Use separate logic output muxing vectors for each decoder
[pulseview.git] / pv / data / logicsegment.cpp
blob739b2b9ee2a97652de2d4d4e3530041c1613af2c
1 /*
2 * This file is part of the PulseView project.
4 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "config.h" // For HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
22 #include <extdef.h>
24 #include <cassert>
25 #include <cmath>
26 #include <cstdlib>
27 #include <cstring>
28 #include <cstdint>
30 #include "logic.hpp"
31 #include "logicsegment.hpp"
33 #include <libsigrokcxx/libsigrokcxx.hpp>
35 using std::lock_guard;
36 using std::recursive_mutex;
37 using std::max;
38 using std::min;
39 using std::shared_ptr;
40 using std::vector;
42 using sigrok::Logic;
44 namespace pv {
45 namespace data {
47 const int LogicSegment::MipMapScalePower = 4;
48 const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
49 const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
50 const uint64_t LogicSegment::MipMapDataUnit = 64 * 1024; // bytes
52 LogicSegment::LogicSegment(pv::data::Logic& owner, uint32_t segment_id,
53 unsigned int unit_size, uint64_t samplerate) :
54 Segment(segment_id, samplerate, unit_size),
55 owner_(owner),
56 last_append_sample_(0),
57 last_append_accumulator_(0),
58 last_append_extra_(0)
60 memset(mip_map_, 0, sizeof(mip_map_));
63 LogicSegment::~LogicSegment()
65 lock_guard<recursive_mutex> lock(mutex_);
67 for (MipMapLevel &l : mip_map_)
68 free(l.data);
71 shared_ptr<const LogicSegment> LogicSegment::get_shared_ptr() const
73 shared_ptr<const Segment> ptr = nullptr;
75 try {
76 ptr = shared_from_this();
77 } catch (std::exception& e) {
78 /* Do nothing, ptr remains a null pointer */
81 return ptr ? std::dynamic_pointer_cast<const LogicSegment>(ptr) : nullptr;
84 template <class T>
85 void LogicSegment::downsampleTmain(const T*&in, T &acc, T &prev)
87 // Accumulate one sample at a time
88 for (uint64_t i = 0; i < MipMapScaleFactor; i++) {
89 T sample = *in++;
90 acc |= prev ^ sample;
91 prev = sample;
95 template <>
96 void LogicSegment::downsampleTmain<uint8_t>(const uint8_t*&in, uint8_t &acc, uint8_t &prev)
98 // Handle 8 bit samples in 32 bit steps
99 uint32_t prev32 = prev | prev << 8 | prev << 16 | prev << 24;
100 uint32_t acc32 = acc;
101 const uint32_t *in32 = (const uint32_t*)in;
102 for (uint64_t i = 0; i < MipMapScaleFactor; i += 4) {
103 uint32_t sample32 = *in32++;
104 acc32 |= prev32 ^ sample32;
105 prev32 = sample32;
107 // Reduce result back to uint8_t
108 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
109 prev = (prev32 >> 24) & 0xff; // MSB is last
110 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
111 prev = prev32 & 0xff; // LSB is last
112 #else
113 #error Endianness unknown
114 #endif
115 acc |= acc32 & 0xff;
116 acc |= (acc32 >> 8) & 0xff;
117 acc |= (acc32 >> 16) & 0xff;
118 acc |= (acc32 >> 24) & 0xff;
119 in = (const uint8_t*)in32;
122 template <>
123 void LogicSegment::downsampleTmain<uint16_t>(const uint16_t*&in, uint16_t &acc, uint16_t &prev)
125 // Handle 16 bit samples in 32 bit steps
126 uint32_t prev32 = prev | prev << 16;
127 uint32_t acc32 = acc;
128 const uint32_t *in32 = (const uint32_t*)in;
129 for (uint64_t i = 0; i < MipMapScaleFactor; i += 2) {
130 uint32_t sample32 = *in32++;
131 acc32 |= prev32 ^ sample32;
132 prev32 = sample32;
134 // Reduce result back to uint16_t
135 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
136 prev = (prev32 >> 16) & 0xffff; // MSB is last
137 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
138 prev = prev32 & 0xffff; // LSB is last
139 #else
140 #error Endian unknown
141 #endif
142 acc |= acc32 & 0xffff;
143 acc |= (acc32 >> 16) & 0xffff;
144 in = (const uint16_t*)in32;
147 template <class T>
148 void LogicSegment::downsampleT(const uint8_t *in_, uint8_t *&out_, uint64_t len)
