cxgb3 - Set the CQ_ERR bit in CQ contexts.
[pv_ops_mirror.git] / drivers / net / cxgb3 / t3_hw.c
blobbff1d028a96b4290eae4cbef3c4d77f629d5905b
1 /*
2 * Copyright (c) 2003-2007 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
32 #include "common.h"
33 #include "regs.h"
34 #include "sge_defs.h"
35 #include "firmware_exports.h"
37 /**
38 * t3_wait_op_done_val - wait until an operation is completed
39 * @adapter: the adapter performing the operation
40 * @reg: the register to check for completion
41 * @mask: a single-bit field within @reg that indicates completion
42 * @polarity: the value of the field when the operation is completed
43 * @attempts: number of check iterations
44 * @delay: delay in usecs between iterations
45 * @valp: where to store the value of the register at completion time
47 * Wait until an operation is completed by checking a bit in a register
48 * up to @attempts times. If @valp is not NULL the value of the register
49 * at the time it indicated completion is stored there. Returns 0 if the
50 * operation completes and -EAGAIN otherwise.
53 int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
54 int polarity, int attempts, int delay, u32 *valp)
56 while (1) {
57 u32 val = t3_read_reg(adapter, reg);
59 if (!!(val & mask) == polarity) {
60 if (valp)
61 *valp = val;
62 return 0;
64 if (--attempts == 0)
65 return -EAGAIN;
66 if (delay)
67 udelay(delay);
71 /**
72 * t3_write_regs - write a bunch of registers
73 * @adapter: the adapter to program
74 * @p: an array of register address/register value pairs
75 * @n: the number of address/value pairs
76 * @offset: register address offset
78 * Takes an array of register address/register value pairs and writes each
79 * value to the corresponding register. Register addresses are adjusted
80 * by the supplied offset.
82 void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
83 int n, unsigned int offset)
85 while (n--) {
86 t3_write_reg(adapter, p->reg_addr + offset, p->val);
87 p++;
91 /**
92 * t3_set_reg_field - set a register field to a value
93 * @adapter: the adapter to program
94 * @addr: the register address
95 * @mask: specifies the portion of the register to modify
96 * @val: the new value for the register field
98 * Sets a register field specified by the supplied mask to the
99 * given value.
101 void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
102 u32 val)
104 u32 v = t3_read_reg(adapter, addr) & ~mask;
106 t3_write_reg(adapter, addr, v | val);
107 t3_read_reg(adapter, addr); /* flush */
111 * t3_read_indirect - read indirectly addressed registers
112 * @adap: the adapter
113 * @addr_reg: register holding the indirect address
114 * @data_reg: register holding the value of the indirect register
115 * @vals: where the read register values are stored
116 * @start_idx: index of first indirect register to read
117 * @nregs: how many indirect registers to read
119 * Reads registers that are accessed indirectly through an address/data
120 * register pair.
122 void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
123 unsigned int data_reg, u32 *vals, unsigned int nregs,
124 unsigned int start_idx)
126 while (nregs--) {
127 t3_write_reg(adap, addr_reg, start_idx);
128 *vals++ = t3_read_reg(adap, data_reg);
129 start_idx++;
134 * t3_mc7_bd_read - read from MC7 through backdoor accesses
135 * @mc7: identifies MC7 to read from
136 * @start: index of first 64-bit word to read
137 * @n: number of 64-bit words to read
138 * @buf: where to store the read result
140 * Read n 64-bit words from MC7 starting at word start, using backdoor
141 * accesses.
