Merge branch 'for-2.6.24' of git://git.kernel.org/pub/scm/linux/kernel/git/galak...
[pv_ops_mirror.git] / kernel / sched.c
blob67d9d1799d864ef8e6680ce4c07deae68f5beb8a
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/kthread.h>
56 #include <linux/seq_file.h>
57 #include <linux/sysctl.h>
58 #include <linux/syscalls.h>
59 #include <linux/times.h>
60 #include <linux/tsacct_kern.h>
61 #include <linux/kprobes.h>
62 #include <linux/delayacct.h>
63 #include <linux/reciprocal_div.h>
64 #include <linux/unistd.h>
65 #include <linux/pagemap.h>
67 #include <asm/tlb.h>
68 #include <asm/irq_regs.h>
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
75 unsigned long long __attribute__((weak)) sched_clock(void)
77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99 * Some helpers for converting nanosecond timing to jiffy resolution
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108 * These are the 'tuning knobs' of the scheduler:
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
113 #define DEF_TIMESLICE (100 * HZ / 1000)
115 #ifdef CONFIG_SMP
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134 #endif
136 static inline int rt_policy(int policy)
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
143 static inline int task_has_rt_policy(struct task_struct *p)
145 return rt_policy(p->policy);
149 * This is the priority-queue data structure of the RT scheduling class:
151 struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
156 #ifdef CONFIG_FAIR_GROUP_SCHED
158 #include <linux/cgroup.h>
160 struct cfs_rq;
162 /* task group related information */
163 struct task_group {
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166 #endif
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
171 unsigned long shares;
172 /* spinlock to serialize modification to shares */
173 spinlock_t lock;
174 struct rcu_head rcu;
177 /* Default task group's sched entity on each cpu */
178 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
179 /* Default task group's cfs_rq on each cpu */
180 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
182 static struct sched_entity *init_sched_entity_p[NR_CPUS];
183 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
185 /* Default task group.
186 * Every task in system belong to this group at bootup.
188 struct task_group init_task_group = {
189 .se = init_sched_entity_p,
190 .cfs_rq = init_cfs_rq_p,
193 #ifdef CONFIG_FAIR_USER_SCHED
194 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
195 #else
196 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
197 #endif
199 static int init_task_group_load = INIT_TASK_GRP_LOAD;
201 /* return group to which a task belongs */
202 static inline struct task_group *task_group(struct task_struct *p)
204 struct task_group *tg;
206 #ifdef CONFIG_FAIR_USER_SCHED
207 tg = p->user->tg;
208 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
209 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
210 struct task_group, css);
211 #else
212 tg = &init_task_group;
213 #endif
214 return tg;
217 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
218 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
220 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
221 p->se.parent = task_group(p)->se[cpu];
224 #else
226 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
228 #endif /* CONFIG_FAIR_GROUP_SCHED */
230 /* CFS-related fields in a runqueue */
231 struct cfs_rq {
232 struct load_weight load;
233 unsigned long nr_running;
235 u64 exec_clock;
236 u64 min_vruntime;
238 struct rb_root tasks_timeline;
239 struct rb_node *rb_leftmost;
240 struct rb_node *rb_load_balance_curr;
241 /* 'curr' points to currently running entity on this cfs_rq.
242 * It is set to NULL otherwise (i.e when none are currently running).
244 struct sched_entity *curr;
246 unsigned long nr_spread_over;
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
252 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
253 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
254 * (like users, containers etc.)
256 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
257 * list is used during load balance.
259 struct list_head leaf_cfs_rq_list;
260 struct task_group *tg; /* group that "owns" this runqueue */
261 #endif
264 /* Real-Time classes' related field in a runqueue: */
265 struct rt_rq {
266 struct rt_prio_array active;
267 int rt_load_balance_idx;
268 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
272 * This is the main, per-CPU runqueue data structure.
274 * Locking rule: those places that want to lock multiple runqueues
275 * (such as the load balancing or the thread migration code), lock
276 * acquire operations must be ordered by ascending &runqueue.
278 struct rq {
279 /* runqueue lock: */
280 spinlock_t lock;
283 * nr_running and cpu_load should be in the same cacheline because
284 * remote CPUs use both these fields when doing load calculation.
286 unsigned long nr_running;
287 #define CPU_LOAD_IDX_MAX 5
288 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
289 unsigned char idle_at_tick;
290 #ifdef CONFIG_NO_HZ
291 unsigned char in_nohz_recently;
292 #endif
293 /* capture load from *all* tasks on this cpu: */
294 struct load_weight load;
295 unsigned long nr_load_updates;
296 u64 nr_switches;
298 struct cfs_rq cfs;
299 #ifdef CONFIG_FAIR_GROUP_SCHED
300 /* list of leaf cfs_rq on this cpu: */
301 struct list_head leaf_cfs_rq_list;
302 #endif
303 struct rt_rq rt;
306 * This is part of a global counter where only the total sum
307 * over all CPUs matters. A task can increase this counter on
308 * one CPU and if it got migrated afterwards it may decrease
309 * it on another CPU. Always updated under the runqueue lock:
311 unsigned long nr_uninterruptible;
313 struct task_struct *curr, *idle;
314 unsigned long next_balance;
315 struct mm_struct *prev_mm;
317 u64 clock, prev_clock_raw;
318 s64 clock_max_delta;
320 unsigned int clock_warps, clock_overflows;
321 u64 idle_clock;
322 unsigned int clock_deep_idle_events;
323 u64 tick_timestamp;
325 atomic_t nr_iowait;
327 #ifdef CONFIG_SMP
328 struct sched_domain *sd;
330 /* For active balancing */
331 int active_balance;
332 int push_cpu;
333 /* cpu of this runqueue: */
334 int cpu;
336 struct task_struct *migration_thread;
337 struct list_head migration_queue;
338 #endif
340 #ifdef CONFIG_SCHEDSTATS
341 /* latency stats */
342 struct sched_info rq_sched_info;
344 /* sys_sched_yield() stats */
345 unsigned int yld_exp_empty;
346 unsigned int yld_act_empty;
347 unsigned int yld_both_empty;
348 unsigned int yld_count;
350 /* schedule() stats */
351 unsigned int sched_switch;
352 unsigned int sched_count;
353 unsigned int sched_goidle;
355 /* try_to_wake_up() stats */
356 unsigned int ttwu_count;
357 unsigned int ttwu_local;
359 /* BKL stats */
360 unsigned int bkl_count;
361 #endif
362 struct lock_class_key rq_lock_key;
365 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
366 static DEFINE_MUTEX(sched_hotcpu_mutex);
368 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
370 rq->curr->sched_class->check_preempt_curr(rq, p);
373 static inline int cpu_of(struct rq *rq)
375 #ifdef CONFIG_SMP
376 return rq->cpu;
377 #else
378 return 0;
379 #endif
383 * Update the per-runqueue clock, as finegrained as the platform can give
384 * us, but without assuming monotonicity, etc.:
386 static void __update_rq_clock(struct rq *rq)
388 u64 prev_raw = rq->prev_clock_raw;
389 u64 now = sched_clock();
390 s64 delta = now - prev_raw;
391 u64 clock = rq->clock;
393 #ifdef CONFIG_SCHED_DEBUG
394 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
395 #endif
397 * Protect against sched_clock() occasionally going backwards:
399 if (unlikely(delta < 0)) {
400 clock++;
401 rq->clock_warps++;
402 } else {
404 * Catch too large forward jumps too:
406 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
407 if (clock < rq->tick_timestamp + TICK_NSEC)
408 clock = rq->tick_timestamp + TICK_NSEC;
409 else
410 clock++;
411 rq->clock_overflows++;
412 } else {
413 if (unlikely(delta > rq->clock_max_delta))
414 rq->clock_max_delta = delta;
415 clock += delta;
419 rq->prev_clock_raw = now;
420 rq->clock = clock;
423 static void update_rq_clock(struct rq *rq)
425 if (likely(smp_processor_id() == cpu_of(rq)))
426 __update_rq_clock(rq);
430 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431 * See detach_destroy_domains: synchronize_sched for details.
433 * The domain tree of any CPU may only be accessed from within
434 * preempt-disabled sections.
436 #define for_each_domain(cpu, __sd) \
437 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
439 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
440 #define this_rq() (&__get_cpu_var(runqueues))
441 #define task_rq(p) cpu_rq(task_cpu(p))
442 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
445 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
447 #ifdef CONFIG_SCHED_DEBUG
448 # define const_debug __read_mostly
449 #else
450 # define const_debug static const
451 #endif
454 * Debugging: various feature bits
456 enum {
457 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
458 SCHED_FEAT_WAKEUP_PREEMPT = 2,
459 SCHED_FEAT_START_DEBIT = 4,
460 SCHED_FEAT_TREE_AVG = 8,
461 SCHED_FEAT_APPROX_AVG = 16,
464 const_debug unsigned int sysctl_sched_features =
465 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
466 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
467 SCHED_FEAT_START_DEBIT * 1 |
468 SCHED_FEAT_TREE_AVG * 0 |
469 SCHED_FEAT_APPROX_AVG * 0;
471 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
474 * Number of tasks to iterate in a single balance run.
475 * Limited because this is done with IRQs disabled.
477 const_debug unsigned int sysctl_sched_nr_migrate = 32;
480 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
481 * clock constructed from sched_clock():
483 unsigned long long cpu_clock(int cpu)
485 unsigned long long now;
486 unsigned long flags;
487 struct rq *rq;
489 local_irq_save(flags);
490 rq = cpu_rq(cpu);
491 update_rq_clock(rq);
492 now = rq->clock;
493 local_irq_restore(flags);
495 return now;
497 EXPORT_SYMBOL_GPL(cpu_clock);
499 #ifndef prepare_arch_switch
500 # define prepare_arch_switch(next) do { } while (0)
501 #endif
502 #ifndef finish_arch_switch
503 # define finish_arch_switch(prev) do { } while (0)
504 #endif
506 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
507 static inline int task_running(struct rq *rq, struct task_struct *p)
509 return rq->curr == p;
512 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
516 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
518 #ifdef CONFIG_DEBUG_SPINLOCK
519 /* this is a valid case when another task releases the spinlock */
520 rq->lock.owner = current;
521 #endif
523 * If we are tracking spinlock dependencies then we have to
524 * fix up the runqueue lock - which gets 'carried over' from
525 * prev into current:
527 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
529 spin_unlock_irq(&rq->lock);
532 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
533 static inline int task_running(struct rq *rq, struct task_struct *p)
535 #ifdef CONFIG_SMP
536 return p->oncpu;
537 #else
538 return rq->curr == p;
539 #endif
542 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
544 #ifdef CONFIG_SMP
546 * We can optimise this out completely for !SMP, because the
547 * SMP rebalancing from interrupt is the only thing that cares
548 * here.
550 next->oncpu = 1;
551 #endif
552 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
553 spin_unlock_irq(&rq->lock);
554 #else
555 spin_unlock(&rq->lock);
556 #endif
559 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
561 #ifdef CONFIG_SMP
563 * After ->oncpu is cleared, the task can be moved to a different CPU.
564 * We must ensure this doesn't happen until the switch is completely
565 * finished.
567 smp_wmb();
568 prev->oncpu = 0;
569 #endif
570 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
571 local_irq_enable();
572 #endif
574 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
577 * __task_rq_lock - lock the runqueue a given task resides on.
578 * Must be called interrupts disabled.
580 static inline struct rq *__task_rq_lock(struct task_struct *p)
581 __acquires(rq->lock)
583 for (;;) {
584 struct rq *rq = task_rq(p);
585 spin_lock(&rq->lock);
586 if (likely(rq == task_rq(p)))
587 return rq;
588 spin_unlock(&rq->lock);
593 * task_rq_lock - lock the runqueue a given task resides on and disable
594 * interrupts. Note the ordering: we can safely lookup the task_rq without
595 * explicitly disabling preemption.
597 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
598 __acquires(rq->lock)
600 struct rq *rq;
602 for (;;) {
603 local_irq_save(*flags);
604 rq = task_rq(p);
605 spin_lock(&rq->lock);
606 if (likely(rq == task_rq(p)))
607 return rq;
608 spin_unlock_irqrestore(&rq->lock, *flags);
612 static void __task_rq_unlock(struct rq *rq)
613 __releases(rq->lock)
615 spin_unlock(&rq->lock);
618 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
619 __releases(rq->lock)
621 spin_unlock_irqrestore(&rq->lock, *flags);
625 * this_rq_lock - lock this runqueue and disable interrupts.
627 static struct rq *this_rq_lock(void)
628 __acquires(rq->lock)
630 struct rq *rq;
632 local_irq_disable();
633 rq = this_rq();
634 spin_lock(&rq->lock);
636 return rq;
640 * We are going deep-idle (irqs are disabled):
642 void sched_clock_idle_sleep_event(void)
644 struct rq *rq = cpu_rq(smp_processor_id());
646 spin_lock(&rq->lock);
647 __update_rq_clock(rq);
648 spin_unlock(&rq->lock);
649 rq->clock_deep_idle_events++;
651 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
654 * We just idled delta nanoseconds (called with irqs disabled):
656 void sched_clock_idle_wakeup_event(u64 delta_ns)
658 struct rq *rq = cpu_rq(smp_processor_id());
659 u64 now = sched_clock();
661 rq->idle_clock += delta_ns;
663 * Override the previous timestamp and ignore all
664 * sched_clock() deltas that occured while we idled,
665 * and use the PM-provided delta_ns to advance the
666 * rq clock:
668 spin_lock(&rq->lock);
669 rq->prev_clock_raw = now;
670 rq->clock += delta_ns;
671 spin_unlock(&rq->lock);
673 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
676 * resched_task - mark a task 'to be rescheduled now'.
678 * On UP this means the setting of the need_resched flag, on SMP it
679 * might also involve a cross-CPU call to trigger the scheduler on
680 * the target CPU.
682 #ifdef CONFIG_SMP
684 #ifndef tsk_is_polling
685 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
686 #endif
688 static void resched_task(struct task_struct *p)
690 int cpu;
692 assert_spin_locked(&task_rq(p)->lock);
694 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
695 return;
697 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
699 cpu = task_cpu(p);
700 if (cpu == smp_processor_id())
701 return;
703 /* NEED_RESCHED must be visible before we test polling */
704 smp_mb();
705 if (!tsk_is_polling(p))
706 smp_send_reschedule(cpu);
709 static void resched_cpu(int cpu)
711 struct rq *rq = cpu_rq(cpu);
712 unsigned long flags;
714 if (!spin_trylock_irqsave(&rq->lock, flags))
715 return;
716 resched_task(cpu_curr(cpu));
717 spin_unlock_irqrestore(&rq->lock, flags);
719 #else
720 static inline void resched_task(struct task_struct *p)
722 assert_spin_locked(&task_rq(p)->lock);
723 set_tsk_need_resched(p);
725 #endif
727 #if BITS_PER_LONG == 32
728 # define WMULT_CONST (~0UL)
729 #else
730 # define WMULT_CONST (1UL << 32)
731 #endif
733 #define WMULT_SHIFT 32
736 * Shift right and round:
738 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
740 static unsigned long
741 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
742 struct load_weight *lw)
744 u64 tmp;
746 if (unlikely(!lw->inv_weight))
747 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
749 tmp = (u64)delta_exec * weight;
751 * Check whether we'd overflow the 64-bit multiplication:
753 if (unlikely(tmp > WMULT_CONST))
754 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
755 WMULT_SHIFT/2);
756 else
757 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
759 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
762 static inline unsigned long
763 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
765 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
768 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
770 lw->weight += inc;
773 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
775 lw->weight -= dec;
779 * To aid in avoiding the subversion of "niceness" due to uneven distribution
780 * of tasks with abnormal "nice" values across CPUs the contribution that
781 * each task makes to its run queue's load is weighted according to its
782 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
783 * scaled version of the new time slice allocation that they receive on time
784 * slice expiry etc.
787 #define WEIGHT_IDLEPRIO 2
788 #define WMULT_IDLEPRIO (1 << 31)
791 * Nice levels are multiplicative, with a gentle 10% change for every
792 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
793 * nice 1, it will get ~10% less CPU time than another CPU-bound task
794 * that remained on nice 0.
796 * The "10% effect" is relative and cumulative: from _any_ nice level,
797 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
798 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
799 * If a task goes up by ~10% and another task goes down by ~10% then
800 * the relative distance between them is ~25%.)
802 static const int prio_to_weight[40] = {
803 /* -20 */ 88761, 71755, 56483, 46273, 36291,
804 /* -15 */ 29154, 23254, 18705, 14949, 11916,
805 /* -10 */ 9548, 7620, 6100, 4904, 3906,
806 /* -5 */ 3121, 2501, 1991, 1586, 1277,
807 /* 0 */ 1024, 820, 655, 526, 423,
808 /* 5 */ 335, 272, 215, 172, 137,
809 /* 10 */ 110, 87, 70, 56, 45,
810 /* 15 */ 36, 29, 23, 18, 15,
814 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
816 * In cases where the weight does not change often, we can use the
817 * precalculated inverse to speed up arithmetics by turning divisions
818 * into multiplications:
820 static const u32 prio_to_wmult[40] = {
821 /* -20 */ 48388, 59856, 76040, 92818, 118348,
822 /* -15 */ 147320, 184698, 229616, 287308, 360437,
823 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
824 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
825 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
826 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
827 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
828 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
831 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
834 * runqueue iterator, to support SMP load-balancing between different
835 * scheduling classes, without having to expose their internal data
836 * structures to the load-balancing proper:
838 struct rq_iterator {
839 void *arg;
840 struct task_struct *(*start)(void *);
841 struct task_struct *(*next)(void *);
844 #ifdef CONFIG_SMP
845 static unsigned long
846 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
847 unsigned long max_load_move, struct sched_domain *sd,
848 enum cpu_idle_type idle, int *all_pinned,
849 int *this_best_prio, struct rq_iterator *iterator);
851 static int
852 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
853 struct sched_domain *sd, enum cpu_idle_type idle,
854 struct rq_iterator *iterator);
855 #endif
857 #ifdef CONFIG_CGROUP_CPUACCT
858 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
859 #else
860 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
861 #endif
863 #include "sched_stats.h"
864 #include "sched_idletask.c"
865 #include "sched_fair.c"
866 #include "sched_rt.c"
867 #ifdef CONFIG_SCHED_DEBUG
868 # include "sched_debug.c"
869 #endif
871 #define sched_class_highest (&rt_sched_class)
874 * Update delta_exec, delta_fair fields for rq.
876 * delta_fair clock advances at a rate inversely proportional to
877 * total load (rq->load.weight) on the runqueue, while
878 * delta_exec advances at the same rate as wall-clock (provided
879 * cpu is not idle).
881 * delta_exec / delta_fair is a measure of the (smoothened) load on this
882 * runqueue over any given interval. This (smoothened) load is used
883 * during load balance.
885 * This function is called /before/ updating rq->load
886 * and when switching tasks.
888 static inline void inc_load(struct rq *rq, const struct task_struct *p)
890 update_load_add(&rq->load, p->se.load.weight);
893 static inline void dec_load(struct rq *rq, const struct task_struct *p)
895 update_load_sub(&rq->load, p->se.load.weight);
898 static void inc_nr_running(struct task_struct *p, struct rq *rq)
900 rq->nr_running++;
901 inc_load(rq, p);
904 static void dec_nr_running(struct task_struct *p, struct rq *rq)
906 rq->nr_running--;
907 dec_load(rq, p);
910 static void set_load_weight(struct task_struct *p)
912 if (task_has_rt_policy(p)) {
913 p->se.load.weight = prio_to_weight[0] * 2;
914 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
915 return;
919 * SCHED_IDLE tasks get minimal weight:
921 if (p->policy == SCHED_IDLE) {
922 p->se.load.weight = WEIGHT_IDLEPRIO;
923 p->se.load.inv_weight = WMULT_IDLEPRIO;
924 return;
927 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
928 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
931 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
933 sched_info_queued(p);
934 p->sched_class->enqueue_task(rq, p, wakeup);
935 p->se.on_rq = 1;
938 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
940 p->sched_class->dequeue_task(rq, p, sleep);
941 p->se.on_rq = 0;
945 * __normal_prio - return the priority that is based on the static prio
947 static inline int __normal_prio(struct task_struct *p)
949 return p->static_prio;
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
959 static inline int normal_prio(struct task_struct *p)
961 int prio;
963 if (task_has_rt_policy(p))
964 prio = MAX_RT_PRIO-1 - p->rt_priority;
965 else
966 prio = __normal_prio(p);
967 return prio;
971 * Calculate the current priority, i.e. the priority
972 * taken into account by the scheduler. This value might
973 * be boosted by RT tasks, or might be boosted by
974 * interactivity modifiers. Will be RT if the task got
975 * RT-boosted. If not then it returns p->normal_prio.
977 static int effective_prio(struct task_struct *p)
979 p->normal_prio = normal_prio(p);
981 * If we are RT tasks or we were boosted to RT priority,
982 * keep the priority unchanged. Otherwise, update priority
983 * to the normal priority:
985 if (!rt_prio(p->prio))
986 return p->normal_prio;
987 return p->prio;
991 * activate_task - move a task to the runqueue.
993 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
995 if (p->state == TASK_UNINTERRUPTIBLE)
996 rq->nr_uninterruptible--;
998 enqueue_task(rq, p, wakeup);
999 inc_nr_running(p, rq);
1003 * deactivate_task - remove a task from the runqueue.
1005 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1007 if (p->state == TASK_UNINTERRUPTIBLE)
1008 rq->nr_uninterruptible++;
1010 dequeue_task(rq, p, sleep);
1011 dec_nr_running(p, rq);
1015 * task_curr - is this task currently executing on a CPU?
1016 * @p: the task in question.
1018 inline int task_curr(const struct task_struct *p)
1020 return cpu_curr(task_cpu(p)) == p;
1023 /* Used instead of source_load when we know the type == 0 */
1024 unsigned long weighted_cpuload(const int cpu)
1026 return cpu_rq(cpu)->load.weight;
1029 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1031 set_task_cfs_rq(p, cpu);
1032 #ifdef CONFIG_SMP
1034 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1035 * successfuly executed on another CPU. We must ensure that updates of
1036 * per-task data have been completed by this moment.
1038 smp_wmb();
1039 task_thread_info(p)->cpu = cpu;
1040 #endif
1043 #ifdef CONFIG_SMP
1046 * Is this task likely cache-hot:
1048 static inline int
1049 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1051 s64 delta;
1053 if (p->sched_class != &fair_sched_class)
1054 return 0;
1056 if (sysctl_sched_migration_cost == -1)
1057 return 1;
1058 if (sysctl_sched_migration_cost == 0)
1059 return 0;
1061 delta = now - p->se.exec_start;
1063 return delta < (s64)sysctl_sched_migration_cost;
1067 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1069 int old_cpu = task_cpu(p);
1070 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1071 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1072 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1073 u64 clock_offset;
1075 clock_offset = old_rq->clock - new_rq->clock;
1077 #ifdef CONFIG_SCHEDSTATS
1078 if (p->se.wait_start)
1079 p->se.wait_start -= clock_offset;
1080 if (p->se.sleep_start)
1081 p->se.sleep_start -= clock_offset;
1082 if (p->se.block_start)
1083 p->se.block_start -= clock_offset;
1084 if (old_cpu != new_cpu) {
1085 schedstat_inc(p, se.nr_migrations);
1086 if (task_hot(p, old_rq->clock, NULL))
1087 schedstat_inc(p, se.nr_forced2_migrations);
1089 #endif
1090 p->se.vruntime -= old_cfsrq->min_vruntime -
1091 new_cfsrq->min_vruntime;
1093 __set_task_cpu(p, new_cpu);
1096 struct migration_req {
1097 struct list_head list;
1099 struct task_struct *task;
1100 int dest_cpu;
1102 struct completion done;
1106 * The task's runqueue lock must be held.
1107 * Returns true if you have to wait for migration thread.
1109 static int
1110 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1112 struct rq *rq = task_rq(p);
1115 * If the task is not on a runqueue (and not running), then
1116 * it is sufficient to simply update the task's cpu field.
