SLUB: Fix memory leak by not reusing cpu_slab
[pv_ops_mirror.git] / include / asm-arm / cacheflush.h
blob6c1c968b298709069878bccde03fb7b6cc8dbdc2
1 /*
2 * linux/include/asm-arm/cacheflush.h
4 * Copyright (C) 1999-2002 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #ifndef _ASMARM_CACHEFLUSH_H
11 #define _ASMARM_CACHEFLUSH_H
13 #include <linux/sched.h>
14 #include <linux/mm.h>
16 #include <asm/glue.h>
17 #include <asm/shmparam.h>
19 #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
22 * Cache Model
23 * ===========
25 #undef _CACHE
26 #undef MULTI_CACHE
28 #if defined(CONFIG_CPU_CACHE_V3)
29 # ifdef _CACHE
30 # define MULTI_CACHE 1
31 # else
32 # define _CACHE v3
33 # endif
34 #endif
36 #if defined(CONFIG_CPU_CACHE_V4)
37 # ifdef _CACHE
38 # define MULTI_CACHE 1
39 # else
40 # define _CACHE v4
41 # endif
42 #endif
44 #if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
45 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
46 # define MULTI_CACHE 1
47 #endif
49 #if defined(CONFIG_CPU_ARM926T)
50 # ifdef _CACHE
51 # define MULTI_CACHE 1
52 # else
53 # define _CACHE arm926
54 # endif
55 #endif
57 #if defined(CONFIG_CPU_ARM940T)
58 # ifdef _CACHE
59 # define MULTI_CACHE 1
60 # else
61 # define _CACHE arm940
62 # endif
63 #endif
65 #if defined(CONFIG_CPU_ARM946E)
66 # ifdef _CACHE
67 # define MULTI_CACHE 1
68 # else
69 # define _CACHE arm946
70 # endif
71 #endif
73 #if defined(CONFIG_CPU_CACHE_V4WB)
74 # ifdef _CACHE
75 # define MULTI_CACHE 1
76 # else
77 # define _CACHE v4wb
78 # endif
79 #endif
81 #if defined(CONFIG_CPU_XSCALE)
82 # ifdef _CACHE
83 # define MULTI_CACHE 1
84 # else
85 # define _CACHE xscale
86 # endif
87 #endif
89 #if defined(CONFIG_CPU_XSC3)
90 # ifdef _CACHE
91 # define MULTI_CACHE 1
92 # else
93 # define _CACHE xsc3
94 # endif
95 #endif
97 #if defined(CONFIG_CPU_V6)
98 //# ifdef _CACHE
99 # define MULTI_CACHE 1
100 //# else
101 //# define _CACHE v6
102 //# endif
103 #endif
105 #if defined(CONFIG_CPU_V7)
106 //# ifdef _CACHE
107 # define MULTI_CACHE 1
108 //# else
109 //# define _CACHE v7
110 //# endif
111 #endif
113 #if !defined(_CACHE) && !defined(MULTI_CACHE)
114 #error Unknown cache maintainence model
115 #endif
118 * This flag is used to indicate that the page pointed to by a pte
119 * is dirty and requires cleaning before returning it to the user.
121 #define PG_dcache_dirty PG_arch_1
124 * MM Cache Management
125 * ===================
127 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
128 * implement these methods.
130 * Start addresses are inclusive and end addresses are exclusive;
131 * start addresses should be rounded down, end addresses up.
133 * See Documentation/cachetlb.txt for more information.
134 * Please note that the implementation of these, and the required
135 * effects are cache-type (VIVT/VIPT/PIPT) specific.
137 * flush_cache_kern_all()
139 * Unconditionally clean and invalidate the entire cache.
141 * flush_cache_user_mm(mm)
143 * Clean and invalidate all user space cache entries
144 * before a change of page tables.
146 * flush_cache_user_range(start, end, flags)
148 * Clean and invalidate a range of cache entries in the
149 * specified address space before a change of page tables.
150 * - start - user start address (inclusive, page aligned)
151 * - end - user end address (exclusive, page aligned)
152 * - flags - vma->vm_flags field
154 * coherent_kern_range(start, end)
156 * Ensure coherency between the Icache and the Dcache in the
157 * region described by start, end. If you have non-snooping
158 * Harvard caches, you need to implement this function.
159 * - start - virtual start address
160 * - end - virtual end address
162 * DMA Cache Coherency
163 * ===================
165 * dma_inv_range(start, end)
167 * Invalidate (discard) the specified virtual address range.
168 * May not write back any entries. If 'start' or 'end'
169 * are not cache line aligned, those lines must be written
170 * back.
171 * - start - virtual start address
172 * - end - virtual end address
174 * dma_clean_range(start, end)
176 * Clean (write back) the specified virtual address range.
177 * - start - virtual start address
178 * - end - virtual end address
180 * dma_flush_range(start, end)
182 * Clean and invalidate the specified virtual address range.