150 const T *in = (const T*)in_;
151 T *out = (T*)out_;
152 T prev = last_append_sample_;
153 T acc = last_append_accumulator_;
155 // Try to complete the previous downsample
156 if (last_append_extra_) {
157 while (last_append_extra_ < MipMapScaleFactor && len > 0) {
158 T sample = *in++;
159 acc |= prev ^ sample;
160 prev = sample;
161 last_append_extra_++;
162 len--;
164 if (!len) {
165 // Not enough samples available to complete downsample
166 last_append_sample_ = prev;
167 last_append_accumulator_ = acc;
168 return;
170 // We have a complete downsample
171 *out++ = acc;
172 acc = 0;
173 last_append_extra_ = 0;
176 // Handle complete blocks of MipMapScaleFactor samples
177 while (len >= MipMapScaleFactor) {
178 downsampleTmain<T>(in, acc, prev);
179 len -= MipMapScaleFactor;
180 // Output downsample
181 *out++ = acc;
182 acc = 0;
185 // Process remainder, not enough for a complete sample
186 while (len > 0) {
187 T sample = *in++;
188 acc |= prev ^ sample;
189 prev = sample;
190 last_append_extra_++;
191 len--;
194 // Update context
195 last_append_sample_ = prev;
196 last_append_accumulator_ = acc;
197 out_ = (uint8_t *)out;
200 void LogicSegment::downsampleGeneric(const uint8_t *in, uint8_t *&out, uint64_t len)
202 // Downsample using the generic unpack_sample()
203 // which can handle any width between 1 and 8 bytes
204 uint64_t prev = last_append_sample_;
205 uint64_t acc = last_append_accumulator_;
207 // Try to complete the previous downsample
208 if (last_append_extra_) {
209 while (last_append_extra_ < MipMapScaleFactor && len > 0) {
210 const uint64_t sample = unpack_sample(in);
211 in += unit_size_;
212 acc |= prev ^ sample;
213 prev = sample;
214 last_append_extra_++;
215 len--;
217 if (!len) {
218 // Not enough samples available to complete downsample
219 last_append_sample_ = prev;
220 last_append_accumulator_ = acc;
221 return;
223 // We have a complete downsample
224 pack_sample(out, acc);
225 out += unit_size_;
226 acc = 0;
227 last_append_extra_ = 0;
230 // Handle complete blocks of MipMapScaleFactor samples
231 while (len >= MipMapScaleFactor) {
232 // Accumulate one sample at a time
233 for (uint64_t i = 0; i < MipMapScaleFactor; i++) {
234 const uint64_t sample = unpack_sample(in);
235 in += unit_size_;
236 acc |= prev ^ sample;
237 prev = sample;
239 len -= MipMapScaleFactor;
240 // Output downsample
241 pack_sample(out, acc);
242 out += unit_size_;
243 acc = 0;
246 // Process remainder, not enough for a complete sample
247 while (len > 0) {
248 const uint64_t sample = unpack_sample(in);
249 in += unit_size_;
250 acc |= prev ^ sample;
251 prev = sample;
252 last_append_extra_++;
253 len--;
256 // Update context
257 last_append_sample_ = prev;
258 last_append_accumulator_ = acc;
261 inline uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
263 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
264 return *(uint64_t*)ptr;
265 #else
266 uint64_t value = 0;
267 switch (unit_size_) {
268 default:
269 value |= ((uint64_t)ptr[7]) << 56;
270 /* FALLTHRU */
271 case 7:
272 value |= ((uint64_t)ptr[6]) << 48;
273 /* FALLTHRU */
274 case 6:
275 value |= ((uint64_t)ptr[5]) << 40;
276 /* FALLTHRU */
277 case 5:
278 value |= ((uint64_t)ptr[4]) << 32;
279 /* FALLTHRU */
280 case 4:
281 value |= ((uint32_t)ptr[3]) << 24;
282 /* FALLTHRU */
283 case 3:
284 value |= ((uint32_t)ptr[2]) << 16;
285 /* FALLTHRU */
286 case 2:
287 value |= ptr[1] << 8;
288 /* FALLTHRU */
289 case 1:
290 value |= ptr[0];
291 /* FALLTHRU */
292 case 0:
293 break;
295 return value;
296 #endif
299 inline void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
301 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
302 *(uint64_t*)ptr = value;
303 #else
304 switch (unit_size_) {
305 default:
306 ptr[7] = value >> 56;
307 /* FALLTHRU */
308 case 7:
