3 * Purpose: Generic MCA handling layer
5 * Copyright (C) 2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Copyright (C) 2002 Dell Inc.
9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
11 * Copyright (C) 2002 Intel
12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
14 * Copyright (C) 2001 Intel
15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
17 * Copyright (C) 2000 Intel
18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
23 * Copyright (C) 2006 FUJITSU LIMITED
24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28 * added min save state dump, added INIT handler.
30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
32 * errors, completed code for logging of corrected & uncorrected
33 * machine check errors, and updated for conformance with Nov. 2000
34 * revision of the SAL 3.0 spec.
36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38 * set SAL default return values, changed error record structure to
39 * linked list, added init call to sal_get_state_info_size().
41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45 * Added INIT backtrace support.
47 * 2003-12-08 Keith Owens <kaos@sgi.com>
48 * smp_call_function() must not be called from interrupt context
49 * (can deadlock on tasklist_lock).
50 * Use keventd to call smp_call_function().
52 * 2004-02-01 Keith Owens <kaos@sgi.com>
53 * Avoid deadlock when using printk() for MCA and INIT records.
54 * Delete all record printing code, moved to salinfo_decode in user
55 * space. Mark variables and functions static where possible.
56 * Delete dead variables and functions. Reorder to remove the need
57 * for forward declarations and to consolidate related code.
59 * 2005-08-12 Keith Owens <kaos@sgi.com>
60 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
63 * 2005-10-07 Keith Owens <kaos@sgi.com>
64 * Add notify_die() hooks.
66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67 * Add printing support for MCA/INIT.
69 * 2007-04-27 Russ Anderson <rja@sgi.com>
70 * Support multiple cpus going through OS_MCA in the same event.
72 #include <linux/types.h>
73 #include <linux/init.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/irq.h>
77 #include <linux/bootmem.h>
78 #include <linux/acpi.h>
79 #include <linux/timer.h>
80 #include <linux/module.h>
81 #include <linux/kernel.h>
82 #include <linux/smp.h>
83 #include <linux/workqueue.h>
84 #include <linux/cpumask.h>
85 #include <linux/kdebug.h>
86 #include <linux/cpu.h>
88 #include <asm/delay.h>
89 #include <asm/machvec.h>
90 #include <asm/meminit.h>
92 #include <asm/ptrace.h>
93 #include <asm/system.h>
96 #include <asm/kexec.h>
99 #include <asm/hw_irq.h>
104 #if defined(IA64_MCA_DEBUG_INFO)
105 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
107 # define IA64_MCA_DEBUG(fmt...)
110 /* Used by mca_asm.S */
111 DEFINE_PER_CPU(u64
, ia64_mca_data
); /* == __per_cpu_mca[smp_processor_id()] */
112 DEFINE_PER_CPU(u64
, ia64_mca_per_cpu_pte
); /* PTE to map per-CPU area */
113 DEFINE_PER_CPU(u64
, ia64_mca_pal_pte
); /* PTE to map PAL code */
114 DEFINE_PER_CPU(u64
, ia64_mca_pal_base
); /* vaddr PAL code granule */
116 unsigned long __per_cpu_mca
[NR_CPUS
];
119 extern void ia64_os_init_dispatch_monarch (void);
120 extern void ia64_os_init_dispatch_slave (void);
122 static int monarch_cpu
= -1;
124 static ia64_mc_info_t ia64_mc_info
;
126 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
127 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
128 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
129 #define CPE_HISTORY_LENGTH 5
130 #define CMC_HISTORY_LENGTH 5
133 static struct timer_list cpe_poll_timer
;
135 static struct timer_list cmc_poll_timer
;
137 * This variable tells whether we are currently in polling mode.
138 * Start with this in the wrong state so we won't play w/ timers
139 * before the system is ready.
141 static int cmc_polling_enabled
= 1;
144 * Clearing this variable prevents CPE polling from getting activated
145 * in mca_late_init. Use it if your system doesn't provide a CPEI,
146 * but encounters problems retrieving CPE logs. This should only be
147 * necessary for debugging.
149 static int cpe_poll_enabled
= 1;
151 extern void salinfo_log_wakeup(int type
, u8
*buffer
, u64 size
, int irqsafe
);
153 static int mca_init __initdata
;
156 * limited & delayed printing support for MCA/INIT handler
159 #define mprintk(fmt...) ia64_mca_printk(fmt)
161 #define MLOGBUF_SIZE (512+256*NR_CPUS)
162 #define MLOGBUF_MSGMAX 256
163 static char mlogbuf
[MLOGBUF_SIZE
];
164 static DEFINE_SPINLOCK(mlogbuf_wlock
); /* mca context only */
165 static DEFINE_SPINLOCK(mlogbuf_rlock
); /* normal context only */
166 static unsigned long mlogbuf_start
;
167 static unsigned long mlogbuf_end
;
168 static unsigned int mlogbuf_finished
= 0;
169 static unsigned long mlogbuf_timestamp
= 0;
171 static int loglevel_save
= -1;
172 #define BREAK_LOGLEVEL(__console_loglevel) \
173 oops_in_progress = 1; \
174 if (loglevel_save < 0) \
175 loglevel_save = __console_loglevel; \
176 __console_loglevel = 15;
178 #define RESTORE_LOGLEVEL(__console_loglevel) \
179 if (loglevel_save >= 0) { \
180 __console_loglevel = loglevel_save; \
181 loglevel_save = -1; \
183 mlogbuf_finished = 0; \
184 oops_in_progress = 0;
187 * Push messages into buffer, print them later if not urgent.
189 void ia64_mca_printk(const char *fmt
, ...)
193 char temp_buf
[MLOGBUF_MSGMAX
];
197 printed_len
= vscnprintf(temp_buf
, sizeof(temp_buf
), fmt
, args
);
200 /* Copy the output into mlogbuf */
201 if (oops_in_progress
) {
202 /* mlogbuf was abandoned, use printk directly instead. */
205 spin_lock(&mlogbuf_wlock
);
206 for (p
= temp_buf
; *p
; p
++) {
207 unsigned long next
= (mlogbuf_end
+ 1) % MLOGBUF_SIZE
;
208 if (next
!= mlogbuf_start
) {
209 mlogbuf
[mlogbuf_end
] = *p
;
216 mlogbuf
[mlogbuf_end
] = '\0';
217 spin_unlock(&mlogbuf_wlock
);
220 EXPORT_SYMBOL(ia64_mca_printk
);
223 * Print buffered messages.
224 * NOTE: call this after returning normal context. (ex. from salinfod)
226 void ia64_mlogbuf_dump(void)
228 char temp_buf
[MLOGBUF_MSGMAX
];
232 unsigned int printed_len
;
234 /* Get output from mlogbuf */
235 while (mlogbuf_start
!= mlogbuf_end
) {
240 spin_lock_irqsave(&mlogbuf_rlock
, flags
);
242 index
= mlogbuf_start
;
243 while (index
!= mlogbuf_end
) {
245 index
= (index
+ 1) % MLOGBUF_SIZE
;
249 if (++printed_len
>= MLOGBUF_MSGMAX
- 1)
255 mlogbuf_start
= index
;
257 mlogbuf_timestamp
= 0;
258 spin_unlock_irqrestore(&mlogbuf_rlock
, flags
);
261 EXPORT_SYMBOL(ia64_mlogbuf_dump
);
264 * Call this if system is going to down or if immediate flushing messages to
265 * console is required. (ex. recovery was failed, crash dump is going to be
266 * invoked, long-wait rendezvous etc.)
267 * NOTE: this should be called from monarch.
269 static void ia64_mlogbuf_finish(int wait
)
271 BREAK_LOGLEVEL(console_loglevel
);
273 spin_lock_init(&mlogbuf_rlock
);
275 printk(KERN_EMERG
"mlogbuf_finish: printing switched to urgent mode, "
276 "MCA/INIT might be dodgy or fail.\n");
281 /* wait for console */
282 printk("Delaying for 5 seconds...\n");
285 mlogbuf_finished
= 1;
289 * Print buffered messages from INIT context.
