ps3rsx created
[ps3rsx.git] / block / blk-core.c
blob0e219be124c6d335fc4666437c9e6cc45c5c181d
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h>
31 #include <trace/block.h>
33 #include "blk.h"
35 DEFINE_TRACE(block_plug);
36 DEFINE_TRACE(block_unplug_io);
37 DEFINE_TRACE(block_unplug_timer);
38 DEFINE_TRACE(block_getrq);
39 DEFINE_TRACE(block_sleeprq);
40 DEFINE_TRACE(block_rq_requeue);
41 DEFINE_TRACE(block_bio_backmerge);
42 DEFINE_TRACE(block_bio_frontmerge);
43 DEFINE_TRACE(block_bio_queue);
44 DEFINE_TRACE(block_rq_complete);
45 DEFINE_TRACE(block_remap); /* Also used in drivers/md/dm.c */
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
48 static int __make_request(struct request_queue *q, struct bio *bio);
51 * For the allocated request tables
53 static struct kmem_cache *request_cachep;
56 * For queue allocation
58 struct kmem_cache *blk_requestq_cachep;
61 * Controlling structure to kblockd
63 static struct workqueue_struct *kblockd_workqueue;
65 static void drive_stat_acct(struct request *rq, int new_io)
67 struct gendisk *disk = rq->rq_disk;
68 struct hd_struct *part;
69 int rw = rq_data_dir(rq);
70 int cpu;
72 if (!blk_fs_request(rq) || !disk || !blk_do_io_stat(disk->queue))
73 return;
75 cpu = part_stat_lock();
76 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
78 if (!new_io)
79 part_stat_inc(cpu, part, merges[rw]);
80 else {
81 part_round_stats(cpu, part);
82 part_inc_in_flight(part);
85 part_stat_unlock();
88 void blk_queue_congestion_threshold(struct request_queue *q)
90 int nr;
92 nr = q->nr_requests - (q->nr_requests / 8) + 1;
93 if (nr > q->nr_requests)
94 nr = q->nr_requests;
95 q->nr_congestion_on = nr;
97 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
98 if (nr < 1)
99 nr = 1;
100 q->nr_congestion_off = nr;
104 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
105 * @bdev: device
107 * Locates the passed device's request queue and returns the address of its
108 * backing_dev_info
110 * Will return NULL if the request queue cannot be located.
112 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
114 struct backing_dev_info *ret = NULL;
115 struct request_queue *q = bdev_get_queue(bdev);
117 if (q)
118 ret = &q->backing_dev_info;
119 return ret;
121 EXPORT_SYMBOL(blk_get_backing_dev_info);
123 void blk_rq_init(struct request_queue *q, struct request *rq)
125 memset(rq, 0, sizeof(*rq));
127 INIT_LIST_HEAD(&rq->queuelist);
128 INIT_LIST_HEAD(&rq->timeout_list);
129 rq->cpu = -1;
130 rq->q = q;
131 rq->sector = rq->hard_sector = (sector_t) -1;
132 INIT_HLIST_NODE(&rq->hash);
133 RB_CLEAR_NODE(&rq->rb_node);
134 rq->cmd = rq->__cmd;
135 rq->tag = -1;
136 rq->ref_count = 1;
138 EXPORT_SYMBOL(blk_rq_init);
140 static void req_bio_endio(struct request *rq, struct bio *bio,
141 unsigned int nbytes, int error)
143 struct request_queue *q = rq->q;
145 if (&q->bar_rq != rq) {
146 if (error)
147 clear_bit(BIO_UPTODATE, &bio->bi_flags);
148 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
149 error = -EIO;
151 if (unlikely(nbytes > bio->bi_size)) {
152 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
153 __func__, nbytes, bio->bi_size);
154 nbytes = bio->bi_size;
157 if (unlikely(rq->cmd_flags & REQ_QUIET))
158 set_bit(BIO_QUIET, &bio->bi_flags);
160 bio->bi_size -= nbytes;
161 bio->bi_sector += (nbytes >> 9);
163 if (bio_integrity(bio))
164 bio_integrity_advance(bio, nbytes);
166 if (bio->bi_size == 0)
167 bio_endio(bio, error);
168 } else {
171 * Okay, this is the barrier request in progress, just
172 * record the error;
174 if (error && !q->orderr)
175 q->orderr = error;
179 void blk_dump_rq_flags(struct request *rq, char *msg)
181 int bit;
183 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
184 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
185 rq->cmd_flags);
187 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
188 (unsigned long long)rq->sector,
189 rq->nr_sectors,
190 rq->current_nr_sectors);
191 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
192 rq->bio, rq->biotail,
193 rq->buffer, rq->data,
194 rq->data_len);
196 if (blk_pc_request(rq)) {
197 printk(KERN_INFO " cdb: ");
198 for (bit = 0; bit < BLK_MAX_CDB; bit++)
199 printk("%02x ", rq->cmd[bit]);
200 printk("\n");
203 EXPORT_SYMBOL(blk_dump_rq_flags);
206 * "plug" the device if there are no outstanding requests: this will
207 * force the transfer to start only after we have put all the requests
208 * on the list.
210 * This is called with interrupts off and no requests on the queue and
211 * with the queue lock held.
213 void blk_plug_device(struct request_queue *q)
215 WARN_ON(!irqs_disabled());
218 * don't plug a stopped queue, it must be paired with blk_start_queue()
219 * which will restart the queueing
221 if (blk_queue_stopped(q))
222 return;
224 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
225 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
226 trace_block_plug(q);
229 EXPORT_SYMBOL(blk_plug_device);
232 * blk_plug_device_unlocked - plug a device without queue lock held
233 * @q: The &struct request_queue to plug
235 * Description:
236 * Like @blk_plug_device(), but grabs the queue lock and disables
237 * interrupts.
239 void blk_plug_device_unlocked(struct request_queue *q)
241 unsigned long flags;
243 spin_lock_irqsave(q->queue_lock, flags);
244 blk_plug_device(q);
245 spin_unlock_irqrestore(q->queue_lock, flags);
247 EXPORT_SYMBOL(blk_plug_device_unlocked);
250 * remove the queue from the plugged list, if present. called with
251 * queue lock held and interrupts disabled.
253 int blk_remove_plug(struct request_queue *q)
255 WARN_ON(!irqs_disabled());
257 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
258 return 0;
260 del_timer(&q->unplug_timer);
261 return 1;
263 EXPORT_SYMBOL(blk_remove_plug);
266 * remove the plug and let it rip..
268 void __generic_unplug_device(struct request_queue *q)
270 if (unlikely(blk_queue_stopped(q)))
271 return;
272 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
273 return;
275 q->request_fn(q);
279 * generic_unplug_device - fire a request queue
280 * @q: The &struct request_queue in question
282 * Description:
283 * Linux uses plugging to build bigger requests queues before letting
284 * the device have at them. If a queue is plugged, the I/O scheduler
285 * is still adding and merging requests on the queue. Once the queue
286 * gets unplugged, the request_fn defined for the queue is invoked and
287 * transfers started.