143 int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
144 u64 *buf)
146 static const int shift[] = { 0, 0, 16, 24 };
147 static const int step[] = { 0, 32, 16, 8 };
149 unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
150 struct adapter *adap = mc7->adapter;
152 if (start >= size64 || start + n > size64)
153 return -EINVAL;
155 start *= (8 << mc7->width);
156 while (n--) {
157 int i;
158 u64 val64 = 0;
160 for (i = (1 << mc7->width) - 1; i >= 0; --i) {
161 int attempts = 10;
162 u32 val;
164 t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
165 t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
166 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
167 while ((val & F_BUSY) && attempts--)
168 val = t3_read_reg(adap,
169 mc7->offset + A_MC7_BD_OP);
170 if (val & F_BUSY)
171 return -EIO;
173 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
174 if (mc7->width == 0) {
175 val64 = t3_read_reg(adap,
176 mc7->offset +
177 A_MC7_BD_DATA0);
178 val64 |= (u64) val << 32;
179 } else {
180 if (mc7->width > 1)
181 val >>= shift[mc7->width];
182 val64 |= (u64) val << (step[mc7->width] * i);
184 start += 8;
186 *buf++ = val64;
188 return 0;
192 * Initialize MI1.
194 static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
196 u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
197 u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) |
198 V_CLKDIV(clkdiv);
200 if (!(ai->caps & SUPPORTED_10000baseT_Full))
201 val |= V_ST(1);
202 t3_write_reg(adap, A_MI1_CFG, val);
205 #define MDIO_ATTEMPTS 10
208 * MI1 read/write operations for direct-addressed PHYs.
210 static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
211 int reg_addr, unsigned int *valp)
213 int ret;
214 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
216 if (mmd_addr)
217 return -EINVAL;
219 mutex_lock(&adapter->mdio_lock);
220 t3_write_reg(adapter, A_MI1_ADDR, addr);
221 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
222 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
223 if (!ret)
224 *valp = t3_read_reg(adapter, A_MI1_DATA);
225 mutex_unlock(&adapter->mdio_lock);
226 return ret;
229 static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
230 int reg_addr, unsigned int val)
232 int ret;
233 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
235 if (mmd_addr)
236 return -EINVAL;
238 mutex_lock(&adapter->mdio_lock);
239 t3_write_reg(adapter, A_MI1_ADDR, addr);
240 t3_write_reg(adapter, A_MI1_DATA, val);
241 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
242 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
243 mutex_unlock(&adapter->mdio_lock);
244 return ret;
247 static const struct mdio_ops mi1_mdio_ops = {
248 mi1_read,
249 mi1_write
253 * MI1 read/write operations for indirect-addressed PHYs.
255 static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
256 int reg_addr, unsigned int *valp)
258 int ret;
259 u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
261 mutex_lock(&adapter->mdio_lock);
262 t3_write_reg(adapter, A_MI1_ADDR, addr);
263 t3_write_reg(adapter, A_MI1_DATA, reg_addr);
264 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
265 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
266 if (!ret) {
267 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
268 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
269 MDIO_ATTEMPTS, 20);
270 if (!ret)
271 *valp = t3_read_reg(adapter, A_MI1_DATA);
273 mutex_unlock(&adapter->mdio_lock);
274 return ret;
277 static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
278 int reg_addr, unsigned int val)
280 int ret;
281 u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
283 mutex_lock(&adapter->mdio_lock);
284 t3_write_reg(adapter, A_MI1_ADDR, addr);
285 t3_write_reg(adapter, A_MI1_DATA, reg_addr);
286 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
287 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
288 if (!ret) {
289 t3_write_reg(adapter, A_MI1_DATA, val);
290 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
291 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
292 MDIO_ATTEMPTS, 20);
294 mutex_unlock(&adapter->mdio_lock);
295 return ret;
298 static const struct mdio_ops mi1_mdio_ext_ops = {
299 mi1_ext_read,
300 mi1_ext_write
304 * t3_mdio_change_bits - modify the value of a PHY register
305 * @phy: the PHY to operate on
306 * @mmd: the device address
307 * @reg: the register address
308 * @clear: what part of the register value to mask off
309 * @set: what part of the register value to set
311 * Changes the value of a PHY register by applying a mask to its current
312 * value and ORing the result with a new value.
314 int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
315 unsigned int set)
317 int ret;
318 unsigned int val;
320 ret = mdio_read(phy, mmd, reg, &val);
321 if (!ret) {
322 val &= ~clear;
323 ret = mdio_write(phy, mmd, reg, val | set);
325 return ret;
329 * t3_phy_reset - reset a PHY block
330 * @phy: the PHY to operate on
331 * @mmd: the device address of the PHY block to reset
332 * @wait: how long to wait for the reset to complete in 1ms increments
334 * Resets a PHY block and optionally waits for the reset to complete.
