2 * linux/arch/ia64/kernel/time.c
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
24 #include <asm/machvec.h>
25 #include <asm/delay.h>
26 #include <asm/hw_irq.h>
27 #include <asm/paravirt.h>
28 #include <asm/ptrace.h>
30 #include <asm/sections.h>
31 #include <asm/system.h>
33 #include "fsyscall_gtod_data.h"
35 static cycle_t
itc_get_cycles(void);
37 struct fsyscall_gtod_data_t fsyscall_gtod_data
= {
38 .lock
= SEQLOCK_UNLOCKED
,
41 struct itc_jitter_data_t itc_jitter_data
;
43 volatile int time_keeper_id
= 0; /* smp_processor_id() of time-keeper */
45 #ifdef CONFIG_IA64_DEBUG_IRQ
47 unsigned long last_cli_ip
;
48 EXPORT_SYMBOL(last_cli_ip
);
52 #ifdef CONFIG_PARAVIRT
54 paravirt_clocksource_resume(void)
56 if (pv_time_ops
.clocksource_resume
)
57 pv_time_ops
.clocksource_resume();
61 static struct clocksource clocksource_itc
= {
64 .read
= itc_get_cycles
,
65 .mask
= CLOCKSOURCE_MASK(64),
66 .mult
= 0, /*to be calculated*/
68 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
69 #ifdef CONFIG_PARAVIRT
70 .resume
= paravirt_clocksource_resume
,
73 static struct clocksource
*itc_clocksource
;
75 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
77 #include <linux/kernel_stat.h>
79 extern cputime_t
cycle_to_cputime(u64 cyc
);
82 * Called from the context switch with interrupts disabled, to charge all
83 * accumulated times to the current process, and to prepare accounting on
86 void ia64_account_on_switch(struct task_struct
*prev
, struct task_struct
*next
)
88 struct thread_info
*pi
= task_thread_info(prev
);
89 struct thread_info
*ni
= task_thread_info(next
);
90 cputime_t delta_stime
, delta_utime
;
95 delta_stime
= cycle_to_cputime(pi
->ac_stime
+ (now
- pi
->ac_stamp
));
96 account_system_time(prev
, 0, delta_stime
);
97 account_system_time_scaled(prev
, delta_stime
);
100 delta_utime
= cycle_to_cputime(pi
->ac_utime
);
101 account_user_time(prev
, delta_utime
);
102 account_user_time_scaled(prev
, delta_utime
);
105 pi
->ac_stamp
= ni
->ac_stamp
= now
;
106 ni
->ac_stime
= ni
->ac_utime
= 0;
110 * Account time for a transition between system, hard irq or soft irq state.
111 * Note that this function is called with interrupts enabled.
113 void account_system_vtime(struct task_struct
*tsk
)
115 struct thread_info
*ti
= task_thread_info(tsk
);
117 cputime_t delta_stime
;
120 local_irq_save(flags
);
122 now
= ia64_get_itc();
124 delta_stime
= cycle_to_cputime(ti
->ac_stime
+ (now
- ti
->ac_stamp
));
125 account_system_time(tsk
, 0, delta_stime
);
126 account_system_time_scaled(tsk
, delta_stime
);
131 local_irq_restore(flags
);
133 EXPORT_SYMBOL_GPL(account_system_vtime
);
136 * Called from the timer interrupt handler to charge accumulated user time
137 * to the current process. Must be called with interrupts disabled.
139 void account_process_tick(struct task_struct
*p
, int user_tick
)
141 struct thread_info
*ti
= task_thread_info(p
);
142 cputime_t delta_utime
;
145 delta_utime
= cycle_to_cputime(ti
->ac_utime
);
146 account_user_time(p
, delta_utime
);
147 account_user_time_scaled(p
, delta_utime
);
152 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
155 timer_interrupt (int irq
, void *dev_id
)
157 unsigned long new_itm
;
159 if (unlikely(cpu_is_offline(smp_processor_id()))) {
163 platform_timer_interrupt(irq
, dev_id
);
165 new_itm
= local_cpu_data
->itm_next
;
167 if (!time_after(ia64_get_itc(), new_itm
))
168 printk(KERN_ERR
"Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
169 ia64_get_itc(), new_itm
);
171 profile_tick(CPU_PROFILING
);
173 if (paravirt_do_steal_accounting(&new_itm
))
174 goto skip_process_time_accounting
;
177 update_process_times(user_mode(get_irq_regs()));
179 new_itm
+= local_cpu_data
->itm_delta
;
181 if (smp_processor_id() == time_keeper_id
) {
183 * Here we are in the timer irq handler. We have irqs locally
184 * disabled, but we don't know if the timer_bh is running on
185 * another CPU. We need to avoid to SMP race by acquiring the
188 write_seqlock(&xtime_lock
);
190 local_cpu_data
->itm_next
= new_itm
;
191 write_sequnlock(&xtime_lock
);
193 local_cpu_data
->itm_next
= new_itm
;
195 if (time_after(new_itm
, ia64_get_itc()))
199 * Allow IPIs to interrupt the timer loop.
