4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/cpuset.h>
35 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
39 * FIXME: remove all knowledge of the buffer layer from the core VM
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
46 generic_file_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
47 loff_t offset
, unsigned long nr_segs
);
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * Shared mappings now work. 15.8.1995 Bruno.
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
64 * ->i_mmap_lock (vmtruncate)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
70 * ->i_mmap_lock (truncate->unmap_mapping_range)
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 * ->lock_page (access_process_vm)
80 * ->i_mutex (generic_file_buffered_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 * ->i_alloc_sem (various)
87 * ->sb_lock (fs/fs-writeback.c)
88 * ->mapping->tree_lock (__sync_single_inode)
91 * ->anon_vma.lock (vma_adjust)
94 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
96 * ->page_table_lock or pte_lock
97 * ->swap_lock (try_to_unmap_one)
98 * ->private_lock (try_to_unmap_one)
99 * ->tree_lock (try_to_unmap_one)
100 * ->zone.lru_lock (follow_page->mark_page_accessed)
101 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
102 * ->private_lock (page_remove_rmap->set_page_dirty)
103 * ->tree_lock (page_remove_rmap->set_page_dirty)
104 * ->inode_lock (page_remove_rmap->set_page_dirty)
105 * ->inode_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 * ->dcache_lock (proc_pid_lookup)
113 * Remove a page from the page cache and free it. Caller has to make
114 * sure the page is locked and that nobody else uses it - or that usage
115 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
117 void __remove_from_page_cache(struct page
*page
)
119 struct address_space
*mapping
= page
->mapping
;
121 radix_tree_delete(&mapping
->page_tree
, page
->index
);
122 page
->mapping
= NULL
;
124 __dec_zone_page_state(page
, NR_FILE_PAGES
);
125 BUG_ON(page_mapped(page
));
128 * Some filesystems seem to re-dirty the page even after
129 * the VM has canceled the dirty bit (eg ext3 journaling).
131 * Fix it up by doing a final dirty accounting check after
132 * having removed the page entirely.
134 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
135 dec_zone_page_state(page
, NR_FILE_DIRTY
);
136 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
140 void remove_from_page_cache(struct page
*page
)
142 struct address_space
*mapping
= page
->mapping
;
144 BUG_ON(!PageLocked(page
));
146 write_lock_irq(&mapping
->tree_lock
);
147 __remove_from_page_cache(page
);
148 write_unlock_irq(&mapping
->tree_lock
);
151 static int sync_page(void *word
)
153 struct address_space
*mapping
;
156 page
= container_of((unsigned long *)word
, struct page
, flags
);
159 * page_mapping() is being called without PG_locked held.
160 * Some knowledge of the state and use of the page is used to
161 * reduce the requirements down to a memory barrier.
162 * The danger here is of a stale page_mapping() return value
163 * indicating a struct address_space different from the one it's
164 * associated with when it is associated with one.
165 * After smp_mb(), it's either the correct page_mapping() for
166 * the page, or an old page_mapping() and the page's own
167 * page_mapping() has gone NULL.
168 * The ->sync_page() address_space operation must tolerate
169 * page_mapping() going NULL. By an amazing coincidence,
170 * this comes about because none of the users of the page
171 * in the ->sync_page() methods make essential use of the
172 * page_mapping(), merely passing the page down to the backing
173 * device's unplug functions when it's non-NULL, which in turn
174 * ignore it for all cases but swap, where only page_private(page) is
175 * of interest. When page_mapping() does go NULL, the entire
176 * call stack gracefully ignores the page and returns.
180 mapping
= page_mapping(page
);
181 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
182 mapping
->a_ops
->sync_page(page
);
187 static int sync_page_killable(void *word
)
190 return fatal_signal_pending(current
) ? -EINTR
: 0;
194 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
195 * @mapping: address space structure to write
196 * @start: offset in bytes where the range starts
197 * @end: offset in bytes where the range ends (inclusive)
198 * @sync_mode: enable synchronous operation
200 * Start writeback against all of a mapping's dirty pages that lie
201 * within the byte offsets <start, end> inclusive.
203 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
204 * opposed to a regular memory cleansing writeback. The difference between
205 * these two operations is that if a dirty page/buffer is encountered, it must
206 * be waited upon, and not just skipped over.
208 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
209 loff_t end
, int sync_mode
)
212 struct writeback_control wbc
= {
213 .sync_mode
= sync_mode
,
214 .nr_to_write
= mapping
->nrpages
* 2,
215 .range_start
= start
,
219 if (!mapping_cap_writeback_dirty(mapping
))
222 ret
= do_writepages(mapping
, &wbc
);
226 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
229 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
232 int filemap_fdatawrite(struct address_space
*mapping
)
234 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
236 EXPORT_SYMBOL(filemap_fdatawrite
);
238 static int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
241 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
251 int filemap_flush(struct address_space
*mapping
)
253 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
255 EXPORT_SYMBOL(filemap_flush
);
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping: target address_space
260 * @start: beginning page index
261 * @end: ending page index
263 * Wait for writeback to complete against pages indexed by start->end
266 int wait_on_page_writeback_range(struct address_space
*mapping
,
267 pgoff_t start
, pgoff_t end
)
277 pagevec_init(&pvec
, 0);
279 while ((index
<= end
) &&
280 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
281 PAGECACHE_TAG_WRITEBACK
,
282 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
285 for (i
= 0; i
< nr_pages
; i
++) {
286 struct page
*page
= pvec
.pages
[i
];
288 /* until radix tree lookup accepts end_index */
289 if (page
->index
> end
)
292 wait_on_page_writeback(page
);
296 pagevec_release(&pvec
);
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
303 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode: target inode
312 * @mapping: target address_space
313 * @pos: beginning offset in pages to write
314 * @count: number of bytes to write
316 * Write and wait upon all the pages in the passed range. This is a "data
317 * integrity" operation. It waits upon in-flight writeout before starting and
318 * waiting upon new writeout. If there was an IO error, return it.
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
323 int sync_page_range(struct inode
*inode
, struct address_space
*mapping
,
324 loff_t pos
, loff_t count
)
326 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
327 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
330 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
332 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
334 mutex_lock(&inode
->i_mutex
);
335 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
336 mutex_unlock(&inode
->i_mutex
);
339 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
342 EXPORT_SYMBOL(sync_page_range
);
345 * sync_page_range_nolock
346 * @inode: target inode
347 * @mapping: target address_space
348 * @pos: beginning offset in pages to write
349 * @count: number of bytes to write
351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
355 int sync_page_range_nolock(struct inode
*inode
, struct address_space
*mapping
,
356 loff_t pos
, loff_t count
)
358 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
359 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
362 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
364 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
366 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
368 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
371 EXPORT_SYMBOL(sync_page_range_nolock
);
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
380 int filemap_fdatawait(struct address_space
*mapping
)
382 loff_t i_size
= i_size_read(mapping
->host
);
387 return wait_on_page_writeback_range(mapping
, 0,
388 (i_size
- 1) >> PAGE_CACHE_SHIFT
);
390 EXPORT_SYMBOL(filemap_fdatawait
);
392 int filemap_write_and_wait(struct address_space
*mapping
)
396 if (mapping
->nrpages
) {
397 err
= filemap_fdatawrite(mapping
);
399 * Even if the above returned error, the pages may be
400 * written partially (e.g. -ENOSPC), so we wait for it.