1118 if (!p->se.on_rq && !task_running(rq, p)) {
1119 set_task_cpu(p, dest_cpu);
1120 return 0;
1123 init_completion(&req->done);
1124 req->task = p;
1125 req->dest_cpu = dest_cpu;
1126 list_add(&req->list, &rq->migration_queue);
1128 return 1;
1132 * wait_task_inactive - wait for a thread to unschedule.
1134 * The caller must ensure that the task *will* unschedule sometime soon,
1135 * else this function might spin for a *long* time. This function can't
1136 * be called with interrupts off, or it may introduce deadlock with
1137 * smp_call_function() if an IPI is sent by the same process we are
1138 * waiting to become inactive.
1140 void wait_task_inactive(struct task_struct *p)
1142 unsigned long flags;
1143 int running, on_rq;
1144 struct rq *rq;
1146 for (;;) {
1148 * We do the initial early heuristics without holding
1149 * any task-queue locks at all. We'll only try to get
1150 * the runqueue lock when things look like they will
1151 * work out!
1153 rq = task_rq(p);
1156 * If the task is actively running on another CPU
1157 * still, just relax and busy-wait without holding
1158 * any locks.
1160 * NOTE! Since we don't hold any locks, it's not
1161 * even sure that "rq" stays as the right runqueue!
1162 * But we don't care, since "task_running()" will
1163 * return false if the runqueue has changed and p
1164 * is actually now running somewhere else!
1166 while (task_running(rq, p))
1167 cpu_relax();
1170 * Ok, time to look more closely! We need the rq
1171 * lock now, to be *sure*. If we're wrong, we'll
1172 * just go back and repeat.
1174 rq = task_rq_lock(p, &flags);
1175 running = task_running(rq, p);
1176 on_rq = p->se.on_rq;
1177 task_rq_unlock(rq, &flags);
1180 * Was it really running after all now that we
1181 * checked with the proper locks actually held?
1183 * Oops. Go back and try again..
1185 if (unlikely(running)) {
1186 cpu_relax();
1187 continue;
1191 * It's not enough that it's not actively running,
1192 * it must be off the runqueue _entirely_, and not
1193 * preempted!
1195 * So if it wa still runnable (but just not actively
1196 * running right now), it's preempted, and we should
1197 * yield - it could be a while.
1199 if (unlikely(on_rq)) {
1200 schedule_timeout_uninterruptible(1);
1201 continue;
1205 * Ahh, all good. It wasn't running, and it wasn't
1206 * runnable, which means that it will never become
1207 * running in the future either. We're all done!
1209 break;
1213 /***
1214 * kick_process - kick a running thread to enter/exit the kernel
1215 * @p: the to-be-kicked thread
1217 * Cause a process which is running on another CPU to enter
1218 * kernel-mode, without any delay. (to get signals handled.)
1220 * NOTE: this function doesnt have to take the runqueue lock,
1221 * because all it wants to ensure is that the remote task enters
1222 * the kernel. If the IPI races and the task has been migrated
1223 * to another CPU then no harm is done and the purpose has been
1224 * achieved as well.
1226 void kick_process(struct task_struct *p)
1228 int cpu;
1230 preempt_disable();
1231 cpu = task_cpu(p);
1232 if ((cpu != smp_processor_id()) && task_curr(p))
1233 smp_send_reschedule(cpu);
1234 preempt_enable();
1238 * Return a low guess at the load of a migration-source cpu weighted
1239 * according to the scheduling class and "nice" value.
1241 * We want to under-estimate the load of migration sources, to
1242 * balance conservatively.
1244 static unsigned long source_load(int cpu, int type)
1246 struct rq *rq = cpu_rq(cpu);
1247 unsigned long total = weighted_cpuload(cpu);
1249 if (type == 0)
1250 return total;
1252 return min(rq->cpu_load[type-1], total);
1256 * Return a high guess at the load of a migration-target cpu weighted
1257 * according to the scheduling class and "nice" value.
1259 static unsigned long target_load(int cpu, int type)
1261 struct rq *rq = cpu_rq(cpu);
1262 unsigned long total = weighted_cpuload(cpu);
1264 if (type == 0)
1265 return total;
1267 return max(rq->cpu_load[type-1], total);
1271 * Return the average load per task on the cpu's run queue
1273 static inline unsigned long cpu_avg_load_per_task(int cpu)
1275 struct rq *rq = cpu_rq(cpu);
1276 unsigned long total = weighted_cpuload(cpu);
1277 unsigned long n = rq->nr_running;
1279 return n ? total / n : SCHED_LOAD_SCALE;
1283 * find_idlest_group finds and returns the least busy CPU group within the
1284 * domain.
1286 static struct sched_group *
1287 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1289 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1290 unsigned long min_load = ULONG_MAX, this_load = 0;
1291 int load_idx = sd->forkexec_idx;
1292 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1294 do {
1295 unsigned long load, avg_load;
1296 int local_group;
1297 int i;
1299 /* Skip over this group if it has no CPUs allowed */
1300 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1301 continue;
1303 local_group = cpu_isset(this_cpu, group->cpumask);
1305 /* Tally up the load of all CPUs in the group */
1306 avg_load = 0;
1308 for_each_cpu_mask(i, group->cpumask) {
1309 /* Bias balancing toward cpus of our domain */
1310 if (local_group)
1311 load = source_load(i, load_idx);
1312 else
1313 load = target_load(i, load_idx);
1315 avg_load += load;
1318 /* Adjust by relative CPU power of the group */
1319 avg_load = sg_div_cpu_power(group,
1320 avg_load * SCHED_LOAD_SCALE);
1322 if (local_group) {
1323 this_load = avg_load;
1324 this = group;
1325 } else if (avg_load < min_load) {
1326 min_load = avg_load;
1327 idlest = group;
1329 } while (group = group->next, group != sd->groups);
1331 if (!idlest || 100*this_load < imbalance*min_load)
1332 return NULL;
1333 return idlest;
1337 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1339 static int
1340 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1342 cpumask_t tmp;
1343 unsigned long load, min_load = ULONG_MAX;
1344 int idlest = -1;
1345 int i;
1347 /* Traverse only the allowed CPUs */
1348 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1350 for_each_cpu_mask(i, tmp) {
1351 load = weighted_cpuload(i);
1353 if (load < min_load || (load == min_load && i == this_cpu)) {
1354 min_load = load;
1355 idlest = i;
1359 return idlest;
1363 * sched_balance_self: balance the current task (running on cpu) in domains
1364 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1365 * SD_BALANCE_EXEC.
1367 * Balance, ie. select the least loaded group.
1369 * Returns the target CPU number, or the same CPU if no balancing is needed.
1371 * preempt must be disabled.
1373 static int sched_balance_self(int cpu, int flag)
1375 struct task_struct *t = current;
1376 struct sched_domain *tmp, *sd = NULL;
1378 for_each_domain(cpu, tmp) {
1380 * If power savings logic is enabled for a domain, stop there.
1382 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1383 break;
1384 if (tmp->flags & flag)
1385 sd = tmp;
1388 while (sd) {
1389 cpumask_t span;
1390 struct sched_group *group;
1391 int new_cpu, weight;
1393 if (!(sd->flags & flag)) {
1394 sd = sd->child;
1395 continue;
1398 span = sd->span;
1399 group = find_idlest_group(sd, t, cpu);
1400 if (!group) {
1401 sd = sd->child;
1402 continue;
1405 new_cpu = find_idlest_cpu(group, t, cpu);
1406 if (new_cpu == -1 || new_cpu == cpu) {
1407 /* Now try balancing at a lower domain level of cpu */
1408 sd = sd->child;
1409 continue;
1412 /* Now try balancing at a lower domain level of new_cpu */
1413 cpu = new_cpu;
1414 sd = NULL;
1415 weight = cpus_weight(span);
1416 for_each_domain(cpu, tmp) {
1417 if (weight <= cpus_weight(tmp->span))
1418 break;
1419 if (tmp->flags & flag)
1420 sd = tmp;
1422 /* while loop will break here if sd == NULL */
1425 return cpu;
1428 #endif /* CONFIG_SMP */
1431 * wake_idle() will wake a task on an idle cpu if task->cpu is
1432 * not idle and an idle cpu is available. The span of cpus to
1433 * search starts with cpus closest then further out as needed,
1434 * so we always favor a closer, idle cpu.
1436 * Returns the CPU we should wake onto.
1438 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1439 static int wake_idle(int cpu, struct task_struct *p)
1441 cpumask_t tmp;
1442 struct sched_domain *sd;
1443 int i;
1446 * If it is idle, then it is the best cpu to run this task.
1448 * This cpu is also the best, if it has more than one task already.
1449 * Siblings must be also busy(in most cases) as they didn't already
1450 * pickup the extra load from this cpu and hence we need not check
1451 * sibling runqueue info. This will avoid the checks and cache miss
1452 * penalities associated with that.
1454 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1455 return cpu;
1457 for_each_domain(cpu, sd) {
1458 if (sd->flags & SD_WAKE_IDLE) {
1459 cpus_and(tmp, sd->span, p->cpus_allowed);
1460 for_each_cpu_mask(i, tmp) {
1461 if (idle_cpu(i)) {
1462 if (i != task_cpu(p)) {
1463 schedstat_inc(p,
1464 se.nr_wakeups_idle);
1466 return i;
1469 } else {
1470 break;
1473 return cpu;
1475 #else
1476 static inline int wake_idle(int cpu, struct task_struct *p)
1478 return cpu;
1480 #endif
1482 /***
1483 * try_to_wake_up - wake up a thread
1484 * @p: the to-be-woken-up thread
1485 * @state: the mask of task states that can be woken
1486 * @sync: do a synchronous wakeup?
1488 * Put it on the run-queue if it's not already there. The "current"
1489 * thread is always on the run-queue (except when the actual
1490 * re-schedule is in progress), and as such you're allowed to do
1491 * the simpler "current->state = TASK_RUNNING" to mark yourself
1492 * runnable without the overhead of this.
1494 * returns failure only if the task is already active.
1496 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1498 int cpu, orig_cpu, this_cpu, success = 0;
1499 unsigned long flags;
1500 long old_state;
1501 struct rq *rq;
1502 #ifdef CONFIG_SMP
1503 struct sched_domain *sd, *this_sd = NULL;
1504 unsigned long load, this_load;
1505 int new_cpu;
1506 #endif
1508 rq = task_rq_lock(p, &flags);
1509 old_state = p->state;
1510 if (!(old_state & state))
1511 goto out;
1513 if (p->se.on_rq)
1514 goto out_running;
1516 cpu = task_cpu(p);
1517 orig_cpu = cpu;
1518 this_cpu = smp_processor_id();
1520 #ifdef CONFIG_SMP
1521 if (unlikely(task_running(rq, p)))
1522 goto out_activate;
1524 new_cpu = cpu;
1526 schedstat_inc(rq, ttwu_count);
1527 if (cpu == this_cpu) {
1528 schedstat_inc(rq, ttwu_local);
1529 goto out_set_cpu;
1532 for_each_domain(this_cpu, sd) {
1533 if (cpu_isset(cpu, sd->span)) {
1534 schedstat_inc(sd, ttwu_wake_remote);
1535 this_sd = sd;
1536 break;
1540 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1541 goto out_set_cpu;
1544 * Check for affine wakeup and passive balancing possibilities.
1546 if (this_sd) {
1547 int idx = this_sd->wake_idx;
1548 unsigned int imbalance;
1550 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1552 load = source_load(cpu, idx);
1553 this_load = target_load(this_cpu, idx);
1555 new_cpu = this_cpu; /* Wake to this CPU if we can */
1557 if (this_sd->flags & SD_WAKE_AFFINE) {
1558 unsigned long tl = this_load;
1559 unsigned long tl_per_task;
1562 * Attract cache-cold tasks on sync wakeups:
1564 if (sync && !task_hot(p, rq->clock, this_sd))
1565 goto out_set_cpu;
1567 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1568 tl_per_task = cpu_avg_load_per_task(this_cpu);
1571 * If sync wakeup then subtract the (maximum possible)
1572 * effect of the currently running task from the load
1573 * of the current CPU:
1575 if (sync)
1576 tl -= current->se.load.weight;
1578 if ((tl <= load &&
1579 tl + target_load(cpu, idx) <= tl_per_task) ||
1580 100*(tl + p->se.load.weight) <= imbalance*load) {
1582 * This domain has SD_WAKE_AFFINE and
1583 * p is cache cold in this domain, and
1584 * there is no bad imbalance.
1586 schedstat_inc(this_sd, ttwu_move_affine);
1587 schedstat_inc(p, se.nr_wakeups_affine);
1588 goto out_set_cpu;
1593 * Start passive balancing when half the imbalance_pct
1594 * limit is reached.
1596 if (this_sd->flags & SD_WAKE_BALANCE) {
1597 if (imbalance*this_load <= 100*load) {
1598 schedstat_inc(this_sd, ttwu_move_balance);
1599 schedstat_inc(p, se.nr_wakeups_passive);
1600 goto out_set_cpu;
1605 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1606 out_set_cpu:
1607 new_cpu = wake_idle(new_cpu, p);
1608 if (new_cpu != cpu) {
1609 set_task_cpu(p, new_cpu);
1610 task_rq_unlock(rq, &flags);
1611 /* might preempt at this point */
1612 rq = task_rq_lock(p, &flags);
1613 old_state = p->state;
1614 if (!(old_state & state))
1615 goto out;
1616 if (p->se.on_rq)
1617 goto out_running;
1619 this_cpu = smp_processor_id();
1620 cpu = task_cpu(p);
1623 out_activate:
1624 #endif /* CONFIG_SMP */
1625 schedstat_inc(p, se.nr_wakeups);
1626 if (sync)
1627 schedstat_inc(p, se.nr_wakeups_sync);
1628 if (orig_cpu != cpu)
1629 schedstat_inc(p, se.nr_wakeups_migrate);
1630 if (cpu == this_cpu)
1631 schedstat_inc(p, se.nr_wakeups_local);
1632 else
1633 schedstat_inc(p, se.nr_wakeups_remote);
1634 update_rq_clock(rq);
1635 activate_task(rq, p, 1);
1636 check_preempt_curr(rq, p);
1637 success = 1;
1639 out_running:
1640 p->state = TASK_RUNNING;
1641 out:
1642 task_rq_unlock(rq, &flags);
1644 return success;
1647 int fastcall wake_up_process(struct task_struct *p)
1649 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1650 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1652 EXPORT_SYMBOL(wake_up_process);
1654 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1656 return try_to_wake_up(p, state, 0);
1660 * Perform scheduler related setup for a newly forked process p.
1661 * p is forked by current.
1663 * __sched_fork() is basic setup used by init_idle() too:
1665 static void __sched_fork(struct task_struct *p)
1667 p->se.exec_start = 0;
1668 p->se.sum_exec_runtime = 0;
1669 p->se.prev_sum_exec_runtime = 0;
1671 #ifdef CONFIG_SCHEDSTATS
1672 p->se.wait_start = 0;
1673 p->se.sum_sleep_runtime = 0;
1674 p->se.sleep_start = 0;
1675 p->se.block_start = 0;
1676 p->se.sleep_max = 0;
1677 p->se.block_max = 0;
1678 p->se.exec_max = 0;
1679 p->se.slice_max = 0;
1680 p->se.wait_max = 0;
1681 #endif
1683 INIT_LIST_HEAD(&p->run_list);
1684 p->se.on_rq = 0;
1686 #ifdef CONFIG_PREEMPT_NOTIFIERS
1687 INIT_HLIST_HEAD(&p->preempt_notifiers);
1688 #endif
1691 * We mark the process as running here, but have not actually
1692 * inserted it onto the runqueue yet. This guarantees that
1693 * nobody will actually run it, and a signal or other external
1694 * event cannot wake it up and insert it on the runqueue either.
1696 p->state = TASK_RUNNING;
1700 * fork()/clone()-time setup:
1702 void sched_fork(struct task_struct *p, int clone_flags)
1704 int cpu = get_cpu();
1706 __sched_fork(p);
1708 #ifdef CONFIG_SMP
1709 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1710 #endif
1711 set_task_cpu(p, cpu);
1714 * Make sure we do not leak PI boosting priority to the child:
1716 p->prio = current->normal_prio;
1717 if (!rt_prio(p->prio))
1718 p->sched_class = &fair_sched_class;
1720 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1721 if (likely(sched_info_on()))
1722 memset(&p->sched_info, 0, sizeof(p->sched_info));
1723 #endif
1724 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1725 p->oncpu = 0;
1726 #endif
1727 #ifdef CONFIG_PREEMPT
1728 /* Want to start with kernel preemption disabled. */
1729 task_thread_info(p)->preempt_count = 1;
1730 #endif
1731 put_cpu();
1735 * wake_up_new_task - wake up a newly created task for the first time.
1737 * This function will do some initial scheduler statistics housekeeping
1738 * that must be done for every newly created context, then puts the task
1739 * on the runqueue and wakes it.
1741 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1743 unsigned long flags;
1744 struct rq *rq;
1746 rq = task_rq_lock(p, &flags);
1747 BUG_ON(p->state != TASK_RUNNING);
1748 update_rq_clock(rq);
1750 p->prio = effective_prio(p);
1752 if (!p->sched_class->task_new || !current->se.on_rq) {
1753 activate_task(rq, p, 0);
1754 } else {
1756 * Let the scheduling class do new task startup
1757 * management (if any):
1759 p->sched_class->task_new(rq, p);
1760 inc_nr_running(p, rq);
1762 check_preempt_curr(rq, p);
1763 task_rq_unlock(rq, &flags);
1766 #ifdef CONFIG_PREEMPT_NOTIFIERS
1769 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1770 * @notifier: notifier struct to register
1772 void preempt_notifier_register(struct preempt_notifier *notifier)
1774 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1776 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1779 * preempt_notifier_unregister - no longer interested in preemption notifications
1780 * @notifier: notifier struct to unregister
1782 * This is safe to call from within a preemption notifier.
1784 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1786 hlist_del(&notifier->link);
1788 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1790 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1792 struct preempt_notifier *notifier;
1793 struct hlist_node *node;
1795 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1796 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1799 static void
1800 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1801 struct task_struct *next)
1803 struct preempt_notifier *notifier;
1804 struct hlist_node *node;
1806 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1807 notifier->ops->sched_out(notifier, next);
1810 #else
1812 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1816 static void
1817 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1818 struct task_struct *next)
1822 #endif
1825 * prepare_task_switch - prepare to switch tasks
1826 * @rq: the runqueue preparing to switch
1827 * @prev: the current task that is being switched out
1828 * @next: the task we are going to switch to.
1830 * This is called with the rq lock held and interrupts off. It must
1831 * be paired with a subsequent finish_task_switch after the context
1832 * switch.
1834 * prepare_task_switch sets up locking and calls architecture specific
1835 * hooks.
1837 static inline void
1838 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1839 struct task_struct *next)
1841 fire_sched_out_preempt_notifiers(prev, next);
1842 prepare_lock_switch(rq, next);
1843 prepare_arch_switch(next);
1847 * finish_task_switch - clean up after a task-switch
1848 * @rq: runqueue associated with task-switch
1849 * @prev: the thread we just switched away from.
1851 * finish_task_switch must be called after the context switch, paired
1852 * with a prepare_task_switch call before the context switch.
1853 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1854 * and do any other architecture-specific cleanup actions.
1856 * Note that we may have delayed dropping an mm in context_switch(). If
1857 * so, we finish that here outside of the runqueue lock. (Doing it
1858 * with the lock held can cause deadlocks; see schedule() for
1859 * details.)
1861 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1862 __releases(rq->lock)
1864 struct mm_struct *mm = rq->prev_mm;
1865 long prev_state;
1867 rq->prev_mm = NULL;
1870 * A task struct has one reference for the use as "current".
1871 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1872 * schedule one last time. The schedule call will never return, and
1873 * the scheduled task must drop that reference.
1874 * The test for TASK_DEAD must occur while the runqueue locks are
1875 * still held, otherwise prev could be scheduled on another cpu, die
1876 * there before we look at prev->state, and then the reference would
1877 * be dropped twice.
1878 * Manfred Spraul <manfred@colorfullife.com>
1880 prev_state = prev->state;
1881 finish_arch_switch(prev);
1882 finish_lock_switch(rq, prev);
1883 fire_sched_in_preempt_notifiers(current);
1884 if (mm)
1885 mmdrop(mm);
1886 if (unlikely(prev_state == TASK_DEAD)) {
1888 * Remove function-return probe instances associated with this
1889 * task and put them back on the free list.
1891 kprobe_flush_task(prev);
1892 put_task_struct(prev);
1897 * schedule_tail - first thing a freshly forked thread must call.
1898 * @prev: the thread we just switched away from.
1900 asmlinkage void schedule_tail(struct task_struct *prev)
1901 __releases(rq->lock)
1903 struct rq *rq = this_rq();
1905 finish_task_switch(rq, prev);
1906 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1907 /* In this case, finish_task_switch does not reenable preemption */
1908 preempt_enable();
1909 #endif
1910 if (current->set_child_tid)
1911 put_user(task_pid_vnr(current), current->set_child_tid);
1915 * context_switch - switch to the new MM and the new
1916 * thread's register state.
1918 static inline void
1919 context_switch(struct rq *rq, struct task_struct *prev,
1920 struct task_struct *next)
1922 struct mm_struct *mm, *oldmm;
1924 prepare_task_switch(rq, prev, next);
1925 mm = next->mm;
1926 oldmm = prev->active_mm;
1928 * For paravirt, this is coupled with an exit in switch_to to
1929 * combine the page table reload and the switch backend into
1930 * one hypercall.
1932 arch_enter_lazy_cpu_mode();
1934 if (unlikely(!mm)) {
1935 next->active_mm = oldmm;
1936 atomic_inc(&oldmm->mm_count);
1937 enter_lazy_tlb(oldmm, next);
1938 } else
1939 switch_mm(oldmm, mm, next);
1941 if (unlikely(!prev->mm)) {
1942 prev->active_mm = NULL;
1943 rq->prev_mm = oldmm;
1946 * Since the runqueue lock will be released by the next
1947 * task (which is an invalid locking op but in the case
1948 * of the scheduler it's an obvious special-case), so we
1949 * do an early lockdep release here:
1951 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1952 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1953 #endif
1955 /* Here we just switch the register state and the stack. */
1956 switch_to(prev, next, prev);
1958 barrier();
1960 * this_rq must be evaluated again because prev may have moved
1961 * CPUs since it called schedule(), thus the 'rq' on its stack
1962 * frame will be invalid.
1964 finish_task_switch(this_rq(), prev);
1968 * nr_running, nr_uninterruptible and nr_context_switches:
1970 * externally visible scheduler statistics: current number of runnable
1971 * threads, current number of uninterruptible-sleeping threads, total
1972 * number of context switches performed since bootup.
1974 unsigned long nr_running(void)
1976 unsigned long i, sum = 0;
1978 for_each_online_cpu(i)
1979 sum += cpu_rq(i)->nr_running;
1981 return sum;
1984 unsigned long nr_uninterruptible(void)
1986 unsigned long i, sum = 0;
1988 for_each_possible_cpu(i)
1989 sum += cpu_rq(i)->nr_uninterruptible;
1992 * Since we read the counters lockless, it might be slightly
1993 * inaccurate. Do not allow it to go below zero though:
1995 if (unlikely((long)sum < 0))
1996 sum = 0;
1998 return sum;
2001 unsigned long long nr_context_switches(void)
2003 int i;
2004 unsigned long long sum = 0;
2006 for_each_possible_cpu(i)
2007 sum += cpu_rq(i)->nr_switches;
2009 return sum;
2012 unsigned long nr_iowait(void)
2014 unsigned long i, sum = 0;
2016 for_each_possible_cpu(i)
2017 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2019 return sum;
2022 unsigned long nr_active(void)
2024 unsigned long i, running = 0, uninterruptible = 0;
2026 for_each_online_cpu(i) {
2027 running += cpu_rq(i)->nr_running;
2028 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2031 if (unlikely((long)uninterruptible < 0))
2032 uninterruptible = 0;
2034 return running + uninterruptible;
2038 * Update rq->cpu_load[] statistics. This function is usually called every
2039 * scheduler tick (TICK_NSEC).