289 void generic_unplug_device(struct request_queue *q)
291 if (blk_queue_plugged(q)) {
292 spin_lock_irq(q->queue_lock);
293 __generic_unplug_device(q);
294 spin_unlock_irq(q->queue_lock);
297 EXPORT_SYMBOL(generic_unplug_device);
299 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
300 struct page *page)
302 struct request_queue *q = bdi->unplug_io_data;
304 blk_unplug(q);
307 void blk_unplug_work(struct work_struct *work)
309 struct request_queue *q =
310 container_of(work, struct request_queue, unplug_work);
312 trace_block_unplug_io(q);
313 q->unplug_fn(q);
316 void blk_unplug_timeout(unsigned long data)
318 struct request_queue *q = (struct request_queue *)data;
320 trace_block_unplug_timer(q);
321 kblockd_schedule_work(q, &q->unplug_work);
324 void blk_unplug(struct request_queue *q)
327 * devices don't necessarily have an ->unplug_fn defined
329 if (q->unplug_fn) {
330 trace_block_unplug_io(q);
331 q->unplug_fn(q);
334 EXPORT_SYMBOL(blk_unplug);
336 static void blk_invoke_request_fn(struct request_queue *q)
338 if (unlikely(blk_queue_stopped(q)))
339 return;
342 * one level of recursion is ok and is much faster than kicking
343 * the unplug handling
345 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
346 q->request_fn(q);
347 queue_flag_clear(QUEUE_FLAG_REENTER, q);
348 } else {
349 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
350 kblockd_schedule_work(q, &q->unplug_work);
355 * blk_start_queue - restart a previously stopped queue
356 * @q: The &struct request_queue in question
358 * Description:
359 * blk_start_queue() will clear the stop flag on the queue, and call
360 * the request_fn for the queue if it was in a stopped state when
361 * entered. Also see blk_stop_queue(). Queue lock must be held.
363 void blk_start_queue(struct request_queue *q)
365 WARN_ON(!irqs_disabled());
367 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
368 blk_invoke_request_fn(q);
370 EXPORT_SYMBOL(blk_start_queue);
373 * blk_stop_queue - stop a queue
374 * @q: The &struct request_queue in question
376 * Description:
377 * The Linux block layer assumes that a block driver will consume all
378 * entries on the request queue when the request_fn strategy is called.
379 * Often this will not happen, because of hardware limitations (queue
380 * depth settings). If a device driver gets a 'queue full' response,
381 * or if it simply chooses not to queue more I/O at one point, it can
382 * call this function to prevent the request_fn from being called until
383 * the driver has signalled it's ready to go again. This happens by calling
384 * blk_start_queue() to restart queue operations. Queue lock must be held.
386 void blk_stop_queue(struct request_queue *q)
388 blk_remove_plug(q);
389 queue_flag_set(QUEUE_FLAG_STOPPED, q);
391 EXPORT_SYMBOL(blk_stop_queue);
394 * blk_sync_queue - cancel any pending callbacks on a queue
395 * @q: the queue
397 * Description:
398 * The block layer may perform asynchronous callback activity
399 * on a queue, such as calling the unplug function after a timeout.
400 * A block device may call blk_sync_queue to ensure that any
401 * such activity is cancelled, thus allowing it to release resources
402 * that the callbacks might use. The caller must already have made sure
403 * that its ->make_request_fn will not re-add plugging prior to calling
404 * this function.
407 void blk_sync_queue(struct request_queue *q)
409 del_timer_sync(&q->unplug_timer);
410 del_timer_sync(&q->timeout);
411 cancel_work_sync(&q->unplug_work);
413 EXPORT_SYMBOL(blk_sync_queue);
416 * __blk_run_queue - run a single device queue
417 * @q: The queue to run
419 * Description:
420 * See @blk_run_queue. This variant must be called with the queue lock
421 * held and interrupts disabled.
424 void __blk_run_queue(struct request_queue *q)
426 blk_remove_plug(q);
429 * Only recurse once to avoid overrunning the stack, let the unplug
430 * handling reinvoke the handler shortly if we already got there.
432 if (!elv_queue_empty(q))
433 blk_invoke_request_fn(q);
435 EXPORT_SYMBOL(__blk_run_queue);
438 * blk_run_queue - run a single device queue
439 * @q: The queue to run
441 * Description:
442 * Invoke request handling on this queue, if it has pending work to do.
443 * May be used to restart queueing when a request has completed. Also
444 * See @blk_start_queueing.
447 void blk_run_queue(struct request_queue *q)
449 unsigned long flags;
451 spin_lock_irqsave(q->queue_lock, flags);
452 __blk_run_queue(q);
453 spin_unlock_irqrestore(q->queue_lock, flags);
455 EXPORT_SYMBOL(blk_run_queue);
457 void blk_put_queue(struct request_queue *q)
459 kobject_put(&q->kobj);
463 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
464 * @q: the request queue to be released
466 * Description:
467 * blk_cleanup_queue is the pair to blk_init_queue() or
468 * blk_queue_make_request(). It should be called when a request queue is
469 * being released; typically when a block device is being de-registered.
470 * Currently, its primary task it to free all the &struct request
471 * structures that were allocated to the queue and the queue itself
472 * when the reference count of the queue's kobject reaches zero.
473 * The low level cleanup is of the queue is done by blk_release_queue()
474 * via the queue's kobject release function.
476 * Caveat:
477 * Hopefully the low level driver will have finished any
478 * outstanding requests first...
480 void blk_cleanup_queue(struct request_queue *q)
483 * We know we have process context here, so we can be a little
484 * cautious and ensure that pending block actions on this device
485 * are done before moving on. Going into this function, we should
486 * not have processes doing IO to this device.
488 blk_sync_queue(q);
490 mutex_lock(&q->sysfs_lock);
491 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
492 mutex_unlock(&q->sysfs_lock);
494 if (q->elevator)
495 elevator_exit(q->elevator);
497 blk_put_queue(q);
499 EXPORT_SYMBOL(blk_cleanup_queue);
501 static int blk_init_free_list(struct request_queue *q)
503 struct request_list *rl = &q->rq;
505 rl->count[READ] = rl->count[WRITE] = 0;
506 rl->starved[READ] = rl->starved[WRITE] = 0;
507 rl->elvpriv = 0;
508 init_waitqueue_head(&rl->wait[READ]);
509 init_waitqueue_head(&rl->wait[WRITE]);
511 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
512 mempool_free_slab, request_cachep, q->node);
514 if (!rl->rq_pool)
515 return -ENOMEM;
517 return 0;
520 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
522 return blk_alloc_queue_node(gfp_mask, -1);
524 EXPORT_SYMBOL(blk_alloc_queue);
526 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
528 struct request_queue *q;
529 int err;
531 q = kmem_cache_alloc_node(blk_requestq_cachep,
532 gfp_mask | __GFP_ZERO, node_id);
533 if (!q)
534 return NULL;
536 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
537 q->backing_dev_info.unplug_io_data = q;
538 err = bdi_init(&q->backing_dev_info);
539 if (err) {
540 kmem_cache_free(blk_requestq_cachep, q);
541 return NULL;
544 init_timer(&q->unplug_timer);
545 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
546 INIT_LIST_HEAD(&q->timeout_list);
547 INIT_WORK(&q->unplug_work, blk_unplug_work);
549 kobject_init(&q->kobj, &blk_queue_ktype);
551 mutex_init(&q->sysfs_lock);
552 spin_lock_init(&q->__queue_lock);
554 return q;
556 EXPORT_SYMBOL(blk_alloc_queue_node);
559 * blk_init_queue - prepare a request queue for use with a block device
560 * @rfn: The function to be called to process requests that have been
561 * placed on the queue.
562 * @lock: Request queue spin lock
564 * Description:
565 * If a block device wishes to use the standard request handling procedures,
566 * which sorts requests and coalesces adjacent requests, then it must
567 * call blk_init_queue(). The function @rfn will be called when there
568 * are requests on the queue that need to be processed. If the device
569 * supports plugging, then @rfn may not be called immediately when requests
570 * are available on the queue, but may be called at some time later instead.
571 * Plugged queues are generally unplugged when a buffer belonging to one
572 * of the requests on the queue is needed, or due to memory pressure.
