep
, isl_map_reverse(read
));
2956 dom
= sink_node
->source
->get_isl_set();
2957 if (isl_set_is_wrapping(dom
))
2958 dom
= isl_map_domain(isl_set_unwrap(dom
));
2959 dep
= isl_map_intersect_range(dep
, dom
);
2960 dep
= isl_map_intersect_params(dep
, pdg
->get_context_isl_set());
2961 d
->relation
= new pdg::IslMap(dep
);
2963 pdg
->dependences
.push_back(d
);
2966 /* Find the flow dependences associated to the array "a", which is marked
2967 * uniquely_defined, and add them to pdg->dependences.
2969 * First determine the unique source and then iterate through all the reads,
2970 * adding dependences from the unique source to each of the reads.
2972 static void find_unique_deps(PDG
*pdg
, pdg::array
*a
)
2974 na_pair na
= find_unique_source(pdg
, a
);
2976 for (int i
= 0; i
< pdg
->nodes
.size(); ++i
) {
2977 pdg::node
*node
= pdg
->nodes
[i
];
2978 pdg::statement
*s
= pdg
->nodes
[i
]->statement
;
2979 for (int j
= 0; j
< s
->accesses
.size(); ++j
) {
2980 pdg::access
*access
= s
->accesses
[j
];
2981 if (access
->array
!= a
)
2983 if (access
->type
!= pdg::access::read
)
2985 add_unique_dep(pdg
, na
.node
, na
.access
, node
, access
);
2990 /* Find the dependence of type "t" associated to array "a" and add them
2991 * to pdg->dependences.
2993 * If we are looking for flow dependences for an array that is marked
2994 * uniquely_defined, then we do not need to compute anything, but instead
2995 * can simply read off the dependences in find_unique_deps.
2997 void find_deps(PDG
* pdg
, pdg::array
*a
, type t
)
2999 isl_ctx
*ctx
= pdg
->get_isl_ctx();
3000 int nparam
= pdg
->params
.size();
3004 add_dep_info info
= { pdg
, a
, t
};
3006 bool need_parametrization
;
3010 info
.dtype
= pdg::dependence::flow
;
3014 info
.dtype
= pdg::dependence::anti
;
3017 info
.dtype
= pdg::dependence::reuse
;
3022 info
.dtype
= pdg::dependence::reuse_pair
;
3025 info
.dtype
= pdg::dependence::output
;
3029 a
->analysis_performed
.push_back(new pdg::dependence_type(info
.dtype
));
3031 if (t
== flow
&& a
->uniquely_defined
) {
3032 find_unique_deps(pdg
, a
);
3036 vector
<na_pair
> readers
;
3037 vector
<na_pair
> writers
;
3038 for (int i
= 0; i
< pdg
->nodes
.size(); ++i
) {
3039 pdg::node
*node
= pdg
->nodes
[i
];
3040 pdg::statement
*s
= pdg
->nodes
[i
]->statement
;
3041 for (int j
= 0; j
< s
->accesses
.size(); ++j
) {
3042 pdg::access
*access
= s
->accesses
[j
];
3043 if (access
->array
!= a
)
3049 if ((access
->type
== pdg::access::read
) ^ (t
== anti
))
3050 readers
.push_back(na_pair(node
, access
));
3052 writers
.push_back(na_pair(node
, access
));
3055 if (access
->type
== pdg::access::read
)
3058 readers
.push_back(na_pair(node
, access
));
3059 writers
.push_back(na_pair(node
, access
));
3065 int maxsize
= (selfinput
|| reuse
) ? writers
.size() + readers
.size()
3067 context
= pdg
->get_context_isl_set();
3068 info
.precedes_level
= (isl_access_level_before
)
3069 ((t
== reuse_pair
) ? precedes_level_accesses
3070 : precedes_level_nodes
);
3071 need_parametrization
= any_filters(writers
);
3072 for (int i
= 0; i
< writers
.size(); ++i
) {
3073 writers
[i
].map