335 * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
336 * for 10G PHYs.
338 int t3_phy_reset(struct cphy *phy, int mmd, int wait)
340 int err;
341 unsigned int ctl;
343 err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
344 if (err || !wait)
345 return err;
347 do {
348 err = mdio_read(phy, mmd, MII_BMCR, &ctl);
349 if (err)
350 return err;
351 ctl &= BMCR_RESET;
352 if (ctl)
353 msleep(1);
354 } while (ctl && --wait);
356 return ctl ? -1 : 0;
360 * t3_phy_advertise - set the PHY advertisement registers for autoneg
361 * @phy: the PHY to operate on
362 * @advert: bitmap of capabilities the PHY should advertise
364 * Sets a 10/100/1000 PHY's advertisement registers to advertise the
365 * requested capabilities.
367 int t3_phy_advertise(struct cphy *phy, unsigned int advert)
369 int err;
370 unsigned int val = 0;
372 err = mdio_read(phy, 0, MII_CTRL1000, &val);
373 if (err)
374 return err;
376 val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
377 if (advert & ADVERTISED_1000baseT_Half)
378 val |= ADVERTISE_1000HALF;
379 if (advert & ADVERTISED_1000baseT_Full)
380 val |= ADVERTISE_1000FULL;
382 err = mdio_write(phy, 0, MII_CTRL1000, val);
383 if (err)
384 return err;
386 val = 1;
387 if (advert & ADVERTISED_10baseT_Half)
388 val |= ADVERTISE_10HALF;
389 if (advert & ADVERTISED_10baseT_Full)
390 val |= ADVERTISE_10FULL;
391 if (advert & ADVERTISED_100baseT_Half)
392 val |= ADVERTISE_100HALF;
393 if (advert & ADVERTISED_100baseT_Full)
394 val |= ADVERTISE_100FULL;
395 if (advert & ADVERTISED_Pause)
396 val |= ADVERTISE_PAUSE_CAP;
397 if (advert & ADVERTISED_Asym_Pause)
398 val |= ADVERTISE_PAUSE_ASYM;
399 return mdio_write(phy, 0, MII_ADVERTISE, val);
403 * t3_set_phy_speed_duplex - force PHY speed and duplex
404 * @phy: the PHY to operate on
405 * @speed: requested PHY speed
406 * @duplex: requested PHY duplex
408 * Force a 10/100/1000 PHY's speed and duplex. This also disables
409 * auto-negotiation except for GigE, where auto-negotiation is mandatory.
411 int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
413 int err;
414 unsigned int ctl;
416 err = mdio_read(phy, 0, MII_BMCR, &ctl);
417 if (err)
418 return err;
420 if (speed >= 0) {
421 ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
422 if (speed == SPEED_100)
423 ctl |= BMCR_SPEED100;
424 else if (speed == SPEED_1000)
425 ctl |= BMCR_SPEED1000;
427 if (duplex >= 0) {
428 ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
429 if (duplex == DUPLEX_FULL)
430 ctl |= BMCR_FULLDPLX;
432 if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
433 ctl |= BMCR_ANENABLE;
434 return mdio_write(phy, 0, MII_BMCR, ctl);
437 static const struct adapter_info t3_adap_info[] = {
438 {2, 0, 0, 0,
439 F_GPIO2_OEN | F_GPIO4_OEN |
440 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
442 &mi1_mdio_ops, "Chelsio PE9000"},
443 {2, 0, 0, 0,
444 F_GPIO2_OEN | F_GPIO4_OEN |
445 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
447 &mi1_mdio_ops, "Chelsio T302"},
448 {1, 0, 0, 0,
449 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
450 F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
451 SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
452 &mi1_mdio_ext_ops, "Chelsio T310"},
453 {2, 0, 0, 0,
454 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
455 F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
456 F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
457 SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
458 &mi1_mdio_ext_ops, "Chelsio T320"},
462 * Return the adapter_info structure with a given index. Out-of-range indices
463 * return NULL.