401 * But the -EIO is special case, it may indicate the worst
402 * thing (e.g. bug) happened, so we avoid waiting for it.
405 int err2
= filemap_fdatawait(mapping
);
412 EXPORT_SYMBOL(filemap_write_and_wait
);
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping: the address_space for the pages
417 * @lstart: offset in bytes where the range starts
418 * @lend: offset in bytes where the range ends (inclusive)
420 * Write out and wait upon file offsets lstart->lend, inclusive.
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
425 int filemap_write_and_wait_range(struct address_space
*mapping
,
426 loff_t lstart
, loff_t lend
)
430 if (mapping
->nrpages
) {
431 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
433 /* See comment of filemap_write_and_wait() */
435 int err2
= wait_on_page_writeback_range(mapping
,
436 lstart
>> PAGE_CACHE_SHIFT
,
437 lend
>> PAGE_CACHE_SHIFT
);
446 * add_to_page_cache - add newly allocated pagecache pages
448 * @mapping: the page's address_space
449 * @offset: page index
450 * @gfp_mask: page allocation mode
452 * This function is used to add newly allocated pagecache pages;
453 * the page is new, so we can just run SetPageLocked() against it.
454 * The other page state flags were set by rmqueue().
456 * This function does not add the page to the LRU. The caller must do that.
458 int add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
459 pgoff_t offset
, gfp_t gfp_mask
)
461 int error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
464 write_lock_irq(&mapping
->tree_lock
);
465 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
467 page_cache_get(page
);
469 page
->mapping
= mapping
;
470 page
->index
= offset
;
472 __inc_zone_page_state(page
, NR_FILE_PAGES
);
474 write_unlock_irq(&mapping
->tree_lock
);
475 radix_tree_preload_end();
479 EXPORT_SYMBOL(add_to_page_cache
);
481 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
482 pgoff_t offset
, gfp_t gfp_mask
)
484 int ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
491 struct page
*__page_cache_alloc(gfp_t gfp
)
493 if (cpuset_do_page_mem_spread()) {
494 int n
= cpuset_mem_spread_node();
495 return alloc_pages_node(n
, gfp
, 0);
497 return alloc_pages(gfp
, 0);
499 EXPORT_SYMBOL(__page_cache_alloc
);
502 static int __sleep_on_page_lock(void *word
)
509 * In order to wait for pages to become available there must be
510 * waitqueues associated with pages. By using a hash table of
511 * waitqueues where the bucket discipline is to maintain all
512 * waiters on the same queue and wake all when any of the pages
513 * become available, and for the woken contexts to check to be
514 * sure the appropriate page became available, this saves space
515 * at a cost of "thundering herd" phenomena during rare hash
518 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
520 const struct zone
*zone
= page_zone(page
);
522 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
525 static inline void wake_up_page(struct page
*page
, int bit
)
527 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
530 void wait_on_page_bit(struct page
*page
, int bit_nr
)
532 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
534 if (test_bit(bit_nr
, &page
->flags
))
535 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
536 TASK_UNINTERRUPTIBLE
);
538 EXPORT_SYMBOL(wait_on_page_bit
);
541 * unlock_page - unlock a locked page
544 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
545 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
546 * mechananism between PageLocked pages and PageWriteback pages is shared.
547 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
549 * The first mb is necessary to safely close the critical section opened by the
550 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
551 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
552 * parallel wait_on_page_locked()).
554 void unlock_page(struct page
*page
)
556 smp_mb__before_clear_bit();
557 if (!TestClearPageLocked(page
))
559 smp_mb__after_clear_bit();
560 wake_up_page(page
, PG_locked
);
562 EXPORT_SYMBOL(unlock_page
);
565 * end_page_writeback - end writeback against a page
568 void end_page_writeback(struct page
*page
)
570 if (!TestClearPageReclaim(page
) || rotate_reclaimable_page(page
)) {
571 if (!test_clear_page_writeback(page
))
574 smp_mb__after_clear_bit();
575 wake_up_page(page
, PG_writeback
);
577 EXPORT_SYMBOL(end_page_writeback
);
580 * __lock_page - get a lock on the page, assuming we need to sleep to get it
581 * @page: the page to lock
583 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
584 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
585 * chances are that on the second loop, the block layer's plug list is empty,
586 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
588 void __lock_page(struct page
*page
)
590 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
592 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
593 TASK_UNINTERRUPTIBLE
);
595 EXPORT_SYMBOL(__lock_page
);
597 int fastcall
__lock_page_killable(struct page
*page
)
599 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
601 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
602 sync_page_killable
, TASK_KILLABLE
);
606 * Variant of lock_page that does not require the caller to hold a reference
607 * on the page's mapping.
609 void __lock_page_nosync(struct page
*page
)
611 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
612 __wait_on_bit_lock(page_waitqueue(page
), &wait
, __sleep_on_page_lock
,
613 TASK_UNINTERRUPTIBLE
);
617 * find_get_page - find and get a page reference
618 * @mapping: the address_space to search
619 * @offset: the page index
621 * Is there a pagecache struct page at the given (mapping, offset) tuple?
622 * If yes, increment its refcount and return it; if no, return NULL.
624 struct page
* find_get_page(struct address_space
*mapping
, pgoff_t offset
)
628 read_lock_irq(&mapping
->tree_lock
);
629 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
631 page_cache_get(page
);
632 read_unlock_irq(&mapping
->tree_lock
);
635 EXPORT_SYMBOL(find_get_page
);
638 * find_lock_page - locate, pin and lock a pagecache page
639 * @mapping: the address_space to search
640 * @offset: the page index
642 * Locates the desired pagecache page, locks it, increments its reference
643 * count and returns its address.
645 * Returns zero if the page was not present. find_lock_page() may sleep.
647 struct page
*find_lock_page(struct address_space
*mapping
,
653 read_lock_irq(&mapping
->tree_lock
);
654 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
656 page_cache_get(page
);
657 if (TestSetPageLocked(page
)) {
658 read_unlock_irq(&mapping
->tree_lock
);
661 /* Has the page been truncated while we slept? */
662 if (unlikely(page
->mapping
!= mapping
)) {
664 page_cache_release(page
);
667 VM_BUG_ON(page
->index
!= offset
);
671 read_unlock_irq(&mapping
->tree_lock
);
675 EXPORT_SYMBOL(find_lock_page
);
678 * find_or_create_page - locate or add a pagecache page
679 * @mapping: the page's address_space
680 * @index: the page's index into the mapping
681 * @gfp_mask: page allocation mode
683 * Locates a page in the pagecache. If the page is not present, a new page
684 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
685 * LRU list. The returned page is locked and has its reference count
688 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
691 * find_or_create_page() returns the desired page's address, or zero on
694 struct page
*find_or_create_page(struct address_space
*mapping
,
695 pgoff_t index
, gfp_t gfp_mask
)
700 page
= find_lock_page(mapping
, index
);
702 page
= __page_cache_alloc(gfp_mask
);
705 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp_mask
);
707 page_cache_release(page
);
715 EXPORT_SYMBOL(find_or_create_page
);
718 * find_get_pages - gang pagecache lookup
719 * @mapping: The address_space to search
720 * @start: The starting page index
721 * @nr_pages: The maximum number of pages
722 * @pages: Where the resulting pages are placed
724 * find_get_pages() will search for and return a group of up to
725 * @nr_pages pages in the mapping. The pages are placed at @pages.