= convert_access(&writers
[i
]);
3074 writers
[i
].project_out_access_filters();
3076 for (int i
= 0; i
< readers
.size(); ++i
) {
3077 readers
[i
].map
= convert_access(&readers
[i
]);
3078 readers
[i
].map
= isl_map_intersect_params(readers
[i
].map
,
3079 isl_set_copy(context
));
3080 readers
[i
].project_out_access_filters();
3082 for (int i
= 0; i
< readers
.size(); ++i
) {
3083 isl_access_info
*acc
;
3084 int n_dep
= pdg
->dependences
.size();
3086 acc
= isl_access_info_alloc(isl_map_copy(readers
[i
].map
),
3087 &readers
[i
], info
.precedes_level
, maxsize
);
3088 if (need_parametrization
)
3089 acc
= isl_access_info_set_restrict(acc
, &do_restrict
, &info
);
3090 for (int j
= 0; j
< writers
.size(); ++j
)
3091 acc
= isl_access_info_add_source(acc
,
3092 isl_map_copy(writers
[j
].map
), 1, &writers
[j
]);
3093 if (selfinput
&& writers
.size()) {
3094 pdg::node
*readnode
= readers
[i
].node
;
3095 for (int j
= 0; j
< readers
.size(); ++j
) {
3096 if (readers
[j
].node
== readnode
)
3097 acc
= isl_access_info_add_source(acc
,
3098 isl_map_copy(readers
[j
].map
), 1, &readers
[j
]);
3102 for (int j
= 0; j
< readers
.size(); ++j
)
3103 acc
= isl_access_info_add_source(acc
,
3104 isl_map_copy(readers
[j
].map
), 1, &readers
[j
]);
3106 info
.set_read_na(&readers
[i
]);
3107 isl_flow
*deps
= isl_access_info_compute_flow(acc
);
3108 isl_flow_foreach(deps
, add_dep
, &info
);
3110 no_source
= isl_flow_get_no_source(deps
, 1);
3111 no_source
= isl_map_from_range(isl_map_domain(no_source
));
3112 no_source
= simplify_controls(no_source
, &info
, NULL
);
3113 if (!isl_map_plain_is_empty(no_source
) && firstuse
) {
3114 pdg::dependence
*d
= new pdg::dependence
;
3116 d
->type
= pdg::dependence::uninitialized
;
3117 d
->to
= readers
[i
].node
;
3118 d
->to_access
= readers
[i
].access
;
3119 if (d
->to_access
->extension
) {
3120 d
->extended_relation
= new pdg::IslMap(isl_map_copy(no_source
));
3121 no_source
= isl_map_apply_range(no_source
,
3123 d
->to_access
->extension
->get_isl_map(ctx
)));
3125 d
->relation
= new pdg::IslMap(isl_map_copy(no_source
));
3126 pdg
->dependences
.push_back(d
);
3128 isl_map_free(no_source
);
3129 isl_flow_free(deps
);
3130 remove_unused_sources(pdg
, n_dep
, writers
, &info
);
3132 isl_set_free(context
);
3135 /* Add a dependence from "write" to "a" to a->sources.
3137 static void add_unique_source(pdg::access
*a
, pdg::access
*write
)
3142 dep
= isl_map_range_map(write
->map
->get_isl_map());
3143 read
= isl_map_range_map(a
->map
->get_isl_map());
3144 dep
= isl_map_apply_range(dep
, isl_map_reverse(read
));
3146 a
->sources
.push_back(new pdg::IslMap(dep
));
3149 /* Look for the unique write access that writes to the array accessed
3150 * by "a" and then add a dependence from that write to a->sources.
3152 static void add_unique_source(pdg::PDG
* pdg
, pdg::access
*a
)
3154 na_pair na
= find_unique_source(pdg
, a
->array
);
3155 add_unique_source(a
, na
.access
);
3159 static isl_stat
add_source(__isl_take isl_map
*dep
, int must
,
3160 void *dep_user
, void *user
);
3163 /* Add "dep" to a->sources, provided it is exact, and return isl_stat_ok.