309 ptr[6] = value >> 48;
310 /* FALLTHRU */
311 case 6:
312 ptr[5] = value >> 40;
313 /* FALLTHRU */
314 case 5:
315 ptr[4] = value >> 32;
316 /* FALLTHRU */
317 case 4:
318 ptr[3] = value >> 24;
319 /* FALLTHRU */
320 case 3:
321 ptr[2] = value >> 16;
322 /* FALLTHRU */
323 case 2:
324 ptr[1] = value >> 8;
325 /* FALLTHRU */
326 case 1:
327 ptr[0] = value;
328 /* FALLTHRU */
329 case 0:
330 break;
332 #endif
335 void LogicSegment::append_payload(shared_ptr<sigrok::Logic> logic)
337 assert(unit_size_ == logic->unit_size());
338 assert((logic->data_length() % unit_size_) == 0);
340 append_payload(logic->data_pointer(), logic->data_length());
343 void LogicSegment::append_payload(void *data, uint64_t data_size)
345 assert(unit_size_ > 0);
346 assert((data_size % unit_size_) == 0);
348 lock_guard<recursive_mutex> lock(mutex_);
350 const uint64_t prev_sample_count = sample_count_;
351 const uint64_t sample_count = data_size / unit_size_;
353 append_samples(data, sample_count);
355 // Generate the first mip-map from the data
356 append_payload_to_mipmap();
358 if (sample_count > 1)
359 owner_.notify_samples_added(SharedPtrToSegment(shared_from_this()),
360 prev_sample_count + 1, prev_sample_count + 1 + sample_count);
361 else
362 owner_.notify_samples_added(SharedPtrToSegment(shared_from_this()),
363 prev_sample_count + 1, prev_sample_count + 1);
366 void LogicSegment::append_subsignal_payload(unsigned int index, void *data,
367 uint64_t data_size, vector<uint8_t>& destination)
369 if (index == 0)
370 destination.resize(data_size * unit_size_, 0);
372 // Set the bits for this sub-signal where needed
373 // Note: the bytes in *data must either be 0 or 1, nothing else
374 unsigned int index_byte_offs = index / 8;
375 uint8_t* output_data = destination.data() + index_byte_offs;
376 uint8_t* input_data = (uint8_t*)data;
378 for (uint64_t i = 0; i < data_size; i++) {
379 assert((i * unit_size_ + index_byte_offs) < destination.size());
380 *output_data |= (input_data[i] << index);
381 output_data += unit_size_;
384 if (index == owner_.num_channels() - 1) {
385 // We gathered sample data of all sub-signals, let's append it
386 append_payload(destination.data(), destination.size());
387 destination.clear();
391 void LogicSegment::get_samples(int64_t start_sample,
392 int64_t end_sample, uint8_t* dest) const
394 assert(start_sample >= 0);
395 assert(start_sample <= (int64_t)sample_count_);
396 assert(end_sample >= 0);
397 assert(end_sample <= (int64_t)sample_count_);
398 assert(start_sample <= end_sample);
399 assert(dest != nullptr);
401 lock_guard<recursive_mutex> lock(mutex_);
403 get_raw_samples(start_sample, (end_sample - start_sample), dest);
406 void LogicSegment::get_subsampled_edges(
407 vector<EdgePair> &edges,
408 uint64_t start, uint64_t end,
409 float min_length, int sig_index, bool first_change_only)
411 uint64_t index = start;
412 unsigned int level;
413 bool last_sample;
414 bool fast_forward;
416 assert(start <= end);
417 assert(min_length > 0);
418 assert(sig_index >= 0);
419 assert(sig_index < 64);
421 lock_guard<recursive_mutex> lock(mutex_);
423 // Make sure we only process as many samples as we have
424 if (end > get_sample_count())
425 end = get_sample_count();
427 const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
428 const unsigned int min_level = max((int)floorf(logf(min_length) /
429 LogMipMapScaleFactor) - 1, 0);
430 const uint64_t sig_mask = 1ULL << sig_index;
432 // Store the initial state
433 last_sample = (get_unpacked_sample(start) & sig_mask) != 0;
434 if (!first_change_only)
435 edges.emplace_back(index++, last_sample);
437 while (index + block_length <= end) {
438 //----- Continue to search -----//
439 level = min_level;
441 // We cannot fast-forward if there is no mip-map data at
442 // the minimum level.