183 * - start - virtual start address
184 * - end - virtual end address
187 struct cpu_cache_fns {
188 void (*flush_kern_all)(void);
189 void (*flush_user_all)(void);
190 void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
192 void (*coherent_kern_range)(unsigned long, unsigned long);
193 void (*coherent_user_range)(unsigned long, unsigned long);
194 void (*flush_kern_dcache_page)(void *);
196 void (*dma_inv_range)(const void *, const void *);
197 void (*dma_clean_range)(const void *, const void *);
198 void (*dma_flush_range)(const void *, const void *);
201 struct outer_cache_fns {
202 void (*inv_range)(unsigned long, unsigned long);
203 void (*clean_range)(unsigned long, unsigned long);
204 void (*flush_range)(unsigned long, unsigned long);
208 * Select the calling method
210 #ifdef MULTI_CACHE
212 extern struct cpu_cache_fns cpu_cache;
214 #define __cpuc_flush_kern_all cpu_cache.flush_kern_all
215 #define __cpuc_flush_user_all cpu_cache.flush_user_all
216 #define __cpuc_flush_user_range cpu_cache.flush_user_range
217 #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
218 #define __cpuc_coherent_user_range cpu_cache.coherent_user_range
219 #define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page
222 * These are private to the dma-mapping API. Do not use directly.
223 * Their sole purpose is to ensure that data held in the cache
224 * is visible to DMA, or data written by DMA to system memory is
225 * visible to the CPU.
227 #define dmac_inv_range cpu_cache.dma_inv_range
228 #define dmac_clean_range cpu_cache.dma_clean_range
229 #define dmac_flush_range cpu_cache.dma_flush_range
231 #else
233 #define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all)
234 #define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all)
235 #define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range)
236 #define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range)
237 #define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range)
238 #define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page)
240 extern void __cpuc_flush_kern_all(void);
241 extern void __cpuc_flush_user_all(void);
242 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
243 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
244 extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
245 extern void __cpuc_flush_dcache_page(void *);
248 * These are private to the dma-mapping API. Do not use directly.
249 * Their sole purpose is to ensure that data held in the cache
250 * is visible to DMA, or data written by DMA to system memory is
251 * visible to the CPU.
253 #define dmac_inv_range __glue(_CACHE,_dma_inv_range)
254 #define dmac_clean_range __glue(_CACHE,_dma_clean_range)
255 #define dmac_flush_range __glue(_CACHE,_dma_flush_range)
257 extern void dmac_inv_range(const void *, const void *);
258 extern void dmac_clean_range(const void *, const void *);
259 extern void dmac_flush_range(const void *, const void *);
261 #endif
263 #ifdef CONFIG_OUTER_CACHE
265 extern struct outer_cache_fns outer_cache;
267 static inline void outer_inv_range(unsigned long start, unsigned long end)
269 if (outer_cache.inv_range)
270 outer_cache.inv_range(start, end);
272 static inline void outer_clean_range(unsigned long start, unsigned long end)
274 if (outer_cache.clean_range)
275 outer_cache.clean_range(start, end);
277 static inline void outer_flush_range(unsigned long start, unsigned long end)
279 if (outer_cache.flush_range)
280 outer_cache.flush_range(start, end);
283 #else
285 static inline void outer_inv_range(unsigned long start, unsigned long end)
287 static inline void outer_clean_range(unsigned long start, unsigned long end)
289 static inline void outer_flush_range(unsigned long start, unsigned long end)
292 #endif
295 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
296 * vmalloc, ioremap etc) in kernel space for pages. Since the
297 * direct-mappings of these pages may contain cached data, we need
298 * to do a full cache flush to ensure that writebacks don't corrupt
299 * data placed into these pages via the new mappings.
301 #define flush_cache_vmap(start, end) flush_cache_all()
302 #define flush_cache_vunmap(start, end) flush_cache_all()
305 * Copy user data from/to a page which is mapped into a different
306 * processes address space. Really, we want to allow our "user
307 * space" model to handle this.
309 #define copy_to_user_page(vma, page, vaddr, dst, src, len) \
310 do { \
311 memcpy(dst, src, len); \
312 flush_ptrace_access(vma, page, vaddr, dst, len, 1);\
313 } while (0)
315 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
316 do { \
317 memcpy(dst, src, len); \
318 } while (0)
321 * Convert calls to our calling convention.
323 #define flush_cache_all() __cpuc_flush_kern_all()
324 #ifndef CONFIG_CPU_CACHE_VIPT
325 static inline void flush_cache_mm(struct mm_struct *mm)
327 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask))
328 __cpuc_flush_user_all();
331 static inline void
332 flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
334 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask))
335 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
336 vma->vm_flags);
339 static inline void
340 flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
342 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
343 unsigned long addr = user_addr & PAGE_MASK;
344 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
348 static inline void
349 flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
350 unsigned long uaddr, void *kaddr,
351 unsigned long len, int write)
353 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
354 unsigned long addr = (unsigned long)kaddr;
355 __cpuc_coherent_kern_range(addr, addr + len);
358 #else
359 extern void flush_cache_mm(struct mm_struct *mm);
360 extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
361 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
362 extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
363 unsigned long uaddr, void *kaddr,
364 unsigned long len, int write);
365 #endif
367 #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
370 * flush_cache_user_range is used when we want to ensure that the
371 * Harvard caches are synchronised for the user space address range.