2041 static void update_cpu_load(struct rq *this_rq)
2043 unsigned long this_load = this_rq->load.weight;
2044 int i, scale;
2046 this_rq->nr_load_updates++;
2048 /* Update our load: */
2049 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2050 unsigned long old_load, new_load;
2052 /* scale is effectively 1 << i now, and >> i divides by scale */
2054 old_load = this_rq->cpu_load[i];
2055 new_load = this_load;
2057 * Round up the averaging division if load is increasing. This
2058 * prevents us from getting stuck on 9 if the load is 10, for
2059 * example.
2061 if (new_load > old_load)
2062 new_load += scale-1;
2063 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2067 #ifdef CONFIG_SMP
2070 * double_rq_lock - safely lock two runqueues
2072 * Note this does not disable interrupts like task_rq_lock,
2073 * you need to do so manually before calling.
2075 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2076 __acquires(rq1->lock)
2077 __acquires(rq2->lock)
2079 BUG_ON(!irqs_disabled());
2080 if (rq1 == rq2) {
2081 spin_lock(&rq1->lock);
2082 __acquire(rq2->lock); /* Fake it out ;) */
2083 } else {
2084 if (rq1 < rq2) {
2085 spin_lock(&rq1->lock);
2086 spin_lock(&rq2->lock);
2087 } else {
2088 spin_lock(&rq2->lock);
2089 spin_lock(&rq1->lock);
2092 update_rq_clock(rq1);
2093 update_rq_clock(rq2);
2097 * double_rq_unlock - safely unlock two runqueues
2099 * Note this does not restore interrupts like task_rq_unlock,
2100 * you need to do so manually after calling.
2102 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2103 __releases(rq1->lock)
2104 __releases(rq2->lock)
2106 spin_unlock(&rq1->lock);
2107 if (rq1 != rq2)
2108 spin_unlock(&rq2->lock);
2109 else
2110 __release(rq2->lock);
2114 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2116 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2117 __releases(this_rq->lock)
2118 __acquires(busiest->lock)
2119 __acquires(this_rq->lock)
2121 if (unlikely(!irqs_disabled())) {
2122 /* printk() doesn't work good under rq->lock */
2123 spin_unlock(&this_rq->lock);
2124 BUG_ON(1);
2126 if (unlikely(!spin_trylock(&busiest->lock))) {
2127 if (busiest < this_rq) {
2128 spin_unlock(&this_rq->lock);
2129 spin_lock(&busiest->lock);
2130 spin_lock(&this_rq->lock);
2131 } else
2132 spin_lock(&busiest->lock);
2137 * If dest_cpu is allowed for this process, migrate the task to it.
2138 * This is accomplished by forcing the cpu_allowed mask to only
2139 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2140 * the cpu_allowed mask is restored.
2142 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2144 struct migration_req req;
2145 unsigned long flags;
2146 struct rq *rq;
2148 rq = task_rq_lock(p, &flags);
2149 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2150 || unlikely(cpu_is_offline(dest_cpu)))
2151 goto out;
2153 /* force the process onto the specified CPU */
2154 if (migrate_task(p, dest_cpu, &req)) {
2155 /* Need to wait for migration thread (might exit: take ref). */
2156 struct task_struct *mt = rq->migration_thread;
2158 get_task_struct(mt);
2159 task_rq_unlock(rq, &flags);
2160 wake_up_process(mt);
2161 put_task_struct(mt);
2162 wait_for_completion(&req.done);
2164 return;
2166 out:
2167 task_rq_unlock(rq, &flags);
2171 * sched_exec - execve() is a valuable balancing opportunity, because at
2172 * this point the task has the smallest effective memory and cache footprint.
2174 void sched_exec(void)
2176 int new_cpu, this_cpu = get_cpu();
2177 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2178 put_cpu();
2179 if (new_cpu != this_cpu)
2180 sched_migrate_task(current, new_cpu);
2184 * pull_task - move a task from a remote runqueue to the local runqueue.
2185 * Both runqueues must be locked.
2187 static void pull_task(struct rq *src_rq, struct task_struct *p,
2188 struct rq *this_rq, int this_cpu)
2190 deactivate_task(src_rq, p, 0);
2191 set_task_cpu(p, this_cpu);
2192 activate_task(this_rq, p, 0);
2194 * Note that idle threads have a prio of MAX_PRIO, for this test
2195 * to be always true for them.
2197 check_preempt_curr(this_rq, p);
2201 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2203 static
2204 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2205 struct sched_domain *sd, enum cpu_idle_type idle,
2206 int *all_pinned)
2209 * We do not migrate tasks that are:
2210 * 1) running (obviously), or
2211 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2212 * 3) are cache-hot on their current CPU.
2214 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2215 schedstat_inc(p, se.nr_failed_migrations_affine);
2216 return 0;
2218 *all_pinned = 0;
2220 if (task_running(rq, p)) {
2221 schedstat_inc(p, se.nr_failed_migrations_running);
2222 return 0;
2226 * Aggressive migration if:
2227 * 1) task is cache cold, or
2228 * 2) too many balance attempts have failed.
2231 if (!task_hot(p, rq->clock, sd) ||
2232 sd->nr_balance_failed > sd->cache_nice_tries) {
2233 #ifdef CONFIG_SCHEDSTATS
2234 if (task_hot(p, rq->clock, sd)) {
2235 schedstat_inc(sd, lb_hot_gained[idle]);
2236 schedstat_inc(p, se.nr_forced_migrations);
2238 #endif
2239 return 1;
2242 if (task_hot(p, rq->clock, sd)) {
2243 schedstat_inc(p, se.nr_failed_migrations_hot);
2244 return 0;
2246 return 1;
2249 static unsigned long
2250 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2251 unsigned long max_load_move, struct sched_domain *sd,
2252 enum cpu_idle_type idle, int *all_pinned,
2253 int *this_best_prio, struct rq_iterator *iterator)
2255 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2256 struct task_struct *p;
2257 long rem_load_move = max_load_move;
2259 if (max_load_move == 0)
2260 goto out;
2262 pinned = 1;
2265 * Start the load-balancing iterator:
2267 p = iterator->start(iterator->arg);
2268 next:
2269 if (!p || loops++ > sysctl_sched_nr_migrate)
2270 goto out;
2272 * To help distribute high priority tasks across CPUs we don't
2273 * skip a task if it will be the highest priority task (i.e. smallest
2274 * prio value) on its new queue regardless of its load weight
2276 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2277 SCHED_LOAD_SCALE_FUZZ;
2278 if ((skip_for_load && p->prio >= *this_best_prio) ||
2279 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2280 p = iterator->next(iterator->arg);
2281 goto next;
2284 pull_task(busiest, p, this_rq, this_cpu);
2285 pulled++;
2286 rem_load_move -= p->se.load.weight;
2289 * We only want to steal up to the prescribed amount of weighted load.
2291 if (rem_load_move > 0) {
2292 if (p->prio < *this_best_prio)
2293 *this_best_prio = p->prio;
2294 p = iterator->next(iterator->arg);
2295 goto next;
2297 out:
2299 * Right now, this is one of only two places pull_task() is called,
2300 * so we can safely collect pull_task() stats here rather than
2301 * inside pull_task().
2303 schedstat_add(sd, lb_gained[idle], pulled);
2305 if (all_pinned)
2306 *all_pinned = pinned;
2308 return max_load_move - rem_load_move;
2312 * move_tasks tries to move up to max_load_move weighted load from busiest to
2313 * this_rq, as part of a balancing operation within domain "sd".
2314 * Returns 1 if successful and 0 otherwise.
2316 * Called with both runqueues locked.
2318 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2319 unsigned long max_load_move,
2320 struct sched_domain *sd, enum cpu_idle_type idle,
2321 int *all_pinned)
2323 const struct sched_class *class = sched_class_highest;
2324 unsigned long total_load_moved = 0;
2325 int this_best_prio = this_rq->curr->prio;
2327 do {
2328 total_load_moved +=
2329 class->load_balance(this_rq, this_cpu, busiest,
2330 max_load_move - total_load_moved,
2331 sd, idle, all_pinned, &this_best_prio);
2332 class = class->next;
2333 } while (class && max_load_move > total_load_moved);
2335 return total_load_moved > 0;
2338 static int
2339 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2340 struct sched_domain *sd, enum cpu_idle_type idle,
2341 struct rq_iterator *iterator)
2343 struct task_struct *p = iterator->start(iterator->arg);
2344 int pinned = 0;
2346 while (p) {
2347 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2348 pull_task(busiest, p, this_rq, this_cpu);
2350 * Right now, this is only the second place pull_task()
2351 * is called, so we can safely collect pull_task()
2352 * stats here rather than inside pull_task().
2354 schedstat_inc(sd, lb_gained[idle]);
2356 return 1;
2358 p = iterator->next(iterator->arg);
2361 return 0;
2365 * move_one_task tries to move exactly one task from busiest to this_rq, as
2366 * part of active balancing operations within "domain".
2367 * Returns 1 if successful and 0 otherwise.
2369 * Called with both runqueues locked.
2371 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2372 struct sched_domain *sd, enum cpu_idle_type idle)
2374 const struct sched_class *class;
2376 for (class = sched_class_highest; class; class = class->next)
2377 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2378 return 1;
2380 return 0;
2384 * find_busiest_group finds and returns the busiest CPU group within the
2385 * domain. It calculates and returns the amount of weighted load which
2386 * should be moved to restore balance via the imbalance parameter.
2388 static struct sched_group *
2389 find_busiest_group(struct sched_domain *sd, int this_cpu,
2390 unsigned long *imbalance, enum cpu_idle_type idle,
2391 int *sd_idle, cpumask_t *cpus, int *balance)
2393 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2394 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2395 unsigned long max_pull;
2396 unsigned long busiest_load_per_task, busiest_nr_running;
2397 unsigned long this_load_per_task, this_nr_running;
2398 int load_idx, group_imb = 0;
2399 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2400 int power_savings_balance = 1;
2401 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2402 unsigned long min_nr_running = ULONG_MAX;
2403 struct sched_group *group_min = NULL, *group_leader = NULL;
2404 #endif
2406 max_load = this_load = total_load = total_pwr = 0;
2407 busiest_load_per_task = busiest_nr_running = 0;
2408 this_load_per_task = this_nr_running = 0;
2409 if (idle == CPU_NOT_IDLE)
2410 load_idx = sd->busy_idx;
2411 else if (idle == CPU_NEWLY_IDLE)
2412 load_idx = sd->newidle_idx;
2413 else
2414 load_idx = sd->idle_idx;
2416 do {
2417 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2418 int local_group;
2419 int i;
2420 int __group_imb = 0;
2421 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2422 unsigned long sum_nr_running, sum_weighted_load;
2424 local_group = cpu_isset(this_cpu, group->cpumask);
2426 if (local_group)
2427 balance_cpu = first_cpu(group->cpumask);
2429 /* Tally up the load of all CPUs in the group */
2430 sum_weighted_load = sum_nr_running = avg_load = 0;
2431 max_cpu_load = 0;
2432 min_cpu_load = ~0UL;
2434 for_each_cpu_mask(i, group->cpumask) {
2435 struct rq *rq;
2437 if (!cpu_isset(i, *cpus))
2438 continue;
2440 rq = cpu_rq(i);
2442 if (*sd_idle && rq->nr_running)
2443 *sd_idle = 0;
2445 /* Bias balancing toward cpus of our domain */
2446 if (local_group) {
2447 if (idle_cpu(i) && !first_idle_cpu) {
2448 first_idle_cpu = 1;
2449 balance_cpu = i;
2452 load = target_load(i, load_idx);
2453 } else {
2454 load = source_load(i, load_idx);
2455 if (load > max_cpu_load)
2456 max_cpu_load = load;
2457 if (min_cpu_load > load)
2458 min_cpu_load = load;
2461 avg_load += load;
2462 sum_nr_running += rq->nr_running;
2463 sum_weighted_load += weighted_cpuload(i);
2467 * First idle cpu or the first cpu(busiest) in this sched group
2468 * is eligible for doing load balancing at this and above
2469 * domains. In the newly idle case, we will allow all the cpu's
2470 * to do the newly idle load balance.
2472 if (idle != CPU_NEWLY_IDLE && local_group &&
2473 balance_cpu != this_cpu && balance) {
2474 *balance = 0;
2475 goto ret;
2478 total_load += avg_load;
2479 total_pwr += group->__cpu_power;
2481 /* Adjust by relative CPU power of the group */
2482 avg_load = sg_div_cpu_power(group,
2483 avg_load * SCHED_LOAD_SCALE);
2485 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2486 __group_imb = 1;
2488 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2490 if (local_group) {
2491 this_load = avg_load;
2492 this = group;
2493 this_nr_running = sum_nr_running;
2494 this_load_per_task = sum_weighted_load;
2495 } else if (avg_load > max_load &&
2496 (sum_nr_running > group_capacity || __group_imb)) {
2497 max_load = avg_load;
2498 busiest = group;
2499 busiest_nr_running = sum_nr_running;
2500 busiest_load_per_task = sum_weighted_load;
2501 group_imb = __group_imb;
2504 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2506 * Busy processors will not participate in power savings
2507 * balance.
2509 if (idle == CPU_NOT_IDLE ||
2510 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2511 goto group_next;
2514 * If the local group is idle or completely loaded
2515 * no need to do power savings balance at this domain
2517 if (local_group && (this_nr_running >= group_capacity ||
2518 !this_nr_running))
2519 power_savings_balance = 0;
2522 * If a group is already running at full capacity or idle,
2523 * don't include that group in power savings calculations
2525 if (!power_savings_balance || sum_nr_running >= group_capacity
2526 || !sum_nr_running)
2527 goto group_next;
2530 * Calculate the group which has the least non-idle load.
2531 * This is the group from where we need to pick up the load
2532 * for saving power
2534 if ((sum_nr_running < min_nr_running) ||
2535 (sum_nr_running == min_nr_running &&
2536 first_cpu(group->cpumask) <
2537 first_cpu(group_min->cpumask))) {
2538 group_min = group;
2539 min_nr_running = sum_nr_running;
2540 min_load_per_task = sum_weighted_load /
2541 sum_nr_running;
2545 * Calculate the group which is almost near its
2546 * capacity but still has some space to pick up some load
2547 * from other group and save more power
2549 if (sum_nr_running <= group_capacity - 1) {
2550 if (sum_nr_running > leader_nr_running ||
2551 (sum_nr_running == leader_nr_running &&
2552 first_cpu(group->cpumask) >
2553 first_cpu(group_leader->cpumask))) {
2554 group_leader = group;
2555 leader_nr_running = sum_nr_running;
2558 group_next:
2559 #endif
2560 group = group->next;
2561 } while (group != sd->groups);
2563 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2564 goto out_balanced;
2566 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2568 if (this_load >= avg_load ||
2569 100*max_load <= sd->imbalance_pct*this_load)
2570 goto out_balanced;
2572 busiest_load_per_task /= busiest_nr_running;
2573 if (group_imb)
2574 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2577 * We're trying to get all the cpus to the average_load, so we don't
2578 * want to push ourselves above the average load, nor do we wish to
2579 * reduce the max loaded cpu below the average load, as either of these
2580 * actions would just result in more rebalancing later, and ping-pong
2581 * tasks around. Thus we look for the minimum possible imbalance.
2582 * Negative imbalances (*we* are more loaded than anyone else) will
2583 * be counted as no imbalance for these purposes -- we can't fix that
2584 * by pulling tasks to us. Be careful of negative numbers as they'll
2585 * appear as very large values with unsigned longs.
2587 if (max_load <= busiest_load_per_task)
2588 goto out_balanced;
2591 * In the presence of smp nice balancing, certain scenarios can have
2592 * max load less than avg load(as we skip the groups at or below
2593 * its cpu_power, while calculating max_load..)
2595 if (max_load < avg_load) {
2596 *imbalance = 0;
2597 goto small_imbalance;
2600 /* Don't want to pull so many tasks that a group would go idle */
2601 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2603 /* How much load to actually move to equalise the imbalance */
2604 *imbalance = min(max_pull * busiest->__cpu_power,
2605 (avg_load - this_load) * this->__cpu_power)
2606 / SCHED_LOAD_SCALE;
2609 * if *imbalance is less than the average load per runnable task
2610 * there is no gaurantee that any tasks will be moved so we'll have
2611 * a think about bumping its value to force at least one task to be
2612 * moved
2614 if (*imbalance < busiest_load_per_task) {
2615 unsigned long tmp, pwr_now, pwr_move;
2616 unsigned int imbn;
2618 small_imbalance:
2619 pwr_move = pwr_now = 0;
2620 imbn = 2;
2621 if (this_nr_running) {
2622 this_load_per_task /= this_nr_running;
2623 if (busiest_load_per_task > this_load_per_task)
2624 imbn = 1;
2625 } else
2626 this_load_per_task = SCHED_LOAD_SCALE;
2628 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2629 busiest_load_per_task * imbn) {
2630 *imbalance = busiest_load_per_task;
2631 return busiest;
2635 * OK, we don't have enough imbalance to justify moving tasks,
2636 * however we may be able to increase total CPU power used by
2637 * moving them.
2640 pwr_now += busiest->__cpu_power *
2641 min(busiest_load_per_task, max_load);
2642 pwr_now += this->__cpu_power *
2643 min(this_load_per_task, this_load);
2644 pwr_now /= SCHED_LOAD_SCALE;
2646 /* Amount of load we'd subtract */
2647 tmp = sg_div_cpu_power(busiest,
2648 busiest_load_per_task * SCHED_LOAD_SCALE);
2649 if (max_load > tmp)
2650 pwr_move += busiest->__cpu_power *
2651 min(busiest_load_per_task, max_load - tmp);
2653 /* Amount of load we'd add */
2654 if (max_load * busiest->__cpu_power <
2655 busiest_load_per_task * SCHED_LOAD_SCALE)
2656 tmp = sg_div_cpu_power(this,
2657 max_load * busiest->__cpu_power);
2658 else
2659 tmp = sg_div_cpu_power(this,
2660 busiest_load_per_task * SCHED_LOAD_SCALE);
2661 pwr_move += this->__cpu_power *
2662 min(this_load_per_task, this_load + tmp);
2663 pwr_move /= SCHED_LOAD_SCALE;
2665 /* Move if we gain throughput */
2666 if (pwr_move > pwr_now)
2667 *imbalance = busiest_load_per_task;
2670 return busiest;
2672 out_balanced:
2673 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2674 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2675 goto ret;
2677 if (this == group_leader && group_leader != group_min) {
2678 *imbalance = min_load_per_task;
2679 return group_min;
2681 #endif
2682 ret:
2683 *imbalance = 0;
2684 return NULL;
2688 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2690 static struct rq *
2691 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2692 unsigned long imbalance, cpumask_t *cpus)
2694 struct rq *busiest = NULL, *rq;
2695 unsigned long max_load = 0;
2696 int i;
2698 for_each_cpu_mask(i, group->cpumask) {
2699 unsigned long wl;
2701 if (!cpu_isset(i, *cpus))
2702 continue;
2704 rq = cpu_rq(i);
2705 wl = weighted_cpuload(i);
2707 if (rq->nr_running == 1 && wl > imbalance)
2708 continue;
2710 if (wl > max_load) {
2711 max_load = wl;
2712 busiest = rq;
2716 return busiest;
2720 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2721 * so long as it is large enough.
2723 #define MAX_PINNED_INTERVAL 512
2726 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2727 * tasks if there is an imbalance.
2729 static int load_balance(int this_cpu, struct rq *this_rq,
2730 struct sched_domain *sd, enum cpu_idle_type idle,
2731 int *balance)
2733 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2734 struct sched_group *group;
2735 unsigned long imbalance;
2736 struct rq *busiest;
2737 cpumask_t cpus = CPU_MASK_ALL;
2738 unsigned long flags;
2741 * When power savings policy is enabled for the parent domain, idle
2742 * sibling can pick up load irrespective of busy siblings. In this case,
2743 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2744 * portraying it as CPU_NOT_IDLE.
2746 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2747 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2748 sd_idle = 1;
2750 schedstat_inc(sd, lb_count[idle]);
2752 redo:
2753 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2754 &cpus, balance);
2756 if (*balance == 0)
2757 goto out_balanced;
2759 if (!group) {
2760 schedstat_inc(sd, lb_nobusyg[idle]);
2761 goto out_balanced;
2764 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2765 if (!busiest) {
2766 schedstat_inc(sd, lb_nobusyq[idle]);
2767 goto out_balanced;
2770 BUG_ON(busiest == this_rq);
2772 schedstat_add(sd, lb_imbalance[idle], imbalance);
2774 ld_moved = 0;
2775 if (busiest->nr_running > 1) {
2777 * Attempt to move tasks. If find_busiest_group has found
2778 * an imbalance but busiest->nr_running <= 1, the group is
2779 * still unbalanced. ld_moved simply stays zero, so it is
2780 * correctly treated as an imbalance.
2782 local_irq_save(flags);
2783 double_rq_lock(this_rq, busiest);
2784 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2785 imbalance, sd, idle, &all_pinned);
2786 double_rq_unlock(this_rq, busiest);
2787 local_irq_restore(flags);
2790 * some other cpu did the load balance for us.
2792 if (ld_moved && this_cpu != smp_processor_id())
2793 resched_cpu(this_cpu);
2795 /* All tasks on this runqueue were pinned by CPU affinity */
2796 if (unlikely(all_pinned)) {
2797 cpu_clear(cpu_of(busiest), cpus);
2798 if (!cpus_empty(cpus))
2799 goto redo;
2800 goto out_balanced;
2804 if (!ld_moved) {
2805 schedstat_inc(sd, lb_failed[idle]);
2806 sd->nr_balance_failed++;
2808 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2810 spin_lock_irqsave(&busiest->lock, flags);
2812 /* don't kick the migration_thread, if the curr
2813 * task on busiest cpu can't be moved to this_cpu
2815 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2816 spin_unlock_irqrestore(&busiest->lock, flags);
2817 all_pinned = 1;
2818 goto out_one_pinned;
2821 if (!busiest->active_balance) {
2822 busiest->active_balance = 1;
2823 busiest->push_cpu = this_cpu;
2824 active_balance = 1;
2826 spin_unlock_irqrestore(&busiest->lock, flags);
2827 if (active_balance)
2828 wake_up_process(busiest->migration_thread);
2831 * We've kicked active balancing, reset the failure
2832 * counter.
2834 sd->nr_balance_failed = sd->cache_nice_tries+1;
2836 } else
2837 sd->nr_balance_failed = 0;
2839 if (likely(!active_balance)) {
2840 /* We were unbalanced, so reset the balancing interval */
2841 sd->balance_interval = sd->min_interval;
2842 } else {
2844 * If we've begun active balancing, start to back off. This
2845 * case may not be covered by the all_pinned logic if there
2846 * is only 1 task on the busy runqueue (because we don't call
2847 * move_tasks).
2849 if (sd->balance_interval < sd->max_interval)
2850 sd->balance_interval *= 2;
2853 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2854 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2855 return -1;
2856 return ld_moved;
2858 out_balanced:
2859 schedstat_inc(sd, lb_balanced[idle]);
2861 sd->nr_balance_failed = 0;
2863 out_one_pinned:
2864 /* tune up the balancing interval */
2865 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2866 (sd->balance_interval < sd->max_interval))
2867 sd->balance_interval *= 2;
2869 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2870 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2871 return -1;
2872 return 0;
2876 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2877 * tasks if there is an imbalance.
2879 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2880 * this_rq is locked.
2882 static int
2883 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2885 struct sched_group *group;
2886 struct rq *busiest = NULL;
2887 unsigned long imbalance;
2888 int ld_moved = 0;
2889 int sd_idle = 0;
2890 int all_pinned = 0;
2891 cpumask_t cpus = CPU_MASK_ALL;
2894 * When power savings policy is enabled for the parent domain, idle
2895 * sibling can pick up load irrespective of busy siblings. In this case,
2896 * let the state of idle sibling percolate up as IDLE, instead of
2897 * portraying it as CPU_NOT_IDLE.