574 * @rfn is not required, or even expected, to remove all requests off the
575 * queue, but only as many as it can handle at a time. If it does leave
576 * requests on the queue, it is responsible for arranging that the requests
577 * get dealt with eventually.
579 * The queue spin lock must be held while manipulating the requests on the
580 * request queue; this lock will be taken also from interrupt context, so irq
581 * disabling is needed for it.
583 * Function returns a pointer to the initialized request queue, or %NULL if
584 * it didn't succeed.
586 * Note:
587 * blk_init_queue() must be paired with a blk_cleanup_queue() call
588 * when the block device is deactivated (such as at module unload).
591 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
593 return blk_init_queue_node(rfn, lock, -1);
595 EXPORT_SYMBOL(blk_init_queue);
597 struct request_queue *
598 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
600 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
602 if (!q)
603 return NULL;
605 q->node = node_id;
606 if (blk_init_free_list(q)) {
607 kmem_cache_free(blk_requestq_cachep, q);
608 return NULL;
612 * if caller didn't supply a lock, they get per-queue locking with
613 * our embedded lock
615 if (!lock)
616 lock = &q->__queue_lock;
618 q->request_fn = rfn;
619 q->prep_rq_fn = NULL;
620 q->unplug_fn = generic_unplug_device;
621 q->queue_flags = QUEUE_FLAG_DEFAULT;
622 q->queue_lock = lock;
624 blk_queue_segment_boundary(q, BLK_SEG_BOUNDARY_MASK);
626 blk_queue_make_request(q, __make_request);
627 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
629 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
630 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
632 q->sg_reserved_size = INT_MAX;
634 blk_set_cmd_filter_defaults(&q->cmd_filter);
637 * all done
639 if (!elevator_init(q, NULL)) {
640 blk_queue_congestion_threshold(q);
641 return q;
644 blk_put_queue(q);
645 return NULL;
647 EXPORT_SYMBOL(blk_init_queue_node);
649 int blk_get_queue(struct request_queue *q)
651 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
652 kobject_get(&q->kobj);
653 return 0;
656 return 1;
659 static inline void blk_free_request(struct request_queue *q, struct request *rq)
661 if (rq->cmd_flags & REQ_ELVPRIV)
662 elv_put_request(q, rq);
663 mempool_free(rq, q->rq.rq_pool);
666 static struct request *
667 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
669 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
671 if (!rq)
672 return NULL;
674 blk_rq_init(q, rq);
676 rq->cmd_flags = rw | REQ_ALLOCED;
678 if (priv) {
679 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
680 mempool_free(rq, q->rq.rq_pool);
681 return NULL;
683 rq->cmd_flags |= REQ_ELVPRIV;
686 return rq;
690 * ioc_batching returns true if the ioc is a valid batching request and
691 * should be given priority access to a request.
693 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
695 if (!ioc)
696 return 0;
699 * Make sure the process is able to allocate at least 1 request
700 * even if the batch times out, otherwise we could theoretically
701 * lose wakeups.
703 return ioc->nr_batch_requests == q->nr_batching ||
704 (ioc->nr_batch_requests > 0
705 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
709 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
710 * will cause the process to be a "batcher" on all queues in the system. This
711 * is the behaviour we want though - once it gets a wakeup it should be given
712 * a nice run.
714 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
716 if (!ioc || ioc_batching(q, ioc))
717 return;
719 ioc->nr_batch_requests = q->nr_batching;
720 ioc->last_waited = jiffies;
723 static void __freed_request(struct request_queue *q, int rw)
725 struct request_list *rl = &q->rq;
727 if (rl->count[rw] < queue_congestion_off_threshold(q))
728 blk_clear_queue_congested(q, rw);
730 if (rl->count[rw] + 1 <= q->nr_requests) {
731 if (waitqueue_active(&rl->wait[rw]))
732 wake_up(&rl->wait[rw]);
734 blk_clear_queue_full(q, rw);
739 * A request has just been released. Account for it, update the full and
740 * congestion status, wake up any waiters. Called under q->queue_lock.
742 static void freed_request(struct request_queue *q, int rw, int priv)
744 struct request_list *rl = &q->rq;
746 rl->count[rw]--;
747 if (priv)
748 rl->elvpriv--;
750 __freed_request(q, rw);
752 if (unlikely(rl->starved[rw ^ 1]))
753 __freed_request(q, rw ^ 1);
756 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
758 * Get a free request, queue_lock must be held.
759 * Returns NULL on failure, with queue_lock held.
760 * Returns !NULL on success, with queue_lock *not held*.
762 static struct request *get_request(struct request_queue *q, int rw_flags,
763 struct bio *bio, gfp_t gfp_mask)
765 struct request *rq = NULL;
766 struct request_list *rl = &q->rq;
767 struct io_context *ioc = NULL;
768 const int rw = rw_flags & 0x01;
769 int may_queue, priv;
771 may_queue = elv_may_queue(q, rw_flags);
772 if (may_queue == ELV_MQUEUE_NO)
773 goto rq_starved;
775 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
776 if (rl->count[rw]+1 >= q->nr_requests) {
777 ioc = current_io_context(GFP_ATOMIC, q->node);
779 * The queue will fill after this allocation, so set
780 * it as full, and mark this process as "batching".
781 * This process will be allowed to complete a batch of
782 * requests, others will be blocked.
784 if (!blk_queue_full(q, rw)) {
785 ioc_set_batching(q, ioc);
786 blk_set_queue_full(q, rw);
787 } else {
788 if (may_queue != ELV_MQUEUE_MUST
789 && !ioc_batching(q, ioc)) {
791 * The queue is full and the allocating
792 * process is not a "batcher", and not
793 * exempted by the IO scheduler
795 goto out;
799 blk_set_queue_congested(q, rw);
803 * Only allow batching queuers to allocate up to 50% over the defined
804 * limit of requests, otherwise we could have thousands of requests
805 * allocated with any setting of ->nr_requests
807 if (rl->count[rw] >= (3 * q->nr_requests / 2))
808 goto out;
810 rl->count[rw]++;
811 rl->starved[rw] = 0;
813 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
814 if (priv)
815 rl->elvpriv++;
817 spin_unlock_irq(q->queue_lock);
819 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
820 if (unlikely(!rq)) {
822 * Allocation failed presumably due to memory. Undo anything
823 * we might have messed up.
825 * Allocating task should really be put onto the front of the
826 * wait queue, but this is pretty rare.
828 spin_lock_irq(q->queue_lock);
829 freed_request(q, rw, priv);
832 * in the very unlikely event that allocation failed and no
833 * requests for this direction was pending, mark us starved
834 * so that freeing of a request in the other direction will
835 * notice us. another possible fix would be to split the
836 * rq mempool into READ and WRITE
838 rq_starved:
839 if (unlikely(rl->count[rw] == 0))
840 rl->starved[rw] = 1;
842 goto out;
846 * ioc may be NULL here, and ioc_batching will be false. That's
847 * OK, if the queue is under the request limit then requests need
848 * not count toward the nr_batch_requests limit. There will always
849 * be some limit enforced by BLK_BATCH_TIME.
851 if (ioc_batching(q, ioc))
852 ioc->nr_batch_requests--;
854 trace_block_getrq(q, bio, rw);
855 out:
856 return rq;
860 * No available requests for this queue, unplug the device and wait for some
861 * requests to become available.
863 * Called with q->queue_lock held, and returns with it unlocked.