291 static void ia64_mlogbuf_dump_from_init(void)
293 if (mlogbuf_finished
)
296 if (mlogbuf_timestamp
&& (mlogbuf_timestamp
+ 30*HZ
> jiffies
)) {
297 printk(KERN_ERR
"INIT: mlogbuf_dump is interrupted by INIT "
298 " and the system seems to be messed up.\n");
299 ia64_mlogbuf_finish(0);
303 if (!spin_trylock(&mlogbuf_rlock
)) {
304 printk(KERN_ERR
"INIT: mlogbuf_dump is interrupted by INIT. "
305 "Generated messages other than stack dump will be "
306 "buffered to mlogbuf and will be printed later.\n");
307 printk(KERN_ERR
"INIT: If messages would not printed after "
308 "this INIT, wait 30sec and assert INIT again.\n");
309 if (!mlogbuf_timestamp
)
310 mlogbuf_timestamp
= jiffies
;
313 spin_unlock(&mlogbuf_rlock
);
318 ia64_mca_spin(const char *func
)
320 if (monarch_cpu
== smp_processor_id())
321 ia64_mlogbuf_finish(0);
322 mprintk(KERN_EMERG
"%s: spinning here, not returning to SAL\n", func
);
327 * IA64_MCA log support
329 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
330 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
332 typedef struct ia64_state_log_s
336 unsigned long isl_count
;
337 ia64_err_rec_t
*isl_log
[IA64_MAX_LOGS
]; /* need space to store header + error log */
340 static ia64_state_log_t ia64_state_log
[IA64_MAX_LOG_TYPES
];
342 #define IA64_LOG_ALLOCATE(it, size) \
343 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
344 (ia64_err_rec_t *)alloc_bootmem(size); \
345 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
346 (ia64_err_rec_t *)alloc_bootmem(size);}
347 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
348 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
349 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
350 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
351 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
352 #define IA64_LOG_INDEX_INC(it) \
353 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
354 ia64_state_log[it].isl_count++;}
355 #define IA64_LOG_INDEX_DEC(it) \
356 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
357 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
358 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
359 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
363 * Reset the OS ia64 log buffer
364 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
368 ia64_log_init(int sal_info_type
)
372 IA64_LOG_NEXT_INDEX(sal_info_type
) = 0;
373 IA64_LOG_LOCK_INIT(sal_info_type
);
375 // SAL will tell us the maximum size of any error record of this type
376 max_size
= ia64_sal_get_state_info_size(sal_info_type
);
378 /* alloc_bootmem() doesn't like zero-sized allocations! */
381 // set up OS data structures to hold error info
382 IA64_LOG_ALLOCATE(sal_info_type
, max_size
);
383 memset(IA64_LOG_CURR_BUFFER(sal_info_type
), 0, max_size
);
384 memset(IA64_LOG_NEXT_BUFFER(sal_info_type
), 0, max_size
);
390 * Get the current MCA log from SAL and copy it into the OS log buffer.
392 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
393 * irq_safe whether you can use printk at this point
394 * Outputs : size (total record length)
395 * *buffer (ptr to error record)
399 ia64_log_get(int sal_info_type
, u8
**buffer
, int irq_safe
)
401 sal_log_record_header_t
*log_buffer
;
405 IA64_LOG_LOCK(sal_info_type
);
407 /* Get the process state information */
408 log_buffer
= IA64_LOG_NEXT_BUFFER(sal_info_type
);
410 total_len
= ia64_sal_get_state_info(sal_info_type
, (u64
*)log_buffer
);
413 IA64_LOG_INDEX_INC(sal_info_type
);
414 IA64_LOG_UNLOCK(sal_info_type
);
416 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
417 __func__
, sal_info_type
, total_len
);
419 *buffer
= (u8
*) log_buffer
;
422 IA64_LOG_UNLOCK(sal_info_type
);
428 * ia64_mca_log_sal_error_record
430 * This function retrieves a specified error record type from SAL
431 * and wakes up any processes waiting for error records.
433 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
434 * FIXME: remove MCA and irq_safe.
437 ia64_mca_log_sal_error_record(int sal_info_type
)
440 sal_log_record_header_t
*rh
;
442 int irq_safe
= sal_info_type
!= SAL_INFO_TYPE_MCA
;
443 #ifdef IA64_MCA_DEBUG_INFO
444 static const char * const rec_name
[] = { "MCA", "INIT", "CMC", "CPE" };
447 size
= ia64_log_get(sal_info_type
, &buffer
, irq_safe
);
451 salinfo_log_wakeup(sal_info_type
, buffer
, size
, irq_safe
);
454 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
456 sal_info_type
< ARRAY_SIZE(rec_name
) ? rec_name
[sal_info_type
] : "UNKNOWN");
458 /* Clear logs from corrected errors in case there's no user-level logger */
459 rh
= (sal_log_record_header_t
*)buffer
;
460 if (rh
->severity
== sal_log_severity_corrected
)
461 ia64_sal_clear_state_info(sal_info_type
);
466 * See if the MCA surfaced in an instruction range
467 * that has been tagged as recoverable.
470 * first First address range to check
471 * last Last address range to check
472 * ip Instruction pointer, address we are looking for
475 * 1 on Success (in the table)/ 0 on Failure (not in the table)
478 search_mca_table (const struct mca_table_entry
*first
,
479 const struct mca_table_entry
*last
,
482 const struct mca_table_entry
*curr
;
483 u64 curr_start
, curr_end
;
486 while (curr
<= last
) {
487 curr_start
= (u64
) &curr
->start_addr
+ curr
->start_addr
;
488 curr_end
= (u64
) &curr
->end_addr
+ curr
->end_addr
;
490 if ((ip
>= curr_start
) && (ip
<= curr_end
)) {
498 /* Given an address, look for it in the mca tables. */
499 int mca_recover_range(unsigned long addr
)
501 extern struct mca_table_entry __start___mca_table
[];
502 extern struct mca_table_entry __stop___mca_table
[];
504 return search_mca_table(__start___mca_table
, __stop___mca_table
-1, addr
);
506 EXPORT_SYMBOL_GPL(mca_recover_range
);
511 int ia64_cpe_irq
= -1;
514 ia64_mca_cpe_int_handler (int cpe_irq
, void *arg
)
516 static unsigned long cpe_history
[CPE_HISTORY_LENGTH
];
518 static DEFINE_SPINLOCK(cpe_history_lock
);
520 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
521 __func__
, cpe_irq
, smp_processor_id());
523 /* SAL spec states this should run w/ interrupts enabled */
526 spin_lock(&cpe_history_lock
);
527 if (!cpe_poll_enabled
&& cpe_vector
>= 0) {
529 int i
, count
= 1; /* we know 1 happened now */
530 unsigned long now
= jiffies
;
532 for (i
= 0; i
< CPE_HISTORY_LENGTH
; i
++) {
533 if (now
- cpe_history
[i
] <= HZ
)
537 IA64_MCA_DEBUG(KERN_INFO
"CPE threshold %d/%d\n", count
, CPE_HISTORY_LENGTH
);
538 if (count
>= CPE_HISTORY_LENGTH
) {
540 cpe_poll_enabled
= 1;
541 spin_unlock(&cpe_history_lock
);
542 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR
));
545 * Corrected errors will still be corrected, but
546 * make sure there's a log somewhere that indicates
547 * something is generating more than we can handle.
549 printk(KERN_WARNING
"WARNING: Switching to polling CPE handler; error records may be lost\n");
551 mod_timer(&cpe_poll_timer
, jiffies
+ MIN_CPE_POLL_INTERVAL
);
553 /* lock already released, get out now */
556 cpe_history
[index
++] = now
;
557 if (index
== CPE_HISTORY_LENGTH
)
561 spin_unlock(&cpe_history_lock
);
563 /* Get the CPE error record and log it */
564 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE
);
569 #endif /* CONFIG_ACPI */
573 * ia64_mca_register_cpev
575 * Register the corrected platform error vector with SAL.
578 * cpev Corrected Platform Error Vector number
584 ia64_mca_register_cpev (int cpev
)
586 /* Register the CPE interrupt vector with SAL */
587 struct ia64_sal_retval isrv
;
589 isrv
= ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT
, SAL_MC_PARAM_MECHANISM_INT
, cpev
, 0, 0);
591 printk(KERN_ERR
"Failed to register Corrected Platform "
592 "Error interrupt vector with SAL (status %ld)\n", isrv
.status
);
596 IA64_MCA_DEBUG("%s: corrected platform error "
597 "vector %#x registered\n", __func__
, cpev
);
599 #endif /* CONFIG_ACPI */
602 * ia64_mca_cmc_vector_setup
604 * Setup the corrected machine check vector register in the processor.
605 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
606 * This function is invoked on a per-processor basis.
