2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
26 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
27 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
28 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation, version 2.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/string.h>
36 #include <linux/spinlock.h>
37 #include <linux/rcupdate.h>
38 #include <linux/errno.h>
40 #include <linux/sched.h>
41 #include <linux/audit.h>
42 #include <linux/mutex.h>
43 #include <linux/selinux.h>
44 #include <net/netlabel.h>
54 #include "conditional.h"
62 extern void selnl_notify_policyload(u32 seqno
);
63 unsigned int policydb_loaded_version
;
65 int selinux_policycap_netpeer
;
66 int selinux_policycap_openperm
;
69 * This is declared in avc.c
71 extern const struct selinux_class_perm selinux_class_perm
;
73 static DEFINE_RWLOCK(policy_rwlock
);
74 #define POLICY_RDLOCK read_lock(&policy_rwlock)
75 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
76 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
77 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
79 static DEFINE_MUTEX(load_mutex
);
80 #define LOAD_LOCK mutex_lock(&load_mutex)
81 #define LOAD_UNLOCK mutex_unlock(&load_mutex)
83 static struct sidtab sidtab
;
84 struct policydb policydb
;
88 * The largest sequence number that has been used when
89 * providing an access decision to the access vector cache.
90 * The sequence number only changes when a policy change
93 static u32 latest_granting
;
95 /* Forward declaration. */
96 static int context_struct_to_string(struct context
*context
, char **scontext
,
100 * Return the boolean value of a constraint expression
101 * when it is applied to the specified source and target
104 * xcontext is a special beast... It is used by the validatetrans rules
105 * only. For these rules, scontext is the context before the transition,
106 * tcontext is the context after the transition, and xcontext is the context
107 * of the process performing the transition. All other callers of
108 * constraint_expr_eval should pass in NULL for xcontext.
110 static int constraint_expr_eval(struct context
*scontext
,
111 struct context
*tcontext
,
112 struct context
*xcontext
,
113 struct constraint_expr
*cexpr
)
117 struct role_datum
*r1
, *r2
;
118 struct mls_level
*l1
, *l2
;
119 struct constraint_expr
*e
;
120 int s
[CEXPR_MAXDEPTH
];
123 for (e
= cexpr
; e
; e
= e
->next
) {
124 switch (e
->expr_type
) {
140 if (sp
== (CEXPR_MAXDEPTH
-1))
144 val1
= scontext
->user
;
145 val2
= tcontext
->user
;
148 val1
= scontext
->type
;
149 val2
= tcontext
->type
;
152 val1
= scontext
->role
;
153 val2
= tcontext
->role
;
154 r1
= policydb
.role_val_to_struct
[val1
- 1];
155 r2
= policydb
.role_val_to_struct
[val2
- 1];
158 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
162 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
166 s
[++sp
] = (!ebitmap_get_bit(&r1
->dominates
,
168 !ebitmap_get_bit(&r2
->dominates
,
176 l1
= &(scontext
->range
.level
[0]);
177 l2
= &(tcontext
->range
.level
[0]);
180 l1
= &(scontext
->range
.level
[0]);
181 l2
= &(tcontext
->range
.level
[1]);
184 l1
= &(scontext
->range
.level
[1]);
185 l2
= &(tcontext
->range
.level
[0]);
188 l1
= &(scontext
->range
.level
[1]);
189 l2
= &(tcontext
->range
.level
[1]);
192 l1
= &(scontext
->range
.level
[0]);
193 l2
= &(scontext
->range
.level
[1]);
196 l1
= &(tcontext
->range
.level
[0]);
197 l2
= &(tcontext
->range
.level
[1]);
202 s
[++sp
] = mls_level_eq(l1
, l2
);
205 s
[++sp
] = !mls_level_eq(l1
, l2
);
208 s
[++sp
] = mls_level_dom(l1
, l2
);
211 s
[++sp
] = mls_level_dom(l2
, l1
);
214 s
[++sp
] = mls_level_incomp(l2
, l1
);
228 s
[++sp
] = (val1
== val2
);
231 s
[++sp
] = (val1
!= val2
);
239 if (sp
== (CEXPR_MAXDEPTH
-1))
242 if (e
->attr
& CEXPR_TARGET
)
244 else if (e
->attr
& CEXPR_XTARGET
) {
251 if (e
->attr
& CEXPR_USER
)
253 else if (e
->attr
& CEXPR_ROLE
)
255 else if (e
->attr
& CEXPR_TYPE
)
264 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
267 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
285 * Compute access vectors based on a context structure pair for
286 * the permissions in a particular class.
288 static int context_struct_compute_av(struct context
*scontext
,
289 struct context
*tcontext
,
292 struct av_decision
*avd
)
294 struct constraint_node
*constraint
;
295 struct role_allow
*ra
;
296 struct avtab_key avkey
;
297 struct avtab_node
*node
;
298 struct class_datum
*tclass_datum
;
299 struct ebitmap
*sattr
, *tattr
;
300 struct ebitmap_node
*snode
, *tnode
;
301 const struct selinux_class_perm
*kdefs
= &selinux_class_perm
;
305 * Remap extended Netlink classes for old policy versions.
306 * Do this here rather than socket_type_to_security_class()
307 * in case a newer policy version is loaded, allowing sockets
308 * to remain in the correct class.
310 if (policydb_loaded_version
< POLICYDB_VERSION_NLCLASS
)
311 if (tclass
>= SECCLASS_NETLINK_ROUTE_SOCKET
&&
312 tclass
<= SECCLASS_NETLINK_DNRT_SOCKET
)
313 tclass
= SECCLASS_NETLINK_SOCKET
;
316 * Initialize the access vectors to the default values.
319 avd
->decided
= 0xffffffff;
321 avd
->auditdeny
= 0xffffffff;
322 avd
->seqno
= latest_granting
;
325 * Check for all the invalid cases.
327 * - tclass > policy and > kernel
328 * - tclass > policy but is a userspace class
329 * - tclass > policy but we do not allow unknowns
331 if (unlikely(!tclass
))
333 if (unlikely(tclass
> policydb
.p_classes
.nprim
))
334 if (tclass
> kdefs
->cts_len
||
335 !kdefs
->class_to_string
[tclass
- 1] ||
336 !policydb
.allow_unknown
)
340 * Kernel class and we allow unknown so pad the allow decision
341 * the pad will be all 1 for unknown classes.
343 if (tclass
<= kdefs
->cts_len
&& policydb
.allow_unknown
)
344 avd
->allowed
= policydb
.undefined_perms
[tclass
- 1];
347 * Not in policy. Since decision is completed (all 1 or all 0) return.
349 if (unlikely(tclass
> policydb
.p_classes
.nprim
))
352 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
355 * If a specific type enforcement rule was defined for
356 * this permission check, then use it.