3164 * Otherwise, return isl_stat_error.
3166 static isl_stat
add_source(__isl_take isl_map
*dep
, int must
, void *dep_user
,
3170 pdg::access
*a
= (pdg::access
*) user
;
3172 dep
= remove_redundant_controls(dep
, &has_controls
);
3175 return isl_stat_error
;
3178 a
->sources
.push_back(new pdg::IslMap(dep
));
3184 static __isl_give isl_restriction
*do_restrict_domain_map(
3185 __isl_keep isl_map
*source_map
, __isl_keep isl_set
*sink
,
3186 void *source_user
, void *user
);
3189 /* Compute a restriction for the given map from sinks to potential sources
3190 * (sink2source). We simply call compute_restriction to compute the
3191 * restriction. This function is used from within find_sources,
3192 * which encodes the entire access relation into the domains of
3193 * the access relations passed to isl_access_info_compute_flow.
3194 * That is, the access relations passed to isl_access_info_compute_flow
3195 * are the result of applying isl_map_range_map to the original access
3196 * relations. We therefore pass mappings that undo this encoding
3197 * to compute_restriction.
3199 static __isl_give isl_restriction
*do_restrict_domain_map(
3200 __isl_keep isl_map
*source_map
, __isl_keep isl_set
*sink
,
3201 void *source_user
, void *user
)
3203 na_pair
*source_na
= (na_pair
*) source_user
;
3204 add_dep_info
*info
= (struct add_dep_info
*) user
;
3206 isl_map
*source_domain_map
, *sink_domain_map
;
3208 space
= isl_space_range(isl_map_get_space(source_map
));
3209 space
= isl_space_unwrap(space
);
3210 source_domain_map
= isl_map_domain_map(isl_map_universe(space
));
3211 space
= isl_space_domain(isl_map_get_space(source_map
));
3212 space
= isl_space_unwrap(space
);
3213 sink_domain_map
= isl_map_domain_map(isl_map_universe(space
));
3215 return compute_restriction(source_map
, sink_domain_map
,
3216 source_domain_map
, sink
, source_na
, info
);
3219 /* Find the sources of (read) access "a" in node "node".
3220 * If they are complete (no uninitialized accesses) and exact,
3221 * then put them in a->sources. Otherwise, discard them.
3223 * If the array is marked uniquely_defined, then we simply look
3224 * for the defining write in find_unique_source.
3226 * Otherwise, we look for all writes that write to the same array,
3227 * perform dependence analysis and then check whether
3228 * the result is complete and exact.
3230 * The sources record not only the node iteration, but also
3231 * the index of the array element. We therefore apply
3232 * isl_map_range_map to the access relations, to obtain
3233 * a relation from the access (iteration -> element)
3234 * to the array element and feed that to the dependence analysis engine.
3236 void find_sources(pdg::PDG
* pdg
, pdg::node
*node
, pdg::access
*a
)
3240 isl_access_info
*acc
;
3242 vector
<na_pair
> writers
;
3243 na_pair
reader(node
, a
);
3244 add_dep_info info
= { pdg
, a
->array
, flow
, pdg::dependence::flow
};
3246 if (a
->array
->uniquely_defined
) {
3247 add_unique_source(pdg
, a
);
3251 info
.precedes_level
= (isl_access_level_before
) precedes_level_nodes
;
3253 for (int i
= 0; i
< pdg
->nodes
.size(); ++i
) {
3254 pdg::node
*node
= pdg
->nodes
[i
];
3255 pdg::statement
*s
= pdg
->nodes
[i
]->statement
;
3256 for (int j
= 0; j
< s
->accesses
.size(); ++j
) {
3257 pdg::access
*access
= s
->accesses
[j
