1 /* PSPP - a program for statistical analysis.
2 Copyright (C) 2005, 2009, 2011 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18 Find the least-squares estimate of b for the linear model:
22 where Y is an n-by-1 column vector, X is an n-by-p matrix of
23 independent variables, b is a p-by-1 vector of regression coefficients,
24 and Z is an n-by-1 normally-distributed random vector with independent
25 identically distributed components with mean 0.
27 This estimate is found via the sweep operator, which is a modification
28 of Gauss-Jordan pivoting.
33 Matrix Computations, third edition. GH Golub and CF Van Loan.
34 The Johns Hopkins University Press. 1996. ISBN 0-8018-5414-8.
36 Numerical Analysis for Statisticians. K Lange. Springer. 1999.
39 Numerical Linear Algebra for Applications in Statistics. JE Gentle.
40 Springer. 1998. ISBN 0-387-98542-5.
49 The matrix A will be overwritten. In ordinary uses of the sweep
50 operator, A will be the matrix
58 X refers to the design matrix and Y to the vector of dependent
59 observations. reg_sweep sweeps on the diagonal elements of
62 The matrix A is assumed to be symmetric, so the sweep operation is
63 performed only for the upper triangle of A.
65 LAST_COL is considered to be the final column in the augmented matrix,
66 that is, the column to the right of the '=' sign of the system.
70 reg_sweep (gsl_matrix
* A
, int last_col
)
80 if (A
->size1
!= A
->size2
)
83 assert (last_col
< A
->size1
);
84 gsl_matrix_swap_rows (A
, A
->size1
- 1, last_col
);
85 gsl_matrix_swap_columns (A
, A
->size1
- 1 , last_col
);
87 B
= gsl_matrix_alloc (A
->size1
, A
->size2
);
88 for (k
= 0; k
< (A
->size1
- 1); k
++)
90 const double sweep_element
= gsl_matrix_get (A
, k
, k
);
91 if (fabs (sweep_element
) > GSL_DBL_MIN
)
93 gsl_matrix_set (B
, k
, k
, -1.0 / sweep_element
);
95 Rows before current row k.
97 for (i
= 0; i
< k
; i
++)
99 for (j
= i
; j
< A
->size2
; j
++)
101 /* Use only the upper triangle of A. */
105 tmp
= gsl_matrix_get (A
, i
, j
) -
106 gsl_matrix_get (A
, i
, k
)
107 * gsl_matrix_get (A
, j
, k
) / sweep_element
;
111 tmp
= gsl_matrix_get (A
, i
, j
) -
112 gsl_matrix_get (A
, i
, k
)
113 * gsl_matrix_get (A
, k
, j
) / sweep_element
;
117 tmp
= gsl_matrix_get (A
, i
, k
) / sweep_element
;
119 gsl_matrix_set (B
, i
, j
, tmp
);
125 for (j
= k
+ 1; j
< A
->size1
; j
++)
127 double tmp
= gsl_matrix_get (A
, k
, j
) / sweep_element
;
128 gsl_matrix_set (B
, k
, j
, tmp
);
131 Rows after the current row k.
133 for (i
= k
+ 1; i
< A
->size1
; i
++)
135 for (j
= i
; j
< A
->size2
; j
++)
137 double tmp
= gsl_matrix_get (A
, i
, j
) -
138 gsl_matrix_get (A
, k
, i
)
139 * gsl_matrix_get (A
, k
, j
) / sweep_element
;
140 gsl_matrix_set (B
, i
, j
, tmp
);
144 gsl_matrix_memcpy (A
, B
);
148 gsl_matrix_swap_columns (A
, A
->size1
- 1 , last_col
);
149 gsl_matrix_swap_rows (A
, A
->size1
- 1, last_col
);