2899 if (sd->flags & SD_SHARE_CPUPOWER &&
2900 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2901 sd_idle = 1;
2903 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2904 redo:
2905 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2906 &sd_idle, &cpus, NULL);
2907 if (!group) {
2908 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2909 goto out_balanced;
2912 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2913 &cpus);
2914 if (!busiest) {
2915 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2916 goto out_balanced;
2919 BUG_ON(busiest == this_rq);
2921 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2923 ld_moved = 0;
2924 if (busiest->nr_running > 1) {
2925 /* Attempt to move tasks */
2926 double_lock_balance(this_rq, busiest);
2927 /* this_rq->clock is already updated */
2928 update_rq_clock(busiest);
2929 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2930 imbalance, sd, CPU_NEWLY_IDLE,
2931 &all_pinned);
2932 spin_unlock(&busiest->lock);
2934 if (unlikely(all_pinned)) {
2935 cpu_clear(cpu_of(busiest), cpus);
2936 if (!cpus_empty(cpus))
2937 goto redo;
2941 if (!ld_moved) {
2942 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2943 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2944 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2945 return -1;
2946 } else
2947 sd->nr_balance_failed = 0;
2949 return ld_moved;
2951 out_balanced:
2952 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2953 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2954 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2955 return -1;
2956 sd->nr_balance_failed = 0;
2958 return 0;
2962 * idle_balance is called by schedule() if this_cpu is about to become
2963 * idle. Attempts to pull tasks from other CPUs.
2965 static void idle_balance(int this_cpu, struct rq *this_rq)
2967 struct sched_domain *sd;
2968 int pulled_task = -1;
2969 unsigned long next_balance = jiffies + HZ;
2971 for_each_domain(this_cpu, sd) {
2972 unsigned long interval;
2974 if (!(sd->flags & SD_LOAD_BALANCE))
2975 continue;
2977 if (sd->flags & SD_BALANCE_NEWIDLE)
2978 /* If we've pulled tasks over stop searching: */
2979 pulled_task = load_balance_newidle(this_cpu,
2980 this_rq, sd);
2982 interval = msecs_to_jiffies(sd->balance_interval);
2983 if (time_after(next_balance, sd->last_balance + interval))
2984 next_balance = sd->last_balance + interval;
2985 if (pulled_task)
2986 break;
2988 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2990 * We are going idle. next_balance may be set based on
2991 * a busy processor. So reset next_balance.
2993 this_rq->next_balance = next_balance;
2998 * active_load_balance is run by migration threads. It pushes running tasks
2999 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3000 * running on each physical CPU where possible, and avoids physical /
3001 * logical imbalances.
3003 * Called with busiest_rq locked.
3005 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3007 int target_cpu = busiest_rq->push_cpu;
3008 struct sched_domain *sd;
3009 struct rq *target_rq;
3011 /* Is there any task to move? */
3012 if (busiest_rq->nr_running <= 1)
3013 return;
3015 target_rq = cpu_rq(target_cpu);
3018 * This condition is "impossible", if it occurs
3019 * we need to fix it. Originally reported by
3020 * Bjorn Helgaas on a 128-cpu setup.
3022 BUG_ON(busiest_rq == target_rq);
3024 /* move a task from busiest_rq to target_rq */
3025 double_lock_balance(busiest_rq, target_rq);
3026 update_rq_clock(busiest_rq);
3027 update_rq_clock(target_rq);
3029 /* Search for an sd spanning us and the target CPU. */
3030 for_each_domain(target_cpu, sd) {
3031 if ((sd->flags & SD_LOAD_BALANCE) &&
3032 cpu_isset(busiest_cpu, sd->span))
3033 break;
3036 if (likely(sd)) {
3037 schedstat_inc(sd, alb_count);
3039 if (move_one_task(target_rq, target_cpu, busiest_rq,
3040 sd, CPU_IDLE))
3041 schedstat_inc(sd, alb_pushed);
3042 else
3043 schedstat_inc(sd, alb_failed);
3045 spin_unlock(&target_rq->lock);
3048 #ifdef CONFIG_NO_HZ
3049 static struct {
3050 atomic_t load_balancer;
3051 cpumask_t cpu_mask;
3052 } nohz ____cacheline_aligned = {
3053 .load_balancer = ATOMIC_INIT(-1),
3054 .cpu_mask = CPU_MASK_NONE,
3058 * This routine will try to nominate the ilb (idle load balancing)
3059 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3060 * load balancing on behalf of all those cpus. If all the cpus in the system
3061 * go into this tickless mode, then there will be no ilb owner (as there is
3062 * no need for one) and all the cpus will sleep till the next wakeup event
3063 * arrives...
3065 * For the ilb owner, tick is not stopped. And this tick will be used
3066 * for idle load balancing. ilb owner will still be part of
3067 * nohz.cpu_mask..
3069 * While stopping the tick, this cpu will become the ilb owner if there
3070 * is no other owner. And will be the owner till that cpu becomes busy
3071 * or if all cpus in the system stop their ticks at which point
3072 * there is no need for ilb owner.
3074 * When the ilb owner becomes busy, it nominates another owner, during the
3075 * next busy scheduler_tick()
3077 int select_nohz_load_balancer(int stop_tick)
3079 int cpu = smp_processor_id();
3081 if (stop_tick) {
3082 cpu_set(cpu, nohz.cpu_mask);
3083 cpu_rq(cpu)->in_nohz_recently = 1;
3086 * If we are going offline and still the leader, give up!
3088 if (cpu_is_offline(cpu) &&
3089 atomic_read(&nohz.load_balancer) == cpu) {
3090 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3091 BUG();
3092 return 0;
3095 /* time for ilb owner also to sleep */
3096 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3097 if (atomic_read(&nohz.load_balancer) == cpu)
3098 atomic_set(&nohz.load_balancer, -1);
3099 return 0;
3102 if (atomic_read(&nohz.load_balancer) == -1) {
3103 /* make me the ilb owner */
3104 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3105 return 1;
3106 } else if (atomic_read(&nohz.load_balancer) == cpu)
3107 return 1;
3108 } else {
3109 if (!cpu_isset(cpu, nohz.cpu_mask))
3110 return 0;
3112 cpu_clear(cpu, nohz.cpu_mask);
3114 if (atomic_read(&nohz.load_balancer) == cpu)
3115 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3116 BUG();
3118 return 0;
3120 #endif
3122 static DEFINE_SPINLOCK(balancing);
3125 * It checks each scheduling domain to see if it is due to be balanced,
3126 * and initiates a balancing operation if so.
3128 * Balancing parameters are set up in arch_init_sched_domains.
3130 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3132 int balance = 1;
3133 struct rq *rq = cpu_rq(cpu);
3134 unsigned long interval;
3135 struct sched_domain *sd;
3136 /* Earliest time when we have to do rebalance again */
3137 unsigned long next_balance = jiffies + 60*HZ;
3138 int update_next_balance = 0;
3140 for_each_domain(cpu, sd) {
3141 if (!(sd->flags & SD_LOAD_BALANCE))
3142 continue;
3144 interval = sd->balance_interval;
3145 if (idle != CPU_IDLE)
3146 interval *= sd->busy_factor;
3148 /* scale ms to jiffies */
3149 interval = msecs_to_jiffies(interval);
3150 if (unlikely(!interval))
3151 interval = 1;
3152 if (interval > HZ*NR_CPUS/10)
3153 interval = HZ*NR_CPUS/10;
3156 if (sd->flags & SD_SERIALIZE) {
3157 if (!spin_trylock(&balancing))
3158 goto out;
3161 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3162 if (load_balance(cpu, rq, sd, idle, &balance)) {
3164 * We've pulled tasks over so either we're no
3165 * longer idle, or one of our SMT siblings is
3166 * not idle.
3168 idle = CPU_NOT_IDLE;
3170 sd->last_balance = jiffies;
3172 if (sd->flags & SD_SERIALIZE)
3173 spin_unlock(&balancing);
3174 out:
3175 if (time_after(next_balance, sd->last_balance + interval)) {
3176 next_balance = sd->last_balance + interval;
3177 update_next_balance = 1;
3181 * Stop the load balance at this level. There is another
3182 * CPU in our sched group which is doing load balancing more
3183 * actively.
3185 if (!balance)
3186 break;
3190 * next_balance will be updated only when there is a need.
3191 * When the cpu is attached to null domain for ex, it will not be
3192 * updated.
3194 if (likely(update_next_balance))
3195 rq->next_balance = next_balance;
3199 * run_rebalance_domains is triggered when needed from the scheduler tick.
3200 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3201 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3203 static void run_rebalance_domains(struct softirq_action *h)
3205 int this_cpu = smp_processor_id();
3206 struct rq *this_rq = cpu_rq(this_cpu);
3207 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3208 CPU_IDLE : CPU_NOT_IDLE;
3210 rebalance_domains(this_cpu, idle);
3212 #ifdef CONFIG_NO_HZ
3214 * If this cpu is the owner for idle load balancing, then do the
3215 * balancing on behalf of the other idle cpus whose ticks are
3216 * stopped.
3218 if (this_rq->idle_at_tick &&
3219 atomic_read(&nohz.load_balancer) == this_cpu) {
3220 cpumask_t cpus = nohz.cpu_mask;
3221 struct rq *rq;
3222 int balance_cpu;
3224 cpu_clear(this_cpu, cpus);
3225 for_each_cpu_mask(balance_cpu, cpus) {
3227 * If this cpu gets work to do, stop the load balancing
3228 * work being done for other cpus. Next load
3229 * balancing owner will pick it up.
3231 if (need_resched())
3232 break;
3234 rebalance_domains(balance_cpu, CPU_IDLE);
3236 rq = cpu_rq(balance_cpu);
3237 if (time_after(this_rq->next_balance, rq->next_balance))
3238 this_rq->next_balance = rq->next_balance;
3241 #endif
3245 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3247 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3248 * idle load balancing owner or decide to stop the periodic load balancing,
3249 * if the whole system is idle.
3251 static inline void trigger_load_balance(struct rq *rq, int cpu)
3253 #ifdef CONFIG_NO_HZ
3255 * If we were in the nohz mode recently and busy at the current
3256 * scheduler tick, then check if we need to nominate new idle
3257 * load balancer.
3259 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3260 rq->in_nohz_recently = 0;
3262 if (atomic_read(&nohz.load_balancer) == cpu) {
3263 cpu_clear(cpu, nohz.cpu_mask);
3264 atomic_set(&nohz.load_balancer, -1);
3267 if (atomic_read(&nohz.load_balancer) == -1) {
3269 * simple selection for now: Nominate the
3270 * first cpu in the nohz list to be the next
3271 * ilb owner.
3273 * TBD: Traverse the sched domains and nominate
3274 * the nearest cpu in the nohz.cpu_mask.
3276 int ilb = first_cpu(nohz.cpu_mask);
3278 if (ilb != NR_CPUS)
3279 resched_cpu(ilb);
3284 * If this cpu is idle and doing idle load balancing for all the
3285 * cpus with ticks stopped, is it time for that to stop?
3287 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3288 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3289 resched_cpu(cpu);
3290 return;
3294 * If this cpu is idle and the idle load balancing is done by
3295 * someone else, then no need raise the SCHED_SOFTIRQ
3297 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3298 cpu_isset(cpu, nohz.cpu_mask))
3299 return;
3300 #endif
3301 if (time_after_eq(jiffies, rq->next_balance))
3302 raise_softirq(SCHED_SOFTIRQ);
3305 #else /* CONFIG_SMP */
3308 * on UP we do not need to balance between CPUs:
3310 static inline void idle_balance(int cpu, struct rq *rq)
3314 #endif
3316 DEFINE_PER_CPU(struct kernel_stat, kstat);
3318 EXPORT_PER_CPU_SYMBOL(kstat);
3321 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3322 * that have not yet been banked in case the task is currently running.
3324 unsigned long long task_sched_runtime(struct task_struct *p)
3326 unsigned long flags;
3327 u64 ns, delta_exec;
3328 struct rq *rq;
3330 rq = task_rq_lock(p, &flags);
3331 ns = p->se.sum_exec_runtime;
3332 if (rq->curr == p) {
3333 update_rq_clock(rq);
3334 delta_exec = rq->clock - p->se.exec_start;
3335 if ((s64)delta_exec > 0)
3336 ns += delta_exec;
3338 task_rq_unlock(rq, &flags);
3340 return ns;
3344 * Account user cpu time to a process.
3345 * @p: the process that the cpu time gets accounted to
3346 * @cputime: the cpu time spent in user space since the last update
3348 void account_user_time(struct task_struct *p, cputime_t cputime)
3350 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3351 cputime64_t tmp;
3353 p->utime = cputime_add(p->utime, cputime);
3355 /* Add user time to cpustat. */
3356 tmp = cputime_to_cputime64(cputime);
3357 if (TASK_NICE(p) > 0)
3358 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3359 else
3360 cpustat->user = cputime64_add(cpustat->user, tmp);
3364 * Account guest cpu time to a process.
3365 * @p: the process that the cpu time gets accounted to
3366 * @cputime: the cpu time spent in virtual machine since the last update
3368 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3370 cputime64_t tmp;
3371 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3373 tmp = cputime_to_cputime64(cputime);
3375 p->utime = cputime_add(p->utime, cputime);
3376 p->gtime = cputime_add(p->gtime, cputime);
3378 cpustat->user = cputime64_add(cpustat->user, tmp);
3379 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3383 * Account scaled user cpu time to a process.
3384 * @p: the process that the cpu time gets accounted to
3385 * @cputime: the cpu time spent in user space since the last update
3387 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3389 p->utimescaled = cputime_add(p->utimescaled, cputime);
3393 * Account system cpu time to a process.
3394 * @p: the process that the cpu time gets accounted to
3395 * @hardirq_offset: the offset to subtract from hardirq_count()
3396 * @cputime: the cpu time spent in kernel space since the last update
3398 void account_system_time(struct task_struct *p, int hardirq_offset,
3399 cputime_t cputime)
3401 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3402 struct rq *rq = this_rq();
3403 cputime64_t tmp;
3405 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3406 return account_guest_time(p, cputime);
3408 p->stime = cputime_add(p->stime, cputime);
3410 /* Add system time to cpustat. */
3411 tmp = cputime_to_cputime64(cputime);
3412 if (hardirq_count() - hardirq_offset)
3413 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3414 else if (softirq_count())
3415 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3416 else if (p != rq->idle)
3417 cpustat->system = cputime64_add(cpustat->system, tmp);
3418 else if (atomic_read(&rq->nr_iowait) > 0)
3419 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3420 else
3421 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3422 /* Account for system time used */
3423 acct_update_integrals(p);
3427 * Account scaled system cpu time to a process.
3428 * @p: the process that the cpu time gets accounted to
3429 * @hardirq_offset: the offset to subtract from hardirq_count()
3430 * @cputime: the cpu time spent in kernel space since the last update
3432 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3434 p->stimescaled = cputime_add(p->stimescaled, cputime);
3438 * Account for involuntary wait time.
3439 * @p: the process from which the cpu time has been stolen
3440 * @steal: the cpu time spent in involuntary wait
3442 void account_steal_time(struct task_struct *p, cputime_t steal)
3444 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3445 cputime64_t tmp = cputime_to_cputime64(steal);
3446 struct rq *rq = this_rq();
3448 if (p == rq->idle) {
3449 p->stime = cputime_add(p->stime, steal);
3450 if (atomic_read(&rq->nr_iowait) > 0)
3451 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3452 else
3453 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3454 } else
3455 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3459 * This function gets called by the timer code, with HZ frequency.
3460 * We call it with interrupts disabled.
3462 * It also gets called by the fork code, when changing the parent's
3463 * timeslices.
3465 void scheduler_tick(void)
3467 int cpu = smp_processor_id();
3468 struct rq *rq = cpu_rq(cpu);
3469 struct task_struct *curr = rq->curr;
3470 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3472 spin_lock(&rq->lock);
3473 __update_rq_clock(rq);
3475 * Let rq->clock advance by at least TICK_NSEC:
3477 if (unlikely(rq->clock < next_tick))
3478 rq->clock = next_tick;
3479 rq->tick_timestamp = rq->clock;
3480 update_cpu_load(rq);
3481 if (curr != rq->idle) /* FIXME: needed? */
3482 curr->sched_class->task_tick(rq, curr);
3483 spin_unlock(&rq->lock);
3485 #ifdef CONFIG_SMP
3486 rq->idle_at_tick = idle_cpu(cpu);
3487 trigger_load_balance(rq, cpu);
3488 #endif
3491 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3493 void fastcall add_preempt_count(int val)
3496 * Underflow?
3498 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3499 return;
3500 preempt_count() += val;
3502 * Spinlock count overflowing soon?
3504 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3505 PREEMPT_MASK - 10);
3507 EXPORT_SYMBOL(add_preempt_count);
3509 void fastcall sub_preempt_count(int val)
3512 * Underflow?
3514 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3515 return;
3517 * Is the spinlock portion underflowing?
3519 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3520 !(preempt_count() & PREEMPT_MASK)))
3521 return;
3523 preempt_count() -= val;
3525 EXPORT_SYMBOL(sub_preempt_count);
3527 #endif
3530 * Print scheduling while atomic bug:
3532 static noinline void __schedule_bug(struct task_struct *prev)
3534 struct pt_regs *regs = get_irq_regs();
3536 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3537 prev->comm, prev->pid, preempt_count());
3539 debug_show_held_locks(prev);
3540 if (irqs_disabled())
3541 print_irqtrace_events(prev);
3543 if (regs)
3544 show_regs(regs);
3545 else
3546 dump_stack();
3550 * Various schedule()-time debugging checks and statistics:
3552 static inline void schedule_debug(struct task_struct *prev)
3555 * Test if we are atomic. Since do_exit() needs to call into
3556 * schedule() atomically, we ignore that path for now.
3557 * Otherwise, whine if we are scheduling when we should not be.
3559 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3560 __schedule_bug(prev);
3562 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3564 schedstat_inc(this_rq(), sched_count);
3565 #ifdef CONFIG_SCHEDSTATS
3566 if (unlikely(prev->lock_depth >= 0)) {
3567 schedstat_inc(this_rq(), bkl_count);
3568 schedstat_inc(prev, sched_info.bkl_count);
3570 #endif
3574 * Pick up the highest-prio task:
3576 static inline struct task_struct *
3577 pick_next_task(struct rq *rq, struct task_struct *prev)
3579 const struct sched_class *class;
3580 struct task_struct *p;
3583 * Optimization: we know that if all tasks are in
3584 * the fair class we can call that function directly:
3586 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3587 p = fair_sched_class.pick_next_task(rq);
3588 if (likely(p))
3589 return p;
3592 class = sched_class_highest;
3593 for ( ; ; ) {
3594 p = class->pick_next_task(rq);
3595 if (p)
3596 return p;
3598 * Will never be NULL as the idle class always
3599 * returns a non-NULL p:
3601 class = class->next;
3606 * schedule() is the main scheduler function.
3608 asmlinkage void __sched schedule(void)
3610 struct task_struct *prev, *next;
3611 long *switch_count;
3612 struct rq *rq;
3613 int cpu;
3615 need_resched:
3616 preempt_disable();
3617 cpu = smp_processor_id();
3618 rq = cpu_rq(cpu);
3619 rcu_qsctr_inc(cpu);
3620 prev = rq->curr;
3621 switch_count = &prev->nivcsw;
3623 release_kernel_lock(prev);
3624 need_resched_nonpreemptible:
3626 schedule_debug(prev);
3629 * Do the rq-clock update outside the rq lock:
3631 local_irq_disable();
3632 __update_rq_clock(rq);
3633 spin_lock(&rq->lock);
3634 clear_tsk_need_resched(prev);
3636 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3637 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3638 unlikely(signal_pending(prev)))) {
3639 prev->state = TASK_RUNNING;
3640 } else {
3641 deactivate_task(rq, prev, 1);
3643 switch_count = &prev->nvcsw;
3646 if (unlikely(!rq->nr_running))
3647 idle_balance(cpu, rq);
3649 prev->sched_class->put_prev_task(rq, prev);
3650 next = pick_next_task(rq, prev);
3652 sched_info_switch(prev, next);
3654 if (likely(prev != next)) {
3655 rq->nr_switches++;
3656 rq->curr = next;
3657 ++*switch_count;
3659 context_switch(rq, prev, next); /* unlocks the rq */
3660 } else
3661 spin_unlock_irq(&rq->lock);
3663 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3664 cpu = smp_processor_id();
3665 rq = cpu_rq(cpu);
3666 goto need_resched_nonpreemptible;
3668 preempt_enable_no_resched();
3669 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3670 goto need_resched;
3672 EXPORT_SYMBOL(schedule);
3674 #ifdef CONFIG_PREEMPT
3676 * this is the entry point to schedule() from in-kernel preemption
3677 * off of preempt_enable. Kernel preemptions off return from interrupt
3678 * occur there and call schedule directly.
3680 asmlinkage void __sched preempt_schedule(void)
3682 struct thread_info *ti = current_thread_info();
3683 #ifdef CONFIG_PREEMPT_BKL
3684 struct task_struct *task = current;
3685 int saved_lock_depth;
3686 #endif
3688 * If there is a non-zero preempt_count or interrupts are disabled,
3689 * we do not want to preempt the current task. Just return..
3691 if (likely(ti->preempt_count || irqs_disabled()))
3692 return;
3694 do {
3695 add_preempt_count(PREEMPT_ACTIVE);
3698 * We keep the big kernel semaphore locked, but we
3699 * clear ->lock_depth so that schedule() doesnt
3700 * auto-release the semaphore:
3702 #ifdef CONFIG_PREEMPT_BKL
3703 saved_lock_depth = task->lock_depth;
3704 task->lock_depth = -1;
3705 #endif
3706 schedule();
3707 #ifdef CONFIG_PREEMPT_BKL
3708 task->lock_depth = saved_lock_depth;
3709 #endif
3710 sub_preempt_count(PREEMPT_ACTIVE);
3713 * Check again in case we missed a preemption opportunity
3714 * between schedule and now.
3716 barrier();
3717 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3719 EXPORT_SYMBOL(preempt_schedule);
3722 * this is the entry point to schedule() from kernel preemption
3723 * off of irq context.
3724 * Note, that this is called and return with irqs disabled. This will
3725 * protect us against recursive calling from irq.
3727 asmlinkage void __sched preempt_schedule_irq(void)
3729 struct thread_info *ti = current_thread_info();
3730 #ifdef CONFIG_PREEMPT_BKL
3731 struct task_struct *task = current;
3732 int saved_lock_depth;
3733 #endif
3734 /* Catch callers which need to be fixed */
3735 BUG_ON(ti->preempt_count || !irqs_disabled());
3737 do {
3738 add_preempt_count(PREEMPT_ACTIVE);
3741 * We keep the big kernel semaphore locked, but we
3742 * clear ->lock_depth so that schedule() doesnt
3743 * auto-release the semaphore:
3745 #ifdef CONFIG_PREEMPT_BKL
3746 saved_lock_depth = task->lock_depth;
3747 task->lock_depth = -1;
3748 #endif
3749 local_irq_enable();
3750 schedule();
3751 local_irq_disable();
3752 #ifdef CONFIG_PREEMPT_BKL
3753 task->lock_depth = saved_lock_depth;
3754 #endif
3755 sub_preempt_count(PREEMPT_ACTIVE);
3758 * Check again in case we missed a preemption opportunity
3759 * between schedule and now.
3761 barrier();
3762 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3765 #endif /* CONFIG_PREEMPT */
3767 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3768 void *key)
3770 return try_to_wake_up(curr->private, mode, sync);
3772 EXPORT_SYMBOL(default_wake_function);
3775 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3776 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3777 * number) then we wake all the non-exclusive tasks and one exclusive task.
3779 * There are circumstances in which we can try to wake a task which has already
3780 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3781 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3783 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3784 int nr_exclusive, int sync, void *key)
3786 wait_queue_t *curr, *next;
3788 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3789 unsigned flags = curr->flags;
3791 if (curr->func(curr, mode, sync, key) &&
3792 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3793 break;
3798 * __wake_up - wake up threads blocked on a waitqueue.
