2 * linux/arch/arm/vfp/vfpmodule.c
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
18 #include <asm/thread_notify.h>
25 * Our undef handlers (in entry.S)
27 void vfp_testing_entry(void);
28 void vfp_support_entry(void);
29 void vfp_null_entry(void);
31 void (*vfp_vector
)(void) = vfp_null_entry
;
32 union vfp_state
*last_VFP_context
[NR_CPUS
];
36 * Used in startup: set to non-zero if VFP checks fail
37 * After startup, holds VFP architecture
39 unsigned int VFP_arch
;
41 static int vfp_notifier(struct notifier_block
*self
, unsigned long cmd
, void *v
)
43 struct thread_info
*thread
= v
;
45 __u32 cpu
= thread
->cpu
;
47 if (likely(cmd
== THREAD_NOTIFY_SWITCH
)) {
48 u32 fpexc
= fmrx(FPEXC
);
52 * On SMP, if VFP is enabled, save the old state in
53 * case the thread migrates to a different CPU. The
54 * restoring is done lazily.
56 if ((fpexc
& FPEXC_EN
) && last_VFP_context
[cpu
]) {
57 vfp_save_state(last_VFP_context
[cpu
], fpexc
);
58 last_VFP_context
[cpu
]->hard
.cpu
= cpu
;
61 * Thread migration, just force the reloading of the
62 * state on the new CPU in case the VFP registers
65 if (thread
->vfpstate
.hard
.cpu
!= cpu
)
66 last_VFP_context
[cpu
] = NULL
;
70 * Always disable VFP so we can lazily save/restore the
73 fmxr(FPEXC
, fpexc
& ~FPEXC_EN
);
77 vfp
= &thread
->vfpstate
;
78 if (cmd
== THREAD_NOTIFY_FLUSH
) {
80 * Per-thread VFP initialisation.
82 memset(vfp
, 0, sizeof(union vfp_state
));
84 vfp
->hard
.fpexc
= FPEXC_EN
;
85 vfp
->hard
.fpscr
= FPSCR_ROUND_NEAREST
;
88 * Disable VFP to ensure we initialise it first.
90 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
93 /* flush and release case: Per-thread VFP cleanup. */
94 if (last_VFP_context
[cpu
] == vfp
)
95 last_VFP_context
[cpu
] = NULL
;
100 static struct notifier_block vfp_notifier_block
= {
101 .notifier_call
= vfp_notifier
,
105 * Raise a SIGFPE for the current process.
106 * sicode describes the signal being raised.
108 void vfp_raise_sigfpe(unsigned int sicode
, struct pt_regs
*regs
)
112 memset(&info
, 0, sizeof(info
));
114 info
.si_signo
= SIGFPE
;
115 info
.si_code
= sicode
;
116 info
.si_addr
= (void __user
*)(instruction_pointer(regs
) - 4);
119 * This is the same as NWFPE, because it's not clear what
122 current
->thread
.error_code
= 0;
123 current
->thread
.trap_no
= 6;
125 send_sig_info(SIGFPE
, &info
, current
);
128 static void vfp_panic(char *reason
)
132 printk(KERN_ERR
"VFP: Error: %s\n", reason
);
133 printk(KERN_ERR
"VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
134 fmrx(FPEXC
), fmrx(FPSCR
), fmrx(FPINST
));
135 for (i
= 0; i
< 32; i
+= 2)
136 printk(KERN_ERR
"VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
137 i
, vfp_get_float(i
), i
+1, vfp_get_float(i
+1));
141 * Process bitmask of exception conditions.
143 static void vfp_raise_exceptions(u32 exceptions
, u32 inst
, u32 fpscr
, struct pt_regs
*regs
)
147 pr_debug("VFP: raising exceptions %08x\n", exceptions
);
149 if (exceptions
== VFP_EXCEPTION_ERROR
) {
150 vfp_panic("unhandled bounce");
151 vfp_raise_sigfpe(0, regs
);
156 * If any of the status flags are set, update the FPSCR.
157 * Comparison instructions always return at least one of
160 if (exceptions
& (FPSCR_N
|FPSCR_Z
|FPSCR_C
|FPSCR_V
))
161 fpscr
&= ~(FPSCR_N
|FPSCR_Z
|FPSCR_C
|FPSCR_V
);
167 #define RAISE(stat,en,sig) \
168 if (exceptions & stat && fpscr & en) \
172 * These are arranged in priority order, least to highest.
174 RAISE(FPSCR_DZC
, FPSCR_DZE
, FPE_FLTDIV
);
175 RAISE(FPSCR_IXC
, FPSCR_IXE
, FPE_FLTRES
);
176 RAISE(FPSCR_UFC
, FPSCR_UFE
, FPE_FLTUND
);
177 RAISE(FPSCR_OFC
, FPSCR_OFE
, FPE_FLTOVF
);
178 RAISE(FPSCR_IOC
, FPSCR_IOE
, FPE_FLTINV
);
181 vfp_raise_sigfpe(si_code
, regs
);
185 * Emulate a VFP instruction.