465 const struct adapter_info *t3_get_adapter_info(unsigned int id)
467 return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
470 #define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \
471 SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII)
472 #define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI)
474 static const struct port_type_info port_types[] = {
475 {NULL},
476 {t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
477 "10GBASE-XR"},
478 {t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
479 "10/100/1000BASE-T"},
480 {NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
481 "10/100/1000BASE-T"},
482 {t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
483 {NULL, CAPS_10G, "10GBASE-KX4"},
484 {t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
485 {t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
486 "10GBASE-SR"},
487 {NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
490 #undef CAPS_1G
491 #undef CAPS_10G
493 #define VPD_ENTRY(name, len) \
494 u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
497 * Partial EEPROM Vital Product Data structure. Includes only the ID and
498 * VPD-R sections.
500 struct t3_vpd {
501 u8 id_tag;
502 u8 id_len[2];
503 u8 id_data[16];
504 u8 vpdr_tag;
505 u8 vpdr_len[2];
506 VPD_ENTRY(pn, 16); /* part number */
507 VPD_ENTRY(ec, 16); /* EC level */
508 VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
509 VPD_ENTRY(na, 12); /* MAC address base */
510 VPD_ENTRY(cclk, 6); /* core clock */
511 VPD_ENTRY(mclk, 6); /* mem clock */
512 VPD_ENTRY(uclk, 6); /* uP clk */
513 VPD_ENTRY(mdc, 6); /* MDIO clk */
514 VPD_ENTRY(mt, 2); /* mem timing */
515 VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
516 VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
517 VPD_ENTRY(port0, 2); /* PHY0 complex */
518 VPD_ENTRY(port1, 2); /* PHY1 complex */
519 VPD_ENTRY(port2, 2); /* PHY2 complex */
520 VPD_ENTRY(port3, 2); /* PHY3 complex */
521 VPD_ENTRY(rv, 1); /* csum */
522 u32 pad; /* for multiple-of-4 sizing and alignment */
525 #define EEPROM_MAX_POLL 4
526 #define EEPROM_STAT_ADDR 0x4000
527 #define VPD_BASE 0xc00
530 * t3_seeprom_read - read a VPD EEPROM location
531 * @adapter: adapter to read
532 * @addr: EEPROM address
533 * @data: where to store the read data
535 * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
536 * VPD ROM capability. A zero is written to the flag bit when the
537 * addres is written to the control register. The hardware device will
538 * set the flag to 1 when 4 bytes have been read into the data register.
540 int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
542 u16 val;
543 int attempts = EEPROM_MAX_POLL;
544 unsigned int base = adapter->params.pci.vpd_cap_addr;
546 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
547 return -EINVAL;
549 pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
550 do {
551 udelay(10);
552 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
553 } while (!(val & PCI_VPD_ADDR_F) && --attempts);
555 if (!(val & PCI_VPD_ADDR_F)) {
556 CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
557 return -EIO;
559 pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, data);
560 *data = le32_to_cpu(*data);
561 return 0;
565 * t3_seeprom_write - write a VPD EEPROM location
566 * @adapter: adapter to write
567 * @addr: EEPROM address
568 * @data: value to write
570 * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
571 * VPD ROM capability.
573 int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
575 u16 val;
576 int attempts = EEPROM_MAX_POLL;
577 unsigned int base = adapter->params.pci.vpd_cap_addr;
579 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
580 return -EINVAL;
582 pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
583 cpu_to_le32(data));
584 pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
585 addr | PCI_VPD_ADDR_F);
586 do {
587 msleep(1);
588 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
589 } while ((val & PCI_VPD_ADDR_F) && --attempts);
591 if (val & PCI_VPD_ADDR_F) {
592 CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
593 return -EIO;
595 return 0;
599 * t3_seeprom_wp - enable/disable EEPROM write protection
600 * @adapter: the adapter
601 * @enable: 1 to enable write protection, 0 to disable it
603 * Enables or disables write protection on the serial EEPROM.