726 * find_get_pages() takes a reference against the returned pages.
728 * The search returns a group of mapping-contiguous pages with ascending
729 * indexes. There may be holes in the indices due to not-present pages.
731 * find_get_pages() returns the number of pages which were found.
733 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
734 unsigned int nr_pages
, struct page
**pages
)
739 read_lock_irq(&mapping
->tree_lock
);
740 ret
= radix_tree_gang_lookup(&mapping
->page_tree
,
741 (void **)pages
, start
, nr_pages
);
742 for (i
= 0; i
< ret
; i
++)
743 page_cache_get(pages
[i
]);
744 read_unlock_irq(&mapping
->tree_lock
);
749 * find_get_pages_contig - gang contiguous pagecache lookup
750 * @mapping: The address_space to search
751 * @index: The starting page index
752 * @nr_pages: The maximum number of pages
753 * @pages: Where the resulting pages are placed
755 * find_get_pages_contig() works exactly like find_get_pages(), except
756 * that the returned number of pages are guaranteed to be contiguous.
758 * find_get_pages_contig() returns the number of pages which were found.
760 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
761 unsigned int nr_pages
, struct page
**pages
)
766 read_lock_irq(&mapping
->tree_lock
);
767 ret
= radix_tree_gang_lookup(&mapping
->page_tree
,
768 (void **)pages
, index
, nr_pages
);
769 for (i
= 0; i
< ret
; i
++) {
770 if (pages
[i
]->mapping
== NULL
|| pages
[i
]->index
!= index
)
773 page_cache_get(pages
[i
]);
776 read_unlock_irq(&mapping
->tree_lock
);
779 EXPORT_SYMBOL(find_get_pages_contig
);
782 * find_get_pages_tag - find and return pages that match @tag
783 * @mapping: the address_space to search
784 * @index: the starting page index
785 * @tag: the tag index
786 * @nr_pages: the maximum number of pages
787 * @pages: where the resulting pages are placed
789 * Like find_get_pages, except we only return pages which are tagged with
790 * @tag. We update @index to index the next page for the traversal.
792 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
793 int tag
, unsigned int nr_pages
, struct page
**pages
)
798 read_lock_irq(&mapping
->tree_lock
);
799 ret
= radix_tree_gang_lookup_tag(&mapping
->page_tree
,
800 (void **)pages
, *index
, nr_pages
, tag
);
801 for (i
= 0; i
< ret
; i
++)
802 page_cache_get(pages
[i
]);
804 *index
= pages
[ret
- 1]->index
+ 1;
805 read_unlock_irq(&mapping
->tree_lock
);
808 EXPORT_SYMBOL(find_get_pages_tag
);
811 * grab_cache_page_nowait - returns locked page at given index in given cache
812 * @mapping: target address_space
813 * @index: the page index
815 * Same as grab_cache_page(), but do not wait if the page is unavailable.
816 * This is intended for speculative data generators, where the data can
817 * be regenerated if the page couldn't be grabbed. This routine should
818 * be safe to call while holding the lock for another page.
820 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
821 * and deadlock against the caller's locked page.
824 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
826 struct page
*page
= find_get_page(mapping
, index
);
829 if (!TestSetPageLocked(page
))
831 page_cache_release(page
);
834 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
835 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
)) {
836 page_cache_release(page
);
841 EXPORT_SYMBOL(grab_cache_page_nowait
);
844 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
845 * a _large_ part of the i/o request. Imagine the worst scenario:
847 * ---R__________________________________________B__________
848 * ^ reading here ^ bad block(assume 4k)
850 * read(R) => miss => readahead(R...B) => media error => frustrating retries
851 * => failing the whole request => read(R) => read(R+1) =>
852 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
853 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
854 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
856 * It is going insane. Fix it by quickly scaling down the readahead size.
858 static void shrink_readahead_size_eio(struct file
*filp
,
859 struct file_ra_state
*ra
)
868 * do_generic_mapping_read - generic file read routine
869 * @mapping: address_space to be read
870 * @ra: file's readahead state
871 * @filp: the file to read
872 * @ppos: current file position
873 * @desc: read_descriptor
874 * @actor: read method
876 * This is a generic file read routine, and uses the
877 * mapping->a_ops->readpage() function for the actual low-level stuff.
879 * This is really ugly. But the goto's actually try to clarify some
880 * of the logic when it comes to error handling etc.
882 * Note the struct file* is only passed for the use of readpage.
885 void do_generic_mapping_read(struct address_space
*mapping
,
886 struct file_ra_state
*ra
,
889 read_descriptor_t
*desc
,
892 struct inode
*inode
= mapping
->host
;
896 unsigned long offset
; /* offset into pagecache page */
897 unsigned int prev_offset
;
900 index
= *ppos
>> PAGE_CACHE_SHIFT
;
901 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
902 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
903 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
904 offset
= *ppos
& ~PAGE_CACHE_MASK
;
910 unsigned long nr
, ret
;
914 page
= find_get_page(mapping
, index
);
916 page_cache_sync_readahead(mapping
,
918 index
, last_index
- index
);
919 page
= find_get_page(mapping
, index
);
920 if (unlikely(page
== NULL
))
923 if (PageReadahead(page
)) {
924 page_cache_async_readahead(mapping
,
926 index
, last_index
- index
);
928 if (!PageUptodate(page
))
929 goto page_not_up_to_date
;
932 * i_size must be checked after we know the page is Uptodate.
934 * Checking i_size after the check allows us to calculate
935 * the correct value for "nr", which means the zero-filled
936 * part of the page is not copied back to userspace (unless
937 * another truncate extends the file - this is desired though).
940 isize
= i_size_read(inode
);
941 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
942 if (unlikely(!isize
|| index
> end_index
)) {
943 page_cache_release(page
);
947 /* nr is the maximum number of bytes to copy from this page */
948 nr
= PAGE_CACHE_SIZE
;
949 if (index
== end_index
) {
950 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
952 page_cache_release(page
);
958 /* If users can be writing to this page using arbitrary
959 * virtual addresses, take care about potential aliasing
960 * before reading the page on the kernel side.
962 if (mapping_writably_mapped(mapping
))
963 flush_dcache_page(page
);
966 * When a sequential read accesses a page several times,
967 * only mark it as accessed the first time.
969 if (prev_index
!= index
|| offset
!= prev_offset
)
970 mark_page_accessed(page
);
974 * Ok, we have the page, and it's up-to-date, so
975 * now we can copy it to user space...
977 * The actor routine returns how many bytes were actually used..
978 * NOTE! This may not be the same as how much of a user buffer
979 * we filled up (we may be padding etc), so we can only update
980 * "pos" here (the actor routine has to update the user buffer
981 * pointers and the remaining count).