205 skip_process_time_accounting
:
209 * If we're too close to the next clock tick for
210 * comfort, we increase the safety margin by
211 * intentionally dropping the next tick(s). We do NOT
212 * update itm.next because that would force us to call
213 * do_timer() which in turn would let our clock run
214 * too fast (with the potentially devastating effect
215 * of losing monotony of time).
217 while (!time_after(new_itm
, ia64_get_itc() + local_cpu_data
->itm_delta
/2))
218 new_itm
+= local_cpu_data
->itm_delta
;
219 ia64_set_itm(new_itm
);
220 /* double check, in case we got hit by a (slow) PMI: */
221 } while (time_after_eq(ia64_get_itc(), new_itm
));
226 * Encapsulate access to the itm structure for SMP.
229 ia64_cpu_local_tick (void)
231 int cpu
= smp_processor_id();
232 unsigned long shift
= 0, delta
;
234 /* arrange for the cycle counter to generate a timer interrupt: */
235 ia64_set_itv(IA64_TIMER_VECTOR
);
237 delta
= local_cpu_data
->itm_delta
;
239 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
243 unsigned long hi
= 1UL << ia64_fls(cpu
);
244 shift
= (2*(cpu
- hi
) + 1) * delta
/hi
/2;
246 local_cpu_data
->itm_next
= ia64_get_itc() + delta
+ shift
;
247 ia64_set_itm(local_cpu_data
->itm_next
);
252 static int __init
nojitter_setup(char *str
)
255 printk("Jitter checking for ITC timers disabled\n");
259 __setup("nojitter", nojitter_setup
);
265 unsigned long platform_base_freq
, itc_freq
;
266 struct pal_freq_ratio itc_ratio
, proc_ratio
;
267 long status
, platform_base_drift
, itc_drift
;
270 * According to SAL v2.6, we need to use a SAL call to determine the platform base
271 * frequency and then a PAL call to determine the frequency ratio between the ITC
272 * and the base frequency.
274 status
= ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM
,
275 &platform_base_freq
, &platform_base_drift
);
277 printk(KERN_ERR
"SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status
));
279 status
= ia64_pal_freq_ratios(&proc_ratio
, NULL
, &itc_ratio
);
281 printk(KERN_ERR
"PAL_FREQ_RATIOS failed with status=%ld\n", status
);
284 /* invent "random" values */
286 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
287 platform_base_freq
= 100000000;
288 platform_base_drift
= -1; /* no drift info */
292 if (platform_base_freq
< 40000000) {
293 printk(KERN_ERR
"Platform base frequency %lu bogus---resetting to 75MHz!\n",
295 platform_base_freq
= 75000000;
296 platform_base_drift
= -1;
299 proc_ratio
.den
= 1; /* avoid division by zero */
301 itc_ratio
.den
= 1; /* avoid division by zero */
303 itc_freq
= (platform_base_freq
*itc_ratio
.num
)/itc_ratio
.den
;
305 local_cpu_data
->itm_delta
= (itc_freq
+ HZ
/2) / HZ
;
306 printk(KERN_DEBUG
"CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
307 "ITC freq=%lu.%03luMHz", smp_processor_id(),
308 platform_base_freq
/ 1000000, (platform_base_freq
/ 1000) % 1000,
309 itc_ratio
.num
, itc_ratio
.den
, itc_freq
/ 1000000, (itc_freq
/ 1000) % 1000);
311 if (platform_base_drift
!= -1) {
312 itc_drift
= platform_base_drift
*itc_ratio
.num
/itc_ratio
.den
;
313 printk("+/-%ldppm\n", itc_drift
);
319 local_cpu_data
->proc_freq
= (platform_base_freq
*proc_ratio
.num
)/proc_ratio
.den
;
320 local_cpu_data
->itc_freq
= itc_freq
;
321 local_cpu_data
->cyc_per_usec
= (itc_freq
+ USEC_PER_SEC
/2) / USEC_PER_SEC
;
322 local_cpu_data
->nsec_per_cyc
= ((NSEC_PER_SEC
<<IA64_NSEC_PER_CYC_SHIFT
)
323 + itc_freq
/2)/itc_freq
;
325 if (!(sal_platform_features
& IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT
)) {
327 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
328 * Jitter compensation requires a cmpxchg which may limit
329 * the scalability of the syscalls for retrieving time.