605 int t3_seeprom_wp(struct adapter *adapter, int enable)
607 return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
611 * Convert a character holding a hex digit to a number.
613 static unsigned int hex2int(unsigned char c)
615 return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
619 * get_vpd_params - read VPD parameters from VPD EEPROM
620 * @adapter: adapter to read
621 * @p: where to store the parameters
623 * Reads card parameters stored in VPD EEPROM.
625 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
627 int i, addr, ret;
628 struct t3_vpd vpd;
631 * Card information is normally at VPD_BASE but some early cards had
632 * it at 0.
634 ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *)&vpd);
635 if (ret)
636 return ret;
637 addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
639 for (i = 0; i < sizeof(vpd); i += 4) {
640 ret = t3_seeprom_read(adapter, addr + i,
641 (u32 *)((u8 *)&vpd + i));
642 if (ret)
643 return ret;
646 p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
647 p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
648 p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
649 p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
650 p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
651 memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
653 /* Old eeproms didn't have port information */
654 if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
655 p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
656 p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
657 } else {
658 p->port_type[0] = hex2int(vpd.port0_data[0]);
659 p->port_type[1] = hex2int(vpd.port1_data[0]);
660 p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
661 p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
664 for (i = 0; i < 6; i++)
665 p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
666 hex2int(vpd.na_data[2 * i + 1]);
667 return 0;
670 /* serial flash and firmware constants */
671 enum {
672 SF_ATTEMPTS = 5, /* max retries for SF1 operations */
673 SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
674 SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
676 /* flash command opcodes */
677 SF_PROG_PAGE = 2, /* program page */
678 SF_WR_DISABLE = 4, /* disable writes */
679 SF_RD_STATUS = 5, /* read status register */
680 SF_WR_ENABLE = 6, /* enable writes */
681 SF_RD_DATA_FAST = 0xb, /* read flash */
682 SF_ERASE_SECTOR = 0xd8, /* erase sector */
684 FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
685 FW_VERS_ADDR = 0x77ffc, /* flash address holding FW version */
686 FW_MIN_SIZE = 8 /* at least version and csum */
690 * sf1_read - read data from the serial flash
691 * @adapter: the adapter
692 * @byte_cnt: number of bytes to read
693 * @cont: whether another operation will be chained
694 * @valp: where to store the read data
696 * Reads up to 4 bytes of data from the serial flash. The location of
697 * the read needs to be specified prior to calling this by issuing the
698 * appropriate commands to the serial flash.
700 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
701 u32 *valp)
703 int ret;
705 if (!byte_cnt || byte_cnt > 4)
706 return -EINVAL;
707 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
708 return -EBUSY;
709 t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
710 ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
711 if (!ret)
712 *valp = t3_read_reg(adapter, A_SF_DATA);
713 return ret;
717 * sf1_write - write data to the serial flash
718 * @adapter: the adapter
719 * @byte_cnt: number of bytes to write
720 * @cont: whether another operation will be chained
721 * @val: value to write
723 * Writes up to 4 bytes of data to the serial flash. The location of
724 * the write needs to be specified prior to calling this by issuing the
725 * appropriate commands to the serial flash.
727 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
728 u32 val)
730 if (!byte_cnt || byte_cnt > 4)
731 return -EINVAL;
732 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
733 return -EBUSY;
734 t3_write_reg(adapter, A_SF_DATA, val);
735 t3_write_reg(adapter, A_SF_OP,
736 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
737 return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
741 * flash_wait_op - wait for a flash operation to complete
742 * @adapter: the adapter
743 * @attempts: max number of polls of the status register
744 * @delay: delay between polls in ms
746 * Wait for a flash operation to complete by polling the status register.
748 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
750 int ret;
751 u32 status;
753 while (1) {
754 if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
755 (ret = sf1_read(adapter, 1, 0, &status)) != 0)
756 return ret;
757 if (!(status & 1))
758 return 0;
759 if (--attempts == 0)
760 return -EAGAIN;
761 if (delay)
762 msleep(delay);
767 * t3_read_flash - read words from serial flash
768 * @adapter: the adapter
769 * @addr: the start address for the read
770 * @nwords: how many 32-bit words to read
771 * @data: where to store the read data
772 * @byte_oriented: whether to store data as bytes or as words
774 * Read the specified number of 32-bit words from the serial flash.