443 fast_forward = (mip_map_[level].data != nullptr);
445 if (min_length < MipMapScaleFactor) {
446 // Search individual samples up to the beginning of
447 // the next first level mip map block
448 const uint64_t final_index = min(end, pow2_ceil(index, MipMapScalePower));
450 for (; index < final_index &&
451 (index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
452 index++) {
454 const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
456 // If there was a change we cannot fast forward
457 if (sample != last_sample) {
458 fast_forward = false;
459 break;
462 } else {
463 // If resolution is less than a mip map block,
464 // round up to the beginning of the mip-map block
465 // for this level of detail
466 const int min_level_scale_power = (level + 1) * MipMapScalePower;
467 index = pow2_ceil(index, min_level_scale_power);
468 if (index >= end)
469 break;
471 // We can fast forward only if there was no change
472 const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
473 if (last_sample != sample)
474 fast_forward = false;
477 if (fast_forward) {
479 // Fast forward: This involves zooming out to higher
480 // levels of the mip map searching for changes, then
481 // zooming in on them to find the point where the edge
482 // begins.
484 // Slide right and zoom out at the beginnings of mip-map
485 // blocks until we encounter a change
486 while (true) {
487 const int level_scale_power = (level + 1) * MipMapScalePower;
488 const uint64_t offset = index >> level_scale_power;
490 // Check if we reached the last block at this
491 // level, or if there was a change in this block
492 if (offset >= mip_map_[level].length ||
493 (get_subsample(level, offset) & sig_mask))
494 break;
496 if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
497 // If we are now at the beginning of a
498 // higher level mip-map block ascend one
499 // level
500 if ((level + 1 >= ScaleStepCount) || (!mip_map_[level + 1].data))
501 break;
503 level++;
504 } else {
505 // Slide right to the beginning of the
506 // next mip map block
507 index = pow2_ceil(index + 1, level_scale_power);
511 // Zoom in, and slide right until we encounter a change,
512 // and repeat until we reach min_level
513 while (true) {
514 assert(mip_map_[level].data);
516 const int level_scale_power = (level + 1) * MipMapScalePower;
517 const uint64_t offset = index >> level_scale_power;
519 // Check if we reached the last block at this
520 // level, or if there was a change in this block
521 if (offset >= mip_map_[level].length ||
522 (get_subsample(level, offset) & sig_mask)) {
523 // Zoom in unless we reached the minimum
524 // zoom
525 if (level == min_level)
526 break;
528 level--;
529 } else {
530 // Slide right to the beginning of the
531 // next mip map block
532 index = pow2_ceil(index + 1, level_scale_power);
536 // If individual samples within the limit of resolution,
537 // do a linear search for the next transition within the
538 // block
539 if (min_length < MipMapScaleFactor) {
540 for (; index < end; index++) {
541 const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
542 if (sample != last_sample)
543 break;
548 //----- Store the edge -----//
550 // Take the last sample of the quanization block
551 const int64_t final_index = index + block_length;
552 if (index + block_length > end)
553 break;
555 // Store the final state
556 const bool final_sample = (get_unpacked_sample(final_index - 1) & sig_mask) != 0;
557 edges.emplace_back(index, final_sample);
559 index = final_index;
560 last_sample = final_sample;
562 if (first_change_only)
563 break;
566 // Add the final state
567 if (!first_change_only) {
568 const bool end_sample = get_unpacked_sample(end) & sig_mask;
569 if (last_sample != end_sample)
570 edges.emplace_back(end, end_sample);
571 edges.emplace_back(end + 1, end_sample);
575 void LogicSegment::get_surrounding_edges(vector<EdgePair> &dest,
576 uint64_t origin_sample, float min_length, int sig_index)
578 if (origin_sample >= sample_count_)
579 return;
581 // Put the edges vector on the heap, it can become quite big until we can
582 // use a get_subsampled_edges() implementation that searches backwards
583 vector<EdgePair>* edges = new vector<EdgePair>;
585 // Get all edges to the left of origin_sample
586 get_subsampled_edges(*edges, 0, origin_sample, min_length, sig_index, false);
588 // If we don't specify "first only", the first and last edge are the states