358 avkey
.target_class
= tclass
;
359 avkey
.specified
= AVTAB_AV
;
360 sattr
= &policydb
.type_attr_map
[scontext
->type
- 1];
361 tattr
= &policydb
.type_attr_map
[tcontext
->type
- 1];
362 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
363 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
364 avkey
.source_type
= i
+ 1;
365 avkey
.target_type
= j
+ 1;
366 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
368 node
= avtab_search_node_next(node
, avkey
.specified
)) {
369 if (node
->key
.specified
== AVTAB_ALLOWED
)
370 avd
->allowed
|= node
->datum
.data
;
371 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
372 avd
->auditallow
|= node
->datum
.data
;
373 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
374 avd
->auditdeny
&= node
->datum
.data
;
377 /* Check conditional av table for additional permissions */
378 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
, avd
);
384 * Remove any permissions prohibited by a constraint (this includes
387 constraint
= tclass_datum
->constraints
;
389 if ((constraint
->permissions
& (avd
->allowed
)) &&
390 !constraint_expr_eval(scontext
, tcontext
, NULL
,
392 avd
->allowed
= (avd
->allowed
) & ~(constraint
->permissions
);
394 constraint
= constraint
->next
;
398 * If checking process transition permission and the
399 * role is changing, then check the (current_role, new_role)
402 if (tclass
== SECCLASS_PROCESS
&&
403 (avd
->allowed
& (PROCESS__TRANSITION
| PROCESS__DYNTRANSITION
)) &&
404 scontext
->role
!= tcontext
->role
) {
405 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
406 if (scontext
->role
== ra
->role
&&
407 tcontext
->role
== ra
->new_role
)
411 avd
->allowed
= (avd
->allowed
) & ~(PROCESS__TRANSITION
|
412 PROCESS__DYNTRANSITION
);
418 printk(KERN_ERR
"SELinux: %s: unrecognized class %d\n", __func__
,
424 * Given a sid find if the type has the permissive flag set
426 int security_permissive_sid(u32 sid
)
428 struct context
*context
;
434 context
= sidtab_search(&sidtab
, sid
);
437 type
= context
->type
;
439 * we are intentionally using type here, not type-1, the 0th bit may
440 * someday indicate that we are globally setting permissive in policy.
442 rc
= ebitmap_get_bit(&policydb
.permissive_map
, type
);
448 static int security_validtrans_handle_fail(struct context
*ocontext
,
449 struct context
*ncontext
,
450 struct context
*tcontext
,
453 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
454 u32 olen
, nlen
, tlen
;
456 if (context_struct_to_string(ocontext
, &o
, &olen
) < 0)
458 if (context_struct_to_string(ncontext
, &n
, &nlen
) < 0)
460 if (context_struct_to_string(tcontext
, &t
, &tlen
) < 0)
462 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
463 "security_validate_transition: denied for"
464 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
465 o
, n
, t
, policydb
.p_class_val_to_name
[tclass
-1]);
471 if (!selinux_enforcing
)
476 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
479 struct context
*ocontext
;
480 struct context
*ncontext
;
481 struct context
*tcontext
;
482 struct class_datum
*tclass_datum
;
483 struct constraint_node
*constraint
;
492 * Remap extended Netlink classes for old policy versions.
493 * Do this here rather than socket_type_to_security_class()
494 * in case a newer policy version is loaded, allowing sockets
495 * to remain in the correct class.
497 if (policydb_loaded_version
< POLICYDB_VERSION_NLCLASS
)
498 if (tclass
>= SECCLASS_NETLINK_ROUTE_SOCKET
&&
499 tclass
<= SECCLASS_NETLINK_DNRT_SOCKET
)
500 tclass
= SECCLASS_NETLINK_SOCKET
;
502 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
503 printk(KERN_ERR
"SELinux: %s: unrecognized class %d\n",
508 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
510 ocontext
= sidtab_search(&sidtab
, oldsid
);
512 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
518 ncontext
= sidtab_search(&sidtab
, newsid
);
520 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
526 tcontext
= sidtab_search(&sidtab
, tasksid
);
528 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
534 constraint
= tclass_datum
->validatetrans
;
536 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
538 rc
= security_validtrans_handle_fail(ocontext
, ncontext
,
542 constraint
= constraint
->next
;
551 * security_compute_av - Compute access vector decisions.
552 * @ssid: source security identifier
553 * @tsid: target security identifier
554 * @tclass: target security class
555 * @requested: requested permissions
556 * @avd: access vector decisions
558 * Compute a set of access vector decisions based on the
559 * SID pair (@ssid, @tsid) for the permissions in @tclass.
560 * Return -%EINVAL if any of the parameters are invalid or %0
561 * if the access vector decisions were computed successfully.
563 int security_compute_av(u32 ssid
,
567 struct av_decision
*avd
)
569 struct context
*scontext
= NULL
, *tcontext
= NULL
;
572 if (!ss_initialized
) {
573 avd
->allowed
= 0xffffffff;
574 avd
->decided
= 0xffffffff;
576 avd
->auditdeny
= 0xffffffff;
577 avd
->seqno
= latest_granting
;
583 scontext
= sidtab_search(&sidtab
, ssid
);
585 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
590 tcontext
= sidtab_search(&sidtab
, tsid
);
592 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
598 rc
= context_struct_compute_av(scontext
, tcontext
, tclass
,
606 * Write the security context string representation of
607 * the context structure `context' into a dynamically
608 * allocated string of the correct size. Set `*scontext'
609 * to point to this string and set `*scontext_len' to
610 * the length of the string.
612 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
619 /* Compute the size of the context. */
620 *scontext_len
+= strlen(policydb
.p_user_val_to_name
[context
->user
- 1]) + 1;
621 *scontext_len
+= strlen(policydb
.p_role_val_to_name
[context
->role
- 1]) + 1;
622 *scontext_len
+= strlen(policydb
.p_type_val_to_name
[context
->type
- 1]) + 1;
623 *scontext_len
+= mls_compute_context_len(context
);
625 /* Allocate space for the context; caller must free this space. */
626 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
629 *scontext
= scontextp
;
632 * Copy the user name, role name and type name into the context.
634 sprintf(scontextp
, "%s:%s:%s",
635 policydb
.p_user_val_to_name
[context
->user
- 1],
636 policydb
.p_role_val_to_name
[context
->role
- 1],
637 policydb
.p_type_val_to_name
[context
->type
- 1]);
638 scontextp
+= strlen(policydb
.p_user_val_to_name
[context
->user
- 1]) +
639 1 + strlen(policydb
.p_role_val_to_name
[context
->role
- 1]) +
640 1 + strlen(policydb
.p_type_val_to_name
[context
->type
- 1]);
642 mls_sid_to_context(context
, &scontextp
);
649 #include "initial_sid_to_string.h"
651 const char *security_get_initial_sid_context(u32 sid
)
653 if (unlikely(sid
> SECINITSID_NUM
))
655 return initial_sid_to_string
[sid
];
659 * security_sid_to_context - Obtain a context for a given SID.
660 * @sid: security identifier, SID
661 * @scontext: security context
662 * @scontext_len: length in bytes
664 * Write the string representation of the context associated with @sid
665 * into a dynamically allocated string of the correct size. Set @scontext
666 * to point to this string and set @scontext_len to the length of the string.
668 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
670 struct context
*context
;
676 if (!ss_initialized
) {
677 if (sid
<= SECINITSID_NUM
) {
680 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
681 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
686 strcpy(scontextp
, initial_sid_to_string
[sid
]);
687 *scontext
= scontextp
;
690 printk(KERN_ERR
"SELinux: %s: called before initial "
691 "load_policy on unknown SID %d\n", __func__
, sid
);
696 context
= sidtab_search(&sidtab
, sid
);
698 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
703 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
711 static int security_context_to_sid_core(const char *scontext
, u32 scontext_len
,
712 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
)
715 struct context context
;
716 struct role_datum
*role
;
717 struct type_datum
*typdatum
;
718 struct user_datum
*usrdatum
;
719 char *scontextp
, *p
, oldc
;
722 if (!ss_initialized
) {
725 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
726 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
731 *sid
= SECINITSID_KERNEL
;
736 /* Copy the string so that we can modify the copy as we parse it.