865 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
866 struct bio *bio)
868 const int rw = rw_flags & 0x01;
869 struct request *rq;
871 rq = get_request(q, rw_flags, bio, GFP_NOIO);
872 while (!rq) {
873 DEFINE_WAIT(wait);
874 struct io_context *ioc;
875 struct request_list *rl = &q->rq;
877 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
878 TASK_UNINTERRUPTIBLE);
880 trace_block_sleeprq(q, bio, rw);
882 __generic_unplug_device(q);
883 spin_unlock_irq(q->queue_lock);
884 io_schedule();
887 * After sleeping, we become a "batching" process and
888 * will be able to allocate at least one request, and
889 * up to a big batch of them for a small period time.
890 * See ioc_batching, ioc_set_batching
892 ioc = current_io_context(GFP_NOIO, q->node);
893 ioc_set_batching(q, ioc);
895 spin_lock_irq(q->queue_lock);
896 finish_wait(&rl->wait[rw], &wait);
898 rq = get_request(q, rw_flags, bio, GFP_NOIO);
901 return rq;
904 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
906 struct request *rq;
908 BUG_ON(rw != READ && rw != WRITE);
910 spin_lock_irq(q->queue_lock);
911 if (gfp_mask & __GFP_WAIT) {
912 rq = get_request_wait(q, rw, NULL);
913 } else {
914 rq = get_request(q, rw, NULL, gfp_mask);
915 if (!rq)
916 spin_unlock_irq(q->queue_lock);
918 /* q->queue_lock is unlocked at this point */
920 return rq;
922 EXPORT_SYMBOL(blk_get_request);
925 * blk_start_queueing - initiate dispatch of requests to device
926 * @q: request queue to kick into gear
928 * This is basically a helper to remove the need to know whether a queue
929 * is plugged or not if someone just wants to initiate dispatch of requests
930 * for this queue. Should be used to start queueing on a device outside
931 * of ->request_fn() context. Also see @blk_run_queue.
933 * The queue lock must be held with interrupts disabled.
935 void blk_start_queueing(struct request_queue *q)
937 if (!blk_queue_plugged(q)) {
938 if (unlikely(blk_queue_stopped(q)))
939 return;
940 q->request_fn(q);
941 } else
942 __generic_unplug_device(q);
944 EXPORT_SYMBOL(blk_start_queueing);
947 * blk_requeue_request - put a request back on queue
948 * @q: request queue where request should be inserted
949 * @rq: request to be inserted
951 * Description:
952 * Drivers often keep queueing requests until the hardware cannot accept
953 * more, when that condition happens we need to put the request back
954 * on the queue. Must be called with queue lock held.
956 void blk_requeue_request(struct request_queue *q, struct request *rq)
958 blk_delete_timer(rq);
959 blk_clear_rq_complete(rq);
960 trace_block_rq_requeue(q, rq);
962 if (blk_rq_tagged(rq))
963 blk_queue_end_tag(q, rq);
965 elv_requeue_request(q, rq);
967 EXPORT_SYMBOL(blk_requeue_request);
970 * blk_insert_request - insert a special request into a request queue
971 * @q: request queue where request should be inserted
972 * @rq: request to be inserted
973 * @at_head: insert request at head or tail of queue
974 * @data: private data
976 * Description:
977 * Many block devices need to execute commands asynchronously, so they don't
978 * block the whole kernel from preemption during request execution. This is
979 * accomplished normally by inserting aritficial requests tagged as
980 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
981 * be scheduled for actual execution by the request queue.
983 * We have the option of inserting the head or the tail of the queue.
984 * Typically we use the tail for new ioctls and so forth. We use the head
985 * of the queue for things like a QUEUE_FULL message from a device, or a
986 * host that is unable to accept a particular command.
988 void blk_insert_request(struct request_queue *q, struct request *rq,
989 int at_head, void *data)
991 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
992 unsigned long flags;
995 * tell I/O scheduler that this isn't a regular read/write (ie it
996 * must not attempt merges on this) and that it acts as a soft
997 * barrier
999 rq->cmd_type = REQ_TYPE_SPECIAL;
1000 rq->cmd_flags |= REQ_SOFTBARRIER;
1002 rq->special = data;
1004 spin_lock_irqsave(q->queue_lock, flags);
1007 * If command is tagged, release the tag
1009 if (blk_rq_tagged(rq))
1010 blk_queue_end_tag(q, rq);
1012 drive_stat_acct(rq, 1);
1013 __elv_add_request(q, rq, where, 0);
1014 blk_start_queueing(q);
1015 spin_unlock_irqrestore(q->queue_lock, flags);
1017 EXPORT_SYMBOL(blk_insert_request);
1020 * add-request adds a request to the linked list.
1021 * queue lock is held and interrupts disabled, as we muck with the
1022 * request queue list.
1024 static inline void add_request(struct request_queue *q, struct request *req)
1026 drive_stat_acct(req, 1);
1029 * elevator indicated where it wants this request to be
1030 * inserted at elevator_merge time
1032 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1035 static void part_round_stats_single(int cpu, struct hd_struct *part,
1036 unsigned long now)
1038 if (now == part->stamp)
1039 return;
1041 if (part->in_flight) {
1042 __part_stat_add(cpu, part, time_in_queue,
1043 part->in_flight * (now - part->stamp));
1044 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1046 part->stamp = now;
1050 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1051 * @cpu: cpu number for stats access
1052 * @part: target partition
1054 * The average IO queue length and utilisation statistics are maintained
1055 * by observing the current state of the queue length and the amount of
1056 * time it has been in this state for.
1058 * Normally, that accounting is done on IO completion, but that can result
1059 * in more than a second's worth of IO being accounted for within any one
1060 * second, leading to >100% utilisation. To deal with that, we call this
1061 * function to do a round-off before returning the results when reading
1062 * /proc/diskstats. This accounts immediately for all queue usage up to
1063 * the current jiffies and restarts the counters again.