3799 * @q: the waitqueue
3800 * @mode: which threads
3801 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3802 * @key: is directly passed to the wakeup function
3804 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3805 int nr_exclusive, void *key)
3807 unsigned long flags;
3809 spin_lock_irqsave(&q->lock, flags);
3810 __wake_up_common(q, mode, nr_exclusive, 0, key);
3811 spin_unlock_irqrestore(&q->lock, flags);
3813 EXPORT_SYMBOL(__wake_up);
3816 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3818 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3820 __wake_up_common(q, mode, 1, 0, NULL);
3824 * __wake_up_sync - wake up threads blocked on a waitqueue.
3825 * @q: the waitqueue
3826 * @mode: which threads
3827 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3829 * The sync wakeup differs that the waker knows that it will schedule
3830 * away soon, so while the target thread will be woken up, it will not
3831 * be migrated to another CPU - ie. the two threads are 'synchronized'
3832 * with each other. This can prevent needless bouncing between CPUs.
3834 * On UP it can prevent extra preemption.
3836 void fastcall
3837 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3839 unsigned long flags;
3840 int sync = 1;
3842 if (unlikely(!q))
3843 return;
3845 if (unlikely(!nr_exclusive))
3846 sync = 0;
3848 spin_lock_irqsave(&q->lock, flags);
3849 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3850 spin_unlock_irqrestore(&q->lock, flags);
3852 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3854 void complete(struct completion *x)
3856 unsigned long flags;
3858 spin_lock_irqsave(&x->wait.lock, flags);
3859 x->done++;
3860 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3861 1, 0, NULL);
3862 spin_unlock_irqrestore(&x->wait.lock, flags);
3864 EXPORT_SYMBOL(complete);
3866 void complete_all(struct completion *x)
3868 unsigned long flags;
3870 spin_lock_irqsave(&x->wait.lock, flags);
3871 x->done += UINT_MAX/2;
3872 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3873 0, 0, NULL);
3874 spin_unlock_irqrestore(&x->wait.lock, flags);
3876 EXPORT_SYMBOL(complete_all);
3878 static inline long __sched
3879 do_wait_for_common(struct completion *x, long timeout, int state)
3881 if (!x->done) {
3882 DECLARE_WAITQUEUE(wait, current);
3884 wait.flags |= WQ_FLAG_EXCLUSIVE;
3885 __add_wait_queue_tail(&x->wait, &wait);
3886 do {
3887 if (state == TASK_INTERRUPTIBLE &&
3888 signal_pending(current)) {
3889 __remove_wait_queue(&x->wait, &wait);
3890 return -ERESTARTSYS;
3892 __set_current_state(state);
3893 spin_unlock_irq(&x->wait.lock);
3894 timeout = schedule_timeout(timeout);
3895 spin_lock_irq(&x->wait.lock);
3896 if (!timeout) {
3897 __remove_wait_queue(&x->wait, &wait);
3898 return timeout;
3900 } while (!x->done);
3901 __remove_wait_queue(&x->wait, &wait);
3903 x->done--;
3904 return timeout;
3907 static long __sched
3908 wait_for_common(struct completion *x, long timeout, int state)
3910 might_sleep();
3912 spin_lock_irq(&x->wait.lock);
3913 timeout = do_wait_for_common(x, timeout, state);
3914 spin_unlock_irq(&x->wait.lock);
3915 return timeout;
3918 void __sched wait_for_completion(struct completion *x)
3920 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3922 EXPORT_SYMBOL(wait_for_completion);
3924 unsigned long __sched
3925 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3927 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3929 EXPORT_SYMBOL(wait_for_completion_timeout);
3931 int __sched wait_for_completion_interruptible(struct completion *x)
3933 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3934 if (t == -ERESTARTSYS)
3935 return t;
3936 return 0;
3938 EXPORT_SYMBOL(wait_for_completion_interruptible);
3940 unsigned long __sched
3941 wait_for_completion_interruptible_timeout(struct completion *x,
3942 unsigned long timeout)
3944 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3946 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3948 static long __sched
3949 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3951 unsigned long flags;
3952 wait_queue_t wait;
3954 init_waitqueue_entry(&wait, current);
3956 __set_current_state(state);
3958 spin_lock_irqsave(&q->lock, flags);
3959 __add_wait_queue(q, &wait);
3960 spin_unlock(&q->lock);
3961 timeout = schedule_timeout(timeout);
3962 spin_lock_irq(&q->lock);
3963 __remove_wait_queue(q, &wait);
3964 spin_unlock_irqrestore(&q->lock, flags);
3966 return timeout;
3969 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3971 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3973 EXPORT_SYMBOL(interruptible_sleep_on);
3975 long __sched
3976 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3978 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3980 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3982 void __sched sleep_on(wait_queue_head_t *q)
3984 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3986 EXPORT_SYMBOL(sleep_on);
3988 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3990 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3992 EXPORT_SYMBOL(sleep_on_timeout);
3994 #ifdef CONFIG_RT_MUTEXES
3997 * rt_mutex_setprio - set the current priority of a task
3998 * @p: task
3999 * @prio: prio value (kernel-internal form)
4001 * This function changes the 'effective' priority of a task. It does
4002 * not touch ->normal_prio like __setscheduler().
4004 * Used by the rt_mutex code to implement priority inheritance logic.
4006 void rt_mutex_setprio(struct task_struct *p, int prio)
4008 unsigned long flags;
4009 int oldprio, on_rq, running;
4010 struct rq *rq;
4012 BUG_ON(prio < 0 || prio > MAX_PRIO);
4014 rq = task_rq_lock(p, &flags);
4015 update_rq_clock(rq);
4017 oldprio = p->prio;
4018 on_rq = p->se.on_rq;
4019 running = task_running(rq, p);
4020 if (on_rq) {
4021 dequeue_task(rq, p, 0);
4022 if (running)
4023 p->sched_class->put_prev_task(rq, p);
4026 if (rt_prio(prio))
4027 p->sched_class = &rt_sched_class;
4028 else
4029 p->sched_class = &fair_sched_class;
4031 p->prio = prio;
4033 if (on_rq) {
4034 if (running)
4035 p->sched_class->set_curr_task(rq);
4036 enqueue_task(rq, p, 0);
4038 * Reschedule if we are currently running on this runqueue and
4039 * our priority decreased, or if we are not currently running on
4040 * this runqueue and our priority is higher than the current's
4042 if (running) {
4043 if (p->prio > oldprio)
4044 resched_task(rq->curr);
4045 } else {
4046 check_preempt_curr(rq, p);
4049 task_rq_unlock(rq, &flags);
4052 #endif
4054 void set_user_nice(struct task_struct *p, long nice)
4056 int old_prio, delta, on_rq;
4057 unsigned long flags;
4058 struct rq *rq;
4060 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4061 return;
4063 * We have to be careful, if called from sys_setpriority(),
4064 * the task might be in the middle of scheduling on another CPU.
4066 rq = task_rq_lock(p, &flags);
4067 update_rq_clock(rq);
4069 * The RT priorities are set via sched_setscheduler(), but we still
4070 * allow the 'normal' nice value to be set - but as expected
4071 * it wont have any effect on scheduling until the task is
4072 * SCHED_FIFO/SCHED_RR:
4074 if (task_has_rt_policy(p)) {
4075 p->static_prio = NICE_TO_PRIO(nice);
4076 goto out_unlock;
4078 on_rq = p->se.on_rq;
4079 if (on_rq) {
4080 dequeue_task(rq, p, 0);
4081 dec_load(rq, p);
4084 p->static_prio = NICE_TO_PRIO(nice);
4085 set_load_weight(p);
4086 old_prio = p->prio;
4087 p->prio = effective_prio(p);
4088 delta = p->prio - old_prio;
4090 if (on_rq) {
4091 enqueue_task(rq, p, 0);
4092 inc_load(rq, p);
4094 * If the task increased its priority or is running and
4095 * lowered its priority, then reschedule its CPU:
4097 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4098 resched_task(rq->curr);
4100 out_unlock:
4101 task_rq_unlock(rq, &flags);
4103 EXPORT_SYMBOL(set_user_nice);
4106 * can_nice - check if a task can reduce its nice value
4107 * @p: task
4108 * @nice: nice value
4110 int can_nice(const struct task_struct *p, const int nice)
4112 /* convert nice value [19,-20] to rlimit style value [1,40] */
4113 int nice_rlim = 20 - nice;
4115 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4116 capable(CAP_SYS_NICE));
4119 #ifdef __ARCH_WANT_SYS_NICE
4122 * sys_nice - change the priority of the current process.
4123 * @increment: priority increment
4125 * sys_setpriority is a more generic, but much slower function that
4126 * does similar things.
4128 asmlinkage long sys_nice(int increment)
4130 long nice, retval;
4133 * Setpriority might change our priority at the same moment.
4134 * We don't have to worry. Conceptually one call occurs first
4135 * and we have a single winner.
4137 if (increment < -40)
4138 increment = -40;
4139 if (increment > 40)
4140 increment = 40;
4142 nice = PRIO_TO_NICE(current->static_prio) + increment;
4143 if (nice < -20)
4144 nice = -20;
4145 if (nice > 19)
4146 nice = 19;
4148 if (increment < 0 && !can_nice(current, nice))
4149 return -EPERM;
4151 retval = security_task_setnice(current, nice);
4152 if (retval)
4153 return retval;
4155 set_user_nice(current, nice);
4156 return 0;
4159 #endif
4162 * task_prio - return the priority value of a given task.
4163 * @p: the task in question.
4165 * This is the priority value as seen by users in /proc.
4166 * RT tasks are offset by -200. Normal tasks are centered
4167 * around 0, value goes from -16 to +15.
4169 int task_prio(const struct task_struct *p)
4171 return p->prio - MAX_RT_PRIO;
4175 * task_nice - return the nice value of a given task.
4176 * @p: the task in question.
4178 int task_nice(const struct task_struct *p)
4180 return TASK_NICE(p);
4182 EXPORT_SYMBOL_GPL(task_nice);
4185 * idle_cpu - is a given cpu idle currently?
4186 * @cpu: the processor in question.
4188 int idle_cpu(int cpu)
4190 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4194 * idle_task - return the idle task for a given cpu.
4195 * @cpu: the processor in question.
4197 struct task_struct *idle_task(int cpu)
4199 return cpu_rq(cpu)->idle;
4203 * find_process_by_pid - find a process with a matching PID value.
4204 * @pid: the pid in question.
4206 static struct task_struct *find_process_by_pid(pid_t pid)
4208 return pid ? find_task_by_vpid(pid) : current;
4211 /* Actually do priority change: must hold rq lock. */
4212 static void
4213 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4215 BUG_ON(p->se.on_rq);
4217 p->policy = policy;
4218 switch (p->policy) {
4219 case SCHED_NORMAL:
4220 case SCHED_BATCH:
4221 case SCHED_IDLE:
4222 p->sched_class = &fair_sched_class;
4223 break;
4224 case SCHED_FIFO:
4225 case SCHED_RR:
4226 p->sched_class = &rt_sched_class;
4227 break;
4230 p->rt_priority = prio;
4231 p->normal_prio = normal_prio(p);
4232 /* we are holding p->pi_lock already */
4233 p->prio = rt_mutex_getprio(p);
4234 set_load_weight(p);
4238 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4239 * @p: the task in question.
4240 * @policy: new policy.
4241 * @param: structure containing the new RT priority.
4243 * NOTE that the task may be already dead.
4245 int sched_setscheduler(struct task_struct *p, int policy,
4246 struct sched_param *param)
4248 int retval, oldprio, oldpolicy = -1, on_rq, running;
4249 unsigned long flags;
4250 struct rq *rq;
4252 /* may grab non-irq protected spin_locks */
4253 BUG_ON(in_interrupt());
4254 recheck:
4255 /* double check policy once rq lock held */
4256 if (policy < 0)
4257 policy = oldpolicy = p->policy;
4258 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4259 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4260 policy != SCHED_IDLE)
4261 return -EINVAL;
4263 * Valid priorities for SCHED_FIFO and SCHED_RR are
4264 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4265 * SCHED_BATCH and SCHED_IDLE is 0.
4267 if (param->sched_priority < 0 ||
4268 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4269 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4270 return -EINVAL;
4271 if (rt_policy(policy) != (param->sched_priority != 0))
4272 return -EINVAL;
4275 * Allow unprivileged RT tasks to decrease priority:
4277 if (!capable(CAP_SYS_NICE)) {
4278 if (rt_policy(policy)) {
4279 unsigned long rlim_rtprio;
4281 if (!lock_task_sighand(p, &flags))
4282 return -ESRCH;
4283 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4284 unlock_task_sighand(p, &flags);
4286 /* can't set/change the rt policy */
4287 if (policy != p->policy && !rlim_rtprio)
4288 return -EPERM;
4290 /* can't increase priority */
4291 if (param->sched_priority > p->rt_priority &&
4292 param->sched_priority > rlim_rtprio)
4293 return -EPERM;
4296 * Like positive nice levels, dont allow tasks to
4297 * move out of SCHED_IDLE either:
4299 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4300 return -EPERM;
4302 /* can't change other user's priorities */
4303 if ((current->euid != p->euid) &&
4304 (current->euid != p->uid))
4305 return -EPERM;
4308 retval = security_task_setscheduler(p, policy, param);
4309 if (retval)
4310 return retval;
4312 * make sure no PI-waiters arrive (or leave) while we are
4313 * changing the priority of the task:
4315 spin_lock_irqsave(&p->pi_lock, flags);
4317 * To be able to change p->policy safely, the apropriate
4318 * runqueue lock must be held.
4320 rq = __task_rq_lock(p);
4321 /* recheck policy now with rq lock held */
4322 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4323 policy = oldpolicy = -1;
4324 __task_rq_unlock(rq);
4325 spin_unlock_irqrestore(&p->pi_lock, flags);
4326 goto recheck;
4328 update_rq_clock(rq);
4329 on_rq = p->se.on_rq;
4330 running = task_running(rq, p);
4331 if (on_rq) {
4332 deactivate_task(rq, p, 0);
4333 if (running)
4334 p->sched_class->put_prev_task(rq, p);
4337 oldprio = p->prio;
4338 __setscheduler(rq, p, policy, param->sched_priority);
4340 if (on_rq) {
4341 if (running)
4342 p->sched_class->set_curr_task(rq);
4343 activate_task(rq, p, 0);
4345 * Reschedule if we are currently running on this runqueue and
4346 * our priority decreased, or if we are not currently running on
4347 * this runqueue and our priority is higher than the current's
4349 if (running) {
4350 if (p->prio > oldprio)
4351 resched_task(rq->curr);
4352 } else {
4353 check_preempt_curr(rq, p);
4356 __task_rq_unlock(rq);
4357 spin_unlock_irqrestore(&p->pi_lock, flags);
4359 rt_mutex_adjust_pi(p);
4361 return 0;
4363 EXPORT_SYMBOL_GPL(sched_setscheduler);
4365 static int
4366 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4368 struct sched_param lparam;
4369 struct task_struct *p;
4370 int retval;
4372 if (!param || pid < 0)
4373 return -EINVAL;
4374 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4375 return -EFAULT;
4377 rcu_read_lock();
4378 retval = -ESRCH;
4379 p = find_process_by_pid(pid);
4380 if (p != NULL)
4381 retval = sched_setscheduler(p, policy, &lparam);
4382 rcu_read_unlock();
4384 return retval;
4388 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4389 * @pid: the pid in question.
4390 * @policy: new policy.
4391 * @param: structure containing the new RT priority.
4393 asmlinkage long
4394 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4396 /* negative values for policy are not valid */
4397 if (policy < 0)
4398 return -EINVAL;
4400 return do_sched_setscheduler(pid, policy, param);
4404 * sys_sched_setparam - set/change the RT priority of a thread
4405 * @pid: the pid in question.
4406 * @param: structure containing the new RT priority.
4408 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4410 return do_sched_setscheduler(pid, -1, param);
4414 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4415 * @pid: the pid in question.
4417 asmlinkage long sys_sched_getscheduler(pid_t pid)
4419 struct task_struct *p;
4420 int retval;
4422 if (pid < 0)
4423 return -EINVAL;
4425 retval = -ESRCH;
4426 read_lock(&tasklist_lock);
4427 p = find_process_by_pid(pid);
4428 if (p) {
4429 retval = security_task_getscheduler(p);
4430 if (!retval)
4431 retval = p->policy;
4433 read_unlock(&tasklist_lock);
4434 return retval;
4438 * sys_sched_getscheduler - get the RT priority of a thread
4439 * @pid: the pid in question.
4440 * @param: structure containing the RT priority.
4442 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4444 struct sched_param lp;
4445 struct task_struct *p;
4446 int retval;
4448 if (!param || pid < 0)
4449 return -EINVAL;
4451 read_lock(&tasklist_lock);
4452 p = find_process_by_pid(pid);
4453 retval = -ESRCH;
4454 if (!p)
4455 goto out_unlock;
4457 retval = security_task_getscheduler(p);
4458 if (retval)
4459 goto out_unlock;
4461 lp.sched_priority = p->rt_priority;
4462 read_unlock(&tasklist_lock);
4465 * This one might sleep, we cannot do it with a spinlock held ...
4467 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4469 return retval;
4471 out_unlock:
4472 read_unlock(&tasklist_lock);
4473 return retval;
4476 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4478 cpumask_t cpus_allowed;
4479 struct task_struct *p;
4480 int retval;
4482 mutex_lock(&sched_hotcpu_mutex);
4483 read_lock(&tasklist_lock);
4485 p = find_process_by_pid(pid);
4486 if (!p) {
4487 read_unlock(&tasklist_lock);
4488 mutex_unlock(&sched_hotcpu_mutex);
4489 return -ESRCH;
4493 * It is not safe to call set_cpus_allowed with the
4494 * tasklist_lock held. We will bump the task_struct's
4495 * usage count and then drop tasklist_lock.
4497 get_task_struct(p);
4498 read_unlock(&tasklist_lock);
4500 retval = -EPERM;
4501 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4502 !capable(CAP_SYS_NICE))
4503 goto out_unlock;
4505 retval = security_task_setscheduler(p, 0, NULL);
4506 if (retval)
4507 goto out_unlock;
4509 cpus_allowed = cpuset_cpus_allowed(p);
4510 cpus_and(new_mask, new_mask, cpus_allowed);
4511 again:
4512 retval = set_cpus_allowed(p, new_mask);
4514 if (!retval) {
4515 cpus_allowed = cpuset_cpus_allowed(p);
4516 if (!cpus_subset(new_mask, cpus_allowed)) {
4518 * We must have raced with a concurrent cpuset
4519 * update. Just reset the cpus_allowed to the
4520 * cpuset's cpus_allowed
4522 new_mask = cpus_allowed;
4523 goto again;
4526 out_unlock:
4527 put_task_struct(p);
4528 mutex_unlock(&sched_hotcpu_mutex);
4529 return retval;
4532 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4533 cpumask_t *new_mask)
4535 if (len < sizeof(cpumask_t)) {
4536 memset(new_mask, 0, sizeof(cpumask_t));
4537 } else if (len > sizeof(cpumask_t)) {
4538 len = sizeof(cpumask_t);
4540 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4544 * sys_sched_setaffinity - set the cpu affinity of a process
4545 * @pid: pid of the process
4546 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4547 * @user_mask_ptr: user-space pointer to the new cpu mask
4549 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4550 unsigned long __user *user_mask_ptr)
4552 cpumask_t new_mask;
4553 int retval;
4555 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4556 if (retval)
4557 return retval;
4559 return sched_setaffinity(pid, new_mask);
4563 * Represents all cpu's present in the system
4564 * In systems capable of hotplug, this map could dynamically grow
4565 * as new cpu's are detected in the system via any platform specific
4566 * method, such as ACPI for e.g.
4569 cpumask_t cpu_present_map __read_mostly;
4570 EXPORT_SYMBOL(cpu_present_map);
4572 #ifndef CONFIG_SMP
4573 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4574 EXPORT_SYMBOL(cpu_online_map);
4576 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4577 EXPORT_SYMBOL(cpu_possible_map);
4578 #endif
4580 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4582 struct task_struct *p;
4583 int retval;
4585 mutex_lock(&sched_hotcpu_mutex);
4586 read_lock(&tasklist_lock);
4588 retval = -ESRCH;
4589 p = find_process_by_pid(pid);
4590 if (!p)
4591 goto out_unlock;
4593 retval = security_task_getscheduler(p);
4594 if (retval)
4595 goto out_unlock;
4597 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4599 out_unlock:
4600 read_unlock(&tasklist_lock);
4601 mutex_unlock(&sched_hotcpu_mutex);
4603 return retval;
4607 * sys_sched_getaffinity - get the cpu affinity of a process
4608 * @pid: pid of the process
4609 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4610 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4612 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4613 unsigned long __user *user_mask_ptr)
4615 int ret;
4616 cpumask_t mask;
4618 if (len < sizeof(cpumask_t))
4619 return -EINVAL;
4621 ret = sched_getaffinity(pid, &mask);
4622 if (ret < 0)
4623 return ret;
4625 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4626 return -EFAULT;
4628 return sizeof(cpumask_t);
4632 * sys_sched_yield - yield the current processor to other threads.
4634 * This function yields the current CPU to other tasks. If there are no
4635 * other threads running on this CPU then this function will return.
4637 asmlinkage long sys_sched_yield(void)
4639 struct rq *rq = this_rq_lock();
4641 schedstat_inc(rq, yld_count);
4642 current->sched_class->yield_task(rq);
4645 * Since we are going to call schedule() anyway, there's
4646 * no need to preempt or enable interrupts:
4648 __release(rq->lock);
4649 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4650 _raw_spin_unlock(&rq->lock);
4651 preempt_enable_no_resched();
4653 schedule();
4655 return 0;
4658 static void __cond_resched(void)
4660 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4661 __might_sleep(__FILE__, __LINE__);
4662 #endif
4664 * The BKS might be reacquired before we have dropped
4665 * PREEMPT_ACTIVE, which could trigger a second
4666 * cond_resched() call.
4668 do {
4669 add_preempt_count(PREEMPT_ACTIVE);
4670 schedule();
4671 sub_preempt_count(PREEMPT_ACTIVE);
4672 } while (need_resched());
4675 int __sched cond_resched(void)
4677 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4678 system_state == SYSTEM_RUNNING) {
4679 __cond_resched();
4680 return 1;
4682 return 0;
4684 EXPORT_SYMBOL(cond_resched);
4687 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4688 * call schedule, and on return reacquire the lock.
4690 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4691 * operations here to prevent schedule() from being called twice (once via
4692 * spin_unlock(), once by hand).
4694 int cond_resched_lock(spinlock_t *lock)
4696 int ret = 0;
4698 if (need_lockbreak(lock)) {
4699 spin_unlock(lock);
4700 cpu_relax();
4701 ret = 1;
4702 spin_lock(lock);
4704 if (need_resched() && system_state == SYSTEM_RUNNING) {
4705 spin_release(&lock->dep_map, 1, _THIS_IP_);
4706 _raw_spin_unlock(lock);
4707 preempt_enable_no_resched();
4708 __cond_resched();
4709 ret = 1;
4710 spin_lock(lock);
4712 return ret;
4714 EXPORT_SYMBOL(cond_resched_lock);
4716 int __sched cond_resched_softirq(void)
4718 BUG_ON(!in_softirq());
4720 if (need_resched() && system_state == SYSTEM_RUNNING) {
4721 local_bh_enable();
4722 __cond_resched();
4723 local_bh_disable();
4724 return 1;
4726 return 0;
4728 EXPORT_SYMBOL(cond_resched_softirq);
4731 * yield - yield the current processor to other threads.
4733 * This is a shortcut for kernel-space yielding - it marks the
4734 * thread runnable and calls sys_sched_yield().
4736 void __sched yield(void)
4738 set_current_state(TASK_RUNNING);
4739 sys_sched_yield();
4741 EXPORT_SYMBOL(yield);
4744 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4745 * that process accounting knows that this is a task in IO wait state.