737 The string should already by null terminated, but we append a
738 null suffix to the copy to avoid problems with the existing
739 attr package, which doesn't view the null terminator as part
740 of the attribute value. */
741 scontext2
= kmalloc(scontext_len
+1, gfp_flags
);
746 memcpy(scontext2
, scontext
, scontext_len
);
747 scontext2
[scontext_len
] = 0;
749 context_init(&context
);
754 /* Parse the security context. */
757 scontextp
= (char *) scontext2
;
759 /* Extract the user. */
761 while (*p
&& *p
!= ':')
769 usrdatum
= hashtab_search(policydb
.p_users
.table
, scontextp
);
773 context
.user
= usrdatum
->value
;
777 while (*p
&& *p
!= ':')
785 role
= hashtab_search(policydb
.p_roles
.table
, scontextp
);
788 context
.role
= role
->value
;
792 while (*p
&& *p
!= ':')
797 typdatum
= hashtab_search(policydb
.p_types
.table
, scontextp
);
801 context
.type
= typdatum
->value
;
803 rc
= mls_context_to_sid(oldc
, &p
, &context
, &sidtab
, def_sid
);
807 if ((p
- scontext2
) < scontext_len
) {
812 /* Check the validity of the new context. */
813 if (!policydb_context_isvalid(&policydb
, &context
)) {
817 /* Obtain the new sid. */
818 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
821 context_destroy(&context
);
828 * security_context_to_sid - Obtain a SID for a given security context.
829 * @scontext: security context
830 * @scontext_len: length in bytes
831 * @sid: security identifier, SID
833 * Obtains a SID associated with the security context that
834 * has the string representation specified by @scontext.
835 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
836 * memory is available, or 0 on success.
838 int security_context_to_sid(const char *scontext
, u32 scontext_len
, u32
*sid
)
840 return security_context_to_sid_core(scontext
, scontext_len
,
841 sid
, SECSID_NULL
, GFP_KERNEL
);
845 * security_context_to_sid_default - Obtain a SID for a given security context,
846 * falling back to specified default if needed.
848 * @scontext: security context
849 * @scontext_len: length in bytes
850 * @sid: security identifier, SID
851 * @def_sid: default SID to assign on error
853 * Obtains a SID associated with the security context that
854 * has the string representation specified by @scontext.
855 * The default SID is passed to the MLS layer to be used to allow
856 * kernel labeling of the MLS field if the MLS field is not present
857 * (for upgrading to MLS without full relabel).
858 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
859 * memory is available, or 0 on success.
861 int security_context_to_sid_default(const char *scontext
, u32 scontext_len
,
862 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
)
864 return security_context_to_sid_core(scontext
, scontext_len
,
865 sid
, def_sid
, gfp_flags
);
868 static int compute_sid_handle_invalid_context(
869 struct context
*scontext
,
870 struct context
*tcontext
,
872 struct context
*newcontext
)
874 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
875 u32 slen
, tlen
, nlen
;
877 if (context_struct_to_string(scontext
, &s
, &slen
) < 0)
879 if (context_struct_to_string(tcontext
, &t
, &tlen
) < 0)
881 if (context_struct_to_string(newcontext
, &n
, &nlen
) < 0)
883 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
884 "security_compute_sid: invalid context %s"
888 n
, s
, t
, policydb
.p_class_val_to_name
[tclass
-1]);
893 if (!selinux_enforcing
)
898 static int security_compute_sid(u32 ssid
,
904 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
905 struct role_trans
*roletr
= NULL
;
906 struct avtab_key avkey
;
907 struct avtab_datum
*avdatum
;
908 struct avtab_node
*node
;
911 if (!ss_initialized
) {
913 case SECCLASS_PROCESS
:
923 context_init(&newcontext
);
927 scontext
= sidtab_search(&sidtab
, ssid
);
929 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
934 tcontext
= sidtab_search(&sidtab
, tsid
);
936 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
942 /* Set the user identity. */
944 case AVTAB_TRANSITION
:
946 /* Use the process user identity. */
947 newcontext
.user
= scontext
->user
;
950 /* Use the related object owner. */
951 newcontext
.user
= tcontext
->user
;
955 /* Set the role and type to default values. */
957 case SECCLASS_PROCESS
:
958 /* Use the current role and type of process. */
959 newcontext
.role
= scontext
->role
;
960 newcontext
.type
= scontext
->type
;
963 /* Use the well-defined object role. */
964 newcontext
.role
= OBJECT_R_VAL
;
965 /* Use the type of the related object. */
966 newcontext
.type
= tcontext
->type
;
969 /* Look for a type transition/member/change rule. */
970 avkey
.source_type
= scontext
->type
;
971 avkey
.target_type
= tcontext
->type
;
972 avkey
.target_class
= tclass
;
973 avkey
.specified
= specified
;
974 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
976 /* If no permanent rule, also check for enabled conditional rules */
978 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
979 for (; node
!= NULL
; node
= avtab_search_node_next(node
, specified
)) {
980 if (node
->key
.specified
& AVTAB_ENABLED
) {
981 avdatum
= &node
->datum
;
988 /* Use the type from the type transition/member/change rule. */
989 newcontext
.type
= avdatum
->data
;
992 /* Check for class-specific changes. */
994 case SECCLASS_PROCESS
:
995 if (specified
& AVTAB_TRANSITION
) {
996 /* Look for a role transition rule. */
997 for (roletr
= policydb
.role_tr
; roletr
;
998 roletr
= roletr
->next
) {
999 if (roletr
->role
== scontext
->role
&&
1000 roletr
->type
== tcontext
->type
) {
1001 /* Use the role transition rule. */
1002 newcontext
.role
= roletr
->new_role
;
1012 /* Set the MLS attributes.
1013 This is done last because it may allocate memory. */
1014 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
, &newcontext
);
1018 /* Check the validity of the context. */
1019 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
1020 rc
= compute_sid_handle_invalid_context(scontext
,
1027 /* Obtain the sid for the context. */
1028 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
1031 context_destroy(&newcontext
);
1037 * security_transition_sid - Compute the SID for a new subject/object.
1038 * @ssid: source security identifier
1039 * @tsid: target security identifier
1040 * @tclass: target security class
1041 * @out_sid: security identifier for new subject/object
1043 * Compute a SID to use for labeling a new subject or object in the
1044 * class @tclass based on a SID pair (@ssid, @tsid).
1045 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1046 * if insufficient memory is available, or %0 if the new SID was
1047 * computed successfully.
1049 int security_transition_sid(u32 ssid
,
1054 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
, out_sid
);
1058 * security_member_sid - Compute the SID for member selection.
1059 * @ssid: source security identifier
1060 * @tsid: target security identifier
1061 * @tclass: target security class
1062 * @out_sid: security identifier for selected member
1064 * Compute a SID to use when selecting a member of a polyinstantiated
1065 * object of class @tclass based on a SID pair (@ssid, @tsid).