615 ia64_mca_cmc_vector_setup (void)
619 cmcv
.cmcv_regval
= 0;
620 cmcv
.cmcv_mask
= 1; /* Mask/disable interrupt at first */
621 cmcv
.cmcv_vector
= IA64_CMC_VECTOR
;
622 ia64_setreg(_IA64_REG_CR_CMCV
, cmcv
.cmcv_regval
);
624 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
625 __func__
, smp_processor_id(), IA64_CMC_VECTOR
);
627 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
628 __func__
, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV
));
632 * ia64_mca_cmc_vector_disable
634 * Mask the corrected machine check vector register in the processor.
635 * This function is invoked on a per-processor basis.
644 ia64_mca_cmc_vector_disable (void *dummy
)
648 cmcv
.cmcv_regval
= ia64_getreg(_IA64_REG_CR_CMCV
);
650 cmcv
.cmcv_mask
= 1; /* Mask/disable interrupt */
651 ia64_setreg(_IA64_REG_CR_CMCV
, cmcv
.cmcv_regval
);
653 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
654 __func__
, smp_processor_id(), cmcv
.cmcv_vector
);
658 * ia64_mca_cmc_vector_enable
660 * Unmask the corrected machine check vector register in the processor.
661 * This function is invoked on a per-processor basis.
670 ia64_mca_cmc_vector_enable (void *dummy
)
674 cmcv
.cmcv_regval
= ia64_getreg(_IA64_REG_CR_CMCV
);
676 cmcv
.cmcv_mask
= 0; /* Unmask/enable interrupt */
677 ia64_setreg(_IA64_REG_CR_CMCV
, cmcv
.cmcv_regval
);
679 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
680 __func__
, smp_processor_id(), cmcv
.cmcv_vector
);
684 * ia64_mca_cmc_vector_disable_keventd
686 * Called via keventd (smp_call_function() is not safe in interrupt context) to
687 * disable the cmc interrupt vector.
690 ia64_mca_cmc_vector_disable_keventd(struct work_struct
*unused
)
692 on_each_cpu(ia64_mca_cmc_vector_disable
, NULL
, 1, 0);
696 * ia64_mca_cmc_vector_enable_keventd
698 * Called via keventd (smp_call_function() is not safe in interrupt context) to
699 * enable the cmc interrupt vector.
702 ia64_mca_cmc_vector_enable_keventd(struct work_struct
*unused
)
704 on_each_cpu(ia64_mca_cmc_vector_enable
, NULL
, 1, 0);
710 * Send an inter-cpu interrupt to wake-up a particular cpu.
716 ia64_mca_wakeup(int cpu
)
718 platform_send_ipi(cpu
, IA64_MCA_WAKEUP_VECTOR
, IA64_IPI_DM_INT
, 0);
722 * ia64_mca_wakeup_all
724 * Wakeup all the slave cpus which have rendez'ed previously.
730 ia64_mca_wakeup_all(void)
734 /* Clear the Rendez checkin flag for all cpus */
735 for_each_online_cpu(cpu
) {
736 if (ia64_mc_info
.imi_rendez_checkin
[cpu
] == IA64_MCA_RENDEZ_CHECKIN_DONE
)
737 ia64_mca_wakeup(cpu
);
743 * ia64_mca_rendez_interrupt_handler
745 * This is handler used to put slave processors into spinloop
746 * while the monarch processor does the mca handling and later
747 * wake each slave up once the monarch is done. The state
748 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
749 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
750 * the cpu has come out of OS rendezvous.
756 ia64_mca_rendez_int_handler(int rendez_irq
, void *arg
)
759 int cpu
= smp_processor_id();
760 struct ia64_mca_notify_die nd
=
761 { .sos
= NULL
, .monarch_cpu
= &monarch_cpu
};
763 /* Mask all interrupts */
764 local_irq_save(flags
);
765 if (notify_die(DIE_MCA_RENDZVOUS_ENTER
, "MCA", get_irq_regs(),
766 (long)&nd
, 0, 0) == NOTIFY_STOP
)
767 ia64_mca_spin(__func__
);
769 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_DONE
;
770 /* Register with the SAL monarch that the slave has
773 ia64_sal_mc_rendez();
775 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS
, "MCA", get_irq_regs(),
776 (long)&nd
, 0, 0) == NOTIFY_STOP
)
777 ia64_mca_spin(__func__
);
779 /* Wait for the monarch cpu to exit. */
780 while (monarch_cpu
!= -1)
781 cpu_relax(); /* spin until monarch leaves */
783 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE
, "MCA", get_irq_regs(),
784 (long)&nd
, 0, 0) == NOTIFY_STOP
)
785 ia64_mca_spin(__func__
);
787 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
788 /* Enable all interrupts */
789 local_irq_restore(flags
);
794 * ia64_mca_wakeup_int_handler
796 * The interrupt handler for processing the inter-cpu interrupt to the
797 * slave cpu which was spinning in the rendez loop.
798 * Since this spinning is done by turning off the interrupts and
799 * polling on the wakeup-interrupt bit in the IRR, there is
800 * nothing useful to be done in the handler.
802 * Inputs : wakeup_irq (Wakeup-interrupt bit)
803 * arg (Interrupt handler specific argument)
808 ia64_mca_wakeup_int_handler(int wakeup_irq
, void *arg
)
813 /* Function pointer for extra MCA recovery */
814 int (*ia64_mca_ucmc_extension
)
815 (void*,struct ia64_sal_os_state
*)
819 ia64_reg_MCA_extension(int (*fn
)(void *, struct ia64_sal_os_state
*))
821 if (ia64_mca_ucmc_extension
)
824 ia64_mca_ucmc_extension
= fn
;
829 ia64_unreg_MCA_extension(void)
831 if (ia64_mca_ucmc_extension
)
832 ia64_mca_ucmc_extension
= NULL
;
835 EXPORT_SYMBOL(ia64_reg_MCA_extension
);
836 EXPORT_SYMBOL(ia64_unreg_MCA_extension
);
840 copy_reg(const u64
*fr
, u64 fnat
, u64
*tr
, u64
*tnat
)
842 u64 fslot
, tslot
, nat
;
844 fslot
= ((unsigned long)fr
>> 3) & 63;
845 tslot
= ((unsigned long)tr
>> 3) & 63;
846 *tnat
&= ~(1UL << tslot
);
847 nat
= (fnat
>> fslot
) & 1;
848 *tnat
|= (nat
<< tslot
);
851 /* Change the comm field on the MCA/INT task to include the pid that
852 * was interrupted, it makes for easier debugging. If that pid was 0
853 * (swapper or nested MCA/INIT) then use the start of the previous comm
854 * field suffixed with its cpu.
858 ia64_mca_modify_comm(const struct task_struct
*previous_current
)
860 char *p
, comm
[sizeof(current
->comm
)];
861 if (previous_current
->pid
)
862 snprintf(comm
, sizeof(comm
), "%s %d",
863 current
->comm
, previous_current
->pid
);
866 if ((p
= strchr(previous_current
->comm
, ' ')))
867 l
= p
- previous_current
->comm
;
869 l
= strlen(previous_current
->comm
);
870 snprintf(comm
, sizeof(comm
), "%s %*s %d",
871 current
->comm
, l
, previous_current
->comm
,
872 task_thread_info(previous_current
)->cpu
);
874 memcpy(current
->comm
, comm
, sizeof(current
->comm
));
877 /* On entry to this routine, we are running on the per cpu stack, see
878 * mca_asm.h. The original stack has not been touched by this event. Some of
879 * the original stack's registers will be in the RBS on this stack. This stack
880 * also contains a partial pt_regs and switch_stack, the rest of the data is in
883 * The first thing to do is modify the original stack to look like a blocked
884 * task so we can run backtrace on the original task. Also mark the per cpu
885 * stack as current to ensure that we use the correct task state, it also means
886 * that we can do backtrace on the MCA/INIT handler code itself.