4747 * But don't do that if it is a deliberate, throttling IO wait (this task
4748 * has set its backing_dev_info: the queue against which it should throttle)
4750 void __sched io_schedule(void)
4752 struct rq *rq = &__raw_get_cpu_var(runqueues);
4754 delayacct_blkio_start();
4755 atomic_inc(&rq->nr_iowait);
4756 schedule();
4757 atomic_dec(&rq->nr_iowait);
4758 delayacct_blkio_end();
4760 EXPORT_SYMBOL(io_schedule);
4762 long __sched io_schedule_timeout(long timeout)
4764 struct rq *rq = &__raw_get_cpu_var(runqueues);
4765 long ret;
4767 delayacct_blkio_start();
4768 atomic_inc(&rq->nr_iowait);
4769 ret = schedule_timeout(timeout);
4770 atomic_dec(&rq->nr_iowait);
4771 delayacct_blkio_end();
4772 return ret;
4776 * sys_sched_get_priority_max - return maximum RT priority.
4777 * @policy: scheduling class.
4779 * this syscall returns the maximum rt_priority that can be used
4780 * by a given scheduling class.
4782 asmlinkage long sys_sched_get_priority_max(int policy)
4784 int ret = -EINVAL;
4786 switch (policy) {
4787 case SCHED_FIFO:
4788 case SCHED_RR:
4789 ret = MAX_USER_RT_PRIO-1;
4790 break;
4791 case SCHED_NORMAL:
4792 case SCHED_BATCH:
4793 case SCHED_IDLE:
4794 ret = 0;
4795 break;
4797 return ret;
4801 * sys_sched_get_priority_min - return minimum RT priority.
4802 * @policy: scheduling class.
4804 * this syscall returns the minimum rt_priority that can be used
4805 * by a given scheduling class.
4807 asmlinkage long sys_sched_get_priority_min(int policy)
4809 int ret = -EINVAL;
4811 switch (policy) {
4812 case SCHED_FIFO:
4813 case SCHED_RR:
4814 ret = 1;
4815 break;
4816 case SCHED_NORMAL:
4817 case SCHED_BATCH:
4818 case SCHED_IDLE:
4819 ret = 0;
4821 return ret;
4825 * sys_sched_rr_get_interval - return the default timeslice of a process.
4826 * @pid: pid of the process.
4827 * @interval: userspace pointer to the timeslice value.
4829 * this syscall writes the default timeslice value of a given process
4830 * into the user-space timespec buffer. A value of '0' means infinity.
4832 asmlinkage
4833 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4835 struct task_struct *p;
4836 unsigned int time_slice;
4837 int retval;
4838 struct timespec t;
4840 if (pid < 0)
4841 return -EINVAL;
4843 retval = -ESRCH;
4844 read_lock(&tasklist_lock);
4845 p = find_process_by_pid(pid);
4846 if (!p)
4847 goto out_unlock;
4849 retval = security_task_getscheduler(p);
4850 if (retval)
4851 goto out_unlock;
4854 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4855 * tasks that are on an otherwise idle runqueue:
4857 time_slice = 0;
4858 if (p->policy == SCHED_RR) {
4859 time_slice = DEF_TIMESLICE;
4860 } else {
4861 struct sched_entity *se = &p->se;
4862 unsigned long flags;
4863 struct rq *rq;
4865 rq = task_rq_lock(p, &flags);
4866 if (rq->cfs.load.weight)
4867 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4868 task_rq_unlock(rq, &flags);
4870 read_unlock(&tasklist_lock);
4871 jiffies_to_timespec(time_slice, &t);
4872 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4873 return retval;
4875 out_unlock:
4876 read_unlock(&tasklist_lock);
4877 return retval;
4880 static const char stat_nam[] = "RSDTtZX";
4882 static void show_task(struct task_struct *p)
4884 unsigned long free = 0;
4885 unsigned state;
4887 state = p->state ? __ffs(p->state) + 1 : 0;
4888 printk(KERN_INFO "%-13.13s %c", p->comm,
4889 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4890 #if BITS_PER_LONG == 32
4891 if (state == TASK_RUNNING)
4892 printk(KERN_CONT " running ");
4893 else
4894 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4895 #else
4896 if (state == TASK_RUNNING)
4897 printk(KERN_CONT " running task ");
4898 else
4899 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4900 #endif
4901 #ifdef CONFIG_DEBUG_STACK_USAGE
4903 unsigned long *n = end_of_stack(p);
4904 while (!*n)
4905 n++;
4906 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4908 #endif
4909 printk(KERN_CONT "%5lu %5d %6d\n", free,
4910 task_pid_nr(p), task_pid_nr(p->parent));
4912 if (state != TASK_RUNNING)
4913 show_stack(p, NULL);
4916 void show_state_filter(unsigned long state_filter)
4918 struct task_struct *g, *p;
4920 #if BITS_PER_LONG == 32
4921 printk(KERN_INFO
4922 " task PC stack pid father\n");
4923 #else
4924 printk(KERN_INFO
4925 " task PC stack pid father\n");
4926 #endif
4927 read_lock(&tasklist_lock);
4928 do_each_thread(g, p) {
4930 * reset the NMI-timeout, listing all files on a slow
4931 * console might take alot of time:
4933 touch_nmi_watchdog();
4934 if (!state_filter || (p->state & state_filter))
4935 show_task(p);
4936 } while_each_thread(g, p);
4938 touch_all_softlockup_watchdogs();
4940 #ifdef CONFIG_SCHED_DEBUG
4941 sysrq_sched_debug_show();
4942 #endif
4943 read_unlock(&tasklist_lock);
4945 * Only show locks if all tasks are dumped:
4947 if (state_filter == -1)
4948 debug_show_all_locks();
4951 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4953 idle->sched_class = &idle_sched_class;
4957 * init_idle - set up an idle thread for a given CPU
4958 * @idle: task in question
4959 * @cpu: cpu the idle task belongs to
4961 * NOTE: this function does not set the idle thread's NEED_RESCHED
4962 * flag, to make booting more robust.
4964 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4966 struct rq *rq = cpu_rq(cpu);
4967 unsigned long flags;
4969 __sched_fork(idle);
4970 idle->se.exec_start = sched_clock();
4972 idle->prio = idle->normal_prio = MAX_PRIO;
4973 idle->cpus_allowed = cpumask_of_cpu(cpu);
4974 __set_task_cpu(idle, cpu);
4976 spin_lock_irqsave(&rq->lock, flags);
4977 rq->curr = rq->idle = idle;
4978 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4979 idle->oncpu = 1;
4980 #endif
4981 spin_unlock_irqrestore(&rq->lock, flags);
4983 /* Set the preempt count _outside_ the spinlocks! */
4984 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4985 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4986 #else
4987 task_thread_info(idle)->preempt_count = 0;
4988 #endif
4990 * The idle tasks have their own, simple scheduling class:
4992 idle->sched_class = &idle_sched_class;
4996 * In a system that switches off the HZ timer nohz_cpu_mask
4997 * indicates which cpus entered this state. This is used
4998 * in the rcu update to wait only for active cpus. For system
4999 * which do not switch off the HZ timer nohz_cpu_mask should
5000 * always be CPU_MASK_NONE.
5002 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5005 * Increase the granularity value when there are more CPUs,
5006 * because with more CPUs the 'effective latency' as visible
5007 * to users decreases. But the relationship is not linear,
5008 * so pick a second-best guess by going with the log2 of the
5009 * number of CPUs.
5011 * This idea comes from the SD scheduler of Con Kolivas:
5013 static inline void sched_init_granularity(void)
5015 unsigned int factor = 1 + ilog2(num_online_cpus());
5016 const unsigned long limit = 200000000;
5018 sysctl_sched_min_granularity *= factor;
5019 if (sysctl_sched_min_granularity > limit)
5020 sysctl_sched_min_granularity = limit;
5022 sysctl_sched_latency *= factor;
5023 if (sysctl_sched_latency > limit)
5024 sysctl_sched_latency = limit;
5026 sysctl_sched_wakeup_granularity *= factor;
5027 sysctl_sched_batch_wakeup_granularity *= factor;
5030 #ifdef CONFIG_SMP
5032 * This is how migration works:
5034 * 1) we queue a struct migration_req structure in the source CPU's
5035 * runqueue and wake up that CPU's migration thread.
5036 * 2) we down() the locked semaphore => thread blocks.
5037 * 3) migration thread wakes up (implicitly it forces the migrated
5038 * thread off the CPU)
5039 * 4) it gets the migration request and checks whether the migrated
5040 * task is still in the wrong runqueue.
5041 * 5) if it's in the wrong runqueue then the migration thread removes
5042 * it and puts it into the right queue.
5043 * 6) migration thread up()s the semaphore.
5044 * 7) we wake up and the migration is done.
5048 * Change a given task's CPU affinity. Migrate the thread to a
5049 * proper CPU and schedule it away if the CPU it's executing on
5050 * is removed from the allowed bitmask.
5052 * NOTE: the caller must have a valid reference to the task, the
5053 * task must not exit() & deallocate itself prematurely. The
5054 * call is not atomic; no spinlocks may be held.
5056 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5058 struct migration_req req;
5059 unsigned long flags;
5060 struct rq *rq;
5061 int ret = 0;
5063 rq = task_rq_lock(p, &flags);
5064 if (!cpus_intersects(new_mask, cpu_online_map)) {
5065 ret = -EINVAL;
5066 goto out;
5069 p->cpus_allowed = new_mask;
5070 /* Can the task run on the task's current CPU? If so, we're done */
5071 if (cpu_isset(task_cpu(p), new_mask))
5072 goto out;
5074 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5075 /* Need help from migration thread: drop lock and wait. */
5076 task_rq_unlock(rq, &flags);
5077 wake_up_process(rq->migration_thread);
5078 wait_for_completion(&req.done);
5079 tlb_migrate_finish(p->mm);
5080 return 0;
5082 out:
5083 task_rq_unlock(rq, &flags);
5085 return ret;
5087 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5090 * Move (not current) task off this cpu, onto dest cpu. We're doing
5091 * this because either it can't run here any more (set_cpus_allowed()
5092 * away from this CPU, or CPU going down), or because we're
5093 * attempting to rebalance this task on exec (sched_exec).
5095 * So we race with normal scheduler movements, but that's OK, as long
5096 * as the task is no longer on this CPU.
5098 * Returns non-zero if task was successfully migrated.
5100 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5102 struct rq *rq_dest, *rq_src;
5103 int ret = 0, on_rq;
5105 if (unlikely(cpu_is_offline(dest_cpu)))
5106 return ret;
5108 rq_src = cpu_rq(src_cpu);
5109 rq_dest = cpu_rq(dest_cpu);
5111 double_rq_lock(rq_src, rq_dest);
5112 /* Already moved. */
5113 if (task_cpu(p) != src_cpu)
5114 goto out;
5115 /* Affinity changed (again). */
5116 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5117 goto out;
5119 on_rq = p->se.on_rq;
5120 if (on_rq)
5121 deactivate_task(rq_src, p, 0);
5123 set_task_cpu(p, dest_cpu);
5124 if (on_rq) {
5125 activate_task(rq_dest, p, 0);
5126 check_preempt_curr(rq_dest, p);
5128 ret = 1;
5129 out:
5130 double_rq_unlock(rq_src, rq_dest);
5131 return ret;
5135 * migration_thread - this is a highprio system thread that performs
5136 * thread migration by bumping thread off CPU then 'pushing' onto
5137 * another runqueue.
5139 static int migration_thread(void *data)
5141 int cpu = (long)data;
5142 struct rq *rq;
5144 rq = cpu_rq(cpu);
5145 BUG_ON(rq->migration_thread != current);
5147 set_current_state(TASK_INTERRUPTIBLE);
5148 while (!kthread_should_stop()) {
5149 struct migration_req *req;
5150 struct list_head *head;
5152 spin_lock_irq(&rq->lock);
5154 if (cpu_is_offline(cpu)) {
5155 spin_unlock_irq(&rq->lock);
5156 goto wait_to_die;
5159 if (rq->active_balance) {
5160 active_load_balance(rq, cpu);
5161 rq->active_balance = 0;
5164 head = &rq->migration_queue;
5166 if (list_empty(head)) {
5167 spin_unlock_irq(&rq->lock);
5168 schedule();
5169 set_current_state(TASK_INTERRUPTIBLE);
5170 continue;
5172 req = list_entry(head->next, struct migration_req, list);
5173 list_del_init(head->next);
5175 spin_unlock(&rq->lock);
5176 __migrate_task(req->task, cpu, req->dest_cpu);
5177 local_irq_enable();
5179 complete(&req->done);
5181 __set_current_state(TASK_RUNNING);
5182 return 0;
5184 wait_to_die:
5185 /* Wait for kthread_stop */
5186 set_current_state(TASK_INTERRUPTIBLE);
5187 while (!kthread_should_stop()) {
5188 schedule();
5189 set_current_state(TASK_INTERRUPTIBLE);
5191 __set_current_state(TASK_RUNNING);
5192 return 0;
5195 #ifdef CONFIG_HOTPLUG_CPU
5197 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5199 int ret;
5201 local_irq_disable();
5202 ret = __migrate_task(p, src_cpu, dest_cpu);
5203 local_irq_enable();
5204 return ret;
5208 * Figure out where task on dead CPU should go, use force if necessary.
5209 * NOTE: interrupts should be disabled by the caller
5211 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5213 unsigned long flags;
5214 cpumask_t mask;
5215 struct rq *rq;
5216 int dest_cpu;
5218 do {
5219 /* On same node? */
5220 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5221 cpus_and(mask, mask, p->cpus_allowed);
5222 dest_cpu = any_online_cpu(mask);
5224 /* On any allowed CPU? */
5225 if (dest_cpu == NR_CPUS)
5226 dest_cpu = any_online_cpu(p->cpus_allowed);
5228 /* No more Mr. Nice Guy. */
5229 if (dest_cpu == NR_CPUS) {
5230 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5232 * Try to stay on the same cpuset, where the
5233 * current cpuset may be a subset of all cpus.
5234 * The cpuset_cpus_allowed_locked() variant of
5235 * cpuset_cpus_allowed() will not block. It must be
5236 * called within calls to cpuset_lock/cpuset_unlock.
5238 rq = task_rq_lock(p, &flags);
5239 p->cpus_allowed = cpus_allowed;
5240 dest_cpu = any_online_cpu(p->cpus_allowed);
5241 task_rq_unlock(rq, &flags);
5244 * Don't tell them about moving exiting tasks or
5245 * kernel threads (both mm NULL), since they never
5246 * leave kernel.
5248 if (p->mm && printk_ratelimit()) {
5249 printk(KERN_INFO "process %d (%s) no "
5250 "longer affine to cpu%d\n",
5251 task_pid_nr(p), p->comm, dead_cpu);
5254 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5258 * While a dead CPU has no uninterruptible tasks queued at this point,
5259 * it might still have a nonzero ->nr_uninterruptible counter, because
5260 * for performance reasons the counter is not stricly tracking tasks to
5261 * their home CPUs. So we just add the counter to another CPU's counter,
5262 * to keep the global sum constant after CPU-down:
5264 static void migrate_nr_uninterruptible(struct rq *rq_src)
5266 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5267 unsigned long flags;
5269 local_irq_save(flags);
5270 double_rq_lock(rq_src, rq_dest);
5271 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5272 rq_src->nr_uninterruptible = 0;
5273 double_rq_unlock(rq_src, rq_dest);
5274 local_irq_restore(flags);
5277 /* Run through task list and migrate tasks from the dead cpu. */
5278 static void migrate_live_tasks(int src_cpu)
5280 struct task_struct *p, *t;
5282 read_lock(&tasklist_lock);
5284 do_each_thread(t, p) {
5285 if (p == current)
5286 continue;
5288 if (task_cpu(p) == src_cpu)
5289 move_task_off_dead_cpu(src_cpu, p);
5290 } while_each_thread(t, p);
5292 read_unlock(&tasklist_lock);
5296 * Schedules idle task to be the next runnable task on current CPU.
5297 * It does so by boosting its priority to highest possible.
5298 * Used by CPU offline code.
5300 void sched_idle_next(void)
5302 int this_cpu = smp_processor_id();
5303 struct rq *rq = cpu_rq(this_cpu);
5304 struct task_struct *p = rq->idle;
5305 unsigned long flags;
5307 /* cpu has to be offline */
5308 BUG_ON(cpu_online(this_cpu));
5311 * Strictly not necessary since rest of the CPUs are stopped by now
5312 * and interrupts disabled on the current cpu.
5314 spin_lock_irqsave(&rq->lock, flags);
5316 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5318 update_rq_clock(rq);
5319 activate_task(rq, p, 0);
5321 spin_unlock_irqrestore(&rq->lock, flags);
5325 * Ensures that the idle task is using init_mm right before its cpu goes
5326 * offline.
5328 void idle_task_exit(void)
5330 struct mm_struct *mm = current->active_mm;
5332 BUG_ON(cpu_online(smp_processor_id()));
5334 if (mm != &init_mm)
5335 switch_mm(mm, &init_mm, current);
5336 mmdrop(mm);
5339 /* called under rq->lock with disabled interrupts */
5340 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5342 struct rq *rq = cpu_rq(dead_cpu);
5344 /* Must be exiting, otherwise would be on tasklist. */
5345 BUG_ON(!p->exit_state);
5347 /* Cannot have done final schedule yet: would have vanished. */
5348 BUG_ON(p->state == TASK_DEAD);
5350 get_task_struct(p);
5353 * Drop lock around migration; if someone else moves it,
5354 * that's OK. No task can be added to this CPU, so iteration is
5355 * fine.
5357 spin_unlock_irq(&rq->lock);
5358 move_task_off_dead_cpu(dead_cpu, p);
5359 spin_lock_irq(&rq->lock);
5361 put_task_struct(p);
5364 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5365 static void migrate_dead_tasks(unsigned int dead_cpu)
5367 struct rq *rq = cpu_rq(dead_cpu);
5368 struct task_struct *next;
5370 for ( ; ; ) {
5371 if (!rq->nr_running)
5372 break;
5373 update_rq_clock(rq);
5374 next = pick_next_task(rq, rq->curr);
5375 if (!next)
5376 break;
5377 migrate_dead(dead_cpu, next);
5381 #endif /* CONFIG_HOTPLUG_CPU */
5383 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5385 static struct ctl_table sd_ctl_dir[] = {
5387 .procname = "sched_domain",
5388 .mode = 0555,
5390 {0, },
5393 static struct ctl_table sd_ctl_root[] = {
5395 .ctl_name = CTL_KERN,
5396 .procname = "kernel",
5397 .mode = 0555,
5398 .child = sd_ctl_dir,
5400 {0, },
5403 static struct ctl_table *sd_alloc_ctl_entry(int n)
5405 struct ctl_table *entry =
5406 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5408 return entry;
5411 static void sd_free_ctl_entry(struct ctl_table **tablep)
5413 struct ctl_table *entry;
5416 * In the intermediate directories, both the child directory and
5417 * procname are dynamically allocated and could fail but the mode
5418 * will always be set. In the lowest directory the names are
5419 * static strings and all have proc handlers.
5421 for (entry = *tablep; entry->mode; entry++) {
5422 if (entry->child)
5423 sd_free_ctl_entry(&entry->child);
5424 if (entry->proc_handler == NULL)
5425 kfree(entry->procname);
5428 kfree(*tablep);
5429 *tablep = NULL;
5432 static void
5433 set_table_entry(struct ctl_table *entry,
5434 const char *procname, void *data, int maxlen,
5435 mode_t mode, proc_handler *proc_handler)
5437 entry->procname = procname;
5438 entry->data = data;
5439 entry->maxlen = maxlen;
5440 entry->mode = mode;
5441 entry->proc_handler = proc_handler;
5444 static struct ctl_table *
5445 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5447 struct ctl_table *table = sd_alloc_ctl_entry(12);
5449 if (table == NULL)
5450 return NULL;
5452 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5453 sizeof(long), 0644, proc_doulongvec_minmax);
5454 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5455 sizeof(long), 0644, proc_doulongvec_minmax);
5456 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5457 sizeof(int), 0644, proc_dointvec_minmax);
5458 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5459 sizeof(int), 0644, proc_dointvec_minmax);
5460 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5461 sizeof(int), 0644, proc_dointvec_minmax);
5462 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5463 sizeof(int), 0644, proc_dointvec_minmax);
5464 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5465 sizeof(int), 0644, proc_dointvec_minmax);
5466 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5467 sizeof(int), 0644, proc_dointvec_minmax);
5468 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5469 sizeof(int), 0644, proc_dointvec_minmax);
5470 set_table_entry(&table[9], "cache_nice_tries",
5471 &sd->cache_nice_tries,
5472 sizeof(int), 0644, proc_dointvec_minmax);
5473 set_table_entry(&table[10], "flags", &sd->flags,
5474 sizeof(int), 0644, proc_dointvec_minmax);
5475 /* &table[11] is terminator */
5477 return table;
5480 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5482 struct ctl_table *entry, *table;
5483 struct sched_domain *sd;
5484 int domain_num = 0, i;
5485 char buf[32];
5487 for_each_domain(cpu, sd)
5488 domain_num++;
5489 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5490 if (table == NULL)
5491 return NULL;
5493 i = 0;
5494 for_each_domain(cpu, sd) {
5495 snprintf(buf, 32, "domain%d", i);
5496 entry->procname = kstrdup(buf, GFP_KERNEL);
5497 entry->mode = 0555;
5498 entry->child = sd_alloc_ctl_domain_table(sd);
5499 entry++;
5500 i++;
5502 return table;
5505 static struct ctl_table_header *sd_sysctl_header;
5506 static void register_sched_domain_sysctl(void)
5508 int i, cpu_num = num_online_cpus();
5509 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5510 char buf[32];
5512 WARN_ON(sd_ctl_dir[0].child);
5513 sd_ctl_dir[0].child = entry;
5515 if (entry == NULL)
5516 return;
5518 for_each_online_cpu(i) {
5519 snprintf(buf, 32, "cpu%d", i);
5520 entry->procname = kstrdup(buf, GFP_KERNEL);
5521 entry->mode = 0555;
5522 entry->child = sd_alloc_ctl_cpu_table(i);
5523 entry++;
5526 WARN_ON(sd_sysctl_header);
5527 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5530 /* may be called multiple times per register */
5531 static void unregister_sched_domain_sysctl(void)
5533 if (sd_sysctl_header)
5534 unregister_sysctl_table(sd_sysctl_header);
5535 sd_sysctl_header = NULL;
5536 if (sd_ctl_dir[0].child)
5537 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5539 #else
5540 static void register_sched_domain_sysctl(void)
5543 static void unregister_sched_domain_sysctl(void)
5546 #endif
5549 * migration_call - callback that gets triggered when a CPU is added.
5550 * Here we can start up the necessary migration thread for the new CPU.
5552 static int __cpuinit
5553 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5555 struct task_struct *p;
5556 int cpu = (long)hcpu;
5557 unsigned long flags;
5558 struct rq *rq;
5560 switch (action) {
5561 case CPU_LOCK_ACQUIRE:
5562 mutex_lock(&sched_hotcpu_mutex);
5563 break;
5565 case CPU_UP_PREPARE:
5566 case CPU_UP_PREPARE_FROZEN:
5567 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5568 if (IS_ERR(p))
5569 return NOTIFY_BAD;
5570 kthread_bind(p, cpu);
5571 /* Must be high prio: stop_machine expects to yield to it. */
5572 rq = task_rq_lock(p, &flags);
5573 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5574 task_rq_unlock(rq, &flags);
5575 cpu_rq(cpu)->migration_thread = p;
5576 break;
5578 case CPU_ONLINE:
5579 case CPU_ONLINE_FROZEN:
5580 /* Strictly unnecessary, as first user will wake it. */
5581 wake_up_process(cpu_rq(cpu)->migration_thread);
5582 break;
5584 #ifdef CONFIG_HOTPLUG_CPU
5585 case CPU_UP_CANCELED:
5586 case CPU_UP_CANCELED_FROZEN:
5587 if (!cpu_rq(cpu)->migration_thread)
5588 break;
5589 /* Unbind it from offline cpu so it can run. Fall thru. */
5590 kthread_bind(cpu_rq(cpu)->migration_thread,
5591 any_online_cpu(cpu_online_map));
5592 kthread_stop(cpu_rq(cpu)->migration_thread);
5593 cpu_rq(cpu)->migration_thread = NULL;
5594 break;
5596 case CPU_DEAD:
5597 case CPU_DEAD_FROZEN:
5598 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5599 migrate_live_tasks(cpu);
5600 rq = cpu_rq(cpu);
5601 kthread_stop(rq->migration_thread);
5602 rq->migration_thread = NULL;
5603 /* Idle task back to normal (off runqueue, low prio) */
5604 spin_lock_irq(&rq->lock);
5605 update_rq_clock(rq);
5606 deactivate_task(rq, rq->idle, 0);
5607 rq->idle->static_prio = MAX_PRIO;
5608 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5609 rq->idle->sched_class = &idle_sched_class;
5610 migrate_dead_tasks(cpu);
5611 spin_unlock_irq(&rq->lock);
5612 cpuset_unlock();
5613 migrate_nr_uninterruptible(rq);
5614 BUG_ON(rq->nr_running != 0);
5617 * No need to migrate the tasks: it was best-effort if
5618 * they didn't take sched_hotcpu_mutex. Just wake up
5619 * the requestors.