983 ret
= actor(desc
, page
, offset
, nr
);
985 index
+= offset
>> PAGE_CACHE_SHIFT
;
986 offset
&= ~PAGE_CACHE_MASK
;
987 prev_offset
= offset
;
989 page_cache_release(page
);
990 if (ret
== nr
&& desc
->count
)
995 /* Get exclusive access to the page ... */
996 if (lock_page_killable(page
))
999 /* Did it get truncated before we got the lock? */
1000 if (!page
->mapping
) {
1002 page_cache_release(page
);
1006 /* Did somebody else fill it already? */
1007 if (PageUptodate(page
)) {
1013 /* Start the actual read. The read will unlock the page. */
1014 error
= mapping
->a_ops
->readpage(filp
, page
);
1016 if (unlikely(error
)) {
1017 if (error
== AOP_TRUNCATED_PAGE
) {
1018 page_cache_release(page
);
1021 goto readpage_error
;
1024 if (!PageUptodate(page
)) {
1025 if (lock_page_killable(page
))
1027 if (!PageUptodate(page
)) {
1028 if (page
->mapping
== NULL
) {
1030 * invalidate_inode_pages got it
1033 page_cache_release(page
);
1037 shrink_readahead_size_eio(filp
, ra
);
1048 /* UHHUH! A synchronous read error occurred. Report it */
1049 desc
->error
= error
;
1050 page_cache_release(page
);
1055 * Ok, it wasn't cached, so we need to create a new
1058 page
= page_cache_alloc_cold(mapping
);
1060 desc
->error
= -ENOMEM
;
1063 error
= add_to_page_cache_lru(page
, mapping
,
1066 page_cache_release(page
);
1067 if (error
== -EEXIST
)
1069 desc
->error
= error
;
1076 ra
->prev_pos
= prev_index
;
1077 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1078 ra
->prev_pos
|= prev_offset
;
1080 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1082 file_accessed(filp
);
1084 EXPORT_SYMBOL(do_generic_mapping_read
);
1086 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1087 unsigned long offset
, unsigned long size
)
1090 unsigned long left
, count
= desc
->count
;
1096 * Faults on the destination of a read are common, so do it before
1099 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1100 kaddr
= kmap_atomic(page
, KM_USER0
);
1101 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1102 kaddr
+ offset
, size
);
1103 kunmap_atomic(kaddr
, KM_USER0
);
1108 /* Do it the slow way */
1110 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1115 desc
->error
= -EFAULT
;
1118 desc
->count
= count
- size
;
1119 desc
->written
+= size
;
1120 desc
->arg
.buf
+= size
;
1125 * Performs necessary checks before doing a write
1126 * @iov: io vector request
1127 * @nr_segs: number of segments in the iovec
1128 * @count: number of bytes to write
1129 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1131 * Adjust number of segments and amount of bytes to write (nr_segs should be
1132 * properly initialized first). Returns appropriate error code that caller
1133 * should return or zero in case that write should be allowed.
1135 int generic_segment_checks(const struct iovec
*iov
,
1136 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1140 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1141 const struct iovec
*iv
= &iov
[seg
];
1144 * If any segment has a negative length, or the cumulative
1145 * length ever wraps negative then return -EINVAL.
1148 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1150 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1155 cnt
-= iv
->iov_len
; /* This segment is no good */
1161 EXPORT_SYMBOL(generic_segment_checks
);
1164 * generic_file_aio_read - generic filesystem read routine
1165 * @iocb: kernel I/O control block
1166 * @iov: io vector request
1167 * @nr_segs: number of segments in the iovec
1168 * @pos: current file position
1170 * This is the "read()" routine for all filesystems
1171 * that can use the page cache directly.
1174 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1175 unsigned long nr_segs
, loff_t pos
)
1177 struct file
*filp
= iocb
->ki_filp
;
1181 loff_t
*ppos
= &iocb
->ki_pos
;
1184 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1188 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1189 if (filp
->f_flags
& O_DIRECT
) {
1191 struct address_space
*mapping
;
1192 struct inode
*inode
;
1194 mapping
= filp
->f_mapping
;
1195 inode
= mapping
->host
;
1198 goto out
; /* skip atime */
1199 size
= i_size_read(inode
);
1201 retval
= generic_file_direct_IO(READ
, iocb
,
1204 *ppos
= pos
+ retval
;
1206 if (likely(retval
!= 0)) {
1207 file_accessed(filp
);
1214 for (seg
= 0; seg
< nr_segs
; seg
++) {
1215 read_descriptor_t desc
;
1218 desc
.arg
.buf
= iov
[seg
].iov_base
;
1219 desc
.count
= iov
[seg
].iov_len
;
1220 if (desc
.count
== 0)
1223 do_generic_file_read(filp
,ppos
,&desc
,file_read_actor
);
1224 retval
+= desc
.written
;
1226 retval
= retval
?: desc
.error
;
1236 EXPORT_SYMBOL(generic_file_aio_read
);
1239 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1240 pgoff_t index
, unsigned long nr
)
1242 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1245 force_page_cache_readahead(mapping
, filp
, index
,
1246 max_sane_readahead(nr
));
1250 asmlinkage ssize_t
sys_readahead(int fd
, loff_t offset
, size_t count
)
1258 if (file
->f_mode
& FMODE_READ
) {
1259 struct address_space
*mapping
= file
->f_mapping
;
1260 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1261 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1262 unsigned long len
= end
- start
+ 1;
1263 ret
= do_readahead(mapping
, file
, start
, len
);
1272 * page_cache_read - adds requested page to the page cache if not already there
1273 * @file: file to read
1274 * @offset: page index
1276 * This adds the requested page to the page cache if it isn't already there,
1277 * and schedules an I/O to read in its contents from disk.
1279 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1281 struct address_space
*mapping
= file
->f_mapping
;
1286 page
= page_cache_alloc_cold(mapping
);
1290 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1292 ret
= mapping
->a_ops
->readpage(file
, page
);
1293 else if (ret
== -EEXIST
)
1294 ret
= 0; /* losing race to add is OK */
1296 page_cache_release(page
);
1298 } while (ret
== AOP_TRUNCATED_PAGE
);
1303 #define MMAP_LOTSAMISS (100)
1306 * filemap_fault - read in file data for page fault handling
1307 * @vma: vma in which the fault was taken
1308 * @vmf: struct vm_fault containing details of the fault
1310 * filemap_fault() is invoked via the vma operations vector for a
1311 * mapped memory region to read in file data during a page fault.
1313 * The goto's are kind of ugly, but this streamlines the normal case of having
1314 * it in the page cache, and handles the special cases reasonably without
1315 * having a lot of duplicated code.
1317 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1320 struct file
*file
= vma
->vm_file
;
1321 struct address_space
*mapping
= file
->f_mapping
;
1322 struct file_ra_state
*ra
= &file
->f_ra
;
1323 struct inode
*inode
= mapping
->host
;
1326 int did_readaround
= 0;
1329 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1330 if (vmf
->pgoff
>= size
)
1331 return VM_FAULT_SIGBUS
;
1333 /* If we don't want any read-ahead, don't bother */
1334 if (VM_RandomReadHint(vma
))
1335 goto no_cached_page
;
1338 * Do we have something in the page cache already?
1341 page
= find_lock_page(mapping
, vmf
->pgoff
);
1343 * For sequential accesses, we use the generic readahead logic.