1065 void part_round_stats(int cpu, struct hd_struct *part)
1067 unsigned long now = jiffies;
1069 if (part->partno)
1070 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1071 part_round_stats_single(cpu, part, now);
1073 EXPORT_SYMBOL_GPL(part_round_stats);
1076 * queue lock must be held
1078 void __blk_put_request(struct request_queue *q, struct request *req)
1080 if (unlikely(!q))
1081 return;
1082 if (unlikely(--req->ref_count))
1083 return;
1085 elv_completed_request(q, req);
1088 * Request may not have originated from ll_rw_blk. if not,
1089 * it didn't come out of our reserved rq pools
1091 if (req->cmd_flags & REQ_ALLOCED) {
1092 int rw = rq_data_dir(req);
1093 int priv = req->cmd_flags & REQ_ELVPRIV;
1095 BUG_ON(!list_empty(&req->queuelist));
1096 BUG_ON(!hlist_unhashed(&req->hash));
1098 blk_free_request(q, req);
1099 freed_request(q, rw, priv);
1102 EXPORT_SYMBOL_GPL(__blk_put_request);
1104 void blk_put_request(struct request *req)
1106 unsigned long flags;
1107 struct request_queue *q = req->q;
1109 spin_lock_irqsave(q->queue_lock, flags);
1110 __blk_put_request(q, req);
1111 spin_unlock_irqrestore(q->queue_lock, flags);
1113 EXPORT_SYMBOL(blk_put_request);
1115 void init_request_from_bio(struct request *req, struct bio *bio)
1117 req->cpu = bio->bi_comp_cpu;
1118 req->cmd_type = REQ_TYPE_FS;
1121 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1123 if (bio_rw_ahead(bio))
1124 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1125 REQ_FAILFAST_DRIVER);
1126 if (bio_failfast_dev(bio))
1127 req->cmd_flags |= REQ_FAILFAST_DEV;
1128 if (bio_failfast_transport(bio))
1129 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1130 if (bio_failfast_driver(bio))
1131 req->cmd_flags |= REQ_FAILFAST_DRIVER;
1134 * REQ_BARRIER implies no merging, but lets make it explicit
1136 if (unlikely(bio_discard(bio))) {
1137 req->cmd_flags |= REQ_DISCARD;
1138 if (bio_barrier(bio))
1139 req->cmd_flags |= REQ_SOFTBARRIER;
1140 req->q->prepare_discard_fn(req->q, req);
1141 } else if (unlikely(bio_barrier(bio)))
1142 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1144 if (bio_sync(bio))
1145 req->cmd_flags |= REQ_RW_SYNC;
1146 if (bio_unplug(bio))
1147 req->cmd_flags |= REQ_UNPLUG;
1148 if (bio_rw_meta(bio))
1149 req->cmd_flags |= REQ_RW_META;
1151 req->errors = 0;
1152 req->hard_sector = req->sector = bio->bi_sector;
1153 req->ioprio = bio_prio(bio);
1154 req->start_time = jiffies;
1155 blk_rq_bio_prep(req->q, req, bio);
1158 static int __make_request(struct request_queue *q, struct bio *bio)
1160 struct request *req;
1161 int el_ret, nr_sectors;
1162 const unsigned short prio = bio_prio(bio);
1163 const int sync = bio_sync(bio);
1164 const int unplug = bio_unplug(bio);
1165 int rw_flags;
1167 nr_sectors = bio_sectors(bio);
1170 * low level driver can indicate that it wants pages above a
1171 * certain limit bounced to low memory (ie for highmem, or even
1172 * ISA dma in theory)
1174 blk_queue_bounce(q, &bio);
1176 spin_lock_irq(q->queue_lock);
1178 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1179 goto get_rq;
1181 el_ret = elv_merge(q, &req, bio);
1182 switch (el_ret) {
1183 case ELEVATOR_BACK_MERGE:
1184 BUG_ON(!rq_mergeable(req));
1186 if (!ll_back_merge_fn(q, req, bio))
1187 break;
1189 trace_block_bio_backmerge(q, bio);
1191 req->biotail->bi_next = bio;
1192 req->biotail = bio;
1193 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1194 req->ioprio = ioprio_best(req->ioprio, prio);
1195 if (!blk_rq_cpu_valid(req))
1196 req->cpu = bio->bi_comp_cpu;
1197 drive_stat_acct(req, 0);
1198 if (!attempt_back_merge(q, req))
1199 elv_merged_request(q, req, el_ret);
1200 goto out;
1202 case ELEVATOR_FRONT_MERGE:
1203 BUG_ON(!rq_mergeable(req));
1205 if (!ll_front_merge_fn(q, req, bio))
1206 break;
1208 trace_block_bio_frontmerge(q, bio);
1210 bio->bi_next = req->bio;
1211 req->bio = bio;
1214 * may not be valid. if the low level driver said
1215 * it didn't need a bounce buffer then it better
1216 * not touch req->buffer either...
1218 req->buffer = bio_data(bio);
1219 req->current_nr_sectors = bio_cur_sectors(bio);
1220 req->hard_cur_sectors = req->current_nr_sectors;
1221 req->sector = req->hard_sector = bio->bi_sector;
1222 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1223 req->ioprio = ioprio_best(req->ioprio, prio);
1224 if (!blk_rq_cpu_valid(req))
1225 req->cpu = bio->bi_comp_cpu;
1226 drive_stat_acct(req, 0);
1227 if (!attempt_front_merge(q, req))
1228 elv_merged_request(q, req, el_ret);
1229 goto out;
1231 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1232 default:
1236 get_rq:
1238 * This sync check and mask will be re-done in init_request_from_bio(),
1239 * but we need to set it earlier to expose the sync flag to the
1240 * rq allocator and io schedulers.
1242 rw_flags = bio_data_dir(bio);
1243 if (sync)
1244 rw_flags |= REQ_RW_SYNC;
1247 * Grab a free request. This is might sleep but can not fail.
1248 * Returns with the queue unlocked.
1250 req = get_request_wait(q, rw_flags, bio);
1253 * After dropping the lock and possibly sleeping here, our request
1254 * may now be mergeable after it had proven unmergeable (above).
1255 * We don't worry about that case for efficiency. It won't happen
1256 * often, and the elevators are able to handle it.
1258 init_request_from_bio(req, bio);
1260 spin_lock_irq(q->queue_lock);
1261 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1262 bio_flagged(bio, BIO_CPU_AFFINE))
1263 req->cpu = blk_cpu_to_group(smp_processor_id());
1264 if (!blk_queue_nonrot(q) && elv_queue_empty(q))
1265 blk_plug_device(q);
1266 add_request(q, req);
1267 out:
1268 if (unplug || blk_queue_nonrot(q))
1269 __generic_unplug_device(q);
1270 spin_unlock_irq(q->queue_lock);
1271 return 0;
1275 * If bio->bi_dev is a partition, remap the location
1277 static inline void blk_partition_remap(struct bio *bio)
1279 struct block_device *bdev = bio->bi_bdev;
1281 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1282 struct hd_struct *p = bdev->bd_part;
1284 bio->bi_sector += p->start_sect;
1285 bio->bi_bdev = bdev->bd_contains;
1287 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1288 bdev->bd_dev, bio->bi_sector,
1289 bio->bi_sector - p->start_sect);
1293 static void handle_bad_sector(struct bio *bio)
1295 char b[BDEVNAME_SIZE];
1297 printk(KERN_INFO "attempt to access beyond end of device\n");
1298 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1299 bdevname(bio->bi_bdev, b),
1300 bio->bi_rw,
1301 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1302 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1304 set_bit(BIO_EOF, &bio->bi_flags);
1307 #ifdef CONFIG_FAIL_MAKE_REQUEST
1309 static DECLARE_FAULT_ATTR(fail_make_request);
1311 static int __init setup_fail_make_request(char *str)
1313 return setup_fault_attr(&fail_make_request, str);
1315 __setup("fail_make_request=", setup_fail_make_request);
1317 static int should_fail_request(struct bio *bio)
1319 struct hd_struct *part = bio->bi_bdev->bd_part;
1321 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1322 return should_fail(&fail_make_request, bio->bi_size);
1324 return 0;
1327 static int __init fail_make_request_debugfs(void)
1329 return init_fault_attr_dentries(&fail_make_request,
1330 "fail_make_request");
1333 late_initcall(fail_make_request_debugfs);
1335 #else /* CONFIG_FAIL_MAKE_REQUEST */
1337 static inline int should_fail_request(struct bio *bio)
1339 return 0;
1342 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1345 * Check whether this bio extends beyond the end of the device.
1347 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1349 sector_t maxsector;
1351 if (!nr_sectors)
1352 return 0;
1354 /* Test device or partition size, when known. */
1355 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1356 if (maxsector) {
1357 sector_t sector = bio->bi_sector;
1359 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1361 * This may well happen - the kernel calls bread()
1362 * without checking the size of the device, e.g., when
1363 * mounting a device.
1365 handle_bad_sector(bio);
1366 return 1;
1370 return 0;
1374 * generic_make_request - hand a buffer to its device driver for I/O
1375 * @bio: The bio describing the location in memory and on the device.
1377 * generic_make_request() is used to make I/O requests of block
1378 * devices. It is passed a &struct bio, which describes the I/O that needs
1379 * to be done.
1381 * generic_make_request() does not return any status. The
1382 * success/failure status of the request, along with notification of
1383 * completion, is delivered asynchronously through the bio->bi_end_io
1384 * function described (one day) else where.