775 * If @byte_oriented is set the read data is stored as a byte array
776 * (i.e., big-endian), otherwise as 32-bit words in the platform's
777 * natural endianess.
779 int t3_read_flash(struct adapter *adapter, unsigned int addr,
780 unsigned int nwords, u32 *data, int byte_oriented)
782 int ret;
784 if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
785 return -EINVAL;
787 addr = swab32(addr) | SF_RD_DATA_FAST;
789 if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
790 (ret = sf1_read(adapter, 1, 1, data)) != 0)
791 return ret;
793 for (; nwords; nwords--, data++) {
794 ret = sf1_read(adapter, 4, nwords > 1, data);
795 if (ret)
796 return ret;
797 if (byte_oriented)
798 *data = htonl(*data);
800 return 0;
804 * t3_write_flash - write up to a page of data to the serial flash
805 * @adapter: the adapter
806 * @addr: the start address to write
807 * @n: length of data to write
808 * @data: the data to write
810 * Writes up to a page of data (256 bytes) to the serial flash starting
811 * at the given address.
813 static int t3_write_flash(struct adapter *adapter, unsigned int addr,
814 unsigned int n, const u8 *data)
816 int ret;
817 u32 buf[64];
818 unsigned int i, c, left, val, offset = addr & 0xff;
820 if (addr + n > SF_SIZE || offset + n > 256)
821 return -EINVAL;
823 val = swab32(addr) | SF_PROG_PAGE;
825 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
826 (ret = sf1_write(adapter, 4, 1, val)) != 0)
827 return ret;
829 for (left = n; left; left -= c) {
830 c = min(left, 4U);
831 for (val = 0, i = 0; i < c; ++i)
832 val = (val << 8) + *data++;
834 ret = sf1_write(adapter, c, c != left, val);
835 if (ret)
836 return ret;
838 if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
839 return ret;
841 /* Read the page to verify the write succeeded */
842 ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
843 if (ret)
844 return ret;
846 if (memcmp(data - n, (u8 *) buf + offset, n))
847 return -EIO;
848 return 0;
852 * t3_get_tp_version - read the tp sram version
853 * @adapter: the adapter
854 * @vers: where to place the version
856 * Reads the protocol sram version from sram.
858 int t3_get_tp_version(struct adapter *adapter, u32 *vers)
860 int ret;
862 /* Get version loaded in SRAM */
863 t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
864 ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
865 1, 1, 5, 1);
866 if (ret)
867 return ret;
869 *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
871 return 0;
875 * t3_check_tpsram_version - read the tp sram version
876 * @adapter: the adapter
877 * @must_load: set to 1 if loading a new microcode image is required
879 * Reads the protocol sram version from flash.
881 int t3_check_tpsram_version(struct adapter *adapter, int *must_load)
883 int ret;
884 u32 vers;
885 unsigned int major, minor;
887 if (adapter->params.rev == T3_REV_A)
888 return 0;
890 *must_load = 1;
892 ret = t3_get_tp_version(adapter, &vers);
893 if (ret)
894 return ret;
896 major = G_TP_VERSION_MAJOR(vers);
897 minor = G_TP_VERSION_MINOR(vers);
899 if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
900 return 0;
902 if (major != TP_VERSION_MAJOR)
903 CH_ERR(adapter, "found wrong TP version (%u.%u), "
904 "driver needs version %d.%d\n", major, minor,
905 TP_VERSION_MAJOR, TP_VERSION_MINOR);
906 else {
907 *must_load = 0;
908 CH_ERR(adapter, "found wrong TP version (%u.%u), "
909 "driver compiled for version %d.%d\n", major, minor,
910 TP_VERSION_MAJOR, TP_VERSION_MINOR);
912 return -EINVAL;
916 * t3_check_tpsram - check if provided protocol SRAM
917 * is compatible with this driver
918 * @adapter: the adapter
919 * @tp_sram: the firmware image to write
920 * @size: image size
922 * Checks if an adapter's tp sram is compatible with the driver.