1066 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1067 * if insufficient memory is available, or %0 if the SID was
1068 * computed successfully.
1070 int security_member_sid(u32 ssid
,
1075 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, out_sid
);
1079 * security_change_sid - Compute the SID for object relabeling.
1080 * @ssid: source security identifier
1081 * @tsid: target security identifier
1082 * @tclass: target security class
1083 * @out_sid: security identifier for selected member
1085 * Compute a SID to use for relabeling an object of class @tclass
1086 * based on a SID pair (@ssid, @tsid).
1087 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1088 * if insufficient memory is available, or %0 if the SID was
1089 * computed successfully.
1091 int security_change_sid(u32 ssid
,
1096 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, out_sid
);
1100 * Verify that each kernel class that is defined in the
1103 static int validate_classes(struct policydb
*p
)
1106 struct class_datum
*cladatum
;
1107 struct perm_datum
*perdatum
;
1108 u32 nprim
, tmp
, common_pts_len
, perm_val
, pol_val
;
1110 const struct selinux_class_perm
*kdefs
= &selinux_class_perm
;
1111 const char *def_class
, *def_perm
, *pol_class
;
1112 struct symtab
*perms
;
1114 if (p
->allow_unknown
) {
1115 u32 num_classes
= kdefs
->cts_len
;
1116 p
->undefined_perms
= kcalloc(num_classes
, sizeof(u32
), GFP_KERNEL
);
1117 if (!p
->undefined_perms
)
1121 for (i
= 1; i
< kdefs
->cts_len
; i
++) {
1122 def_class
= kdefs
->class_to_string
[i
];
1125 if (i
> p
->p_classes
.nprim
) {
1127 "SELinux: class %s not defined in policy\n",
1129 if (p
->reject_unknown
)
1131 if (p
->allow_unknown
)
1132 p
->undefined_perms
[i
-1] = ~0U;
1135 pol_class
= p
->p_class_val_to_name
[i
-1];
1136 if (strcmp(pol_class
, def_class
)) {
1138 "SELinux: class %d is incorrect, found %s but should be %s\n",
1139 i
, pol_class
, def_class
);
1143 for (i
= 0; i
< kdefs
->av_pts_len
; i
++) {
1144 class_val
= kdefs
->av_perm_to_string
[i
].tclass
;
1145 perm_val
= kdefs
->av_perm_to_string
[i
].value
;
1146 def_perm
= kdefs
->av_perm_to_string
[i
].name
;
1147 if (class_val
> p
->p_classes
.nprim
)
1149 pol_class
= p
->p_class_val_to_name
[class_val
-1];
1150 cladatum
= hashtab_search(p
->p_classes
.table
, pol_class
);
1152 perms
= &cladatum
->permissions
;
1153 nprim
= 1 << (perms
->nprim
- 1);
1154 if (perm_val
> nprim
) {
1156 "SELinux: permission %s in class %s not defined in policy\n",
1157 def_perm
, pol_class
);
1158 if (p
->reject_unknown
)
1160 if (p
->allow_unknown
)
1161 p
->undefined_perms
[class_val
-1] |= perm_val
;
1164 perdatum
= hashtab_search(perms
->table
, def_perm
);
1165 if (perdatum
== NULL
) {
1167 "SELinux: permission %s in class %s not found in policy, bad policy\n",
1168 def_perm
, pol_class
);
1171 pol_val
= 1 << (perdatum
->value
- 1);
1172 if (pol_val
!= perm_val
) {
1174 "SELinux: permission %s in class %s has incorrect value\n",
1175 def_perm
, pol_class
);
1179 for (i
= 0; i
< kdefs
->av_inherit_len
; i
++) {
1180 class_val
= kdefs
->av_inherit
[i
].tclass
;
1181 if (class_val
> p
->p_classes
.nprim
)
1183 pol_class
= p
->p_class_val_to_name
[class_val
-1];
1184 cladatum
= hashtab_search(p
->p_classes
.table
, pol_class
);
1186 if (!cladatum
->comdatum
) {
1188 "SELinux: class %s should have an inherits clause but does not\n",
1192 tmp
= kdefs
->av_inherit
[i
].common_base
;
1194 while (!(tmp
& 0x01)) {
1198 perms
= &cladatum
->comdatum
->permissions
;
1199 for (j
= 0; j
< common_pts_len
; j
++) {
1200 def_perm
= kdefs
->av_inherit
[i
].common_pts
[j
];
1201 if (j
>= perms
->nprim
) {
1203 "SELinux: permission %s in class %s not defined in policy\n",
1204 def_perm
, pol_class
);
1205 if (p
->reject_unknown
)
1207 if (p
->allow_unknown
)
1208 p
->undefined_perms
[class_val
-1] |= (1 << j
);
1211 perdatum
= hashtab_search(perms
->table
, def_perm
);
1212 if (perdatum
== NULL
) {
1214 "SELinux: permission %s in class %s not found in policy, bad policy\n",
1215 def_perm
, pol_class
);
1218 if (perdatum
->value
!= j
+ 1) {
1220 "SELinux: permission %s in class %s has incorrect value\n",
1221 def_perm
, pol_class
);
1229 /* Clone the SID into the new SID table. */
1230 static int clone_sid(u32 sid
,
1231 struct context
*context
,
1234 struct sidtab
*s
= arg
;
1236 return sidtab_insert(s
, sid
, context
);
1239 static inline int convert_context_handle_invalid_context(struct context
*context
)
1243 if (selinux_enforcing
) {
1249 context_struct_to_string(context
, &s
, &len
);
1250 printk(KERN_ERR
"SELinux: context %s is invalid\n", s
);
1256 struct convert_context_args
{
1257 struct policydb
*oldp
;
1258 struct policydb
*newp
;
1262 * Convert the values in the security context
1263 * structure `c' from the values specified
1264 * in the policy `p->oldp' to the values specified
1265 * in the policy `p->newp'. Verify that the
1266 * context is valid under the new policy.
1268 static int convert_context(u32 key
,
1272 struct convert_context_args
*args
;
1273 struct context oldc
;
1274 struct role_datum
*role
;
1275 struct type_datum
*typdatum
;
1276 struct user_datum
*usrdatum
;
1283 rc
= context_cpy(&oldc
, c
);
1289 /* Convert the user. */
1290 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1291 args
->oldp
->p_user_val_to_name
[c
->user
- 1]);
1294 c
->user
= usrdatum
->value
;
1296 /* Convert the role. */
1297 role
= hashtab_search(args
->newp
->p_roles
.table
,
1298 args
->oldp
->p_role_val_to_name
[c
->role
- 1]);
1301 c
->role
= role
->value
;
1303 /* Convert the type. */
1304 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1305 args
->oldp
->p_type_val_to_name
[c
->type
- 1]);
1308 c
->type
= typdatum
->value
;
1310 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1314 /* Check the validity of the new context. */
1315 if (!policydb_context_isvalid(args
->newp
, c
)) {
1316 rc
= convert_context_handle_invalid_context(&oldc
);
1321 context_destroy(&oldc
);
1325 context_struct_to_string(&oldc
, &s
, &len
);
1326 context_destroy(&oldc
);
1327 printk(KERN_ERR
"SELinux: invalidating context %s\n", s
);
1332 static void security_load_policycaps(void)
1334 selinux_policycap_netpeer
= ebitmap_get_bit(&policydb
.policycaps
,
1335 POLICYDB_CAPABILITY_NETPEER
);
1336 selinux_policycap_openperm
= ebitmap_get_bit(&policydb
.policycaps
,
1337 POLICYDB_CAPABILITY_OPENPERM
);
1340 extern void selinux_complete_init(void);
1341 static int security_preserve_bools(struct policydb
*p
);
1344 * security_load_policy - Load a security policy configuration.