187 static u32
vfp_emulate_instruction(u32 inst
, u32 fpscr
, struct pt_regs
*regs
)
189 u32 exceptions
= VFP_EXCEPTION_ERROR
;
191 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst
, fpscr
);
193 if (INST_CPRTDO(inst
)) {
194 if (!INST_CPRT(inst
)) {
198 if (vfp_single(inst
)) {
199 exceptions
= vfp_single_cpdo(inst
, fpscr
);
201 exceptions
= vfp_double_cpdo(inst
, fpscr
);
205 * A CPRT instruction can not appear in FPINST2, nor
206 * can it cause an exception. Therefore, we do not
207 * have to emulate it.
212 * A CPDT instruction can not appear in FPINST2, nor can
213 * it cause an exception. Therefore, we do not have to
217 return exceptions
& ~VFP_NAN_FLAG
;
221 * Package up a bounce condition.
223 void VFP9_bounce(u32 trigger
, u32 fpexc
, struct pt_regs
*regs
)
225 u32 fpscr
, orig_fpscr
, exceptions
, inst
;
227 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger
, fpexc
);
230 * Enable access to the VFP so we can handle the bounce.
232 fmxr(FPEXC
, fpexc
& ~(FPEXC_EX
|FPEXC_INV
|FPEXC_UFC
|FPEXC_IOC
));
234 orig_fpscr
= fpscr
= fmrx(FPSCR
);
237 * If we are running with inexact exceptions enabled, we need to
238 * emulate the trigger instruction. Note that as we're emulating
239 * the trigger instruction, we need to increment PC.
241 if (fpscr
& FPSCR_IXE
) {
249 * Modify fpscr to indicate the number of iterations remaining
251 if (fpexc
& FPEXC_EX
) {
254 len
= fpexc
+ (1 << FPEXC_LENGTH_BIT
);
256 fpscr
&= ~FPSCR_LENGTH_MASK
;
257 fpscr
|= (len
& FPEXC_LENGTH_MASK
) << (FPSCR_LENGTH_BIT
- FPEXC_LENGTH_BIT
);
261 * Handle the first FP instruction. We used to take note of the
262 * FPEXC bounce reason, but this appears to be unreliable.
263 * Emulate the bounced instruction instead.
266 exceptions
= vfp_emulate_instruction(inst
, fpscr
, regs
);
268 vfp_raise_exceptions(exceptions
, inst
, orig_fpscr
, regs
);
271 * If there isn't a second FP instruction, exit now.
273 if (!(fpexc
& FPEXC_FPV2
))
277 * The barrier() here prevents fpinst2 being read
278 * before the condition above.
281 trigger
= fmrx(FPINST2
);
282 orig_fpscr
= fpscr
= fmrx(FPSCR
);
285 exceptions
= vfp_emulate_instruction(trigger
, fpscr
, regs
);
287 vfp_raise_exceptions(exceptions
, trigger
, orig_fpscr
, regs
);
290 static void vfp_enable(void *unused
)
292 u32 access
= get_copro_access();
295 * Enable full access to VFP (cp10 and cp11)
297 set_copro_access(access
| CPACC_FULL(10) | CPACC_FULL(11));
300 #include <linux/smp.h>
303 * VFP support code initialisation.
305 static int __init
vfp_init(void)
308 unsigned int cpu_arch
= cpu_architecture();
311 if (cpu_arch
>= CPU_ARCH_ARMv6
) {
312 access
= get_copro_access();
315 * Enable full access to VFP (cp10 and cp11)
317 set_copro_access(access
| CPACC_FULL(10) | CPACC_FULL(11));
321 * First check that there is a VFP that we can use.
322 * The handler is already setup to just log calls, so
323 * we just need to read the VFPSID register.
325 vfp_vector
= vfp_testing_entry
;
326 vfpsid
= fmrx(FPSID
);
328 vfp_vector
= vfp_null_entry
;
330 printk(KERN_INFO
"VFP support v0.3: ");
332 printk("not present\n");
335 * Restore the copro access register.
337 if (cpu_arch
>= CPU_ARCH_ARMv6
)
338 set_copro_access(access
);
339 } else if (vfpsid
& FPSID_NODOUBLE
) {
340 printk("no double precision support\n");
342 smp_call_function(vfp_enable
, NULL
, 1, 1);
344 VFP_arch
= (vfpsid
& FPSID_ARCH_MASK
) >> FPSID_ARCH_BIT
; /* Extract the architecture version */
345 printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
346 (vfpsid
& FPSID_IMPLEMENTER_MASK
) >> FPSID_IMPLEMENTER_BIT
,
347 (vfpsid
& FPSID_ARCH_MASK
) >> FPSID_ARCH_BIT
,
348 (vfpsid
& FPSID_PART_MASK
) >> FPSID_PART_BIT
,
349 (vfpsid
& FPSID_VARIANT_MASK
) >> FPSID_VARIANT_BIT
,
350 (vfpsid
& FPSID_REV_MASK
) >> FPSID_REV_BIT
);
352 vfp_vector
= vfp_support_entry
;
354 thread_register_notifier(&vfp_notifier_block
);
357 * We detected VFP, and the support code is
358 * in place; report VFP support to userspace.
360 elf_hwcap
|= HWCAP_VFP
;
365 late_initcall(vfp_init
);