372 * This is used for the ARM private sys_cacheflush system call.
374 #define flush_cache_user_range(vma,start,end) \
375 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
378 * Perform necessary cache operations to ensure that data previously
379 * stored within this range of addresses can be executed by the CPU.
381 #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
384 * Perform necessary cache operations to ensure that the TLB will
385 * see data written in the specified area.
387 #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
390 * flush_dcache_page is used when the kernel has written to the page
391 * cache page at virtual address page->virtual.
393 * If this page isn't mapped (ie, page_mapping == NULL), or it might
394 * have userspace mappings, then we _must_ always clean + invalidate
395 * the dcache entries associated with the kernel mapping.
397 * Otherwise we can defer the operation, and clean the cache when we are
398 * about to change to user space. This is the same method as used on SPARC64.
399 * See update_mmu_cache for the user space part.
401 extern void flush_dcache_page(struct page *);
403 extern void __flush_dcache_page(struct address_space *mapping, struct page *page);
405 #define ARCH_HAS_FLUSH_ANON_PAGE
406 static inline void flush_anon_page(struct vm_area_struct *vma,
407 struct page *page, unsigned long vmaddr)
409 extern void __flush_anon_page(struct vm_area_struct *vma,
410 struct page *, unsigned long);
411 if (PageAnon(page))
412 __flush_anon_page(vma, page, vmaddr);
415 #define flush_dcache_mmap_lock(mapping) \
416 write_lock_irq(&(mapping)->tree_lock)
417 #define flush_dcache_mmap_unlock(mapping) \
418 write_unlock_irq(&(mapping)->tree_lock)
420 #define flush_icache_user_range(vma,page,addr,len) \
421 flush_dcache_page(page)
424 * We don't appear to need to do anything here. In fact, if we did, we'd
425 * duplicate cache flushing elsewhere performed by flush_dcache_page().
427 #define flush_icache_page(vma,page) do { } while (0)
429 static inline void flush_ioremap_region(unsigned long phys, void __iomem *virt,
430 unsigned offset, size_t size)
432 const void *start = (void __force *)virt + offset;
433 dmac_inv_range(start, start + size);
436 #define __cacheid_present(val) (val != read_cpuid(CPUID_ID))
437 #define __cacheid_type_v7(val) ((val & (7 << 29)) == (4 << 29))
439 #define __cacheid_vivt_prev7(val) ((val & (15 << 25)) != (14 << 25))
440 #define __cacheid_vipt_prev7(val) ((val & (15 << 25)) == (14 << 25))
441 #define __cacheid_vipt_nonaliasing_prev7(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25))
442 #define __cacheid_vipt_aliasing_prev7(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23))
444 #define __cacheid_vivt(val) (__cacheid_type_v7(val) ? 0 : __cacheid_vivt_prev7(val))
445 #define __cacheid_vipt(val) (__cacheid_type_v7(val) ? 1 : __cacheid_vipt_prev7(val))
446 #define __cacheid_vipt_nonaliasing(val) (__cacheid_type_v7(val) ? 1 : __cacheid_vipt_nonaliasing_prev7(val))
447 #define __cacheid_vipt_aliasing(val) (__cacheid_type_v7(val) ? 0 : __cacheid_vipt_aliasing_prev7(val))
448 #define __cacheid_vivt_asid_tagged_instr(val) (__cacheid_type_v7(val) ? ((val & (3 << 14)) == (1 << 14)) : 0)
450 #if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT)
452 #define cache_is_vivt() 1
453 #define cache_is_vipt() 0
454 #define cache_is_vipt_nonaliasing() 0
455 #define cache_is_vipt_aliasing() 0
456 #define icache_is_vivt_asid_tagged() 0
458 #elif defined(CONFIG_CPU_CACHE_VIPT)
460 #define cache_is_vivt() 0
461 #define cache_is_vipt() 1
462 #define cache_is_vipt_nonaliasing() \
463 ({ \
464 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
465 __cacheid_vipt_nonaliasing(__val); \
468 #define cache_is_vipt_aliasing() \
469 ({ \
470 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
471 __cacheid_vipt_aliasing(__val); \
474 #define icache_is_vivt_asid_tagged() \
475 ({ \
476 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
477 __cacheid_vivt_asid_tagged_instr(__val); \
480 #else
482 #define cache_is_vivt() \
483 ({ \
484 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
485 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \
488 #define cache_is_vipt() \
489 ({ \
490 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
491 __cacheid_present(__val) && __cacheid_vipt(__val); \
494 #define cache_is_vipt_nonaliasing() \
495 ({ \
496 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
497 __cacheid_present(__val) && \
498 __cacheid_vipt_nonaliasing(__val); \
501 #define cache_is_vipt_aliasing() \
502 ({ \
503 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
504 __cacheid_present(__val) && \
505 __cacheid_vipt_aliasing(__val); \
508 #define icache_is_vivt_asid_tagged() \
509 ({ \
510 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
511 __cacheid_present(__val) && \
512 __cacheid_vivt_asid_tagged_instr(__val); \
515 #endif
517 #endif