1386 * The caller of generic_make_request must make sure that bi_io_vec
1387 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1388 * set to describe the device address, and the
1389 * bi_end_io and optionally bi_private are set to describe how
1390 * completion notification should be signaled.
1392 * generic_make_request and the drivers it calls may use bi_next if this
1393 * bio happens to be merged with someone else, and may change bi_dev and
1394 * bi_sector for remaps as it sees fit. So the values of these fields
1395 * should NOT be depended on after the call to generic_make_request.
1397 static inline void __generic_make_request(struct bio *bio)
1399 struct request_queue *q;
1400 sector_t old_sector;
1401 int ret, nr_sectors = bio_sectors(bio);
1402 dev_t old_dev;
1403 int err = -EIO;
1405 might_sleep();
1407 if (bio_check_eod(bio, nr_sectors))
1408 goto end_io;
1411 * Resolve the mapping until finished. (drivers are
1412 * still free to implement/resolve their own stacking
1413 * by explicitly returning 0)
1415 * NOTE: we don't repeat the blk_size check for each new device.
1416 * Stacking drivers are expected to know what they are doing.
1418 old_sector = -1;
1419 old_dev = 0;
1420 do {
1421 char b[BDEVNAME_SIZE];
1423 q = bdev_get_queue(bio->bi_bdev);
1424 if (unlikely(!q)) {
1425 printk(KERN_ERR
1426 "generic_make_request: Trying to access "
1427 "nonexistent block-device %s (%Lu)\n",
1428 bdevname(bio->bi_bdev, b),
1429 (long long) bio->bi_sector);
1430 goto end_io;
1433 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1434 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1435 bdevname(bio->bi_bdev, b),
1436 bio_sectors(bio),
1437 q->max_hw_sectors);
1438 goto end_io;
1441 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1442 goto end_io;
1444 if (should_fail_request(bio))
1445 goto end_io;
1448 * If this device has partitions, remap block n
1449 * of partition p to block n+start(p) of the disk.
1451 blk_partition_remap(bio);
1453 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1454 goto end_io;
1456 if (old_sector != -1)
1457 trace_block_remap(q, bio, old_dev, bio->bi_sector,
1458 old_sector);
1460 trace_block_bio_queue(q, bio);
1462 old_sector = bio->bi_sector;
1463 old_dev = bio->bi_bdev->bd_dev;
1465 if (bio_check_eod(bio, nr_sectors))
1466 goto end_io;
1468 if (bio_discard(bio) && !q->prepare_discard_fn) {
1469 err = -EOPNOTSUPP;
1470 goto end_io;
1472 if (bio_barrier(bio) && bio_has_data(bio) &&
1473 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1474 err = -EOPNOTSUPP;
1475 goto end_io;
1478 ret = q->make_request_fn(q, bio);
1479 } while (ret);
1481 return;
1483 end_io:
1484 bio_endio(bio, err);
1488 * We only want one ->make_request_fn to be active at a time,
1489 * else stack usage with stacked devices could be a problem.
1490 * So use current->bio_{list,tail} to keep a list of requests
1491 * submited by a make_request_fn function.
1492 * current->bio_tail is also used as a flag to say if
1493 * generic_make_request is currently active in this task or not.
1494 * If it is NULL, then no make_request is active. If it is non-NULL,
1495 * then a make_request is active, and new requests should be added
1496 * at the tail
1498 void generic_make_request(struct bio *bio)
1500 if (current->bio_tail) {
1501 /* make_request is active */
1502 *(current->bio_tail) = bio;
1503 bio->bi_next = NULL;
1504 current->bio_tail = &bio->bi_next;
1505 return;
1507 /* following loop may be a bit non-obvious, and so deserves some
1508 * explanation.
1509 * Before entering the loop, bio->bi_next is NULL (as all callers
1510 * ensure that) so we have a list with a single bio.
1511 * We pretend that we have just taken it off a longer list, so
1512 * we assign bio_list to the next (which is NULL) and bio_tail
1513 * to &bio_list, thus initialising the bio_list of new bios to be
1514 * added. __generic_make_request may indeed add some more bios
1515 * through a recursive call to generic_make_request. If it
1516 * did, we find a non-NULL value in bio_list and re-enter the loop
1517 * from the top. In this case we really did just take the bio
1518 * of the top of the list (no pretending) and so fixup bio_list and
1519 * bio_tail or bi_next, and call into __generic_make_request again.
1521 * The loop was structured like this to make only one call to
1522 * __generic_make_request (which is important as it is large and
1523 * inlined) and to keep the structure simple.
1525 BUG_ON(bio->bi_next);
1526 do {
1527 current->bio_list = bio->bi_next;
1528 if (bio->bi_next == NULL)
1529 current->bio_tail = &current->bio_list;
1530 else
1531 bio->bi_next = NULL;
1532 __generic_make_request(bio);
1533 bio = current->bio_list;
1534 } while (bio);
1535 current->bio_tail = NULL; /* deactivate */
1537 EXPORT_SYMBOL(generic_make_request);
1540 * submit_bio - submit a bio to the block device layer for I/O
1541 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1542 * @bio: The &struct bio which describes the I/O
1544 * submit_bio() is very similar in purpose to generic_make_request(), and
1545 * uses that function to do most of the work. Both are fairly rough
1546 * interfaces; @bio must be presetup and ready for I/O.
1549 void submit_bio(int rw, struct bio *bio)
1551 int count = bio_sectors(bio);
1553 bio->bi_rw |= rw;
1556 * If it's a regular read/write or a barrier with data attached,
1557 * go through the normal accounting stuff before submission.
1559 if (bio_has_data(bio)) {
1560 if (rw & WRITE) {
1561 count_vm_events(PGPGOUT, count);
1562 } else {
1563 task_io_account_read(bio->bi_size);
1564 count_vm_events(PGPGIN, count);
1567 if (unlikely(block_dump)) {
1568 char b[BDEVNAME_SIZE];
1569 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1570 current->comm, task_pid_nr(current),
1571 (rw & WRITE) ? "WRITE" : "READ",
1572 (unsigned long long)bio->bi_sector,
1573 bdevname(bio->bi_bdev, b));
1577 generic_make_request(bio);
1579 EXPORT_SYMBOL(submit_bio);
1582 * blk_rq_check_limits - Helper function to check a request for the queue limit
1583 * @q: the queue
1584 * @rq: the request being checked
1586 * Description:
1587 * @rq may have been made based on weaker limitations of upper-level queues
1588 * in request stacking drivers, and it may violate the limitation of @q.
1589 * Since the block layer and the underlying device driver trust @rq
1590 * after it is inserted to @q, it should be checked against @q before
1591 * the insertion using this generic function.
1593 * This function should also be useful for request stacking drivers
1594 * in some cases below, so export this fuction.
1595 * Request stacking drivers like request-based dm may change the queue
1596 * limits while requests are in the queue (e.g. dm's table swapping).
1597 * Such request stacking drivers should check those requests agaist
1598 * the new queue limits again when they dispatch those requests,
1599 * although such checkings are also done against the old queue limits
1600 * when submitting requests.
1602 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1604 if (rq->nr_sectors > q->max_sectors ||
1605 rq->data_len > q->max_hw_sectors << 9) {
1606 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1607 return -EIO;
1611 * queue's settings related to segment counting like q->bounce_pfn
1612 * may differ from that of other stacking queues.
1613 * Recalculate it to check the request correctly on this queue's
1614 * limitation.