1345 * @data: binary policy data
1346 * @len: length of data in bytes
1348 * Load a new set of security policy configuration data,
1349 * validate it and convert the SID table as necessary.
1350 * This function will flush the access vector cache after
1351 * loading the new policy.
1353 int security_load_policy(void *data
, size_t len
)
1355 struct policydb oldpolicydb
, newpolicydb
;
1356 struct sidtab oldsidtab
, newsidtab
;
1357 struct convert_context_args args
;
1360 struct policy_file file
= { data
, len
}, *fp
= &file
;
1364 if (!ss_initialized
) {
1366 if (policydb_read(&policydb
, fp
)) {
1368 avtab_cache_destroy();
1371 if (policydb_load_isids(&policydb
, &sidtab
)) {
1373 policydb_destroy(&policydb
);
1374 avtab_cache_destroy();
1377 /* Verify that the kernel defined classes are correct. */
1378 if (validate_classes(&policydb
)) {
1380 "SELinux: the definition of a class is incorrect\n");
1382 sidtab_destroy(&sidtab
);
1383 policydb_destroy(&policydb
);
1384 avtab_cache_destroy();
1387 security_load_policycaps();
1388 policydb_loaded_version
= policydb
.policyvers
;
1390 seqno
= ++latest_granting
;
1392 selinux_complete_init();
1393 avc_ss_reset(seqno
);
1394 selnl_notify_policyload(seqno
);
1395 selinux_netlbl_cache_invalidate();
1396 selinux_xfrm_notify_policyload();
1401 sidtab_hash_eval(&sidtab
, "sids");
1404 if (policydb_read(&newpolicydb
, fp
)) {
1409 sidtab_init(&newsidtab
);
1411 /* Verify that the kernel defined classes are correct. */
1412 if (validate_classes(&newpolicydb
)) {
1414 "SELinux: the definition of a class is incorrect\n");
1419 rc
= security_preserve_bools(&newpolicydb
);
1421 printk(KERN_ERR
"SELinux: unable to preserve booleans\n");
1425 /* Clone the SID table. */
1426 sidtab_shutdown(&sidtab
);
1427 if (sidtab_map(&sidtab
, clone_sid
, &newsidtab
)) {
1432 /* Convert the internal representations of contexts
1433 in the new SID table and remove invalid SIDs. */
1434 args
.oldp
= &policydb
;
1435 args
.newp
= &newpolicydb
;
1436 sidtab_map_remove_on_error(&newsidtab
, convert_context
, &args
);
1438 /* Save the old policydb and SID table to free later. */
1439 memcpy(&oldpolicydb
, &policydb
, sizeof policydb
);
1440 sidtab_set(&oldsidtab
, &sidtab
);
1442 /* Install the new policydb and SID table. */
1444 memcpy(&policydb
, &newpolicydb
, sizeof policydb
);
1445 sidtab_set(&sidtab
, &newsidtab
);
1446 security_load_policycaps();
1447 seqno
= ++latest_granting
;
1448 policydb_loaded_version
= policydb
.policyvers
;
1452 /* Free the old policydb and SID table. */
1453 policydb_destroy(&oldpolicydb
);
1454 sidtab_destroy(&oldsidtab
);
1456 avc_ss_reset(seqno
);
1457 selnl_notify_policyload(seqno
);
1458 selinux_netlbl_cache_invalidate();
1459 selinux_xfrm_notify_policyload();
1465 sidtab_destroy(&newsidtab
);
1466 policydb_destroy(&newpolicydb
);
1472 * security_port_sid - Obtain the SID for a port.
1473 * @protocol: protocol number
1474 * @port: port number
1475 * @out_sid: security identifier
1477 int security_port_sid(u8 protocol
, u16 port
, u32
*out_sid
)
1484 c
= policydb
.ocontexts
[OCON_PORT
];
1486 if (c
->u
.port
.protocol
== protocol
&&
1487 c
->u
.port
.low_port
<= port
&&
1488 c
->u
.port
.high_port
>= port
)
1495 rc
= sidtab_context_to_sid(&sidtab
,
1501 *out_sid
= c
->sid
[0];
1503 *out_sid
= SECINITSID_PORT
;
1512 * security_netif_sid - Obtain the SID for a network interface.
1513 * @name: interface name
1514 * @if_sid: interface SID
1516 int security_netif_sid(char *name
, u32
*if_sid
)
1523 c
= policydb
.ocontexts
[OCON_NETIF
];
1525 if (strcmp(name
, c
->u
.name
) == 0)
1531 if (!c
->sid
[0] || !c
->sid
[1]) {
1532 rc
= sidtab_context_to_sid(&sidtab
,
1537 rc
= sidtab_context_to_sid(&sidtab
,
1543 *if_sid
= c
->sid
[0];
1545 *if_sid
= SECINITSID_NETIF
;
1552 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
1556 for (i
= 0; i
< 4; i
++)
1557 if (addr
[i
] != (input
[i
] & mask
[i
])) {
1566 * security_node_sid - Obtain the SID for a node (host).
1567 * @domain: communication domain aka address family
1569 * @addrlen: address length in bytes
1570 * @out_sid: security identifier
1572 int security_node_sid(u16 domain
,
1586 if (addrlen
!= sizeof(u32
)) {
1591 addr
= *((u32
*)addrp
);
1593 c
= policydb
.ocontexts
[OCON_NODE
];
1595 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
1603 if (addrlen
!= sizeof(u64
) * 2) {
1607 c
= policydb
.ocontexts
[OCON_NODE6
];
1609 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
1617 *out_sid
= SECINITSID_NODE
;
1623 rc
= sidtab_context_to_sid(&sidtab
,
1629 *out_sid
= c
->sid
[0];
1631 *out_sid
= SECINITSID_NODE
;
1642 * security_get_user_sids - Obtain reachable SIDs for a user.
1643 * @fromsid: starting SID
1644 * @username: username
1645 * @sids: array of reachable SIDs for user
1646 * @nel: number of elements in @sids
1648 * Generate the set of SIDs for legal security contexts
1649 * for a given user that can be reached by @fromsid.
1650 * Set *@sids to point to a dynamically allocated
1651 * array containing the set of SIDs. Set *@nel to the
1652 * number of elements in the array.