1345 if (VM_SequentialReadHint(vma
)) {
1347 page_cache_sync_readahead(mapping
, ra
, file
,
1349 page
= find_lock_page(mapping
, vmf
->pgoff
);
1351 goto no_cached_page
;
1353 if (PageReadahead(page
)) {
1354 page_cache_async_readahead(mapping
, ra
, file
, page
,
1360 unsigned long ra_pages
;
1365 * Do we miss much more than hit in this file? If so,
1366 * stop bothering with read-ahead. It will only hurt.
1368 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1369 goto no_cached_page
;
1372 * To keep the pgmajfault counter straight, we need to
1373 * check did_readaround, as this is an inner loop.
1375 if (!did_readaround
) {
1376 ret
= VM_FAULT_MAJOR
;
1377 count_vm_event(PGMAJFAULT
);
1380 ra_pages
= max_sane_readahead(file
->f_ra
.ra_pages
);
1384 if (vmf
->pgoff
> ra_pages
/ 2)
1385 start
= vmf
->pgoff
- ra_pages
/ 2;
1386 do_page_cache_readahead(mapping
, file
, start
, ra_pages
);
1388 page
= find_lock_page(mapping
, vmf
->pgoff
);
1390 goto no_cached_page
;
1393 if (!did_readaround
)
1397 * We have a locked page in the page cache, now we need to check
1398 * that it's up-to-date. If not, it is going to be due to an error.
1400 if (unlikely(!PageUptodate(page
)))
1401 goto page_not_uptodate
;
1403 /* Must recheck i_size under page lock */
1404 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1405 if (unlikely(vmf
->pgoff
>= size
)) {
1407 page_cache_release(page
);
1408 return VM_FAULT_SIGBUS
;
1412 * Found the page and have a reference on it.
1414 mark_page_accessed(page
);
1415 ra
->prev_pos
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
1417 return ret
| VM_FAULT_LOCKED
;
1421 * We're only likely to ever get here if MADV_RANDOM is in
1424 error
= page_cache_read(file
, vmf
->pgoff
);
1427 * The page we want has now been added to the page cache.
1428 * In the unlikely event that someone removed it in the
1429 * meantime, we'll just come back here and read it again.
1435 * An error return from page_cache_read can result if the
1436 * system is low on memory, or a problem occurs while trying
1439 if (error
== -ENOMEM
)
1440 return VM_FAULT_OOM
;
1441 return VM_FAULT_SIGBUS
;
1445 if (!did_readaround
) {
1446 ret
= VM_FAULT_MAJOR
;
1447 count_vm_event(PGMAJFAULT
);
1451 * Umm, take care of errors if the page isn't up-to-date.
1452 * Try to re-read it _once_. We do this synchronously,
1453 * because there really aren't any performance issues here
1454 * and we need to check for errors.
1456 ClearPageError(page
);
1457 error
= mapping
->a_ops
->readpage(file
, page
);
1458 page_cache_release(page
);
1460 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1463 /* Things didn't work out. Return zero to tell the mm layer so. */
1464 shrink_readahead_size_eio(file
, ra
);
1465 return VM_FAULT_SIGBUS
;
1467 EXPORT_SYMBOL(filemap_fault
);
1469 struct vm_operations_struct generic_file_vm_ops
= {
1470 .fault
= filemap_fault
,
1473 /* This is used for a general mmap of a disk file */
1475 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1477 struct address_space
*mapping
= file
->f_mapping
;
1479 if (!mapping
->a_ops
->readpage
)
1481 file_accessed(file
);
1482 vma
->vm_ops
= &generic_file_vm_ops
;
1483 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1488 * This is for filesystems which do not implement ->writepage.
1490 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1492 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1494 return generic_file_mmap(file
, vma
);
1497 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1501 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1505 #endif /* CONFIG_MMU */
1507 EXPORT_SYMBOL(generic_file_mmap
);
1508 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1510 static struct page
*__read_cache_page(struct address_space
*mapping
,
1512 int (*filler
)(void *,struct page
*),
1518 page
= find_get_page(mapping
, index
);
1520 page
= page_cache_alloc_cold(mapping
);
1522 return ERR_PTR(-ENOMEM
);
1523 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1524 if (unlikely(err
)) {
1525 page_cache_release(page
);
1528 /* Presumably ENOMEM for radix tree node */
1529 return ERR_PTR(err
);
1531 err
= filler(data
, page
);
1533 page_cache_release(page
);
1534 page
= ERR_PTR(err
);
1541 * Same as read_cache_page, but don't wait for page to become unlocked
1542 * after submitting it to the filler.
1544 struct page
*read_cache_page_async(struct address_space
*mapping
,
1546 int (*filler
)(void *,struct page
*),
1553 page
= __read_cache_page(mapping
, index
, filler
, data
);
1556 if (PageUptodate(page
))
1560 if (!page
->mapping
) {
1562 page_cache_release(page
);
1565 if (PageUptodate(page
)) {
1569 err
= filler(data
, page
);
1571 page_cache_release(page
);
1572 return ERR_PTR(err
);
1575 mark_page_accessed(page
);
1578 EXPORT_SYMBOL(read_cache_page_async
);
1581 * read_cache_page - read into page cache, fill it if needed
1582 * @mapping: the page's address_space
1583 * @index: the page index
1584 * @filler: function to perform the read
1585 * @data: destination for read data
1587 * Read into the page cache. If a page already exists, and PageUptodate() is
1588 * not set, try to fill the page then wait for it to become unlocked.
1590 * If the page does not get brought uptodate, return -EIO.
1592 struct page
*read_cache_page(struct address_space
*mapping
,
1594 int (*filler
)(void *,struct page
*),
1599 page
= read_cache_page_async(mapping
, index
, filler
, data
);
1602 wait_on_page_locked(page
);
1603 if (!PageUptodate(page
)) {
1604 page_cache_release(page
);
1605 page
= ERR_PTR(-EIO
);
1610 EXPORT_SYMBOL(read_cache_page
);
1613 * The logic we want is
1615 * if suid or (sgid and xgrp)
1618 int should_remove_suid(struct dentry
*dentry
)
1620 mode_t mode
= dentry
->d_inode
->i_mode
;
1623 /* suid always must be killed */
1624 if (unlikely(mode
& S_ISUID
))
1625 kill
= ATTR_KILL_SUID
;
1628 * sgid without any exec bits is just a mandatory locking mark; leave
1629 * it alone. If some exec bits are set, it's a real sgid; kill it.
1631 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1632 kill
|= ATTR_KILL_SGID
;
1634 if (unlikely(kill
&& !capable(CAP_FSETID
)))
1639 EXPORT_SYMBOL(should_remove_suid
);
1641 int __remove_suid(struct dentry
*dentry
, int kill
)
1643 struct iattr newattrs
;
1645 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1646 return notify_change(dentry
, &newattrs
);
1649 int remove_suid(struct dentry
*dentry
)
1651 int killsuid
= should_remove_suid(dentry
);
1652 int killpriv
= security_inode_need_killpriv(dentry
);
1658 error
= security_inode_killpriv(dentry
);
1659 if (!error
&& killsuid
)
1660 error
= __remove_suid(dentry
, killsuid
);
1664 EXPORT_SYMBOL(remove_suid
);
1666 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1667 const struct iovec
*iov
, size_t base
, size_t bytes
)
1669 size_t copied
= 0, left
= 0;
1672 char __user
*buf
= iov
->iov_base
+ base
;
1673 int copy
= min(bytes
, iov
->iov_len
- base
);
1676 left
= __copy_from_user_inatomic_nocache(vaddr
, buf
, copy
);
1685 return copied
- left
;
1689 * Copy as much as we can into the page and return the number of bytes which
1690 * were sucessfully copied. If a fault is encountered then return the number of
1691 * bytes which were copied.