1616 blk_recalc_rq_segments(rq);
1617 if (rq->nr_phys_segments > q->max_phys_segments ||
1618 rq->nr_phys_segments > q->max_hw_segments) {
1619 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1620 return -EIO;
1623 return 0;
1625 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1628 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1629 * @q: the queue to submit the request
1630 * @rq: the request being queued
1632 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1634 unsigned long flags;
1636 if (blk_rq_check_limits(q, rq))
1637 return -EIO;
1639 #ifdef CONFIG_FAIL_MAKE_REQUEST
1640 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1641 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1642 return -EIO;
1643 #endif
1645 spin_lock_irqsave(q->queue_lock, flags);
1648 * Submitting request must be dequeued before calling this function
1649 * because it will be linked to another request_queue
1651 BUG_ON(blk_queued_rq(rq));
1653 drive_stat_acct(rq, 1);
1654 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1656 spin_unlock_irqrestore(q->queue_lock, flags);
1658 return 0;
1660 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1663 * blkdev_dequeue_request - dequeue request and start timeout timer
1664 * @req: request to dequeue
1666 * Dequeue @req and start timeout timer on it. This hands off the
1667 * request to the driver.
1669 * Block internal functions which don't want to start timer should
1670 * call elv_dequeue_request().
1672 void blkdev_dequeue_request(struct request *req)
1674 elv_dequeue_request(req->q, req);
1677 * We are now handing the request to the hardware, add the
1678 * timeout handler.
1680 blk_add_timer(req);
1682 EXPORT_SYMBOL(blkdev_dequeue_request);
1684 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1686 struct gendisk *disk = req->rq_disk;
1688 if (!disk || !blk_do_io_stat(disk->queue))
1689 return;
1691 if (blk_fs_request(req)) {
1692 const int rw = rq_data_dir(req);
1693 struct hd_struct *part;
1694 int cpu;
1696 cpu = part_stat_lock();
1697 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1698 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1699 part_stat_unlock();
1703 static void blk_account_io_done(struct request *req)
1705 struct gendisk *disk = req->rq_disk;
1707 if (!disk || !blk_do_io_stat(disk->queue))
1708 return;
1711 * Account IO completion. bar_rq isn't accounted as a normal
1712 * IO on queueing nor completion. Accounting the containing
1713 * request is enough.
1715 if (blk_fs_request(req) && req != &req->q->bar_rq) {
1716 unsigned long duration = jiffies - req->start_time;
1717 const int rw = rq_data_dir(req);
1718 struct hd_struct *part;
1719 int cpu;
1721 cpu = part_stat_lock();
1722 part = disk_map_sector_rcu(disk, req->sector);
1724 part_stat_inc(cpu, part, ios[rw]);
1725 part_stat_add(cpu, part, ticks[rw], duration);
1726 part_round_stats(cpu, part);
1727 part_dec_in_flight(part);
1729 part_stat_unlock();
1734 * __end_that_request_first - end I/O on a request
1735 * @req: the request being processed
1736 * @error: %0 for success, < %0 for error
1737 * @nr_bytes: number of bytes to complete
1739 * Description:
1740 * Ends I/O on a number of bytes attached to @req, and sets it up
1741 * for the next range of segments (if any) in the cluster.
1743 * Return:
1744 * %0 - we are done with this request, call end_that_request_last()
1745 * %1 - still buffers pending for this request
1747 static int __end_that_request_first(struct request *req, int error,
1748 int nr_bytes)
1750 int total_bytes, bio_nbytes, next_idx = 0;
1751 struct bio *bio;
1753 trace_block_rq_complete(req->q, req);
1756 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1757 * sense key with us all the way through
1759 if (!blk_pc_request(req))
1760 req->errors = 0;
1762 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1763 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1764 req->rq_disk ? req->rq_disk->disk_name : "?",
1765 (unsigned long long)req->sector);
1768 blk_account_io_completion(req, nr_bytes);
1770 total_bytes = bio_nbytes = 0;
1771 while ((bio = req->bio) != NULL) {
1772 int nbytes;
1774 if (nr_bytes >= bio->bi_size) {
1775 req->bio = bio->bi_next;
1776 nbytes = bio->bi_size;
1777 req_bio_endio(req, bio, nbytes, error);
1778 next_idx = 0;
1779 bio_nbytes = 0;
1780 } else {
1781 int idx = bio->bi_idx + next_idx;
1783 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1784 blk_dump_rq_flags(req, "__end_that");
1785 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1786 __func__, bio->bi_idx, bio->bi_vcnt);
1787 break;
1790 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1791 BIO_BUG_ON(nbytes > bio->bi_size);
1794 * not a complete bvec done
1796 if (unlikely(nbytes > nr_bytes)) {
1797 bio_nbytes += nr_bytes;
1798 total_bytes += nr_bytes;
1799 break;
1803 * advance to the next vector
1805 next_idx++;
1806 bio_nbytes += nbytes;
1809 total_bytes += nbytes;
1810 nr_bytes -= nbytes;
1812 bio = req->bio;
1813 if (bio) {
1815 * end more in this run, or just return 'not-done'
1817 if (unlikely(nr_bytes <= 0))
1818 break;
1823 * completely done
1825 if (!req->bio)
1826 return 0;
1829 * if the request wasn't completed, update state
1831 if (bio_nbytes) {
1832 req_bio_endio(req, bio, bio_nbytes, error);
1833 bio->bi_idx += next_idx;
1834 bio_iovec(bio)->bv_offset += nr_bytes;
1835 bio_iovec(bio)->bv_len -= nr_bytes;
1838 blk_recalc_rq_sectors(req, total_bytes >> 9);
1839 blk_recalc_rq_segments(req);
1840 return 1;
1844 * queue lock must be held
1846 static void end_that_request_last(struct request *req, int error)
1848 if (blk_rq_tagged(req))
1849 blk_queue_end_tag(req->q, req);
1851 if (blk_queued_rq(req))
1852 elv_dequeue_request(req->q, req);
1854 if (unlikely(laptop_mode) && blk_fs_request(req))
1855 laptop_io_completion();
1857 blk_delete_timer(req);
1859 blk_account_io_done(req);
1861 if (req->end_io)
1862 req->end_io(req, error);
1863 else {
1864 if (blk_bidi_rq(req))
1865 __blk_put_request(req->next_rq->q, req->next_rq);
1867 __blk_put_request(req->q, req);
1872 * blk_rq_bytes - Returns bytes left to complete in the entire request
1873 * @rq: the request being processed
1875 unsigned int blk_rq_bytes(struct request *rq)
1877 if (blk_fs_request(rq))
1878 return rq->hard_nr_sectors << 9;
1880 return rq->data_len;
1882 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1885 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1886 * @rq: the request being processed
1888 unsigned int blk_rq_cur_bytes(struct request *rq)
1890 if (blk_fs_request(rq))
1891 return rq->current_nr_sectors << 9;
1893 if (rq->bio)
1894 return rq->bio->bi_size;
1896 return rq->data_len;
1898 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1901 * end_request - end I/O on the current segment of the request
1902 * @req: the request being processed
1903 * @uptodate: error value or %0/%1 uptodate flag
1905 * Description:
1906 * Ends I/O on the current segment of a request. If that is the only
1907 * remaining segment, the request is also completed and freed.
1909 * This is a remnant of how older block drivers handled I/O completions.
1910 * Modern drivers typically end I/O on the full request in one go, unless
1911 * they have a residual value to account for. For that case this function
1912 * isn't really useful, unless the residual just happens to be the
1913 * full current segment. In other words, don't use this function in new
1914 * code. Use blk_end_request() or __blk_end_request() to end a request.