1655 int security_get_user_sids(u32 fromsid
,
1660 struct context
*fromcon
, usercon
;
1661 u32
*mysids
= NULL
, *mysids2
, sid
;
1662 u32 mynel
= 0, maxnel
= SIDS_NEL
;
1663 struct user_datum
*user
;
1664 struct role_datum
*role
;
1665 struct ebitmap_node
*rnode
, *tnode
;
1671 if (!ss_initialized
)
1676 fromcon
= sidtab_search(&sidtab
, fromsid
);
1682 user
= hashtab_search(policydb
.p_users
.table
, username
);
1687 usercon
.user
= user
->value
;
1689 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
1695 ebitmap_for_each_positive_bit(&user
->roles
, rnode
, i
) {
1696 role
= policydb
.role_val_to_struct
[i
];
1698 ebitmap_for_each_positive_bit(&role
->types
, tnode
, j
) {
1701 if (mls_setup_user_range(fromcon
, user
, &usercon
))
1704 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
1707 if (mynel
< maxnel
) {
1708 mysids
[mynel
++] = sid
;
1711 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
1716 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
1719 mysids
[mynel
++] = sid
;
1731 mysids2
= kcalloc(mynel
, sizeof(*mysids2
), GFP_KERNEL
);
1737 for (i
= 0, j
= 0; i
< mynel
; i
++) {
1738 rc
= avc_has_perm_noaudit(fromsid
, mysids
[i
],
1740 PROCESS__TRANSITION
, AVC_STRICT
,
1743 mysids2
[j
++] = mysids
[i
];
1755 * security_genfs_sid - Obtain a SID for a file in a filesystem
1756 * @fstype: filesystem type
1757 * @path: path from root of mount
1758 * @sclass: file security class
1759 * @sid: SID for path
1761 * Obtain a SID to use for a file in a filesystem that
1762 * cannot support xattr or use a fixed labeling behavior like
1763 * transition SIDs or task SIDs.
1765 int security_genfs_sid(const char *fstype
,
1771 struct genfs
*genfs
;
1773 int rc
= 0, cmp
= 0;
1775 while (path
[0] == '/' && path
[1] == '/')
1780 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
1781 cmp
= strcmp(fstype
, genfs
->fstype
);
1786 if (!genfs
|| cmp
) {
1787 *sid
= SECINITSID_UNLABELED
;
1792 for (c
= genfs
->head
; c
; c
= c
->next
) {
1793 len
= strlen(c
->u
.name
);
1794 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
1795 (strncmp(c
->u
.name
, path
, len
) == 0))
1800 *sid
= SECINITSID_UNLABELED
;
1806 rc
= sidtab_context_to_sid(&sidtab
,
1820 * security_fs_use - Determine how to handle labeling for a filesystem.
1821 * @fstype: filesystem type
1822 * @behavior: labeling behavior
1823 * @sid: SID for filesystem (superblock)
1825 int security_fs_use(
1827 unsigned int *behavior
,
1835 c
= policydb
.ocontexts
[OCON_FSUSE
];
1837 if (strcmp(fstype
, c
->u
.name
) == 0)
1843 *behavior
= c
->v
.behavior
;
1845 rc
= sidtab_context_to_sid(&sidtab
,
1853 rc
= security_genfs_sid(fstype
, "/", SECCLASS_DIR
, sid
);
1855 *behavior
= SECURITY_FS_USE_NONE
;
1858 *behavior
= SECURITY_FS_USE_GENFS
;
1867 int security_get_bools(int *len
, char ***names
, int **values
)
1869 int i
, rc
= -ENOMEM
;
1875 *len
= policydb
.p_bools
.nprim
;
1881 *names
= kcalloc(*len
, sizeof(char *), GFP_ATOMIC
);
1885 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
1889 for (i
= 0; i
< *len
; i
++) {
1891 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
1892 name_len
= strlen(policydb
.p_bool_val_to_name
[i
]) + 1;
1893 (*names
)[i
] = kmalloc(sizeof(char) * name_len
, GFP_ATOMIC
);
1896 strncpy((*names
)[i
], policydb
.p_bool_val_to_name
[i
], name_len
);
1897 (*names
)[i
][name_len
- 1] = 0;
1905 for (i
= 0; i
< *len
; i
++)
1913 int security_set_bools(int len
, int *values
)
1916 int lenp
, seqno
= 0;
1917 struct cond_node
*cur
;
1921 lenp
= policydb
.p_bools
.nprim
;
1927 for (i
= 0; i
< len
; i
++) {
1928 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
1929 audit_log(current
->audit_context
, GFP_ATOMIC
,
1930 AUDIT_MAC_CONFIG_CHANGE
,
1931 "bool=%s val=%d old_val=%d auid=%u ses=%u",
1932 policydb
.p_bool_val_to_name
[i
],
1934 policydb
.bool_val_to_struct
[i
]->state
,
1935 audit_get_loginuid(current
),
1936 audit_get_sessionid(current
));
1939 policydb
.bool_val_to_struct
[i
]->state
= 1;
1941 policydb
.bool_val_to_struct
[i
]->state
= 0;
1944 for (cur
= policydb
.cond_list
; cur
!= NULL
; cur
= cur
->next
) {
1945 rc
= evaluate_cond_node(&policydb
, cur
);
1950 seqno
= ++latest_granting
;
1955 avc_ss_reset(seqno
);
1956 selnl_notify_policyload(seqno
);
1957 selinux_xfrm_notify_policyload();
1962 int security_get_bool_value(int bool)
1969 len
= policydb
.p_bools
.nprim
;
1975 rc
= policydb
.bool_val_to_struct
[bool]->state
;
1981 static int security_preserve_bools(struct policydb
*p
)
1983 int rc
, nbools
= 0, *bvalues
= NULL
, i
;
1984 char **bnames
= NULL
;
1985 struct cond_bool_datum
*booldatum
;
1986 struct cond_node
*cur
;
1988 rc
= security_get_bools(&nbools
, &bnames
, &bvalues
);
1991 for (i
= 0; i
< nbools
; i
++) {
1992 booldatum
= hashtab_search(p
->p_bools
.table
, bnames
[i
]);
1994 booldatum
->state
= bvalues
[i
];
1996 for (cur
= p
->cond_list
; cur
!= NULL
; cur
= cur
->next
) {
1997 rc
= evaluate_cond_node(p
, cur
);
2004 for (i
= 0; i
< nbools
; i
++)
2013 * security_sid_mls_copy() - computes a new sid based on the given
2014 * sid and the mls portion of mls_sid.