];
3258 if (access
->array
!= a
->array
)
3260 if (access
->type
!= pdg::access::write
)
3262 writers
.push_back(na_pair(node
, access
));
3266 context
= pdg
->get_context_isl_set();
3267 for (int i
= 0; i
< writers
.size(); ++i
) {
3268 writers
[i
].projected_map
= convert_access(&writers
[i
]);
3269 writers
[i
].map
= isl_map_copy(writers
[i
].projected_map
);
3270 writers
[i
].map
= isl_map_range_map(writers
[i
].map
);
3271 writers
[i
].project_out_access_filters();
3273 reader
.projected_map
= convert_access(&reader
);
3274 reader
.projected_map
= isl_map_intersect_params(reader
.projected_map
,
3276 reader
.map
= isl_map_range_map(isl_map_copy(reader
.projected_map
));
3277 reader
.project_out_access_filters();
3279 acc
= isl_access_info_alloc(isl_map_copy(reader
.map
),
3280 &reader
, info
.precedes_level
, writers
.size());
3281 for (int j
= 0; j
< writers
.size(); ++j
)
3282 acc
= isl_access_info_add_source(acc
,
3283 isl_map_copy(writers
[j
].map
), 1, &writers
[j
]);
3285 if (any_filters(writers
))
3286 acc
= isl_access_info_set_restrict(acc
,
3287 &do_restrict_domain_map
, &info
);
3289 info
.set_read_na(&reader
);
3290 deps
= isl_access_info_compute_flow(acc
);
3291 no_source
= isl_flow_get_no_source(deps
, 1);
3292 if (isl_map_plain_is_empty(no_source
)) {
3293 if (isl_flow_foreach(deps
, add_source
, a
) < 0) {
3294 for (int i
= 0; i
< a
->sources
.size(); ++i
)
3295 delete a
->sources
[i
];
3296 a
->sources
.resize(0);
3299 isl_map_free(no_source
);
3300 isl_flow_free(deps
);
3303 /* Find the source (if possible) of the filter "coa" in node "node".
3304 * We assume that the filter is an access rather than a function call.
3306 static void find_sources(pdg::PDG
*pdg
, pdg::node
*node
,
3307 pdg::call_or_access
*coa
)
3309 pdg::access
*access
;
3311 assert(coa
->type
== pdg::call_or_access::t_access
);
3312 access
= coa
->access
;
3314 find_sources(pdg
, node
, access
);
3317 /* Compute the sources (if possible) for all the filters in all the
3318 * nodes and accesses in "pdg".
3320 void compute_filter_sources(pdg::PDG
*pdg
)
3322 for (int i
= 0; i
< pdg
->nodes
.size(); ++i
) {
3323 pdg::node
*node
= pdg
->nodes
[i
];
3324 pdg::statement
*s
= pdg
->nodes
[i
]->statement
;
3325 int n_filter
= node
->filters
.size();
3327 for (int j
= 0; j
< n_filter
; ++j
)
3328 find_sources(pdg
, node
, node
->filters
[j
]);
3330 for (int j
= 0; j
< s
->accesses
.size(); ++j
) {
3331 pdg::access
*access
= s
->accesses
[j
];
3333 for (int k
= 0; k
< access
->nested
.size(); ++k
)
3334 find_sources(pdg
, node
, access
->nested
[k
]);
3339 static int precedes_level_nodes(na_pair
*first
, na_pair
*second
)
3343 for (int i
= 0; i
< first
->node
->prefix
.size(); ++i
) {
3344 if (i
>= second
->node
->prefix
.size())
3346 cmp
= first
->node
->prefix
[i
] - second
->node
->prefix
[i
];
3349 if (first
->node
->prefix
[i
] == -1)
3352 return 2*d
+ (cmp
<0);
3355 static int precedes_level_accesses(na_pair
*first
, na_pair
*second
)
3359 for (int i
= 0; i
< first
->node
->prefix
.size(); ++i
) {
3360 if (i
>= second
->node
->prefix
.size())
3362 cmp
= first
->node
->prefix
[i
] - second
->node
->prefix
[i
];
3365 if (first
->node
->prefix
[i
] == -1)
3368 /* same node; now compare accesses */
3370 cmp
= first
->access
->nr
- second
->access
->nr
;
3371 return 2*d
+ (cmp
<0);