1916 void end_request(struct request *req, int uptodate)
1918 int error = 0;
1920 if (uptodate <= 0)
1921 error = uptodate ? uptodate : -EIO;
1923 __blk_end_request(req, error, req->hard_cur_sectors << 9);
1925 EXPORT_SYMBOL(end_request);
1927 static int end_that_request_data(struct request *rq, int error,
1928 unsigned int nr_bytes, unsigned int bidi_bytes)
1930 if (rq->bio) {
1931 if (__end_that_request_first(rq, error, nr_bytes))
1932 return 1;
1934 /* Bidi request must be completed as a whole */
1935 if (blk_bidi_rq(rq) &&
1936 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1937 return 1;
1940 return 0;
1944 * blk_end_io - Generic end_io function to complete a request.
1945 * @rq: the request being processed
1946 * @error: %0 for success, < %0 for error
1947 * @nr_bytes: number of bytes to complete @rq
1948 * @bidi_bytes: number of bytes to complete @rq->next_rq
1949 * @drv_callback: function called between completion of bios in the request
1950 * and completion of the request.
1951 * If the callback returns non %0, this helper returns without
1952 * completion of the request.
1954 * Description:
1955 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1956 * If @rq has leftover, sets it up for the next range of segments.
1958 * Return:
1959 * %0 - we are done with this request
1960 * %1 - this request is not freed yet, it still has pending buffers.
1962 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1963 unsigned int bidi_bytes,
1964 int (drv_callback)(struct request *))
1966 struct request_queue *q = rq->q;
1967 unsigned long flags = 0UL;
1969 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1970 return 1;
1972 /* Special feature for tricky drivers */
1973 if (drv_callback && drv_callback(rq))
1974 return 1;
1976 add_disk_randomness(rq->rq_disk);
1978 spin_lock_irqsave(q->queue_lock, flags);
1979 end_that_request_last(rq, error);
1980 spin_unlock_irqrestore(q->queue_lock, flags);
1982 return 0;
1986 * blk_end_request - Helper function for drivers to complete the request.
1987 * @rq: the request being processed
1988 * @error: %0 for success, < %0 for error
1989 * @nr_bytes: number of bytes to complete
1991 * Description:
1992 * Ends I/O on a number of bytes attached to @rq.
1993 * If @rq has leftover, sets it up for the next range of segments.
1995 * Return:
1996 * %0 - we are done with this request
1997 * %1 - still buffers pending for this request
1999 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2001 return blk_end_io(rq, error, nr_bytes, 0, NULL);
2003 EXPORT_SYMBOL_GPL(blk_end_request);
2006 * __blk_end_request - Helper function for drivers to complete the request.
2007 * @rq: the request being processed
2008 * @error: %0 for success, < %0 for error
2009 * @nr_bytes: number of bytes to complete
2011 * Description:
2012 * Must be called with queue lock held unlike blk_end_request().
2014 * Return:
2015 * %0 - we are done with this request
2016 * %1 - still buffers pending for this request
2018 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2020 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
2021 return 1;
2023 add_disk_randomness(rq->rq_disk);
2025 end_that_request_last(rq, error);
2027 return 0;
2029 EXPORT_SYMBOL_GPL(__blk_end_request);
2032 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
2033 * @rq: the bidi request being processed
2034 * @error: %0 for success, < %0 for error
2035 * @nr_bytes: number of bytes to complete @rq
2036 * @bidi_bytes: number of bytes to complete @rq->next_rq
2038 * Description:
2039 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2041 * Return:
2042 * %0 - we are done with this request
2043 * %1 - still buffers pending for this request
2045 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
2046 unsigned int bidi_bytes)
2048 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
2050 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2053 * blk_update_request - Special helper function for request stacking drivers
2054 * @rq: the request being processed
2055 * @error: %0 for success, < %0 for error
2056 * @nr_bytes: number of bytes to complete @rq
2058 * Description:
2059 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
2060 * the request structure even if @rq doesn't have leftover.
2061 * If @rq has leftover, sets it up for the next range of segments.
2063 * This special helper function is only for request stacking drivers
2064 * (e.g. request-based dm) so that they can handle partial completion.
2065 * Actual device drivers should use blk_end_request instead.
2067 void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2069 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2071 * These members are not updated in end_that_request_data()
2072 * when all bios are completed.
2073 * Update them so that the request stacking driver can find
2074 * how many bytes remain in the request later.
2076 rq->nr_sectors = rq->hard_nr_sectors = 0;
2077 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2080 EXPORT_SYMBOL_GPL(blk_update_request);
2083 * blk_end_request_callback - Special helper function for tricky drivers
2084 * @rq: the request being processed
2085 * @error: %0 for success, < %0 for error
2086 * @nr_bytes: number of bytes to complete
2087 * @drv_callback: function called between completion of bios in the request
2088 * and completion of the request.
2089 * If the callback returns non %0, this helper returns without
2090 * completion of the request.
2092 * Description:
2093 * Ends I/O on a number of bytes attached to @rq.
2094 * If @rq has leftover, sets it up for the next range of segments.
2096 * This special helper function is used only for existing tricky drivers.
2097 * (e.g. cdrom_newpc_intr() of ide-cd)
2098 * This interface will be removed when such drivers are rewritten.
2099 * Don't use this interface in other places anymore.
2101 * Return:
2102 * %0 - we are done with this request
2103 * %1 - this request is not freed yet.
2104 * this request still has pending buffers or
2105 * the driver doesn't want to finish this request yet.
2107 int blk_end_request_callback(struct request *rq, int error,
2108 unsigned int nr_bytes,
2109 int (drv_callback)(struct request *))
2111 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2113 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2115 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2116 struct bio *bio)
2118 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2119 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2120 rq->cmd_flags |= (bio->bi_rw & 3);
2122 if (bio_has_data(bio)) {
2123 rq->nr_phys_segments = bio_phys_segments(q, bio);
2124 rq->buffer = bio_data(bio);
2126 rq->current_nr_sectors = bio_cur_sectors(bio);
2127 rq->hard_cur_sectors = rq->current_nr_sectors;
2128 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2129 rq->data_len = bio->bi_size;
2131 rq->bio = rq->biotail = bio;
2133 if (bio->bi_bdev)
2134 rq->rq_disk = bio->bi_bdev->bd_disk;
2138 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2139 * @q : the queue of the device being checked
2141 * Description:
2142 * Check if underlying low-level drivers of a device are busy.
2143 * If the drivers want to export their busy state, they must set own
2144 * exporting function using blk_queue_lld_busy() first.
2146 * Basically, this function is used only by request stacking drivers
2147 * to stop dispatching requests to underlying devices when underlying
2148 * devices are busy. This behavior helps more I/O merging on the queue
2149 * of the request stacking driver and prevents I/O throughput regression
2150 * on burst I/O load.
2152 * Return:
2153 * 0 - Not busy (The request stacking driver should dispatch request)
2154 * 1 - Busy (The request stacking driver should stop dispatching request)
2156 int blk_lld_busy(struct request_queue *q)
2158 if (q->lld_busy_fn)
2159 return q->lld_busy_fn(q);
2161 return 0;
2163 EXPORT_SYMBOL_GPL(blk_lld_busy);
2165 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2167 return queue_work(kblockd_workqueue, work);
2169 EXPORT_SYMBOL(kblockd_schedule_work);
2171 int __init blk_dev_init(void)
2173 kblockd_workqueue = create_workqueue("kblockd");
2174 if (!kblockd_workqueue)
2175 panic("Failed to create kblockd\n");
2177 request_cachep = kmem_cache_create("blkdev_requests",
2178 sizeof(struct request), 0, SLAB_PANIC, NULL);
2180 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2181 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2183 return 0;