2016 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
2018 struct context
*context1
;
2019 struct context
*context2
;
2020 struct context newcon
;
2025 if (!ss_initialized
|| !selinux_mls_enabled
) {
2030 context_init(&newcon
);
2033 context1
= sidtab_search(&sidtab
, sid
);
2035 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2041 context2
= sidtab_search(&sidtab
, mls_sid
);
2043 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2049 newcon
.user
= context1
->user
;
2050 newcon
.role
= context1
->role
;
2051 newcon
.type
= context1
->type
;
2052 rc
= mls_context_cpy(&newcon
, context2
);
2056 /* Check the validity of the new context. */
2057 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
2058 rc
= convert_context_handle_invalid_context(&newcon
);
2063 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
2067 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
2068 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2069 "security_sid_mls_copy: invalid context %s", s
);
2075 context_destroy(&newcon
);
2081 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2082 * @nlbl_sid: NetLabel SID
2083 * @nlbl_type: NetLabel labeling protocol type
2084 * @xfrm_sid: XFRM SID
2087 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2088 * resolved into a single SID it is returned via @peer_sid and the function
2089 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2090 * returns a negative value. A table summarizing the behavior is below:
2092 * | function return | @sid
2093 * ------------------------------+-----------------+-----------------
2094 * no peer labels | 0 | SECSID_NULL
2095 * single peer label | 0 | <peer_label>
2096 * multiple, consistent labels | 0 | <peer_label>
2097 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2100 int security_net_peersid_resolve(u32 nlbl_sid
, u32 nlbl_type
,
2105 struct context
*nlbl_ctx
;
2106 struct context
*xfrm_ctx
;
2108 /* handle the common (which also happens to be the set of easy) cases
2109 * right away, these two if statements catch everything involving a
2110 * single or absent peer SID/label */
2111 if (xfrm_sid
== SECSID_NULL
) {
2112 *peer_sid
= nlbl_sid
;
2115 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2116 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2118 if (nlbl_sid
== SECSID_NULL
|| nlbl_type
== NETLBL_NLTYPE_UNLABELED
) {
2119 *peer_sid
= xfrm_sid
;
2123 /* we don't need to check ss_initialized here since the only way both
2124 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2125 * security server was initialized and ss_initialized was true */
2126 if (!selinux_mls_enabled
) {
2127 *peer_sid
= SECSID_NULL
;
2133 nlbl_ctx
= sidtab_search(&sidtab
, nlbl_sid
);
2135 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2136 __func__
, nlbl_sid
);
2140 xfrm_ctx
= sidtab_search(&sidtab
, xfrm_sid
);
2142 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2143 __func__
, xfrm_sid
);
2147 rc
= (mls_context_cmp(nlbl_ctx
, xfrm_ctx
) ? 0 : -EACCES
);
2152 /* at present NetLabel SIDs/labels really only carry MLS
2153 * information so if the MLS portion of the NetLabel SID
2154 * matches the MLS portion of the labeled XFRM SID/label
2155 * then pass along the XFRM SID as it is the most
2157 *peer_sid
= xfrm_sid
;
2159 *peer_sid
= SECSID_NULL
;
2163 static int get_classes_callback(void *k
, void *d
, void *args
)
2165 struct class_datum
*datum
= d
;
2166 char *name
= k
, **classes
= args
;
2167 int value
= datum
->value
- 1;
2169 classes
[value
] = kstrdup(name
, GFP_ATOMIC
);
2170 if (!classes
[value
])
2176 int security_get_classes(char ***classes
, int *nclasses
)
2182 *nclasses
= policydb
.p_classes
.nprim
;
2183 *classes
= kcalloc(*nclasses
, sizeof(*classes
), GFP_ATOMIC
);
2187 rc
= hashtab_map(policydb
.p_classes
.table
, get_classes_callback
,
2191 for (i
= 0; i
< *nclasses
; i
++)
2192 kfree((*classes
)[i
]);
2201 static int get_permissions_callback(void *k
, void *d
, void *args
)
2203 struct perm_datum
*datum
= d
;
2204 char *name
= k
, **perms
= args
;
2205 int value
= datum
->value
- 1;
2207 perms
[value
] = kstrdup(name
, GFP_ATOMIC
);
2214 int security_get_permissions(char *class, char ***perms
, int *nperms
)
2216 int rc
= -ENOMEM
, i
;
2217 struct class_datum
*match
;
2221 match
= hashtab_search(policydb
.p_classes
.table
, class);
2223 printk(KERN_ERR
"SELinux: %s: unrecognized class %s\n",
2229 *nperms
= match
->permissions
.nprim
;
2230 *perms
= kcalloc(*nperms
, sizeof(*perms
), GFP_ATOMIC
);
2234 if (match
->comdatum
) {
2235 rc
= hashtab_map(match
->comdatum
->permissions
.table
,
2236 get_permissions_callback
, *perms
);
2241 rc
= hashtab_map(match
->permissions
.table
, get_permissions_callback
,
2252 for (i
= 0; i
< *nperms
; i
++)
2258 int security_get_reject_unknown(void)
2260 return policydb
.reject_unknown
;
2263 int security_get_allow_unknown(void)
2265 return policydb
.allow_unknown
;
2269 * security_policycap_supported - Check for a specific policy capability
2270 * @req_cap: capability
2273 * This function queries the currently loaded policy to see if it supports the
2274 * capability specified by @req_cap. Returns true (1) if the capability is
2275 * supported, false (0) if it isn't supported.
2278 int security_policycap_supported(unsigned int req_cap
)
2283 rc
= ebitmap_get_bit(&policydb
.policycaps
, req_cap
);
2289 struct selinux_audit_rule
{
2291 struct context au_ctxt
;
2294 void selinux_audit_rule_free(void *vrule
)
2296 struct selinux_audit_rule
*rule
= vrule
;
2299 context_destroy(&rule
->au_ctxt
);
2304 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
, void **vrule
)
2306 struct selinux_audit_rule
*tmprule
;
2307 struct role_datum
*roledatum
;
2308 struct type_datum
*typedatum
;
2309 struct user_datum
*userdatum
;
2310 struct selinux_audit_rule
**rule
= (struct selinux_audit_rule
**)vrule
;
2315 if (!ss_initialized
)
2319 case AUDIT_SUBJ_USER
:
2320 case AUDIT_SUBJ_ROLE
:
2321 case AUDIT_SUBJ_TYPE
:
2322 case AUDIT_OBJ_USER
:
2323 case AUDIT_OBJ_ROLE
:
2324 case AUDIT_OBJ_TYPE
:
2325 /* only 'equals' and 'not equals' fit user, role, and type */
2326 if (op
!= AUDIT_EQUAL
&& op
!= AUDIT_NOT_EQUAL
)
2329 case AUDIT_SUBJ_SEN
:
2330 case AUDIT_SUBJ_CLR
:
2331 case AUDIT_OBJ_LEV_LOW
:
2332 case AUDIT_OBJ_LEV_HIGH
:
2333 /* we do not allow a range, indicated by the presense of '-' */
2334 if (strchr(rulestr
, '-'))
2338 /* only the above fields are valid */
2342 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
2346 context_init(&tmprule
->au_ctxt
);
2350 tmprule
->au_seqno
= latest_granting
;
2353 case AUDIT_SUBJ_USER
:
2354 case AUDIT_OBJ_USER
:
2355 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
2359 tmprule
->au_ctxt
.user
= userdatum
->value
;
2361 case AUDIT_SUBJ_ROLE
:
2362 case AUDIT_OBJ_ROLE
:
2363 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
2367 tmprule
->au_ctxt
.role
= roledatum
->value
;
2369 case AUDIT_SUBJ_TYPE
:
2370 case AUDIT_OBJ_TYPE
:
2371 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
2375 tmprule
->au_ctxt
.type
= typedatum
->value
;
2377 case AUDIT_SUBJ_SEN
:
2378 case AUDIT_SUBJ_CLR
:
2379 case AUDIT_OBJ_LEV_LOW
:
2380 case AUDIT_OBJ_LEV_HIGH
:
2381 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
2388 selinux_audit_rule_free(tmprule
);
2397 /* Check to see if the rule contains any selinux fields */
2398 int selinux_audit_rule_known(struct audit_krule
*rule
)
2402 for (i
= 0; i
< rule
->field_count
; i
++) {
2403 struct audit_field
*f
= &rule
->fields
[i
];
2405 case AUDIT_SUBJ_USER
:
2406 case AUDIT_SUBJ_ROLE
:
2407 case AUDIT_SUBJ_TYPE
:
2408 case AUDIT_SUBJ_SEN
:
2409 case AUDIT_SUBJ_CLR
:
2410 case AUDIT_OBJ_USER
:
2411 case AUDIT_OBJ_ROLE
:
2412 case AUDIT_OBJ_TYPE
:
2413 case AUDIT_OBJ_LEV_LOW
:
2414 case AUDIT_OBJ_LEV_HIGH
:
2422 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
, void *vrule
,
2423 struct audit_context
*actx
)
2425 struct context
*ctxt
;
2426 struct mls_level
*level
;
2427 struct selinux_audit_rule
*rule
= vrule
;
2431 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2432 "selinux_audit_rule_match: missing rule\n");
2438 if (rule
->au_seqno
< latest_granting
) {
2439 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2440 "selinux_audit_rule_match: stale rule\n");
2445 ctxt
= sidtab_search(&sidtab
, sid
);
2447 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2448 "selinux_audit_rule_match: unrecognized SID %d\n",
2454 /* a field/op pair that is not caught here will simply fall through
2457 case AUDIT_SUBJ_USER
:
2458 case AUDIT_OBJ_USER
:
2461 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
2463 case AUDIT_NOT_EQUAL
:
2464 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
2468 case AUDIT_SUBJ_ROLE
:
2469 case AUDIT_OBJ_ROLE
:
2472 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
2474 case AUDIT_NOT_EQUAL
:
2475 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
2479 case AUDIT_SUBJ_TYPE
:
2480 case AUDIT_OBJ_TYPE
:
2483 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
2485 case AUDIT_NOT_EQUAL
:
2486 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
2490 case AUDIT_SUBJ_SEN
:
2491 case AUDIT_SUBJ_CLR
:
2492 case AUDIT_OBJ_LEV_LOW
:
2493 case AUDIT_OBJ_LEV_HIGH
:
2494 level
= ((field
== AUDIT_SUBJ_SEN
||
2495 field
== AUDIT_OBJ_LEV_LOW
) ?