5621 spin_lock_irq(&rq->lock);
5622 while (!list_empty(&rq->migration_queue)) {
5623 struct migration_req *req;
5625 req = list_entry(rq->migration_queue.next,
5626 struct migration_req, list);
5627 list_del_init(&req->list);
5628 complete(&req->done);
5630 spin_unlock_irq(&rq->lock);
5631 break;
5632 #endif
5633 case CPU_LOCK_RELEASE:
5634 mutex_unlock(&sched_hotcpu_mutex);
5635 break;
5637 return NOTIFY_OK;
5640 /* Register at highest priority so that task migration (migrate_all_tasks)
5641 * happens before everything else.
5643 static struct notifier_block __cpuinitdata migration_notifier = {
5644 .notifier_call = migration_call,
5645 .priority = 10
5648 void __init migration_init(void)
5650 void *cpu = (void *)(long)smp_processor_id();
5651 int err;
5653 /* Start one for the boot CPU: */
5654 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5655 BUG_ON(err == NOTIFY_BAD);
5656 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5657 register_cpu_notifier(&migration_notifier);
5659 #endif
5661 #ifdef CONFIG_SMP
5663 /* Number of possible processor ids */
5664 int nr_cpu_ids __read_mostly = NR_CPUS;
5665 EXPORT_SYMBOL(nr_cpu_ids);
5667 #ifdef CONFIG_SCHED_DEBUG
5669 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5671 struct sched_group *group = sd->groups;
5672 cpumask_t groupmask;
5673 char str[NR_CPUS];
5675 cpumask_scnprintf(str, NR_CPUS, sd->span);
5676 cpus_clear(groupmask);
5678 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5680 if (!(sd->flags & SD_LOAD_BALANCE)) {
5681 printk("does not load-balance\n");
5682 if (sd->parent)
5683 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5684 " has parent");
5685 return -1;
5688 printk(KERN_CONT "span %s\n", str);
5690 if (!cpu_isset(cpu, sd->span)) {
5691 printk(KERN_ERR "ERROR: domain->span does not contain "
5692 "CPU%d\n", cpu);
5694 if (!cpu_isset(cpu, group->cpumask)) {
5695 printk(KERN_ERR "ERROR: domain->groups does not contain"
5696 " CPU%d\n", cpu);
5699 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5700 do {
5701 if (!group) {
5702 printk("\n");
5703 printk(KERN_ERR "ERROR: group is NULL\n");
5704 break;
5707 if (!group->__cpu_power) {
5708 printk(KERN_CONT "\n");
5709 printk(KERN_ERR "ERROR: domain->cpu_power not "
5710 "set\n");
5711 break;
5714 if (!cpus_weight(group->cpumask)) {
5715 printk(KERN_CONT "\n");
5716 printk(KERN_ERR "ERROR: empty group\n");
5717 break;
5720 if (cpus_intersects(groupmask, group->cpumask)) {
5721 printk(KERN_CONT "\n");
5722 printk(KERN_ERR "ERROR: repeated CPUs\n");
5723 break;
5726 cpus_or(groupmask, groupmask, group->cpumask);
5728 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5729 printk(KERN_CONT " %s", str);
5731 group = group->next;
5732 } while (group != sd->groups);
5733 printk(KERN_CONT "\n");
5735 if (!cpus_equal(sd->span, groupmask))
5736 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5738 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5739 printk(KERN_ERR "ERROR: parent span is not a superset "
5740 "of domain->span\n");
5741 return 0;
5744 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5746 int level = 0;
5748 if (!sd) {
5749 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5750 return;
5753 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5755 for (;;) {
5756 if (sched_domain_debug_one(sd, cpu, level))
5757 break;
5758 level++;
5759 sd = sd->parent;
5760 if (!sd)
5761 break;
5764 #else
5765 # define sched_domain_debug(sd, cpu) do { } while (0)
5766 #endif
5768 static int sd_degenerate(struct sched_domain *sd)
5770 if (cpus_weight(sd->span) == 1)
5771 return 1;
5773 /* Following flags need at least 2 groups */
5774 if (sd->flags & (SD_LOAD_BALANCE |
5775 SD_BALANCE_NEWIDLE |
5776 SD_BALANCE_FORK |
5777 SD_BALANCE_EXEC |
5778 SD_SHARE_CPUPOWER |
5779 SD_SHARE_PKG_RESOURCES)) {
5780 if (sd->groups != sd->groups->next)
5781 return 0;
5784 /* Following flags don't use groups */
5785 if (sd->flags & (SD_WAKE_IDLE |
5786 SD_WAKE_AFFINE |
5787 SD_WAKE_BALANCE))
5788 return 0;
5790 return 1;
5793 static int
5794 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5796 unsigned long cflags = sd->flags, pflags = parent->flags;
5798 if (sd_degenerate(parent))
5799 return 1;
5801 if (!cpus_equal(sd->span, parent->span))
5802 return 0;
5804 /* Does parent contain flags not in child? */
5805 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5806 if (cflags & SD_WAKE_AFFINE)
5807 pflags &= ~SD_WAKE_BALANCE;
5808 /* Flags needing groups don't count if only 1 group in parent */
5809 if (parent->groups == parent->groups->next) {
5810 pflags &= ~(SD_LOAD_BALANCE |
5811 SD_BALANCE_NEWIDLE |
5812 SD_BALANCE_FORK |
5813 SD_BALANCE_EXEC |
5814 SD_SHARE_CPUPOWER |
5815 SD_SHARE_PKG_RESOURCES);
5817 if (~cflags & pflags)
5818 return 0;
5820 return 1;
5824 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5825 * hold the hotplug lock.
5827 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5829 struct rq *rq = cpu_rq(cpu);
5830 struct sched_domain *tmp;
5832 /* Remove the sched domains which do not contribute to scheduling. */
5833 for (tmp = sd; tmp; tmp = tmp->parent) {
5834 struct sched_domain *parent = tmp->parent;
5835 if (!parent)
5836 break;
5837 if (sd_parent_degenerate(tmp, parent)) {
5838 tmp->parent = parent->parent;
5839 if (parent->parent)
5840 parent->parent->child = tmp;
5844 if (sd && sd_degenerate(sd)) {
5845 sd = sd->parent;
5846 if (sd)
5847 sd->child = NULL;
5850 sched_domain_debug(sd, cpu);
5852 rcu_assign_pointer(rq->sd, sd);
5855 /* cpus with isolated domains */
5856 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5858 /* Setup the mask of cpus configured for isolated domains */
5859 static int __init isolated_cpu_setup(char *str)
5861 int ints[NR_CPUS], i;
5863 str = get_options(str, ARRAY_SIZE(ints), ints);
5864 cpus_clear(cpu_isolated_map);
5865 for (i = 1; i <= ints[0]; i++)
5866 if (ints[i] < NR_CPUS)
5867 cpu_set(ints[i], cpu_isolated_map);
5868 return 1;
5871 __setup("isolcpus=", isolated_cpu_setup);
5874 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5875 * to a function which identifies what group(along with sched group) a CPU
5876 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5877 * (due to the fact that we keep track of groups covered with a cpumask_t).
5879 * init_sched_build_groups will build a circular linked list of the groups
5880 * covered by the given span, and will set each group's ->cpumask correctly,
5881 * and ->cpu_power to 0.
5883 static void
5884 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5885 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5886 struct sched_group **sg))
5888 struct sched_group *first = NULL, *last = NULL;
5889 cpumask_t covered = CPU_MASK_NONE;
5890 int i;
5892 for_each_cpu_mask(i, span) {
5893 struct sched_group *sg;
5894 int group = group_fn(i, cpu_map, &sg);
5895 int j;
5897 if (cpu_isset(i, covered))
5898 continue;
5900 sg->cpumask = CPU_MASK_NONE;
5901 sg->__cpu_power = 0;
5903 for_each_cpu_mask(j, span) {
5904 if (group_fn(j, cpu_map, NULL) != group)
5905 continue;
5907 cpu_set(j, covered);
5908 cpu_set(j, sg->cpumask);
5910 if (!first)
5911 first = sg;
5912 if (last)
5913 last->next = sg;
5914 last = sg;
5916 last->next = first;
5919 #define SD_NODES_PER_DOMAIN 16
5921 #ifdef CONFIG_NUMA
5924 * find_next_best_node - find the next node to include in a sched_domain
5925 * @node: node whose sched_domain we're building
5926 * @used_nodes: nodes already in the sched_domain
5928 * Find the next node to include in a given scheduling domain. Simply
5929 * finds the closest node not already in the @used_nodes map.
5931 * Should use nodemask_t.
5933 static int find_next_best_node(int node, unsigned long *used_nodes)
5935 int i, n, val, min_val, best_node = 0;
5937 min_val = INT_MAX;
5939 for (i = 0; i < MAX_NUMNODES; i++) {
5940 /* Start at @node */
5941 n = (node + i) % MAX_NUMNODES;
5943 if (!nr_cpus_node(n))
5944 continue;
5946 /* Skip already used nodes */
5947 if (test_bit(n, used_nodes))
5948 continue;
5950 /* Simple min distance search */
5951 val = node_distance(node, n);
5953 if (val < min_val) {
5954 min_val = val;
5955 best_node = n;
5959 set_bit(best_node, used_nodes);
5960 return best_node;
5964 * sched_domain_node_span - get a cpumask for a node's sched_domain
5965 * @node: node whose cpumask we're constructing
5966 * @size: number of nodes to include in this span
5968 * Given a node, construct a good cpumask for its sched_domain to span. It
5969 * should be one that prevents unnecessary balancing, but also spreads tasks
5970 * out optimally.
5972 static cpumask_t sched_domain_node_span(int node)
5974 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5975 cpumask_t span, nodemask;
5976 int i;
5978 cpus_clear(span);
5979 bitmap_zero(used_nodes, MAX_NUMNODES);
5981 nodemask = node_to_cpumask(node);
5982 cpus_or(span, span, nodemask);
5983 set_bit(node, used_nodes);
5985 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5986 int next_node = find_next_best_node(node, used_nodes);
5988 nodemask = node_to_cpumask(next_node);
5989 cpus_or(span, span, nodemask);
5992 return span;
5994 #endif
5996 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5999 * SMT sched-domains:
6001 #ifdef CONFIG_SCHED_SMT
6002 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6003 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6005 static int
6006 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6008 if (sg)
6009 *sg = &per_cpu(sched_group_cpus, cpu);
6010 return cpu;
6012 #endif
6015 * multi-core sched-domains:
6017 #ifdef CONFIG_SCHED_MC
6018 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6019 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6020 #endif
6022 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6023 static int
6024 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6026 int group;
6027 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6028 cpus_and(mask, mask, *cpu_map);
6029 group = first_cpu(mask);
6030 if (sg)
6031 *sg = &per_cpu(sched_group_core, group);
6032 return group;
6034 #elif defined(CONFIG_SCHED_MC)
6035 static int
6036 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6038 if (sg)
6039 *sg = &per_cpu(sched_group_core, cpu);
6040 return cpu;
6042 #endif
6044 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6045 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6047 static int
6048 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6050 int group;
6051 #ifdef CONFIG_SCHED_MC
6052 cpumask_t mask = cpu_coregroup_map(cpu);
6053 cpus_and(mask, mask, *cpu_map);
6054 group = first_cpu(mask);
6055 #elif defined(CONFIG_SCHED_SMT)
6056 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6057 cpus_and(mask, mask, *cpu_map);
6058 group = first_cpu(mask);
6059 #else
6060 group = cpu;
6061 #endif
6062 if (sg)
6063 *sg = &per_cpu(sched_group_phys, group);
6064 return group;
6067 #ifdef CONFIG_NUMA
6069 * The init_sched_build_groups can't handle what we want to do with node
6070 * groups, so roll our own. Now each node has its own list of groups which
6071 * gets dynamically allocated.
6073 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6074 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6076 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6077 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6079 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6080 struct sched_group **sg)
6082 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6083 int group;
6085 cpus_and(nodemask, nodemask, *cpu_map);
6086 group = first_cpu(nodemask);
6088 if (sg)
6089 *sg = &per_cpu(sched_group_allnodes, group);
6090 return group;
6093 static void init_numa_sched_groups_power(struct sched_group *group_head)
6095 struct sched_group *sg = group_head;
6096 int j;
6098 if (!sg)
6099 return;
6100 do {
6101 for_each_cpu_mask(j, sg->cpumask) {
6102 struct sched_domain *sd;
6104 sd = &per_cpu(phys_domains, j);
6105 if (j != first_cpu(sd->groups->cpumask)) {
6107 * Only add "power" once for each
6108 * physical package.
6110 continue;
6113 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6115 sg = sg->next;
6116 } while (sg != group_head);
6118 #endif
6120 #ifdef CONFIG_NUMA
6121 /* Free memory allocated for various sched_group structures */
6122 static void free_sched_groups(const cpumask_t *cpu_map)
6124 int cpu, i;
6126 for_each_cpu_mask(cpu, *cpu_map) {
6127 struct sched_group **sched_group_nodes
6128 = sched_group_nodes_bycpu[cpu];
6130 if (!sched_group_nodes)
6131 continue;
6133 for (i = 0; i < MAX_NUMNODES; i++) {
6134 cpumask_t nodemask = node_to_cpumask(i);
6135 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6137 cpus_and(nodemask, nodemask, *cpu_map);
6138 if (cpus_empty(nodemask))
6139 continue;
6141 if (sg == NULL)
6142 continue;
6143 sg = sg->next;
6144 next_sg:
6145 oldsg = sg;
6146 sg = sg->next;
6147 kfree(oldsg);
6148 if (oldsg != sched_group_nodes[i])
6149 goto next_sg;
6151 kfree(sched_group_nodes);
6152 sched_group_nodes_bycpu[cpu] = NULL;
6155 #else
6156 static void free_sched_groups(const cpumask_t *cpu_map)
6159 #endif
6162 * Initialize sched groups cpu_power.
6164 * cpu_power indicates the capacity of sched group, which is used while
6165 * distributing the load between different sched groups in a sched domain.
6166 * Typically cpu_power for all the groups in a sched domain will be same unless
6167 * there are asymmetries in the topology. If there are asymmetries, group
6168 * having more cpu_power will pickup more load compared to the group having
6169 * less cpu_power.
6171 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6172 * the maximum number of tasks a group can handle in the presence of other idle
6173 * or lightly loaded groups in the same sched domain.
6175 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6177 struct sched_domain *child;
6178 struct sched_group *group;
6180 WARN_ON(!sd || !sd->groups);
6182 if (cpu != first_cpu(sd->groups->cpumask))
6183 return;
6185 child = sd->child;
6187 sd->groups->__cpu_power = 0;
6190 * For perf policy, if the groups in child domain share resources
6191 * (for example cores sharing some portions of the cache hierarchy
6192 * or SMT), then set this domain groups cpu_power such that each group
6193 * can handle only one task, when there are other idle groups in the
6194 * same sched domain.
6196 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6197 (child->flags &
6198 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6199 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6200 return;
6204 * add cpu_power of each child group to this groups cpu_power
6206 group = child->groups;
6207 do {
6208 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6209 group = group->next;
6210 } while (group != child->groups);
6214 * Build sched domains for a given set of cpus and attach the sched domains
6215 * to the individual cpus
6217 static int build_sched_domains(const cpumask_t *cpu_map)
6219 int i;
6220 #ifdef CONFIG_NUMA
6221 struct sched_group **sched_group_nodes = NULL;
6222 int sd_allnodes = 0;
6225 * Allocate the per-node list of sched groups
6227 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6228 GFP_KERNEL);
6229 if (!sched_group_nodes) {
6230 printk(KERN_WARNING "Can not alloc sched group node list\n");
6231 return -ENOMEM;
6233 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6234 #endif
6237 * Set up domains for cpus specified by the cpu_map.
6239 for_each_cpu_mask(i, *cpu_map) {
6240 struct sched_domain *sd = NULL, *p;
6241 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6243 cpus_and(nodemask, nodemask, *cpu_map);
6245 #ifdef CONFIG_NUMA
6246 if (cpus_weight(*cpu_map) >
6247 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6248 sd = &per_cpu(allnodes_domains, i);
6249 *sd = SD_ALLNODES_INIT;
6250 sd->span = *cpu_map;
6251 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6252 p = sd;
6253 sd_allnodes = 1;
6254 } else
6255 p = NULL;
6257 sd = &per_cpu(node_domains, i);
6258 *sd = SD_NODE_INIT;
6259 sd->span = sched_domain_node_span(cpu_to_node(i));
6260 sd->parent = p;
6261 if (p)
6262 p->child = sd;
6263 cpus_and(sd->span, sd->span, *cpu_map);
6264 #endif
6266 p = sd;
6267 sd = &per_cpu(phys_domains, i);
6268 *sd = SD_CPU_INIT;
6269 sd->span = nodemask;
6270 sd->parent = p;
6271 if (p)
6272 p->child = sd;
6273 cpu_to_phys_group(i, cpu_map, &sd->groups);
6275 #ifdef CONFIG_SCHED_MC
6276 p = sd;
6277 sd = &per_cpu(core_domains, i);
6278 *sd = SD_MC_INIT;
6279 sd->span = cpu_coregroup_map(i);
6280 cpus_and(sd->span, sd->span, *cpu_map);
6281 sd->parent = p;
6282 p->child = sd;
6283 cpu_to_core_group(i, cpu_map, &sd->groups);
6284 #endif
6286 #ifdef CONFIG_SCHED_SMT
6287 p = sd;
6288 sd = &per_cpu(cpu_domains, i);
6289 *sd = SD_SIBLING_INIT;
6290 sd->span = per_cpu(cpu_sibling_map, i);
6291 cpus_and(sd->span, sd->span, *cpu_map);
6292 sd->parent = p;
6293 p->child = sd;
6294 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6295 #endif
6298 #ifdef CONFIG_SCHED_SMT
6299 /* Set up CPU (sibling) groups */
6300 for_each_cpu_mask(i, *cpu_map) {
6301 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6302 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6303 if (i != first_cpu(this_sibling_map))
6304 continue;
6306 init_sched_build_groups(this_sibling_map, cpu_map,
6307 &cpu_to_cpu_group);
6309 #endif
6311 #ifdef CONFIG_SCHED_MC
6312 /* Set up multi-core groups */
6313 for_each_cpu_mask(i, *cpu_map) {
6314 cpumask_t this_core_map = cpu_coregroup_map(i);
6315 cpus_and(this_core_map, this_core_map, *cpu_map);
6316 if (i != first_cpu(this_core_map))
6317 continue;
6318 init_sched_build_groups(this_core_map, cpu_map,
6319 &cpu_to_core_group);
6321 #endif
6323 /* Set up physical groups */
6324 for (i = 0; i < MAX_NUMNODES; i++) {
6325 cpumask_t nodemask = node_to_cpumask(i);
6327 cpus_and(nodemask, nodemask, *cpu_map);
6328 if (cpus_empty(nodemask))
6329 continue;
6331 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6334 #ifdef CONFIG_NUMA
6335 /* Set up node groups */
6336 if (sd_allnodes)
6337 init_sched_build_groups(*cpu_map, cpu_map,
6338 &cpu_to_allnodes_group);
6340 for (i = 0; i < MAX_NUMNODES; i++) {
6341 /* Set up node groups */
6342 struct sched_group *sg, *prev;
6343 cpumask_t nodemask = node_to_cpumask(i);
6344 cpumask_t domainspan;
6345 cpumask_t covered = CPU_MASK_NONE;
6346 int j;
6348 cpus_and(nodemask, nodemask, *cpu_map);
6349 if (cpus_empty(nodemask)) {
6350 sched_group_nodes[i] = NULL;
6351 continue;
6354 domainspan = sched_domain_node_span(i);
6355 cpus_and(domainspan, domainspan, *cpu_map);
6357 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6358 if (!sg) {
6359 printk(KERN_WARNING "Can not alloc domain group for "
6360 "node %d\n", i);
6361 goto error;
6363 sched_group_nodes[i] = sg;
6364 for_each_cpu_mask(j, nodemask) {
6365 struct sched_domain *sd;
6367 sd = &per_cpu(node_domains, j);
6368 sd->groups = sg;
6370 sg->__cpu_power = 0;
6371 sg->cpumask = nodemask;
6372 sg->next = sg;
6373 cpus_or(covered, covered, nodemask);
6374 prev = sg;
6376 for (j = 0; j < MAX_NUMNODES; j++) {
6377 cpumask_t tmp, notcovered;
6378 int n = (i + j) % MAX_NUMNODES;
6380 cpus_complement(notcovered, covered);
6381 cpus_and(tmp, notcovered, *cpu_map);
6382 cpus_and(tmp, tmp, domainspan);
6383 if (cpus_empty(tmp))
6384 break;
6386 nodemask = node_to_cpumask(n);
6387 cpus_and(tmp, tmp, nodemask);
6388 if (cpus_empty(tmp))
6389 continue;
6391 sg = kmalloc_node(sizeof(struct sched_group),
6392 GFP_KERNEL, i);
6393 if (!sg) {
6394 printk(KERN_WARNING
6395 "Can not alloc domain group for node %d\n", j);
6396 goto error;
6398 sg->__cpu_power = 0;
6399 sg->cpumask = tmp;
6400 sg->next = prev->next;
6401 cpus_or(covered, covered, tmp);
6402 prev->next = sg;
6403 prev = sg;
6406 #endif
6408 /* Calculate CPU power for physical packages and nodes */
6409 #ifdef CONFIG_SCHED_SMT
6410 for_each_cpu_mask(i, *cpu_map) {
6411 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6413 init_sched_groups_power(i, sd);
6415 #endif
6416 #ifdef CONFIG_SCHED_MC
6417 for_each_cpu_mask(i, *cpu_map) {
6418 struct sched_domain *sd = &per_cpu(core_domains, i);
6420 init_sched_groups_power(i, sd);
6422 #endif
6424 for_each_cpu_mask(i, *cpu_map) {
6425 struct sched_domain *sd = &per_cpu(phys_domains, i);
6427 init_sched_groups_power(i, sd);
6430 #ifdef CONFIG_NUMA
6431 for (i = 0; i < MAX_NUMNODES; i++)
6432 init_numa_sched_groups_power(sched_group_nodes[i]);
6434 if (sd_allnodes) {
6435 struct sched_group *sg;
6437 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6438 init_numa_sched_groups_power(sg);
6440 #endif
6442 /* Attach the domains */
6443 for_each_cpu_mask(i, *cpu_map) {
6444 struct sched_domain *sd;
6445 #ifdef CONFIG_SCHED_SMT
6446 sd = &per_cpu(cpu_domains, i);
6447 #elif defined(CONFIG_SCHED_MC)
6448 sd = &per_cpu(core_domains, i);
6449 #else
6450 sd = &per_cpu(phys_domains, i);
6451 #endif
6452 cpu_attach_domain(sd, i);
6455 return 0;
6457 #ifdef CONFIG_NUMA
6458 error:
6459 free_sched_groups(cpu_map);
6460 return -ENOMEM;
6461 #endif
6464 static cpumask_t *doms_cur; /* current sched domains */
6465 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6468 * Special case: If a kmalloc of a doms_cur partition (array of
6469 * cpumask_t) fails, then fallback to a single sched domain,
6470 * as determined by the single cpumask_t fallback_doms.