889 static struct task_struct
*
890 ia64_mca_modify_original_stack(struct pt_regs
*regs
,
891 const struct switch_stack
*sw
,
892 struct ia64_sal_os_state
*sos
,
897 extern char ia64_leave_kernel
[]; /* Need asm address, not function descriptor */
898 const pal_min_state_area_t
*ms
= sos
->pal_min_state
;
899 struct task_struct
*previous_current
;
900 struct pt_regs
*old_regs
;
901 struct switch_stack
*old_sw
;
902 unsigned size
= sizeof(struct pt_regs
) +
903 sizeof(struct switch_stack
) + 16;
904 u64
*old_bspstore
, *old_bsp
;
905 u64
*new_bspstore
, *new_bsp
;
906 u64 old_unat
, old_rnat
, new_rnat
, nat
;
907 u64 slots
, loadrs
= regs
->loadrs
;
908 u64 r12
= ms
->pmsa_gr
[12-1], r13
= ms
->pmsa_gr
[13-1];
909 u64 ar_bspstore
= regs
->ar_bspstore
;
910 u64 ar_bsp
= regs
->ar_bspstore
+ (loadrs
>> 16);
913 int cpu
= smp_processor_id();
915 previous_current
= curr_task(cpu
);
916 set_curr_task(cpu
, current
);
917 if ((p
= strchr(current
->comm
, ' ')))
920 /* Best effort attempt to cope with MCA/INIT delivered while in
923 regs
->cr_ipsr
= ms
->pmsa_ipsr
;
924 if (ia64_psr(regs
)->dt
== 0) {
936 if (ia64_psr(regs
)->rt
== 0) {
949 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
950 * have been copied to the old stack, the old stack may fail the
951 * validation tests below. So ia64_old_stack() must restore the dirty
952 * registers from the new stack. The old and new bspstore probably
953 * have different alignments, so loadrs calculated on the old bsp
954 * cannot be used to restore from the new bsp. Calculate a suitable
955 * loadrs for the new stack and save it in the new pt_regs, where
956 * ia64_old_stack() can get it.
958 old_bspstore
= (u64
*)ar_bspstore
;
959 old_bsp
= (u64
*)ar_bsp
;
960 slots
= ia64_rse_num_regs(old_bspstore
, old_bsp
);
961 new_bspstore
= (u64
*)((u64
)current
+ IA64_RBS_OFFSET
);
962 new_bsp
= ia64_rse_skip_regs(new_bspstore
, slots
);
963 regs
->loadrs
= (new_bsp
- new_bspstore
) * 8 << 16;
965 /* Verify the previous stack state before we change it */
966 if (user_mode(regs
)) {
967 msg
= "occurred in user space";
968 /* previous_current is guaranteed to be valid when the task was
969 * in user space, so ...
971 ia64_mca_modify_comm(previous_current
);
975 if (r13
!= sos
->prev_IA64_KR_CURRENT
) {
976 msg
= "inconsistent previous current and r13";
980 if (!mca_recover_range(ms
->pmsa_iip
)) {
981 if ((r12
- r13
) >= KERNEL_STACK_SIZE
) {
982 msg
= "inconsistent r12 and r13";
985 if ((ar_bspstore
- r13
) >= KERNEL_STACK_SIZE
) {
986 msg
= "inconsistent ar.bspstore and r13";
991 msg
= "old_bspstore is in the wrong region";
994 if ((ar_bsp
- r13
) >= KERNEL_STACK_SIZE
) {
995 msg
= "inconsistent ar.bsp and r13";
998 size
+= (ia64_rse_skip_regs(old_bspstore
, slots
) - old_bspstore
) * 8;
999 if (ar_bspstore
+ size
> r12
) {
1000 msg
= "no room for blocked state";
1005 ia64_mca_modify_comm(previous_current
);
1007 /* Make the original task look blocked. First stack a struct pt_regs,
1008 * describing the state at the time of interrupt. mca_asm.S built a
1009 * partial pt_regs, copy it and fill in the blanks using minstate.
1011 p
= (char *)r12
- sizeof(*regs
);
1012 old_regs
= (struct pt_regs
*)p
;
1013 memcpy(old_regs
, regs
, sizeof(*regs
));
1014 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1015 * pmsa_{xip,xpsr,xfs}
1017 if (ia64_psr(regs
)->ic
) {
1018 old_regs
->cr_iip
= ms
->pmsa_iip
;
1019 old_regs
->cr_ipsr
= ms
->pmsa_ipsr
;
1020 old_regs
->cr_ifs
= ms
->pmsa_ifs
;
1022 old_regs
->cr_iip
= ms
->pmsa_xip
;
1023 old_regs
->cr_ipsr
= ms
->pmsa_xpsr
;
1024 old_regs
->cr_ifs
= ms
->pmsa_xfs
;
1026 old_regs
->pr
= ms
->pmsa_pr
;
1027 old_regs
->b0
= ms
->pmsa_br0
;
1028 old_regs
->loadrs
= loadrs
;
1029 old_regs
->ar_rsc
= ms
->pmsa_rsc
;
1030 old_unat
= old_regs
->ar_unat
;
1031 copy_reg(&ms
->pmsa_gr
[1-1], ms
->pmsa_nat_bits
, &old_regs
->r1
, &old_unat
);
1032 copy_reg(&ms
->pmsa_gr
[2-1], ms
->pmsa_nat_bits
, &old_regs
->r2
, &old_unat
);
1033 copy_reg(&ms
->pmsa_gr
[3-1], ms
->pmsa_nat_bits
, &old_regs
->r3
, &old_unat
);
1034 copy_reg(&ms
->pmsa_gr
[8-1], ms
->pmsa_nat_bits
, &old_regs
->r8
, &old_unat
);
1035 copy_reg(&ms
->pmsa_gr
[9-1], ms
->pmsa_nat_bits
, &old_regs
->r9
, &old_unat
);
1036 copy_reg(&ms
->pmsa_gr
[10-1], ms
->pmsa_nat_bits
, &old_regs
->r10
, &old_unat
);
1037 copy_reg(&ms
->pmsa_gr
[11-1], ms
->pmsa_nat_bits
, &old_regs
->r11
, &old_unat
);
1038 copy_reg(&ms
->pmsa_gr
[12-1], ms
->pmsa_nat_bits
, &old_regs
->r12
, &old_unat
);
1039 copy_reg(&ms
->pmsa_gr
[13-1], ms
->pmsa_nat_bits
, &old_regs
->r13
, &old_unat
);
1040 copy_reg(&ms
->pmsa_gr
[14-1], ms
->pmsa_nat_bits
, &old_regs
->r14
, &old_unat
);
1041 copy_reg(&ms
->pmsa_gr
[15-1], ms
->pmsa_nat_bits
, &old_regs
->r15
, &old_unat
);
1042 if (ia64_psr(old_regs
)->bn
)
1043 bank
= ms
->pmsa_bank1_gr
;
1045 bank
= ms
->pmsa_bank0_gr
;
1046 copy_reg(&bank
[16-16], ms
->pmsa_nat_bits
, &old_regs
->r16
, &old_unat
);
1047 copy_reg(&bank
[17-16], ms
->pmsa_nat_bits
, &old_regs
->r17
, &old_unat
);
1048 copy_reg(&bank
[18-16], ms
->pmsa_nat_bits
, &old_regs
->r18
, &old_unat
);
1049 copy_reg(&bank
[19-16], ms
->pmsa_nat_bits
, &old_regs
->r19
, &old_unat
);
1050 copy_reg(&bank
[20-16], ms
->pmsa_nat_bits
, &old_regs
->r20
, &old_unat
);
1051 copy_reg(&bank
[21-16], ms
->pmsa_nat_bits
, &old_regs
->r21
, &old_unat
);
1052 copy_reg(&bank
[22-16], ms
->pmsa_nat_bits
, &old_regs
->r22
, &old_unat
);
1053 copy_reg(&bank
[23-16], ms
->pmsa_nat_bits
, &old_regs
->r23
, &old_unat
);
1054 copy_reg(&bank
[24-16], ms
->pmsa_nat_bits
, &old_regs
->r24
, &old_unat
);
1055 copy_reg(&bank
[25-16], ms
->pmsa_nat_bits
, &old_regs
->r25
, &old_unat
);
1056 copy_reg(&bank
[26-16], ms
->pmsa_nat_bits
, &old_regs
->r26
, &old_unat
);
1057 copy_reg(&bank
[27-16], ms
->pmsa_nat_bits
, &old_regs
->r27
, &old_unat
);
1058 copy_reg(&bank
[28-16], ms
->pmsa_nat_bits
, &old_regs
->r28
, &old_unat
);
1059 copy_reg(&bank
[29-16], ms
->pmsa_nat_bits
, &old_regs
->r29
, &old_unat
);
1060 copy_reg(&bank
[30-16], ms
->pmsa_nat_bits
, &old_regs
->r30
, &old_unat
);
1061 copy_reg(&bank
[31-16], ms
->pmsa_nat_bits
, &old_regs
->r31
, &old_unat
);
1063 /* Next stack a struct switch_stack. mca_asm.S built a partial
1064 * switch_stack, copy it and fill in the blanks using pt_regs and
1067 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1068 * ar.pfs is set to 0.
1070 * unwind.c::unw_unwind() does special processing for interrupt frames.
1071 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1072 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1073 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1074 * switch_stack on the original stack so it will unwind correctly when
1075 * unwind.c reads pt_regs.