1693 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
1694 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1699 BUG_ON(!in_atomic());
1700 kaddr
= kmap_atomic(page
, KM_USER0
);
1701 if (likely(i
->nr_segs
== 1)) {
1703 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1704 left
= __copy_from_user_inatomic_nocache(kaddr
+ offset
,
1706 copied
= bytes
- left
;
1708 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1709 i
->iov
, i
->iov_offset
, bytes
);
1711 kunmap_atomic(kaddr
, KM_USER0
);
1715 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
1718 * This has the same sideeffects and return value as
1719 * iov_iter_copy_from_user_atomic().
1720 * The difference is that it attempts to resolve faults.
1721 * Page must not be locked.
1723 size_t iov_iter_copy_from_user(struct page
*page
,
1724 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1730 if (likely(i
->nr_segs
== 1)) {
1732 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1733 left
= __copy_from_user_nocache(kaddr
+ offset
, buf
, bytes
);
1734 copied
= bytes
- left
;
1736 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1737 i
->iov
, i
->iov_offset
, bytes
);
1742 EXPORT_SYMBOL(iov_iter_copy_from_user
);
1744 static void __iov_iter_advance_iov(struct iov_iter
*i
, size_t bytes
)
1746 if (likely(i
->nr_segs
== 1)) {
1747 i
->iov_offset
+= bytes
;
1749 const struct iovec
*iov
= i
->iov
;
1750 size_t base
= i
->iov_offset
;
1753 * The !iov->iov_len check ensures we skip over unlikely
1754 * zero-length segments.
1756 while (bytes
|| !iov
->iov_len
) {
1757 int copy
= min(bytes
, iov
->iov_len
- base
);
1761 if (iov
->iov_len
== base
) {
1767 i
->iov_offset
= base
;
1771 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
1773 BUG_ON(i
->count
< bytes
);
1775 __iov_iter_advance_iov(i
, bytes
);
1778 EXPORT_SYMBOL(iov_iter_advance
);
1781 * Fault in the first iovec of the given iov_iter, to a maximum length
1782 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1783 * accessed (ie. because it is an invalid address).
1785 * writev-intensive code may want this to prefault several iovecs -- that
1786 * would be possible (callers must not rely on the fact that _only_ the
1787 * first iovec will be faulted with the current implementation).
1789 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
1791 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1792 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
1793 return fault_in_pages_readable(buf
, bytes
);
1795 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
1798 * Return the count of just the current iov_iter segment.
1800 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
1802 const struct iovec
*iov
= i
->iov
;
1803 if (i
->nr_segs
== 1)
1806 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
1808 EXPORT_SYMBOL(iov_iter_single_seg_count
);
1811 * Performs necessary checks before doing a write
1813 * Can adjust writing position or amount of bytes to write.
1814 * Returns appropriate error code that caller should return or
1815 * zero in case that write should be allowed.
1817 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
1819 struct inode
*inode
= file
->f_mapping
->host
;
1820 unsigned long limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1822 if (unlikely(*pos
< 0))
1826 /* FIXME: this is for backwards compatibility with 2.4 */
1827 if (file
->f_flags
& O_APPEND
)
1828 *pos
= i_size_read(inode
);
1830 if (limit
!= RLIM_INFINITY
) {
1831 if (*pos
>= limit
) {
1832 send_sig(SIGXFSZ
, current
, 0);
1835 if (*count
> limit
- (typeof(limit
))*pos
) {
1836 *count
= limit
- (typeof(limit
))*pos
;
1844 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
1845 !(file
->f_flags
& O_LARGEFILE
))) {
1846 if (*pos
>= MAX_NON_LFS
) {
1849 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
1850 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
1855 * Are we about to exceed the fs block limit ?
1857 * If we have written data it becomes a short write. If we have
1858 * exceeded without writing data we send a signal and return EFBIG.
1859 * Linus frestrict idea will clean these up nicely..
1861 if (likely(!isblk
)) {
1862 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
1863 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
1866 /* zero-length writes at ->s_maxbytes are OK */
1869 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
1870 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
1874 if (bdev_read_only(I_BDEV(inode
)))
1876 isize
= i_size_read(inode
);
1877 if (*pos
>= isize
) {
1878 if (*count
|| *pos
> isize
)
1882 if (*pos
+ *count
> isize
)
1883 *count
= isize
- *pos
;
1890 EXPORT_SYMBOL(generic_write_checks
);
1892 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
1893 loff_t pos
, unsigned len
, unsigned flags
,
1894 struct page
**pagep
, void **fsdata
)
1896 const struct address_space_operations
*aops
= mapping
->a_ops
;
1898 if (aops
->write_begin
) {
1899 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
1903 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1904 unsigned offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1905 struct inode
*inode
= mapping
->host
;
1908 page
= __grab_cache_page(mapping
, index
);
1913 if (flags
& AOP_FLAG_UNINTERRUPTIBLE
&& !PageUptodate(page
)) {
1915 * There is no way to resolve a short write situation
1916 * for a !Uptodate page (except by double copying in
1917 * the caller done by generic_perform_write_2copy).
1919 * Instead, we have to bring it uptodate here.
1921 ret
= aops
->readpage(file
, page
);
1922 page_cache_release(page
);
1924 if (ret
== AOP_TRUNCATED_PAGE
)
1931 ret
= aops
->prepare_write(file
, page
, offset
, offset
+len
);
1934 page_cache_release(page
);
1935 if (pos
+ len
> inode
->i_size
)
1936 vmtruncate(inode
, inode
->i_size
);
1941 EXPORT_SYMBOL(pagecache_write_begin
);
1943 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
1944 loff_t pos
, unsigned len
, unsigned copied
,
1945 struct page
*page
, void *fsdata
)
1947 const struct address_space_operations
*aops
= mapping
->a_ops
;
1950 if (aops
->write_end
) {
1951 mark_page_accessed(page
);
1952 ret
= aops
->write_end(file
, mapping
, pos
, len
, copied
,
1955 unsigned offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1956 struct inode
*inode
= mapping
->host
;
1958 flush_dcache_page(page
);
1959 ret
= aops
->commit_write(file
, page
, offset
, offset
+len
);
1961 mark_page_accessed(page
);
1962 page_cache_release(page
);
1965 if (pos
+ len
> inode
->i_size
)
1966 vmtruncate(inode
, inode
->i_size
);
1968 ret
= min_t(size_t, copied
, ret
);
1975 EXPORT_SYMBOL(pagecache_write_end
);
1978 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
1979 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
1980 size_t count
, size_t ocount
)
1982 struct file
*file
= iocb
->ki_filp
;
1983 struct address_space
*mapping
= file
->f_mapping
;
1984 struct inode
*inode
= mapping
->host
;
1987 if (count
!= ocount
)
1988 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
1990 written
= generic_file_direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
1992 loff_t end
= pos
+ written
;
1993 if (end
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
1994 i_size_write(inode
, end
);
1995 mark_inode_dirty(inode
);
2001 * Sync the fs metadata but not the minor inode changes and
2002 * of course not the data as we did direct DMA for the IO.