923 * Returns 0 if the versions are compatible, a negative error otherwise.
925 int t3_check_tpsram(struct adapter *adapter, u8 *tp_sram, unsigned int size)
927 u32 csum;
928 unsigned int i;
929 const u32 *p = (const u32 *)tp_sram;
931 /* Verify checksum */
932 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
933 csum += ntohl(p[i]);
934 if (csum != 0xffffffff) {
935 CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
936 csum);
937 return -EINVAL;
940 return 0;
943 enum fw_version_type {
944 FW_VERSION_N3,
945 FW_VERSION_T3
949 * t3_get_fw_version - read the firmware version
950 * @adapter: the adapter
951 * @vers: where to place the version
953 * Reads the FW version from flash.
955 int t3_get_fw_version(struct adapter *adapter, u32 *vers)
957 return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
961 * t3_check_fw_version - check if the FW is compatible with this driver
962 * @adapter: the adapter
963 * @must_load: set to 1 if loading a new FW image is required
965 * Checks if an adapter's FW is compatible with the driver. Returns 0
966 * if the versions are compatible, a negative error otherwise.
968 int t3_check_fw_version(struct adapter *adapter, int *must_load)
970 int ret;
971 u32 vers;
972 unsigned int type, major, minor;
974 *must_load = 1;
975 ret = t3_get_fw_version(adapter, &vers);
976 if (ret)
977 return ret;
979 type = G_FW_VERSION_TYPE(vers);
980 major = G_FW_VERSION_MAJOR(vers);
981 minor = G_FW_VERSION_MINOR(vers);
983 if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
984 minor == FW_VERSION_MINOR)
985 return 0;
987 if (major != FW_VERSION_MAJOR)
988 CH_ERR(adapter, "found wrong FW version(%u.%u), "
989 "driver needs version %u.%u\n", major, minor,
990 FW_VERSION_MAJOR, FW_VERSION_MINOR);
991 else {
992 *must_load = 0;
993 CH_WARN(adapter, "found wrong FW minor version(%u.%u), "
994 "driver compiled for version %u.%u\n", major, minor,
995 FW_VERSION_MAJOR, FW_VERSION_MINOR);
998 return -EINVAL;
1002 * t3_flash_erase_sectors - erase a range of flash sectors
1003 * @adapter: the adapter
1004 * @start: the first sector to erase
1005 * @end: the last sector to erase
1007 * Erases the sectors in the given range.
1009 static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
1011 while (start <= end) {
1012 int ret;
1014 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
1015 (ret = sf1_write(adapter, 4, 0,
1016 SF_ERASE_SECTOR | (start << 8))) != 0 ||
1017 (ret = flash_wait_op(adapter, 5, 500)) != 0)
1018 return ret;
1019 start++;
1021 return 0;
1025 * t3_load_fw - download firmware
1026 * @adapter: the adapter
1027 * @fw_data: the firmware image to write
1028 * @size: image size
1030 * Write the supplied firmware image to the card's serial flash.
1031 * The FW image has the following sections: @size - 8 bytes of code and
1032 * data, followed by 4 bytes of FW version, followed by the 32-bit
1033 * 1's complement checksum of the whole image.
1035 int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
1037 u32 csum;
1038 unsigned int i;
1039 const u32 *p = (const u32 *)fw_data;
1040 int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
1042 if ((size & 3) || size < FW_MIN_SIZE)
1043 return -EINVAL;
1044 if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
1045 return -EFBIG;
1047 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1048 csum += ntohl(p[i]);
1049 if (csum != 0xffffffff) {
1050 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1051 csum);
1052 return -EINVAL;
1055 ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
1056 if (ret)
1057 goto out;
1059 size -= 8; /* trim off version and checksum */
1060 for (addr = FW_FLASH_BOOT_ADDR; size;) {
1061 unsigned int chunk_size = min(size, 256U);
1063 ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
1064 if (ret)
1065 goto out;
1067 addr += chunk_size;
1068 fw_data += chunk_size;
1069 size -= chunk_size;
1072 ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
1073 out:
1074 if (ret)
1075 CH_ERR(adapter, "firmware download failed, error %d\n", ret);
1076 return ret;
1079 #define CIM_CTL_BASE 0x2000
1082 * t3_cim_ctl_blk_read - read a block from CIM control region
1084 * @adap: the adapter
1085 * @addr: the start address within the CIM control region
1086 * @n: number of words to read
1087 * @valp: where to store the result
1089 * Reads a block of 4-byte words from the CIM control region.