6472 static cpumask_t fallback_doms;
6475 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6476 * For now this just excludes isolated cpus, but could be used to
6477 * exclude other special cases in the future.
6479 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6481 int err;
6483 ndoms_cur = 1;
6484 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6485 if (!doms_cur)
6486 doms_cur = &fallback_doms;
6487 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6488 err = build_sched_domains(doms_cur);
6489 register_sched_domain_sysctl();
6491 return err;
6494 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6496 free_sched_groups(cpu_map);
6500 * Detach sched domains from a group of cpus specified in cpu_map
6501 * These cpus will now be attached to the NULL domain
6503 static void detach_destroy_domains(const cpumask_t *cpu_map)
6505 int i;
6507 unregister_sched_domain_sysctl();
6509 for_each_cpu_mask(i, *cpu_map)
6510 cpu_attach_domain(NULL, i);
6511 synchronize_sched();
6512 arch_destroy_sched_domains(cpu_map);
6516 * Partition sched domains as specified by the 'ndoms_new'
6517 * cpumasks in the array doms_new[] of cpumasks. This compares
6518 * doms_new[] to the current sched domain partitioning, doms_cur[].
6519 * It destroys each deleted domain and builds each new domain.
6521 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6522 * The masks don't intersect (don't overlap.) We should setup one
6523 * sched domain for each mask. CPUs not in any of the cpumasks will
6524 * not be load balanced. If the same cpumask appears both in the
6525 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6526 * it as it is.
6528 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6529 * ownership of it and will kfree it when done with it. If the caller
6530 * failed the kmalloc call, then it can pass in doms_new == NULL,
6531 * and partition_sched_domains() will fallback to the single partition
6532 * 'fallback_doms'.
6534 * Call with hotplug lock held
6536 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6538 int i, j;
6540 /* always unregister in case we don't destroy any domains */
6541 unregister_sched_domain_sysctl();
6543 if (doms_new == NULL) {
6544 ndoms_new = 1;
6545 doms_new = &fallback_doms;
6546 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6549 /* Destroy deleted domains */
6550 for (i = 0; i < ndoms_cur; i++) {
6551 for (j = 0; j < ndoms_new; j++) {
6552 if (cpus_equal(doms_cur[i], doms_new[j]))
6553 goto match1;
6555 /* no match - a current sched domain not in new doms_new[] */
6556 detach_destroy_domains(doms_cur + i);
6557 match1:
6561 /* Build new domains */
6562 for (i = 0; i < ndoms_new; i++) {
6563 for (j = 0; j < ndoms_cur; j++) {
6564 if (cpus_equal(doms_new[i], doms_cur[j]))
6565 goto match2;
6567 /* no match - add a new doms_new */
6568 build_sched_domains(doms_new + i);
6569 match2:
6573 /* Remember the new sched domains */
6574 if (doms_cur != &fallback_doms)
6575 kfree(doms_cur);
6576 doms_cur = doms_new;
6577 ndoms_cur = ndoms_new;
6579 register_sched_domain_sysctl();
6582 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6583 static int arch_reinit_sched_domains(void)
6585 int err;
6587 mutex_lock(&sched_hotcpu_mutex);
6588 detach_destroy_domains(&cpu_online_map);
6589 err = arch_init_sched_domains(&cpu_online_map);
6590 mutex_unlock(&sched_hotcpu_mutex);
6592 return err;
6595 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6597 int ret;
6599 if (buf[0] != '0' && buf[0] != '1')
6600 return -EINVAL;
6602 if (smt)
6603 sched_smt_power_savings = (buf[0] == '1');
6604 else
6605 sched_mc_power_savings = (buf[0] == '1');
6607 ret = arch_reinit_sched_domains();
6609 return ret ? ret : count;
6612 #ifdef CONFIG_SCHED_MC
6613 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6615 return sprintf(page, "%u\n", sched_mc_power_savings);
6617 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6618 const char *buf, size_t count)
6620 return sched_power_savings_store(buf, count, 0);
6622 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6623 sched_mc_power_savings_store);
6624 #endif
6626 #ifdef CONFIG_SCHED_SMT
6627 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6629 return sprintf(page, "%u\n", sched_smt_power_savings);
6631 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6632 const char *buf, size_t count)
6634 return sched_power_savings_store(buf, count, 1);
6636 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6637 sched_smt_power_savings_store);
6638 #endif
6640 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6642 int err = 0;
6644 #ifdef CONFIG_SCHED_SMT
6645 if (smt_capable())
6646 err = sysfs_create_file(&cls->kset.kobj,
6647 &attr_sched_smt_power_savings.attr);
6648 #endif
6649 #ifdef CONFIG_SCHED_MC
6650 if (!err && mc_capable())
6651 err = sysfs_create_file(&cls->kset.kobj,
6652 &attr_sched_mc_power_savings.attr);
6653 #endif
6654 return err;
6656 #endif
6659 * Force a reinitialization of the sched domains hierarchy. The domains
6660 * and groups cannot be updated in place without racing with the balancing
6661 * code, so we temporarily attach all running cpus to the NULL domain
6662 * which will prevent rebalancing while the sched domains are recalculated.
6664 static int update_sched_domains(struct notifier_block *nfb,
6665 unsigned long action, void *hcpu)
6667 switch (action) {
6668 case CPU_UP_PREPARE:
6669 case CPU_UP_PREPARE_FROZEN:
6670 case CPU_DOWN_PREPARE:
6671 case CPU_DOWN_PREPARE_FROZEN:
6672 detach_destroy_domains(&cpu_online_map);
6673 return NOTIFY_OK;
6675 case CPU_UP_CANCELED:
6676 case CPU_UP_CANCELED_FROZEN:
6677 case CPU_DOWN_FAILED:
6678 case CPU_DOWN_FAILED_FROZEN:
6679 case CPU_ONLINE:
6680 case CPU_ONLINE_FROZEN:
6681 case CPU_DEAD:
6682 case CPU_DEAD_FROZEN:
6684 * Fall through and re-initialise the domains.
6686 break;
6687 default:
6688 return NOTIFY_DONE;
6691 /* The hotplug lock is already held by cpu_up/cpu_down */
6692 arch_init_sched_domains(&cpu_online_map);
6694 return NOTIFY_OK;
6697 void __init sched_init_smp(void)
6699 cpumask_t non_isolated_cpus;
6701 mutex_lock(&sched_hotcpu_mutex);
6702 arch_init_sched_domains(&cpu_online_map);
6703 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6704 if (cpus_empty(non_isolated_cpus))
6705 cpu_set(smp_processor_id(), non_isolated_cpus);
6706 mutex_unlock(&sched_hotcpu_mutex);
6707 /* XXX: Theoretical race here - CPU may be hotplugged now */
6708 hotcpu_notifier(update_sched_domains, 0);
6710 /* Move init over to a non-isolated CPU */
6711 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6712 BUG();
6713 sched_init_granularity();
6715 #else
6716 void __init sched_init_smp(void)
6718 sched_init_granularity();
6720 #endif /* CONFIG_SMP */
6722 int in_sched_functions(unsigned long addr)
6724 return in_lock_functions(addr) ||
6725 (addr >= (unsigned long)__sched_text_start
6726 && addr < (unsigned long)__sched_text_end);
6729 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6731 cfs_rq->tasks_timeline = RB_ROOT;
6732 #ifdef CONFIG_FAIR_GROUP_SCHED
6733 cfs_rq->rq = rq;
6734 #endif
6735 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6738 void __init sched_init(void)
6740 int highest_cpu = 0;
6741 int i, j;
6743 for_each_possible_cpu(i) {
6744 struct rt_prio_array *array;
6745 struct rq *rq;
6747 rq = cpu_rq(i);
6748 spin_lock_init(&rq->lock);
6749 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6750 rq->nr_running = 0;
6751 rq->clock = 1;
6752 init_cfs_rq(&rq->cfs, rq);
6753 #ifdef CONFIG_FAIR_GROUP_SCHED
6754 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6756 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6757 struct sched_entity *se =
6758 &per_cpu(init_sched_entity, i);
6760 init_cfs_rq_p[i] = cfs_rq;
6761 init_cfs_rq(cfs_rq, rq);
6762 cfs_rq->tg = &init_task_group;
6763 list_add(&cfs_rq->leaf_cfs_rq_list,
6764 &rq->leaf_cfs_rq_list);
6766 init_sched_entity_p[i] = se;
6767 se->cfs_rq = &rq->cfs;
6768 se->my_q = cfs_rq;
6769 se->load.weight = init_task_group_load;
6770 se->load.inv_weight =
6771 div64_64(1ULL<<32, init_task_group_load);
6772 se->parent = NULL;
6774 init_task_group.shares = init_task_group_load;
6775 spin_lock_init(&init_task_group.lock);
6776 #endif
6778 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6779 rq->cpu_load[j] = 0;
6780 #ifdef CONFIG_SMP
6781 rq->sd = NULL;
6782 rq->active_balance = 0;
6783 rq->next_balance = jiffies;
6784 rq->push_cpu = 0;
6785 rq->cpu = i;
6786 rq->migration_thread = NULL;
6787 INIT_LIST_HEAD(&rq->migration_queue);
6788 #endif
6789 atomic_set(&rq->nr_iowait, 0);
6791 array = &rq->rt.active;
6792 for (j = 0; j < MAX_RT_PRIO; j++) {
6793 INIT_LIST_HEAD(array->queue + j);
6794 __clear_bit(j, array->bitmap);
6796 highest_cpu = i;
6797 /* delimiter for bitsearch: */
6798 __set_bit(MAX_RT_PRIO, array->bitmap);
6801 set_load_weight(&init_task);
6803 #ifdef CONFIG_PREEMPT_NOTIFIERS
6804 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6805 #endif
6807 #ifdef CONFIG_SMP
6808 nr_cpu_ids = highest_cpu + 1;
6809 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6810 #endif
6812 #ifdef CONFIG_RT_MUTEXES
6813 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6814 #endif
6817 * The boot idle thread does lazy MMU switching as well:
6819 atomic_inc(&init_mm.mm_count);
6820 enter_lazy_tlb(&init_mm, current);
6823 * Make us the idle thread. Technically, schedule() should not be
6824 * called from this thread, however somewhere below it might be,
6825 * but because we are the idle thread, we just pick up running again
6826 * when this runqueue becomes "idle".
6828 init_idle(current, smp_processor_id());
6830 * During early bootup we pretend to be a normal task:
6832 current->sched_class = &fair_sched_class;
6835 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6836 void __might_sleep(char *file, int line)
6838 #ifdef in_atomic
6839 static unsigned long prev_jiffy; /* ratelimiting */
6841 if ((in_atomic() || irqs_disabled()) &&
6842 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6843 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6844 return;
6845 prev_jiffy = jiffies;
6846 printk(KERN_ERR "BUG: sleeping function called from invalid"
6847 " context at %s:%d\n", file, line);
6848 printk("in_atomic():%d, irqs_disabled():%d\n",
6849 in_atomic(), irqs_disabled());
6850 debug_show_held_locks(current);
6851 if (irqs_disabled())
6852 print_irqtrace_events(current);
6853 dump_stack();
6855 #endif
6857 EXPORT_SYMBOL(__might_sleep);
6858 #endif
6860 #ifdef CONFIG_MAGIC_SYSRQ
6861 static void normalize_task(struct rq *rq, struct task_struct *p)
6863 int on_rq;
6864 update_rq_clock(rq);
6865 on_rq = p->se.on_rq;
6866 if (on_rq)
6867 deactivate_task(rq, p, 0);
6868 __setscheduler(rq, p, SCHED_NORMAL, 0);
6869 if (on_rq) {
6870 activate_task(rq, p, 0);
6871 resched_task(rq->curr);
6875 void normalize_rt_tasks(void)
6877 struct task_struct *g, *p;
6878 unsigned long flags;
6879 struct rq *rq;
6881 read_lock_irq(&tasklist_lock);
6882 do_each_thread(g, p) {
6884 * Only normalize user tasks:
6886 if (!p->mm)
6887 continue;
6889 p->se.exec_start = 0;
6890 #ifdef CONFIG_SCHEDSTATS
6891 p->se.wait_start = 0;
6892 p->se.sleep_start = 0;
6893 p->se.block_start = 0;
6894 #endif
6895 task_rq(p)->clock = 0;
6897 if (!rt_task(p)) {
6899 * Renice negative nice level userspace
6900 * tasks back to 0:
6902 if (TASK_NICE(p) < 0 && p->mm)
6903 set_user_nice(p, 0);
6904 continue;
6907 spin_lock_irqsave(&p->pi_lock, flags);
6908 rq = __task_rq_lock(p);
6910 normalize_task(rq, p);
6912 __task_rq_unlock(rq);
6913 spin_unlock_irqrestore(&p->pi_lock, flags);
6914 } while_each_thread(g, p);
6916 read_unlock_irq(&tasklist_lock);
6919 #endif /* CONFIG_MAGIC_SYSRQ */
6921 #ifdef CONFIG_IA64
6923 * These functions are only useful for the IA64 MCA handling.
6925 * They can only be called when the whole system has been
6926 * stopped - every CPU needs to be quiescent, and no scheduling
6927 * activity can take place. Using them for anything else would
6928 * be a serious bug, and as a result, they aren't even visible
6929 * under any other configuration.
6933 * curr_task - return the current task for a given cpu.
6934 * @cpu: the processor in question.
6936 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6938 struct task_struct *curr_task(int cpu)
6940 return cpu_curr(cpu);
6944 * set_curr_task - set the current task for a given cpu.
6945 * @cpu: the processor in question.
6946 * @p: the task pointer to set.
6948 * Description: This function must only be used when non-maskable interrupts
6949 * are serviced on a separate stack. It allows the architecture to switch the
6950 * notion of the current task on a cpu in a non-blocking manner. This function
6951 * must be called with all CPU's synchronized, and interrupts disabled, the
6952 * and caller must save the original value of the current task (see
6953 * curr_task() above) and restore that value before reenabling interrupts and
6954 * re-starting the system.
6956 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6958 void set_curr_task(int cpu, struct task_struct *p)
6960 cpu_curr(cpu) = p;
6963 #endif
6965 #ifdef CONFIG_FAIR_GROUP_SCHED
6967 /* allocate runqueue etc for a new task group */
6968 struct task_group *sched_create_group(void)
6970 struct task_group *tg;
6971 struct cfs_rq *cfs_rq;
6972 struct sched_entity *se;
6973 struct rq *rq;
6974 int i;
6976 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6977 if (!tg)
6978 return ERR_PTR(-ENOMEM);
6980 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6981 if (!tg->cfs_rq)
6982 goto err;
6983 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6984 if (!tg->se)
6985 goto err;
6987 for_each_possible_cpu(i) {
6988 rq = cpu_rq(i);
6990 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6991 cpu_to_node(i));
6992 if (!cfs_rq)
6993 goto err;
6995 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6996 cpu_to_node(i));
6997 if (!se)
6998 goto err;
7000 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7001 memset(se, 0, sizeof(struct sched_entity));
7003 tg->cfs_rq[i] = cfs_rq;
7004 init_cfs_rq(cfs_rq, rq);
7005 cfs_rq->tg = tg;
7007 tg->se[i] = se;
7008 se->cfs_rq = &rq->cfs;
7009 se->my_q = cfs_rq;
7010 se->load.weight = NICE_0_LOAD;
7011 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7012 se->parent = NULL;
7015 for_each_possible_cpu(i) {
7016 rq = cpu_rq(i);
7017 cfs_rq = tg->cfs_rq[i];
7018 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7021 tg->shares = NICE_0_LOAD;
7022 spin_lock_init(&tg->lock);
7024 return tg;
7026 err:
7027 for_each_possible_cpu(i) {
7028 if (tg->cfs_rq)
7029 kfree(tg->cfs_rq[i]);
7030 if (tg->se)
7031 kfree(tg->se[i]);
7033 kfree(tg->cfs_rq);
7034 kfree(tg->se);
7035 kfree(tg);
7037 return ERR_PTR(-ENOMEM);
7040 /* rcu callback to free various structures associated with a task group */
7041 static void free_sched_group(struct rcu_head *rhp)
7043 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7044 struct cfs_rq *cfs_rq;
7045 struct sched_entity *se;
7046 int i;
7048 /* now it should be safe to free those cfs_rqs */
7049 for_each_possible_cpu(i) {
7050 cfs_rq = tg->cfs_rq[i];
7051 kfree(cfs_rq);
7053 se = tg->se[i];
7054 kfree(se);
7057 kfree(tg->cfs_rq);
7058 kfree(tg->se);
7059 kfree(tg);
7062 /* Destroy runqueue etc associated with a task group */
7063 void sched_destroy_group(struct task_group *tg)
7065 struct cfs_rq *cfs_rq = NULL;
7066 int i;
7068 for_each_possible_cpu(i) {
7069 cfs_rq = tg->cfs_rq[i];
7070 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7073 BUG_ON(!cfs_rq);
7075 /* wait for possible concurrent references to cfs_rqs complete */
7076 call_rcu(&tg->rcu, free_sched_group);
7079 /* change task's runqueue when it moves between groups.
7080 * The caller of this function should have put the task in its new group
7081 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7082 * reflect its new group.
7084 void sched_move_task(struct task_struct *tsk)
7086 int on_rq, running;
7087 unsigned long flags;
7088 struct rq *rq;
7090 rq = task_rq_lock(tsk, &flags);
7092 if (tsk->sched_class != &fair_sched_class) {
7093 set_task_cfs_rq(tsk, task_cpu(tsk));
7094 goto done;
7097 update_rq_clock(rq);
7099 running = task_running(rq, tsk);
7100 on_rq = tsk->se.on_rq;
7102 if (on_rq) {
7103 dequeue_task(rq, tsk, 0);
7104 if (unlikely(running))
7105 tsk->sched_class->put_prev_task(rq, tsk);
7108 set_task_cfs_rq(tsk, task_cpu(tsk));
7110 if (on_rq) {
7111 if (unlikely(running))
7112 tsk->sched_class->set_curr_task(rq);
7113 enqueue_task(rq, tsk, 0);
7116 done:
7117 task_rq_unlock(rq, &flags);
7120 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7122 struct cfs_rq *cfs_rq = se->cfs_rq;
7123 struct rq *rq = cfs_rq->rq;
7124 int on_rq;
7126 spin_lock_irq(&rq->lock);
7128 on_rq = se->on_rq;
7129 if (on_rq)
7130 dequeue_entity(cfs_rq, se, 0);
7132 se->load.weight = shares;
7133 se->load.inv_weight = div64_64((1ULL<<32), shares);
7135 if (on_rq)
7136 enqueue_entity(cfs_rq, se, 0);
7138 spin_unlock_irq(&rq->lock);
7141 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7143 int i;
7145 spin_lock(&tg->lock);
7146 if (tg->shares == shares)
7147 goto done;
7149 tg->shares = shares;
7150 for_each_possible_cpu(i)
7151 set_se_shares(tg->se[i], shares);
7153 done:
7154 spin_unlock(&tg->lock);
7155 return 0;
7158 unsigned long sched_group_shares(struct task_group *tg)
7160 return tg->shares;
7163 #endif /* CONFIG_FAIR_GROUP_SCHED */
7165 #ifdef CONFIG_FAIR_CGROUP_SCHED
7167 /* return corresponding task_group object of a cgroup */
7168 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7170 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7171 struct task_group, css);
7174 static struct cgroup_subsys_state *
7175 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7177 struct task_group *tg;
7179 if (!cgrp->parent) {
7180 /* This is early initialization for the top cgroup */
7181 init_task_group.css.cgroup = cgrp;
7182 return &init_task_group.css;
7185 /* we support only 1-level deep hierarchical scheduler atm */
7186 if (cgrp->parent->parent)
7187 return ERR_PTR(-EINVAL);
7189 tg = sched_create_group();
7190 if (IS_ERR(tg))
7191 return ERR_PTR(-ENOMEM);
7193 /* Bind the cgroup to task_group object we just created */
7194 tg->css.cgroup = cgrp;
7196 return &tg->css;
7199 static void
7200 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7202 struct task_group *tg = cgroup_tg(cgrp);
7204 sched_destroy_group(tg);
7207 static int
7208 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7209 struct task_struct *tsk)
7211 /* We don't support RT-tasks being in separate groups */
7212 if (tsk->sched_class != &fair_sched_class)
7213 return -EINVAL;
7215 return 0;
7218 static void
7219 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7220 struct cgroup *old_cont, struct task_struct *tsk)
7222 sched_move_task(tsk);
7225 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7226 u64 shareval)
7228 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7231 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7233 struct task_group *tg = cgroup_tg(cgrp);
7235 return (u64) tg->shares;
7238 static struct cftype cpu_files[] = {
7240 .name = "shares",
7241 .read_uint = cpu_shares_read_uint,
7242 .write_uint = cpu_shares_write_uint,
7246 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7248 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7251 struct cgroup_subsys cpu_cgroup_subsys = {
7252 .name = "cpu",
7253 .create = cpu_cgroup_create,
7254 .destroy = cpu_cgroup_destroy,
7255 .can_attach = cpu_cgroup_can_attach,
7256 .attach = cpu_cgroup_attach,
7257 .populate = cpu_cgroup_populate,
7258 .subsys_id = cpu_cgroup_subsys_id,
7259 .early_init = 1,
7262 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7264 #ifdef CONFIG_CGROUP_CPUACCT
7267 * CPU accounting code for task groups.
7269 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7270 * (balbir@in.ibm.com).
7273 /* track cpu usage of a group of tasks */
7274 struct cpuacct {
7275 struct cgroup_subsys_state css;
7276 /* cpuusage holds pointer to a u64-type object on every cpu */
7277 u64 *cpuusage;
7280 struct cgroup_subsys cpuacct_subsys;
7282 /* return cpu accounting group corresponding to this container */
7283 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7285 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7286 struct cpuacct, css);
7289 /* return cpu accounting group to which this task belongs */
7290 static inline struct cpuacct *task_ca(struct task_struct *tsk)
7292 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7293 struct cpuacct, css);
7296 /* create a new cpu accounting group */
7297 static struct cgroup_subsys_state *cpuacct_create(
7298 struct cgroup_subsys *ss, struct cgroup *cont)
7300 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7302 if (!ca)
7303 return ERR_PTR(-ENOMEM);
7305 ca->cpuusage = alloc_percpu(u64);
7306 if (!ca->cpuusage) {
7307 kfree(ca);
7308 return ERR_PTR(-ENOMEM);
7311 return &ca->css;
7314 /* destroy an existing cpu accounting group */
7315 static void
7316 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7318 struct cpuacct *ca = cgroup_ca(cont);
7320 free_percpu(ca->cpuusage);
7321 kfree(ca);
7324 /* return total cpu usage (in nanoseconds) of a group */
7325 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7327 struct cpuacct *ca = cgroup_ca(cont);
7328 u64 totalcpuusage = 0;
7329 int i;
7331 for_each_possible_cpu(i) {
7332 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7335 * Take rq->lock to make 64-bit addition safe on 32-bit
7336 * platforms.
7338 spin_lock_irq(&cpu_rq(i)->lock);
7339 totalcpuusage += *cpuusage;
7340 spin_unlock_irq(&cpu_rq(i)->lock);
7343 return totalcpuusage;
7346 static struct cftype files[] = {
7348 .name = "usage",
7349 .read_uint = cpuusage_read,
7353 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7355 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7359 * charge this task's execution time to its accounting group.
7361 * called with rq->lock held.
7363 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7365 struct cpuacct *ca;
7367 if (!cpuacct_subsys.active)
7368 return;
7370 ca = task_ca(tsk);
7371 if (ca) {
7372 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7374 *cpuusage += cputime;
7378 struct cgroup_subsys cpuacct_subsys = {
7379 .name = "cpuacct",
7380 .create = cpuacct_create,
7381 .destroy = cpuacct_destroy,
7382 .populate = cpuacct_populate,
7383 .subsys_id = cpuacct_subsys_id,
7385 #endif /* CONFIG_CGROUP_CPUACCT */