2003 * i_mutex is held, which protects generic_osync_inode() from
2004 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2006 if ((written
>= 0 || written
== -EIOCBQUEUED
) &&
2007 ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2008 int err
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
2014 EXPORT_SYMBOL(generic_file_direct_write
);
2017 * Find or create a page at the given pagecache position. Return the locked
2018 * page. This function is specifically for buffered writes.
2020 struct page
*__grab_cache_page(struct address_space
*mapping
, pgoff_t index
)
2025 page
= find_lock_page(mapping
, index
);
2029 page
= page_cache_alloc(mapping
);
2032 status
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
2033 if (unlikely(status
)) {
2034 page_cache_release(page
);
2035 if (status
== -EEXIST
)
2041 EXPORT_SYMBOL(__grab_cache_page
);
2043 static ssize_t
generic_perform_write_2copy(struct file
*file
,
2044 struct iov_iter
*i
, loff_t pos
)
2046 struct address_space
*mapping
= file
->f_mapping
;
2047 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2048 struct inode
*inode
= mapping
->host
;
2050 ssize_t written
= 0;
2053 struct page
*src_page
;
2055 pgoff_t index
; /* Pagecache index for current page */
2056 unsigned long offset
; /* Offset into pagecache page */
2057 unsigned long bytes
; /* Bytes to write to page */
2058 size_t copied
; /* Bytes copied from user */
2060 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2061 index
= pos
>> PAGE_CACHE_SHIFT
;
2062 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2066 * a non-NULL src_page indicates that we're doing the
2067 * copy via get_user_pages and kmap.
2072 * Bring in the user page that we will copy from _first_.
2073 * Otherwise there's a nasty deadlock on copying from the
2074 * same page as we're writing to, without it being marked
2077 * Not only is this an optimisation, but it is also required
2078 * to check that the address is actually valid, when atomic
2079 * usercopies are used, below.
2081 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2086 page
= __grab_cache_page(mapping
, index
);
2093 * non-uptodate pages cannot cope with short copies, and we
2094 * cannot take a pagefault with the destination page locked.
2095 * So pin the source page to copy it.
2097 if (!PageUptodate(page
) && !segment_eq(get_fs(), KERNEL_DS
)) {
2100 src_page
= alloc_page(GFP_KERNEL
);
2102 page_cache_release(page
);
2108 * Cannot get_user_pages with a page locked for the
2109 * same reason as we can't take a page fault with a
2110 * page locked (as explained below).
2112 copied
= iov_iter_copy_from_user(src_page
, i
,
2114 if (unlikely(copied
== 0)) {
2116 page_cache_release(page
);
2117 page_cache_release(src_page
);
2124 * Can't handle the page going uptodate here, because
2125 * that means we would use non-atomic usercopies, which
2126 * zero out the tail of the page, which can cause
2127 * zeroes to become transiently visible. We could just
2128 * use a non-zeroing copy, but the APIs aren't too
2131 if (unlikely(!page
->mapping
|| PageUptodate(page
))) {
2133 page_cache_release(page
);
2134 page_cache_release(src_page
);
2139 status
= a_ops
->prepare_write(file
, page
, offset
, offset
+bytes
);
2140 if (unlikely(status
))
2141 goto fs_write_aop_error
;
2145 * Must not enter the pagefault handler here, because
2146 * we hold the page lock, so we might recursively
2147 * deadlock on the same lock, or get an ABBA deadlock
2148 * against a different lock, or against the mmap_sem
2149 * (which nests outside the page lock). So increment
2150 * preempt count, and use _atomic usercopies.
2152 * The page is uptodate so we are OK to encounter a
2153 * short copy: if unmodified parts of the page are
2154 * marked dirty and written out to disk, it doesn't
2157 pagefault_disable();
2158 copied
= iov_iter_copy_from_user_atomic(page
, i
,
2163 src
= kmap_atomic(src_page
, KM_USER0
);
2164 dst
= kmap_atomic(page
, KM_USER1
);
2165 memcpy(dst
+ offset
, src
+ offset
, bytes
);
2166 kunmap_atomic(dst
, KM_USER1
);
2167 kunmap_atomic(src
, KM_USER0
);
2170 flush_dcache_page(page
);
2172 status
= a_ops
->commit_write(file
, page
, offset
, offset
+bytes
);
2173 if (unlikely(status
< 0))
2174 goto fs_write_aop_error
;
2175 if (unlikely(status
> 0)) /* filesystem did partial write */
2176 copied
= min_t(size_t, copied
, status
);
2179 mark_page_accessed(page
);
2180 page_cache_release(page
);
2182 page_cache_release(src_page
);
2184 iov_iter_advance(i
, copied
);
2188 balance_dirty_pages_ratelimited(mapping
);
2194 page_cache_release(page
);
2196 page_cache_release(src_page
);
2199 * prepare_write() may have instantiated a few blocks
2200 * outside i_size. Trim these off again. Don't need
2201 * i_size_read because we hold i_mutex.
2203 if (pos
+ bytes
> inode
->i_size
)
2204 vmtruncate(inode
, inode
->i_size
);
2206 } while (iov_iter_count(i
));
2208 return written
? written
: status
;
2211 static ssize_t
generic_perform_write(struct file
*file
,
2212 struct iov_iter
*i
, loff_t pos
)
2214 struct address_space
*mapping
= file
->f_mapping
;
2215 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2217 ssize_t written
= 0;
2218 unsigned int flags
= 0;
2221 * Copies from kernel address space cannot fail (NFSD is a big user).
2223 if (segment_eq(get_fs(), KERNEL_DS
))
2224 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2228 pgoff_t index
; /* Pagecache index for current page */
2229 unsigned long offset
; /* Offset into pagecache page */
2230 unsigned long bytes
; /* Bytes to write to page */
2231 size_t copied
; /* Bytes copied from user */
2234 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2235 index
= pos
>> PAGE_CACHE_SHIFT
;
2236 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2242 * Bring in the user page that we will copy from _first_.
2243 * Otherwise there's a nasty deadlock on copying from the
2244 * same page as we're writing to, without it being marked
2247 * Not only is this an optimisation, but it is also required
2248 * to check that the address is actually valid, when atomic
2249 * usercopies are used, below.
2251 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2256 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2258 if (unlikely(status
))
2261 pagefault_disable();
2262 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2264 flush_dcache_page(page
);
2266 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2268 if (unlikely(status
< 0))
2274 iov_iter_advance(i
, copied
);
2275 if (unlikely(copied
== 0)) {
2277 * If we were unable to copy any data at all, we must
2278 * fall back to a single segment length write.
2280 * If we didn't fallback here, we could livelock
2281 * because not all segments in the iov can be copied at
2282 * once without a pagefault.