1077 * thread.ksp is updated to point to the synthesized switch_stack.
1079 p
-= sizeof(struct switch_stack
);
1080 old_sw
= (struct switch_stack
*)p
;
1081 memcpy(old_sw
, sw
, sizeof(*sw
));
1082 old_sw
->caller_unat
= old_unat
;
1083 old_sw
->ar_fpsr
= old_regs
->ar_fpsr
;
1084 copy_reg(&ms
->pmsa_gr
[4-1], ms
->pmsa_nat_bits
, &old_sw
->r4
, &old_unat
);
1085 copy_reg(&ms
->pmsa_gr
[5-1], ms
->pmsa_nat_bits
, &old_sw
->r5
, &old_unat
);
1086 copy_reg(&ms
->pmsa_gr
[6-1], ms
->pmsa_nat_bits
, &old_sw
->r6
, &old_unat
);
1087 copy_reg(&ms
->pmsa_gr
[7-1], ms
->pmsa_nat_bits
, &old_sw
->r7
, &old_unat
);
1088 old_sw
->b0
= (u64
)ia64_leave_kernel
;
1089 old_sw
->b1
= ms
->pmsa_br1
;
1091 old_sw
->ar_unat
= old_unat
;
1092 old_sw
->pr
= old_regs
->pr
| (1UL << PRED_NON_SYSCALL
);
1093 previous_current
->thread
.ksp
= (u64
)p
- 16;
1095 /* Finally copy the original stack's registers back to its RBS.
1096 * Registers from ar.bspstore through ar.bsp at the time of the event
1097 * are in the current RBS, copy them back to the original stack. The
1098 * copy must be done register by register because the original bspstore
1099 * and the current one have different alignments, so the saved RNAT
1100 * data occurs at different places.
1102 * mca_asm does cover, so the old_bsp already includes all registers at
1103 * the time of MCA/INIT. It also does flushrs, so all registers before
1104 * this function have been written to backing store on the MCA/INIT
1107 new_rnat
= ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore
));
1108 old_rnat
= regs
->ar_rnat
;
1110 if (ia64_rse_is_rnat_slot(new_bspstore
)) {
1111 new_rnat
= ia64_get_rnat(new_bspstore
++);
1113 if (ia64_rse_is_rnat_slot(old_bspstore
)) {
1114 *old_bspstore
++ = old_rnat
;
1117 nat
= (new_rnat
>> ia64_rse_slot_num(new_bspstore
)) & 1UL;
1118 old_rnat
&= ~(1UL << ia64_rse_slot_num(old_bspstore
));
1119 old_rnat
|= (nat
<< ia64_rse_slot_num(old_bspstore
));
1120 *old_bspstore
++ = *new_bspstore
++;
1122 old_sw
->ar_bspstore
= (unsigned long)old_bspstore
;
1123 old_sw
->ar_rnat
= old_rnat
;
1125 sos
->prev_task
= previous_current
;
1126 return previous_current
;
1129 printk(KERN_INFO
"cpu %d, %s %s, original stack not modified\n",
1130 smp_processor_id(), type
, msg
);
1131 return previous_current
;
1134 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1135 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1136 * not entered rendezvous yet then wait a bit. The assumption is that any
1137 * slave that has not rendezvoused after a reasonable time is never going to do
1138 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1139 * interrupt, as well as cpus that receive the INIT slave event.
1143 ia64_wait_for_slaves(int monarch
, const char *type
)
1148 * wait 5 seconds total for slaves (arbitrary)
1150 for (i
= 0; i
< 5000; i
++) {
1152 for_each_online_cpu(c
) {
1155 if (ia64_mc_info
.imi_rendez_checkin
[c
]
1156 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE
) {
1157 udelay(1000); /* short wait */
1167 * Maybe slave(s) dead. Print buffered messages immediately.
1169 ia64_mlogbuf_finish(0);
1170 mprintk(KERN_INFO
"OS %s slave did not rendezvous on cpu", type
);
1171 for_each_online_cpu(c
) {
1174 if (ia64_mc_info
.imi_rendez_checkin
[c
] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE
)
1181 mprintk(KERN_INFO
"All OS %s slaves have reached rendezvous\n", type
);
1188 * This is uncorrectable machine check handler called from OS_MCA
1189 * dispatch code which is in turn called from SAL_CHECK().
1190 * This is the place where the core of OS MCA handling is done.
1191 * Right now the logs are extracted and displayed in a well-defined
1192 * format. This handler code is supposed to be run only on the
1193 * monarch processor. Once the monarch is done with MCA handling
1194 * further MCA logging is enabled by clearing logs.
1195 * Monarch also has the duty of sending wakeup-IPIs to pull the
1196 * slave processors out of rendezvous spinloop.
1198 * If multiple processors call into OS_MCA, the first will become
1199 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1200 * bitmask. After the first monarch has processed its MCA, it
1201 * will wake up the next cpu in the mca_cpu bitmask and then go
1202 * into the rendezvous loop. When all processors have serviced
1203 * their MCA, the last monarch frees up the rest of the processors.
1206 ia64_mca_handler(struct pt_regs
*regs
, struct switch_stack
*sw
,
1207 struct ia64_sal_os_state
*sos
)
1209 int recover
, cpu
= smp_processor_id();
1210 struct task_struct
*previous_current
;
1211 struct ia64_mca_notify_die nd
=
1212 { .sos
= sos
, .monarch_cpu
= &monarch_cpu
};
1213 static atomic_t mca_count
;
1214 static cpumask_t mca_cpu
;
1216 if (atomic_add_return(1, &mca_count
) == 1) {
1220 cpu_set(cpu
, mca_cpu
);
1223 mprintk(KERN_INFO
"Entered OS MCA handler. PSP=%lx cpu=%d "
1224 "monarch=%ld\n", sos
->proc_state_param
, cpu
, sos
->monarch
);
1226 previous_current
= ia64_mca_modify_original_stack(regs
, sw
, sos
, "MCA");
1228 if (notify_die(DIE_MCA_MONARCH_ENTER
, "MCA", regs
, (long)&nd
, 0, 0)
1230 ia64_mca_spin(__func__
);
1232 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA
;
1234 ia64_wait_for_slaves(cpu
, "MCA");
1236 /* Wakeup all the processors which are spinning in the
1237 * rendezvous loop. They will leave SAL, then spin in the OS
1238 * with interrupts disabled until this monarch cpu leaves the
1239 * MCA handler. That gets control back to the OS so we can
1240 * backtrace the other cpus, backtrace when spinning in SAL
1243 ia64_mca_wakeup_all();
1244 if (notify_die(DIE_MCA_MONARCH_PROCESS
, "MCA", regs
, (long)&nd
, 0, 0)
1246 ia64_mca_spin(__func__
);
1248 while (cpu_isset(cpu
, mca_cpu
))
1249 cpu_relax(); /* spin until monarch wakes us */
1252 /* Get the MCA error record and log it */
1253 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA
);
1255 /* MCA error recovery */
1256 recover
= (ia64_mca_ucmc_extension
1257 && ia64_mca_ucmc_extension(
1258 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA
),
1262 sal_log_record_header_t
*rh
= IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA
);
1263 rh
->severity
= sal_log_severity_corrected
;
1264 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA
);
1265 sos
->os_status
= IA64_MCA_CORRECTED
;
1267 /* Dump buffered message to console */
1268 ia64_mlogbuf_finish(1);
1270 atomic_set(&kdump_in_progress
, 1);
1274 if (notify_die(DIE_MCA_MONARCH_LEAVE
, "MCA", regs
, (long)&nd
, 0, recover
)
1276 ia64_mca_spin(__func__
);
1279 if (atomic_dec_return(&mca_count
) > 0) {
1282 /* wake up the next monarch cpu,
1283 * and put this cpu in the rendez loop.
1285 for_each_online_cpu(i
) {
1286 if (cpu_isset(i
, mca_cpu
)) {
1288 cpu_clear(i
, mca_cpu
); /* wake next cpu */
1289 while (monarch_cpu
!= -1)
1290 cpu_relax(); /* spin until last cpu leaves */
1291 set_curr_task(cpu
, previous_current
);
1292 ia64_mc_info
.imi_rendez_checkin
[cpu
]
1293 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
1298 set_curr_task(cpu
, previous_current
);
1299 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
1300 monarch_cpu
= -1; /* This frees the slaves and previous monarchs */
1303 static DECLARE_WORK(cmc_disable_work
, ia64_mca_cmc_vector_disable_keventd
);
1304 static DECLARE_WORK(cmc_enable_work
, ia64_mca_cmc_vector_enable_keventd
);
1307 * ia64_mca_cmc_int_handler
1309 * This is corrected machine check interrupt handler.