589 // at samples 0 and origin_sample. If only those exist, there are no edges
590 if (edges->size() == 2) {
591 delete edges;
592 return;
595 // Dismiss the entry for origin_sample so that back() gives us the
596 // real last entry
597 edges->pop_back();
598 dest.push_back(edges->back());
599 edges->clear();
601 // Get first edge to the right of origin_sample
602 get_subsampled_edges(*edges, origin_sample, sample_count_, min_length, sig_index, true);
604 // "first only" is specified, so nothing needs to be dismissed
605 if (edges->size() == 0) {
606 delete edges;
607 return;
610 dest.push_back(edges->front());
612 delete edges;
615 void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
617 lock_guard<recursive_mutex> lock(mutex_);
619 const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
620 MipMapDataUnit) * MipMapDataUnit;
622 if (new_data_length > m.data_length) {
623 m.data_length = new_data_length;
625 // Padding is added to allow for the uint64_t write word
626 m.data = realloc(m.data, new_data_length * unit_size_ +
627 sizeof(uint64_t));
631 void LogicSegment::append_payload_to_mipmap()
633 MipMapLevel &m0 = mip_map_[0];
634 uint64_t prev_length;
635 uint8_t *dest_ptr;
636 SegmentDataIterator* it;
637 uint64_t accumulator;
638 unsigned int diff_counter;
640 // Expand the data buffer to fit the new samples
641 prev_length = m0.length;
642 m0.length = sample_count_ / MipMapScaleFactor;
644 // Break off if there are no new samples to compute
645 if (m0.length == prev_length)
646 return;
648 reallocate_mipmap_level(m0);
650 dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
652 // Iterate through the samples to populate the first level mipmap
653 const uint64_t start_sample = prev_length * MipMapScaleFactor;
654 const uint64_t end_sample = m0.length * MipMapScaleFactor;
655 uint64_t len_sample = end_sample - start_sample;
656 it = begin_sample_iteration(start_sample);
657 while (len_sample > 0) {
658 // Number of samples available in this chunk
659 uint64_t count = get_iterator_valid_length(it);
660 // Reduce if less than asked for
661 count = std::min(count, len_sample);
662 uint8_t *src_ptr = get_iterator_value(it);
663 // Submit these contiguous samples to downsampling in bulk
664 if (unit_size_ == 1)
665 downsampleT<uint8_t>(src_ptr, dest_ptr, count);
666 else if (unit_size_ == 2)
667 downsampleT<uint16_t>(src_ptr, dest_ptr, count);
668 else if (unit_size_ == 4)
669 downsampleT<uint32_t>(src_ptr, dest_ptr, count);
670 else if (unit_size_ == 8)
671 downsampleT<uint64_t>(src_ptr, dest_ptr, count);
672 else
673 downsampleGeneric(src_ptr, dest_ptr, count);
674 len_sample -= count;
675 // Advance iterator, should move to start of next chunk
676 continue_sample_iteration(it, count);
678 end_sample_iteration(it);
680 // Compute higher level mipmaps
681 for (unsigned int level = 1; level < ScaleStepCount; level++) {
682 MipMapLevel &m = mip_map_[level];
683 const MipMapLevel &ml = mip_map_[level - 1];
685 // Expand the data buffer to fit the new samples
686 prev_length = m.length;
687 m.length = ml.length / MipMapScaleFactor;
689 // Break off if there are no more samples to be computed
690 if (m.length == prev_length)
691 break;
693 reallocate_mipmap_level(m);
695 // Subsample the lower level
696 const uint8_t* src_ptr = (uint8_t*)ml.data +
697 unit_size_ * prev_length * MipMapScaleFactor;
698 const uint8_t *const end_dest_ptr =
699 (uint8_t*)m.data + unit_size_ * m.length;
701 for (dest_ptr = (uint8_t*)m.data +
702 unit_size_ * prev_length;
703 dest_ptr < end_dest_ptr;
704 dest_ptr += unit_size_) {
705 accumulator = 0;
706 diff_counter = MipMapScaleFactor;
707 while (diff_counter-- > 0) {
708 accumulator |= unpack_sample(src_ptr);
709 src_ptr += unit_size_;
712 pack_sample(dest_ptr, accumulator);
717 uint64_t LogicSegment::get_unpacked_sample(uint64_t index) const
719 assert(index < sample_count_);
721 assert(unit_size_ <= 8); // 8 * 8 = 64 channels
722 uint8_t data[8];
724 get_raw_samples(index, 1, data);
726 return unpack_sample(data);
729 uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
731 assert(level >= 0);
732 assert(mip_map_[level].data);
733 return unpack_sample((uint8_t*)mip_map_[level].data +
734 unit_size_ * offset);
737 uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
739 const uint64_t p = UINT64_C(1) << power;
740 return (x + p - 1) / p * p;
743 } // namespace data
744 } // namespace pv