330 * The ITC synchronization is usually successful to within a few
331 * ITC ticks but this is not a sure thing. If you need to improve
332 * timer performance in SMP situations then boot the kernel with the
333 * "nojitter" option. However, doing so may result in time fluctuating (maybe
334 * even going backward) if the ITC offsets between the individual CPUs
338 itc_jitter_data
.itc_jitter
= 1;
342 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
343 * ITC values may fluctuate significantly between processors.
344 * Clock should not be used for hrtimers. Mark itc as only
345 * useful for boot and testing.
347 * Note that jitter compensation is off! There is no point of
348 * synchronizing ITCs since they may be large differentials
349 * that change over time.
351 * The only way to fix this would be to repeatedly sync the
352 * ITCs. Until that time we have to avoid ITC.
354 clocksource_itc
.rating
= 50;
356 paravirt_init_missing_ticks_accounting(smp_processor_id());
358 /* avoid softlock up message when cpu is unplug and plugged again. */
359 touch_softlockup_watchdog();
361 /* Setup the CPU local timer tick */
362 ia64_cpu_local_tick();
364 if (!itc_clocksource
) {
365 /* Sort out mult/shift values: */
366 clocksource_itc
.mult
=
367 clocksource_hz2mult(local_cpu_data
->itc_freq
,
368 clocksource_itc
.shift
);
369 clocksource_register(&clocksource_itc
);
370 itc_clocksource
= &clocksource_itc
;
374 static cycle_t
itc_get_cycles(void)
376 u64 lcycle
, now
, ret
;
378 if (!itc_jitter_data
.itc_jitter
)
381 lcycle
= itc_jitter_data
.itc_lastcycle
;
383 if (lcycle
&& time_after(lcycle
, now
))
387 * Keep track of the last timer value returned.
388 * In an SMP environment, you could lose out in contention of
389 * cmpxchg. If so, your cmpxchg returns new value which the
390 * winner of contention updated to. Use the new value instead.
392 ret
= cmpxchg(&itc_jitter_data
.itc_lastcycle
, lcycle
, now
);
393 if (unlikely(ret
!= lcycle
))
400 static struct irqaction timer_irqaction
= {
401 .handler
= timer_interrupt
,
402 .flags
= IRQF_DISABLED
| IRQF_IRQPOLL
,
409 register_percpu_irq(IA64_TIMER_VECTOR
, &timer_irqaction
);
410 efi_gettimeofday(&xtime
);
414 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
415 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
417 set_normalized_timespec(&wall_to_monotonic
, -xtime
.tv_sec
, -xtime
.tv_nsec
);
421 * Generic udelay assumes that if preemption is allowed and the thread
422 * migrates to another CPU, that the ITC values are synchronized across
426 ia64_itc_udelay (unsigned long usecs
)
428 unsigned long start
= ia64_get_itc();
429 unsigned long end
= start
+ usecs
*local_cpu_data
->cyc_per_usec
;
431 while (time_before(ia64_get_itc(), end
))
435 void (*ia64_udelay
)(unsigned long usecs
) = &ia64_itc_udelay
;
438 udelay (unsigned long usecs
)
440 (*ia64_udelay
)(usecs
);
442 EXPORT_SYMBOL(udelay
);
444 /* IA64 doesn't cache the timezone */
445 void update_vsyscall_tz(void)
449 void update_vsyscall(struct timespec
*wall
, struct clocksource
*c
)
453 write_seqlock_irqsave(&fsyscall_gtod_data
.lock
, flags
);
455 /* copy fsyscall clock data */
456 fsyscall_gtod_data
.clk_mask
= c
->mask
;
457 fsyscall_gtod_data
.clk_mult
= c
->mult
;
458 fsyscall_gtod_data
.clk_shift
= c
->shift
;
459 fsyscall_gtod_data
.clk_fsys_mmio
= c
->fsys_mmio
;
460 fsyscall_gtod_data
.clk_cycle_last
= c
->cycle_last
;
462 /* copy kernel time structures */
463 fsyscall_gtod_data
.wall_time
.tv_sec
= wall
->tv_sec
;
464 fsyscall_gtod_data
.wall_time
.tv_nsec
= wall
->tv_nsec
;
465 fsyscall_gtod_data
.monotonic_time
.tv_sec
= wall_to_monotonic
.tv_sec
467 fsyscall_gtod_data
.monotonic_time
.tv_nsec
= wall_to_monotonic
.tv_nsec
471 while (fsyscall_gtod_data
.monotonic_time
.tv_nsec
>= NSEC_PER_SEC
) {
472 fsyscall_gtod_data
.monotonic_time
.tv_nsec
-= NSEC_PER_SEC
;
473 fsyscall_gtod_data
.monotonic_time
.tv_sec
++;
476 write_sequnlock_irqrestore(&fsyscall_gtod_data
.lock
, flags
);