1310 * Right now the logs are extracted and displayed in a well-defined
1315 * client data arg ptr
1321 ia64_mca_cmc_int_handler(int cmc_irq
, void *arg
)
1323 static unsigned long cmc_history
[CMC_HISTORY_LENGTH
];
1325 static DEFINE_SPINLOCK(cmc_history_lock
);
1327 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1328 __func__
, cmc_irq
, smp_processor_id());
1330 /* SAL spec states this should run w/ interrupts enabled */
1333 spin_lock(&cmc_history_lock
);
1334 if (!cmc_polling_enabled
) {
1335 int i
, count
= 1; /* we know 1 happened now */
1336 unsigned long now
= jiffies
;
1338 for (i
= 0; i
< CMC_HISTORY_LENGTH
; i
++) {
1339 if (now
- cmc_history
[i
] <= HZ
)
1343 IA64_MCA_DEBUG(KERN_INFO
"CMC threshold %d/%d\n", count
, CMC_HISTORY_LENGTH
);
1344 if (count
>= CMC_HISTORY_LENGTH
) {
1346 cmc_polling_enabled
= 1;
1347 spin_unlock(&cmc_history_lock
);
1348 /* If we're being hit with CMC interrupts, we won't
1349 * ever execute the schedule_work() below. Need to
1350 * disable CMC interrupts on this processor now.
1352 ia64_mca_cmc_vector_disable(NULL
);
1353 schedule_work(&cmc_disable_work
);
1356 * Corrected errors will still be corrected, but
1357 * make sure there's a log somewhere that indicates
1358 * something is generating more than we can handle.
1360 printk(KERN_WARNING
"WARNING: Switching to polling CMC handler; error records may be lost\n");
1362 mod_timer(&cmc_poll_timer
, jiffies
+ CMC_POLL_INTERVAL
);
1364 /* lock already released, get out now */
1367 cmc_history
[index
++] = now
;
1368 if (index
== CMC_HISTORY_LENGTH
)
1372 spin_unlock(&cmc_history_lock
);
1374 /* Get the CMC error record and log it */
1375 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC
);
1381 * ia64_mca_cmc_int_caller
1383 * Triggered by sw interrupt from CMC polling routine. Calls
1384 * real interrupt handler and either triggers a sw interrupt
1385 * on the next cpu or does cleanup at the end.
1389 * client data arg ptr
1394 ia64_mca_cmc_int_caller(int cmc_irq
, void *arg
)
1396 static int start_count
= -1;
1399 cpuid
= smp_processor_id();
1401 /* If first cpu, update count */
1402 if (start_count
== -1)
1403 start_count
= IA64_LOG_COUNT(SAL_INFO_TYPE_CMC
);
1405 ia64_mca_cmc_int_handler(cmc_irq
, arg
);
1407 for (++cpuid
; cpuid
< NR_CPUS
&& !cpu_online(cpuid
) ; cpuid
++);
1409 if (cpuid
< NR_CPUS
) {
1410 platform_send_ipi(cpuid
, IA64_CMCP_VECTOR
, IA64_IPI_DM_INT
, 0);
1412 /* If no log record, switch out of polling mode */
1413 if (start_count
== IA64_LOG_COUNT(SAL_INFO_TYPE_CMC
)) {
1415 printk(KERN_WARNING
"Returning to interrupt driven CMC handler\n");
1416 schedule_work(&cmc_enable_work
);
1417 cmc_polling_enabled
= 0;
1421 mod_timer(&cmc_poll_timer
, jiffies
+ CMC_POLL_INTERVAL
);
1433 * Poll for Corrected Machine Checks (CMCs)
1435 * Inputs : dummy(unused)
1440 ia64_mca_cmc_poll (unsigned long dummy
)
1442 /* Trigger a CMC interrupt cascade */
1443 platform_send_ipi(first_cpu(cpu_online_map
), IA64_CMCP_VECTOR
, IA64_IPI_DM_INT
, 0);
1447 * ia64_mca_cpe_int_caller
1449 * Triggered by sw interrupt from CPE polling routine. Calls
1450 * real interrupt handler and either triggers a sw interrupt
1451 * on the next cpu or does cleanup at the end.
1455 * client data arg ptr
1462 ia64_mca_cpe_int_caller(int cpe_irq
, void *arg
)
1464 static int start_count
= -1;
1465 static int poll_time
= MIN_CPE_POLL_INTERVAL
;
1468 cpuid
= smp_processor_id();
1470 /* If first cpu, update count */
1471 if (start_count
== -1)
1472 start_count
= IA64_LOG_COUNT(SAL_INFO_TYPE_CPE
);
1474 ia64_mca_cpe_int_handler(cpe_irq
, arg
);
1476 for (++cpuid
; cpuid
< NR_CPUS
&& !cpu_online(cpuid
) ; cpuid
++);
1478 if (cpuid
< NR_CPUS
) {
1479 platform_send_ipi(cpuid
, IA64_CPEP_VECTOR
, IA64_IPI_DM_INT
, 0);
1482 * If a log was recorded, increase our polling frequency,
1483 * otherwise, backoff or return to interrupt mode.
1485 if (start_count
!= IA64_LOG_COUNT(SAL_INFO_TYPE_CPE
)) {
1486 poll_time
= max(MIN_CPE_POLL_INTERVAL
, poll_time
/ 2);
1487 } else if (cpe_vector
< 0) {
1488 poll_time
= min(MAX_CPE_POLL_INTERVAL
, poll_time
* 2);
1490 poll_time
= MIN_CPE_POLL_INTERVAL
;
1492 printk(KERN_WARNING
"Returning to interrupt driven CPE handler\n");
1493 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR
));
1494 cpe_poll_enabled
= 0;
1497 if (cpe_poll_enabled
)
1498 mod_timer(&cpe_poll_timer
, jiffies
+ poll_time
);
1508 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1509 * on first cpu, from there it will trickle through all the cpus.
1511 * Inputs : dummy(unused)
1516 ia64_mca_cpe_poll (unsigned long dummy
)
1518 /* Trigger a CPE interrupt cascade */
1519 platform_send_ipi(first_cpu(cpu_online_map
), IA64_CPEP_VECTOR
, IA64_IPI_DM_INT
, 0);
1522 #endif /* CONFIG_ACPI */
1525 default_monarch_init_process(struct notifier_block
*self
, unsigned long val
, void *data
)
1528 struct task_struct
*g
, *t
;
1529 if (val
!= DIE_INIT_MONARCH_PROCESS
)
1532 if (atomic_read(&kdump_in_progress
))
1537 * FIXME: mlogbuf will brim over with INIT stack dumps.
1538 * To enable show_stack from INIT, we use oops_in_progress which should
1539 * be used in real oops. This would cause something wrong after INIT.
1541 BREAK_LOGLEVEL(console_loglevel
);
1542 ia64_mlogbuf_dump_from_init();
1544 printk(KERN_ERR
"Processes interrupted by INIT -");
1545 for_each_online_cpu(c
) {
1546 struct ia64_sal_os_state
*s
;
1547 t
= __va(__per_cpu_mca
[c
] + IA64_MCA_CPU_INIT_STACK_OFFSET
);
1548 s
= (struct ia64_sal_os_state
*)((char *)t
+ MCA_SOS_OFFSET
);
1552 printk(" %d", g
->pid
);
1554 printk(" %d (cpu %d task 0x%p)", g
->pid
, task_cpu(g
), g
);
1558 if (read_trylock(&tasklist_lock
)) {
1559 do_each_thread (g
, t
) {
1560 printk("\nBacktrace of pid %d (%s)\n", t
->pid
, t
->comm
);
1561 show_stack(t
, NULL
);
1562 } while_each_thread (g
, t
);
1563 read_unlock(&tasklist_lock
);
1565 /* FIXME: This will not restore zapped printk locks. */
1566 RESTORE_LOGLEVEL(console_loglevel
);
1571 * C portion of the OS INIT handler
1573 * Called from ia64_os_init_dispatch
1575 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1576 * this event. This code is used for both monarch and slave INIT events, see
1579 * All INIT events switch to the INIT stack and change the previous process to
1580 * blocked status. If one of the INIT events is the monarch then we are
1581 * probably processing the nmi button/command. Use the monarch cpu to dump all
1582 * the processes. The slave INIT events all spin until the monarch cpu
1583 * returns. We can also get INIT slave events for MCA, in which case the MCA
1584 * process is the monarch.