2496 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
2499 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2502 case AUDIT_NOT_EQUAL
:
2503 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2506 case AUDIT_LESS_THAN
:
2507 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2509 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2512 case AUDIT_LESS_THAN_OR_EQUAL
:
2513 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2516 case AUDIT_GREATER_THAN
:
2517 match
= (mls_level_dom(level
,
2518 &rule
->au_ctxt
.range
.level
[0]) &&
2519 !mls_level_eq(level
,
2520 &rule
->au_ctxt
.range
.level
[0]));
2522 case AUDIT_GREATER_THAN_OR_EQUAL
:
2523 match
= mls_level_dom(level
,
2524 &rule
->au_ctxt
.range
.level
[0]);
2534 static int (*aurule_callback
)(void) = audit_update_lsm_rules
;
2536 static int aurule_avc_callback(u32 event
, u32 ssid
, u32 tsid
,
2537 u16
class, u32 perms
, u32
*retained
)
2541 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
2542 err
= aurule_callback();
2546 static int __init
aurule_init(void)
2550 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
,
2551 SECSID_NULL
, SECSID_NULL
, SECCLASS_NULL
, 0);
2553 panic("avc_add_callback() failed, error %d\n", err
);
2557 __initcall(aurule_init
);
2559 #ifdef CONFIG_NETLABEL
2561 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2562 * @secattr: the NetLabel packet security attributes
2563 * @sid: the SELinux SID
2566 * Attempt to cache the context in @ctx, which was derived from the packet in
2567 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
2568 * already been initialized.
2571 static void security_netlbl_cache_add(struct netlbl_lsm_secattr
*secattr
,
2576 sid_cache
= kmalloc(sizeof(*sid_cache
), GFP_ATOMIC
);
2577 if (sid_cache
== NULL
)
2579 secattr
->cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
2580 if (secattr
->cache
== NULL
) {
2586 secattr
->cache
->free
= kfree
;
2587 secattr
->cache
->data
= sid_cache
;
2588 secattr
->flags
|= NETLBL_SECATTR_CACHE
;
2592 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2593 * @secattr: the NetLabel packet security attributes
2594 * @sid: the SELinux SID
2597 * Convert the given NetLabel security attributes in @secattr into a
2598 * SELinux SID. If the @secattr field does not contain a full SELinux
2599 * SID/context then use SECINITSID_NETMSG as the foundation. If possibile the
2600 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2601 * allow the @secattr to be used by NetLabel to cache the secattr to SID
2602 * conversion for future lookups. Returns zero on success, negative values on
2606 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr
*secattr
,
2610 struct context
*ctx
;
2611 struct context ctx_new
;
2613 if (!ss_initialized
) {
2620 if (secattr
->flags
& NETLBL_SECATTR_CACHE
) {
2621 *sid
= *(u32
*)secattr
->cache
->data
;
2623 } else if (secattr
->flags
& NETLBL_SECATTR_SECID
) {
2624 *sid
= secattr
->attr
.secid
;
2626 } else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
2627 ctx
= sidtab_search(&sidtab
, SECINITSID_NETMSG
);
2629 goto netlbl_secattr_to_sid_return
;
2631 ctx_new
.user
= ctx
->user
;
2632 ctx_new
.role
= ctx
->role
;
2633 ctx_new
.type
= ctx
->type
;
2634 mls_import_netlbl_lvl(&ctx_new
, secattr
);
2635 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
2636 if (ebitmap_netlbl_import(&ctx_new
.range
.level
[0].cat
,
2637 secattr
->attr
.mls
.cat
) != 0)
2638 goto netlbl_secattr_to_sid_return
;
2639 ctx_new
.range
.level
[1].cat
.highbit
=
2640 ctx_new
.range
.level
[0].cat
.highbit
;
2641 ctx_new
.range
.level
[1].cat
.node
=
2642 ctx_new
.range
.level
[0].cat
.node
;
2644 ebitmap_init(&ctx_new
.range
.level
[0].cat
);
2645 ebitmap_init(&ctx_new
.range
.level
[1].cat
);
2647 if (mls_context_isvalid(&policydb
, &ctx_new
) != 1)
2648 goto netlbl_secattr_to_sid_return_cleanup
;
2650 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
2652 goto netlbl_secattr_to_sid_return_cleanup
;
2654 security_netlbl_cache_add(secattr
, *sid
);
2656 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
2662 netlbl_secattr_to_sid_return
:
2665 netlbl_secattr_to_sid_return_cleanup
:
2666 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
2667 goto netlbl_secattr_to_sid_return
;
2671 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2672 * @sid: the SELinux SID
2673 * @secattr: the NetLabel packet security attributes
2676 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2677 * Returns zero on success, negative values on failure.
2680 int security_netlbl_sid_to_secattr(u32 sid
, struct netlbl_lsm_secattr
*secattr
)
2683 struct context
*ctx
;
2685 if (!ss_initialized
)
2689 ctx
= sidtab_search(&sidtab
, sid
);
2691 goto netlbl_sid_to_secattr_failure
;
2692 secattr
->domain
= kstrdup(policydb
.p_type_val_to_name
[ctx
->type
- 1],
2694 secattr
->flags
|= NETLBL_SECATTR_DOMAIN_CPY
;
2695 mls_export_netlbl_lvl(ctx
, secattr
);
2696 rc
= mls_export_netlbl_cat(ctx
, secattr
);
2698 goto netlbl_sid_to_secattr_failure
;
2703 netlbl_sid_to_secattr_failure
:
2707 #endif /* CONFIG_NETLABEL */