2284 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2285 iov_iter_single_seg_count(i
));
2291 balance_dirty_pages_ratelimited(mapping
);
2293 } while (iov_iter_count(i
));
2295 return written
? written
: status
;
2299 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2300 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2301 size_t count
, ssize_t written
)
2303 struct file
*file
= iocb
->ki_filp
;
2304 struct address_space
*mapping
= file
->f_mapping
;
2305 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2306 struct inode
*inode
= mapping
->host
;
2310 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2311 if (a_ops
->write_begin
)
2312 status
= generic_perform_write(file
, &i
, pos
);
2314 status
= generic_perform_write_2copy(file
, &i
, pos
);
2316 if (likely(status
>= 0)) {
2318 *ppos
= pos
+ status
;
2321 * For now, when the user asks for O_SYNC, we'll actually give
2324 if (unlikely((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2325 if (!a_ops
->writepage
|| !is_sync_kiocb(iocb
))
2326 status
= generic_osync_inode(inode
, mapping
,
2327 OSYNC_METADATA
|OSYNC_DATA
);
2332 * If we get here for O_DIRECT writes then we must have fallen through
2333 * to buffered writes (block instantiation inside i_size). So we sync
2334 * the file data here, to try to honour O_DIRECT expectations.
2336 if (unlikely(file
->f_flags
& O_DIRECT
) && written
)
2337 status
= filemap_write_and_wait(mapping
);
2339 return written
? written
: status
;
2341 EXPORT_SYMBOL(generic_file_buffered_write
);
2344 __generic_file_aio_write_nolock(struct kiocb
*iocb
, const struct iovec
*iov
,
2345 unsigned long nr_segs
, loff_t
*ppos
)
2347 struct file
*file
= iocb
->ki_filp
;
2348 struct address_space
* mapping
= file
->f_mapping
;
2349 size_t ocount
; /* original count */
2350 size_t count
; /* after file limit checks */
2351 struct inode
*inode
= mapping
->host
;
2357 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2364 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2366 /* We can write back this queue in page reclaim */
2367 current
->backing_dev_info
= mapping
->backing_dev_info
;
2370 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2377 err
= remove_suid(file
->f_path
.dentry
);
2381 file_update_time(file
);
2383 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2384 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2386 ssize_t written_buffered
;
2388 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2389 ppos
, count
, ocount
);
2390 if (written
< 0 || written
== count
)
2393 * direct-io write to a hole: fall through to buffered I/O
2394 * for completing the rest of the request.
2398 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2399 nr_segs
, pos
, ppos
, count
,
2402 * If generic_file_buffered_write() retuned a synchronous error
2403 * then we want to return the number of bytes which were
2404 * direct-written, or the error code if that was zero. Note
2405 * that this differs from normal direct-io semantics, which
2406 * will return -EFOO even if some bytes were written.
2408 if (written_buffered
< 0) {
2409 err
= written_buffered
;
2414 * We need to ensure that the page cache pages are written to
2415 * disk and invalidated to preserve the expected O_DIRECT
2418 endbyte
= pos
+ written_buffered
- written
- 1;
2419 err
= do_sync_mapping_range(file
->f_mapping
, pos
, endbyte
,
2420 SYNC_FILE_RANGE_WAIT_BEFORE
|
2421 SYNC_FILE_RANGE_WRITE
|
2422 SYNC_FILE_RANGE_WAIT_AFTER
);
2424 written
= written_buffered
;
2425 invalidate_mapping_pages(mapping
,
2426 pos
>> PAGE_CACHE_SHIFT
,
2427 endbyte
>> PAGE_CACHE_SHIFT
);
2430 * We don't know how much we wrote, so just return
2431 * the number of bytes which were direct-written
2435 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2436 pos
, ppos
, count
, written
);
2439 current
->backing_dev_info
= NULL
;
2440 return written
? written
: err
;
2443 ssize_t
generic_file_aio_write_nolock(struct kiocb
*iocb
,
2444 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
2446 struct file
*file
= iocb
->ki_filp
;
2447 struct address_space
*mapping
= file
->f_mapping
;
2448 struct inode
*inode
= mapping
->host
;
2451 BUG_ON(iocb
->ki_pos
!= pos
);
2453 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
2456 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2459 err
= sync_page_range_nolock(inode
, mapping
, pos
, ret
);
2465 EXPORT_SYMBOL(generic_file_aio_write_nolock
);
2467 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2468 unsigned long nr_segs
, loff_t pos
)
2470 struct file
*file
= iocb
->ki_filp
;
2471 struct address_space
*mapping
= file
->f_mapping
;
2472 struct inode
*inode
= mapping
->host
;
2475 BUG_ON(iocb
->ki_pos
!= pos
);
2477 mutex_lock(&inode
->i_mutex
);
2478 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
2480 mutex_unlock(&inode
->i_mutex
);
2482 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2485 err
= sync_page_range(inode
, mapping
, pos
, ret
);
2491 EXPORT_SYMBOL(generic_file_aio_write
);
2494 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2495 * went wrong during pagecache shootdown.
2498 generic_file_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
2499 loff_t offset
, unsigned long nr_segs
)
2501 struct file
*file
= iocb
->ki_filp
;
2502 struct address_space
*mapping
= file
->f_mapping
;
2505 pgoff_t end
= 0; /* silence gcc */
2508 * If it's a write, unmap all mmappings of the file up-front. This
2509 * will cause any pte dirty bits to be propagated into the pageframes
2510 * for the subsequent filemap_write_and_wait().
2513 write_len
= iov_length(iov
, nr_segs
);
2514 end
= (offset
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2515 if (mapping_mapped(mapping
))
2516 unmap_mapping_range(mapping
, offset
, write_len
, 0);
2519 retval
= filemap_write_and_wait(mapping
);
2524 * After a write we want buffered reads to be sure to go to disk to get
2525 * the new data. We invalidate clean cached page from the region we're
2526 * about to write. We do this *before* the write so that we can return
2527 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2529 if (rw
== WRITE
&& mapping
->nrpages
) {
2530 retval
= invalidate_inode_pages2_range(mapping
,
2531 offset
>> PAGE_CACHE_SHIFT
, end
);
2536 retval
= mapping
->a_ops
->direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2539 * Finally, try again to invalidate clean pages which might have been
2540 * cached by non-direct readahead, or faulted in by get_user_pages()
2541 * if the source of the write was an mmap'ed region of the file
2542 * we're writing. Either one is a pretty crazy thing to do,
2543 * so we don't support it 100%. If this invalidation
2544 * fails, tough, the write still worked...
2546 if (rw
== WRITE
&& mapping
->nrpages
) {
2547 invalidate_inode_pages2_range(mapping
, offset
>> PAGE_CACHE_SHIFT
, end
);
2554 * try_to_release_page() - release old fs-specific metadata on a page
2556 * @page: the page which the kernel is trying to free
2557 * @gfp_mask: memory allocation flags (and I/O mode)
2559 * The address_space is to try to release any data against the page
2560 * (presumably at page->private). If the release was successful, return `1'.
2561 * Otherwise return zero.
2563 * The @gfp_mask argument specifies whether I/O may be performed to release
2564 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2566 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2568 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2570 struct address_space
* const mapping
= page
->mapping
;
2572 BUG_ON(!PageLocked(page
));
2573 if (PageWriteback(page
))
2576 if (mapping
&& mapping
->a_ops
->releasepage
)
2577 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2578 return try_to_free_buffers(page
);
2581 EXPORT_SYMBOL(try_to_release_page
);