1588 ia64_init_handler(struct pt_regs
*regs
, struct switch_stack
*sw
,
1589 struct ia64_sal_os_state
*sos
)
1591 static atomic_t slaves
;
1592 static atomic_t monarchs
;
1593 struct task_struct
*previous_current
;
1594 int cpu
= smp_processor_id();
1595 struct ia64_mca_notify_die nd
=
1596 { .sos
= sos
, .monarch_cpu
= &monarch_cpu
};
1598 (void) notify_die(DIE_INIT_ENTER
, "INIT", regs
, (long)&nd
, 0, 0);
1600 mprintk(KERN_INFO
"Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1601 sos
->proc_state_param
, cpu
, sos
->monarch
);
1602 salinfo_log_wakeup(SAL_INFO_TYPE_INIT
, NULL
, 0, 0);
1604 previous_current
= ia64_mca_modify_original_stack(regs
, sw
, sos
, "INIT");
1605 sos
->os_status
= IA64_INIT_RESUME
;
1607 /* FIXME: Workaround for broken proms that drive all INIT events as
1608 * slaves. The last slave that enters is promoted to be a monarch.
1609 * Remove this code in September 2006, that gives platforms a year to
1610 * fix their proms and get their customers updated.
1612 if (!sos
->monarch
&& atomic_add_return(1, &slaves
) == num_online_cpus()) {
1613 mprintk(KERN_WARNING
"%s: Promoting cpu %d to monarch.\n",
1615 atomic_dec(&slaves
);
1619 /* FIXME: Workaround for broken proms that drive all INIT events as
1620 * monarchs. Second and subsequent monarchs are demoted to slaves.
1621 * Remove this code in September 2006, that gives platforms a year to
1622 * fix their proms and get their customers updated.
1624 if (sos
->monarch
&& atomic_add_return(1, &monarchs
) > 1) {
1625 mprintk(KERN_WARNING
"%s: Demoting cpu %d to slave.\n",
1627 atomic_dec(&monarchs
);
1631 if (!sos
->monarch
) {
1632 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_INIT
;
1633 while (monarch_cpu
== -1)
1634 cpu_relax(); /* spin until monarch enters */
1635 if (notify_die(DIE_INIT_SLAVE_ENTER
, "INIT", regs
, (long)&nd
, 0, 0)
1637 ia64_mca_spin(__func__
);
1638 if (notify_die(DIE_INIT_SLAVE_PROCESS
, "INIT", regs
, (long)&nd
, 0, 0)
1640 ia64_mca_spin(__func__
);
1641 while (monarch_cpu
!= -1)
1642 cpu_relax(); /* spin until monarch leaves */
1643 if (notify_die(DIE_INIT_SLAVE_LEAVE
, "INIT", regs
, (long)&nd
, 0, 0)
1645 ia64_mca_spin(__func__
);
1646 mprintk("Slave on cpu %d returning to normal service.\n", cpu
);
1647 set_curr_task(cpu
, previous_current
);
1648 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
1649 atomic_dec(&slaves
);
1654 if (notify_die(DIE_INIT_MONARCH_ENTER
, "INIT", regs
, (long)&nd
, 0, 0)
1656 ia64_mca_spin(__func__
);
1659 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1660 * generated via the BMC's command-line interface, but since the console is on the
1661 * same serial line, the user will need some time to switch out of the BMC before
1664 mprintk("Delaying for 5 seconds...\n");
1666 ia64_wait_for_slaves(cpu
, "INIT");
1667 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1668 * to default_monarch_init_process() above and just print all the
1671 if (notify_die(DIE_INIT_MONARCH_PROCESS
, "INIT", regs
, (long)&nd
, 0, 0)
1673 ia64_mca_spin(__func__
);
1674 if (notify_die(DIE_INIT_MONARCH_LEAVE
, "INIT", regs
, (long)&nd
, 0, 0)
1676 ia64_mca_spin(__func__
);
1677 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu
);
1678 atomic_dec(&monarchs
);
1679 set_curr_task(cpu
, previous_current
);
1685 ia64_mca_disable_cpe_polling(char *str
)
1687 cpe_poll_enabled
= 0;
1691 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling
);
1693 static struct irqaction cmci_irqaction
= {
1694 .handler
= ia64_mca_cmc_int_handler
,
1695 .flags
= IRQF_DISABLED
,
1699 static struct irqaction cmcp_irqaction
= {
1700 .handler
= ia64_mca_cmc_int_caller
,
1701 .flags
= IRQF_DISABLED
,
1705 static struct irqaction mca_rdzv_irqaction
= {
1706 .handler
= ia64_mca_rendez_int_handler
,
1707 .flags
= IRQF_DISABLED
,
1711 static struct irqaction mca_wkup_irqaction
= {
1712 .handler
= ia64_mca_wakeup_int_handler
,
1713 .flags
= IRQF_DISABLED
,
1718 static struct irqaction mca_cpe_irqaction
= {
1719 .handler
= ia64_mca_cpe_int_handler
,
1720 .flags
= IRQF_DISABLED
,
1724 static struct irqaction mca_cpep_irqaction
= {
1725 .handler
= ia64_mca_cpe_int_caller
,
1726 .flags
= IRQF_DISABLED
,
1729 #endif /* CONFIG_ACPI */
1731 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1732 * these stacks can never sleep, they cannot return from the kernel to user
1733 * space, they do not appear in a normal ps listing. So there is no need to
1734 * format most of the fields.
1737 static void __cpuinit
1738 format_mca_init_stack(void *mca_data
, unsigned long offset
,
1739 const char *type
, int cpu
)
1741 struct task_struct
*p
= (struct task_struct
*)((char *)mca_data
+ offset
);
1742 struct thread_info
*ti
;
1743 memset(p
, 0, KERNEL_STACK_SIZE
);
1744 ti
= task_thread_info(p
);
1745 ti
->flags
= _TIF_MCA_INIT
;
1746 ti
->preempt_count
= 1;
1750 p
->state
= TASK_UNINTERRUPTIBLE
;
1751 cpu_set(cpu
, p
->cpus_allowed
);
1752 INIT_LIST_HEAD(&p
->tasks
);
1753 p
->parent
= p
->real_parent
= p
->group_leader
= p
;
1754 INIT_LIST_HEAD(&p
->children
);
1755 INIT_LIST_HEAD(&p
->sibling
);
1756 strncpy(p
->comm
, type
, sizeof(p
->comm
)-1);
1759 /* Caller prevents this from being called after init */
1760 static void * __init_refok
mca_bootmem(void)
1762 return __alloc_bootmem(sizeof(struct ia64_mca_cpu
),
1763 KERNEL_STACK_SIZE
, 0);
1766 /* Do per-CPU MCA-related initialization. */
1768 ia64_mca_cpu_init(void *cpu_data
)
1772 long sz
= sizeof(struct ia64_mca_cpu
);
1773 int cpu
= smp_processor_id();
1774 static int first_time
= 1;
1777 * Structure will already be allocated if cpu has been online,
1780 if (__per_cpu_mca
[cpu
]) {
1781 data
= __va(__per_cpu_mca
[cpu
]);
1784 data
= mca_bootmem();
1787 data
= page_address(alloc_pages_node(numa_node_id(),
1788 GFP_KERNEL
, get_order(sz
)));
1790 panic("Could not allocate MCA memory for cpu %d\n",
1793 format_mca_init_stack(data
, offsetof(struct ia64_mca_cpu
, mca_stack
),
1795 format_mca_init_stack(data
, offsetof(struct ia64_mca_cpu
, init_stack
),
1797 __get_cpu_var(ia64_mca_data
) = __per_cpu_mca
[cpu
] = __pa(data
);
1800 * Stash away a copy of the PTE needed to map the per-CPU page.
1801 * We may need it during MCA recovery.
1803 __get_cpu_var(ia64_mca_per_cpu_pte
) =
1804 pte_val(mk_pte_phys(__pa(cpu_data
), PAGE_KERNEL
));
1807 * Also, stash away a copy of the PAL address and the PTE
1810 pal_vaddr
= efi_get_pal_addr();
1813 __get_cpu_var(ia64_mca_pal_base
) =
1814 GRANULEROUNDDOWN((unsigned long) pal_vaddr
);
1815 __get_cpu_var(ia64_mca_pal_pte
) = pte_val(mk_pte_phys(__pa(pal_vaddr
),
1819 static void __cpuinit
ia64_mca_cmc_vector_adjust(void *dummy
)
1821 unsigned long flags
;
1823 local_irq_save(flags
);
1824 if (!cmc_polling_enabled
)
1825 ia64_mca_cmc_vector_enable(NULL
);
1826 local_irq_restore(flags
);
1829 static int __cpuinit
mca_cpu_callback(struct notifier_block
*nfb
,
1830 unsigned long action
,
1833 int hotcpu
= (unsigned long) hcpu
;
1837 case CPU_ONLINE_FROZEN
:
1838 smp_call_function_single(hotcpu
, ia64_mca_cmc_vector_adjust
,
1845 static struct notifier_block mca_cpu_notifier __cpuinitdata
= {
1846 .notifier_call
= mca_cpu_callback
1852 * Do all the system level mca specific initialization.
1854 * 1. Register spinloop and wakeup request interrupt vectors
1856 * 2. Register OS_MCA handler entry point
1858 * 3. Register OS_INIT handler entry point
1860 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1862 * Note that this initialization is done very early before some kernel
1863 * services are available.
1872 ia64_fptr_t
*init_hldlr_ptr_monarch
= (ia64_fptr_t
*)ia64_os_init_dispatch_monarch
;
1873 ia64_fptr_t
*init_hldlr_ptr_slave
= (ia64_fptr_t
*)ia64_os_init_dispatch_slave
;
1874 ia64_fptr_t
*mca_hldlr_ptr
= (ia64_fptr_t
*)ia64_os_mca_dispatch
;
1877 struct ia64_sal_retval isrv
;
1878 u64 timeout
= IA64_MCA_RENDEZ_TIMEOUT
; /* platform specific */
1879 static struct notifier_block default_init_monarch_nb
= {
1880 .notifier_call
= default_monarch_init_process
,
1881 .priority
= 0/* we need to notified last */
1884 IA64_MCA_DEBUG("%s: begin\n", __func__
);
1886 /* Clear the Rendez checkin flag for all cpus */
1887 for(i
= 0 ; i
< NR_CPUS
; i
++)
1888 ia64_mc_info
.imi_rendez_checkin
[i
] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
1891 * Register the rendezvous spinloop and wakeup mechanism with SAL
1894 /* Register the rendezvous interrupt vector with SAL */
1896 isrv
= ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT
,
1897 SAL_MC_PARAM_MECHANISM_INT
,
1898 IA64_MCA_RENDEZ_VECTOR
,
1900 SAL_MC_PARAM_RZ_ALWAYS
);
1905 printk(KERN_INFO
"Increasing MCA rendezvous timeout from "
1906 "%ld to %ld milliseconds\n", timeout
, isrv
.v0
);
1908 (void) notify_die(DIE_MCA_NEW_TIMEOUT
, "MCA", NULL
, timeout
, 0, 0);
1911 printk(KERN_ERR
"Failed to register rendezvous interrupt "
1912 "with SAL (status %ld)\n", rc
);
1916 /* Register the wakeup interrupt vector with SAL */
1917 isrv
= ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP
,
1918 SAL_MC_PARAM_MECHANISM_INT
,
1919 IA64_MCA_WAKEUP_VECTOR
,
1923 printk(KERN_ERR
"Failed to register wakeup interrupt with SAL "
1924 "(status %ld)\n", rc
);
1928 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__
);
1930 ia64_mc_info
.imi_mca_handler
= ia64_tpa(mca_hldlr_ptr
->fp
);
1932 * XXX - disable SAL checksum by setting size to 0; should be
1933 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1935 ia64_mc_info
.imi_mca_handler_size
= 0;
1937 /* Register the os mca handler with SAL */
1938 if ((rc
= ia64_sal_set_vectors(SAL_VECTOR_OS_MCA
,
1939 ia64_mc_info
.imi_mca_handler
,
1940 ia64_tpa(mca_hldlr_ptr
->gp
),
1941 ia64_mc_info
.imi_mca_handler_size
,
1944 printk(KERN_ERR
"Failed to register OS MCA handler with SAL "
1945 "(status %ld)\n", rc
);
1949 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__
,
1950 ia64_mc_info
.imi_mca_handler
, ia64_tpa(mca_hldlr_ptr
->gp
));
1953 * XXX - disable SAL checksum by setting size to 0, should be
1954 * size of the actual init handler in mca_asm.S.
1956 ia64_mc_info
.imi_monarch_init_handler
= ia64_tpa(init_hldlr_ptr_monarch
->fp
);
1957 ia64_mc_info
.imi_monarch_init_handler_size
= 0;
1958 ia64_mc_info
.imi_slave_init_handler
= ia64_tpa(init_hldlr_ptr_slave
->fp
);
1959 ia64_mc_info
.imi_slave_init_handler_size
= 0;
1961 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__
,
1962 ia64_mc_info
.imi_monarch_init_handler
);
1964 /* Register the os init handler with SAL */
1965 if ((rc
= ia64_sal_set_vectors(SAL_VECTOR_OS_INIT
,
1966 ia64_mc_info
.imi_monarch_init_handler
,
1967 ia64_tpa(ia64_getreg(_IA64_REG_GP
)),
1968 ia64_mc_info
.imi_monarch_init_handler_size
,
1969 ia64_mc_info
.imi_slave_init_handler
,
1970 ia64_tpa(ia64_getreg(_IA64_REG_GP
)),
1971 ia64_mc_info
.imi_slave_init_handler_size
)))
1973 printk(KERN_ERR
"Failed to register m/s INIT handlers with SAL "
1974 "(status %ld)\n", rc
);
1977 if (register_die_notifier(&default_init_monarch_nb
)) {
1978 printk(KERN_ERR
"Failed to register default monarch INIT process\n");
1982 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__
);
1985 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1986 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1988 register_percpu_irq(IA64_CMC_VECTOR
, &cmci_irqaction
);
1989 register_percpu_irq(IA64_CMCP_VECTOR
, &cmcp_irqaction
);
1990 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1992 /* Setup the MCA rendezvous interrupt vector */
1993 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR
, &mca_rdzv_irqaction
);
1995 /* Setup the MCA wakeup interrupt vector */
1996 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR
, &mca_wkup_irqaction
);
1999 /* Setup the CPEI/P handler */
2000 register_percpu_irq(IA64_CPEP_VECTOR
, &mca_cpep_irqaction
);
2003 /* Initialize the areas set aside by the OS to buffer the
2004 * platform/processor error states for MCA/INIT/CMC
2007 ia64_log_init(SAL_INFO_TYPE_MCA
);
2008 ia64_log_init(SAL_INFO_TYPE_INIT
);
2009 ia64_log_init(SAL_INFO_TYPE_CMC
);
2010 ia64_log_init(SAL_INFO_TYPE_CPE
);
2013 printk(KERN_INFO
"MCA related initialization done\n");
2017 * ia64_mca_late_init
2019 * Opportunity to setup things that require initialization later
2020 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2021 * platform doesn't support an interrupt driven mechanism.
2027 ia64_mca_late_init(void)
2032 register_hotcpu_notifier(&mca_cpu_notifier
);
2034 /* Setup the CMCI/P vector and handler */
2035 init_timer(&cmc_poll_timer
);
2036 cmc_poll_timer
.function
= ia64_mca_cmc_poll
;
2038 /* Unmask/enable the vector */
2039 cmc_polling_enabled
= 0;
2040 schedule_work(&cmc_enable_work
);
2042 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__
);
2045 /* Setup the CPEI/P vector and handler */
2046 cpe_vector
= acpi_request_vector(ACPI_INTERRUPT_CPEI
);
2047 init_timer(&cpe_poll_timer
);
2048 cpe_poll_timer
.function
= ia64_mca_cpe_poll
;
2054 if (cpe_vector
>= 0) {
2055 /* If platform supports CPEI, enable the irq. */
2056 irq
= local_vector_to_irq(cpe_vector
);
2058 cpe_poll_enabled
= 0;
2059 desc
= irq_desc
+ irq
;
2060 desc
->status
|= IRQ_PER_CPU
;
2061 setup_irq(irq
, &mca_cpe_irqaction
);
2063 ia64_mca_register_cpev(cpe_vector
);
2064 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2068 printk(KERN_ERR
"%s: Failed to find irq for CPE "
2069 "interrupt handler, vector %d\n",
2070 __func__
, cpe_vector
);
2072 /* If platform doesn't support CPEI, get the timer going. */
2073 if (cpe_poll_enabled
) {
2074 ia64_mca_cpe_poll(0UL);
2075 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__
);
2083 device_initcall(ia64_mca_late_init
);