1091 int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
1092 unsigned int n, unsigned int *valp)
1094 int ret = 0;
1096 if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1097 return -EBUSY;
1099 for ( ; !ret && n--; addr += 4) {
1100 t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
1101 ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1102 0, 5, 2);
1103 if (!ret)
1104 *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
1106 return ret;
1111 * t3_link_changed - handle interface link changes
1112 * @adapter: the adapter
1113 * @port_id: the port index that changed link state
1115 * Called when a port's link settings change to propagate the new values
1116 * to the associated PHY and MAC. After performing the common tasks it
1117 * invokes an OS-specific handler.
1119 void t3_link_changed(struct adapter *adapter, int port_id)
1121 int link_ok, speed, duplex, fc;
1122 struct port_info *pi = adap2pinfo(adapter, port_id);
1123 struct cphy *phy = &pi->phy;
1124 struct cmac *mac = &pi->mac;
1125 struct link_config *lc = &pi->link_config;
1127 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
1129 if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
1130 uses_xaui(adapter)) {
1131 if (link_ok)
1132 t3b_pcs_reset(mac);
1133 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
1134 link_ok ? F_TXACTENABLE | F_RXEN : 0);
1136 lc->link_ok = link_ok;
1137 lc->speed = speed < 0 ? SPEED_INVALID : speed;
1138 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
1139 if (lc->requested_fc & PAUSE_AUTONEG)
1140 fc &= lc->requested_fc;
1141 else
1142 fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1144 if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
1145 /* Set MAC speed, duplex, and flow control to match PHY. */
1146 t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
1147 lc->fc = fc;
1150 t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
1154 * t3_link_start - apply link configuration to MAC/PHY
1155 * @phy: the PHY to setup
1156 * @mac: the MAC to setup
1157 * @lc: the requested link configuration
1159 * Set up a port's MAC and PHY according to a desired link configuration.
1160 * - If the PHY can auto-negotiate first decide what to advertise, then
1161 * enable/disable auto-negotiation as desired, and reset.
1162 * - If the PHY does not auto-negotiate just reset it.
1163 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1164 * otherwise do it later based on the outcome of auto-negotiation.
1166 int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
1168 unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1170 lc->link_ok = 0;
1171 if (lc->supported & SUPPORTED_Autoneg) {
1172 lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
1173 if (fc) {
1174 lc->advertising |= ADVERTISED_Asym_Pause;
1175 if (fc & PAUSE_RX)
1176 lc->advertising |= ADVERTISED_Pause;
1178 phy->ops->advertise(phy, lc->advertising);
1180 if (lc->autoneg == AUTONEG_DISABLE) {
1181 lc->speed = lc->requested_speed;
1182 lc->duplex = lc->requested_duplex;
1183 lc->fc = (unsigned char)fc;
1184 t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
1185 fc);
1186 /* Also disables autoneg */
1187 phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
1188 phy->ops->reset(phy, 0);
1189 } else
1190 phy->ops->autoneg_enable(phy);
1191 } else {
1192 t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
1193 lc->fc = (unsigned char)fc;
1194 phy->ops->reset(phy, 0);
1196 return 0;
1200 * t3_set_vlan_accel - control HW VLAN extraction
1201 * @adapter: the adapter
1202 * @ports: bitmap of adapter ports to operate on
1203 * @on: enable (1) or disable (0) HW VLAN extraction
1205 * Enables or disables HW extraction of VLAN tags for the given port.
1207 void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
1209 t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
1210 ports << S_VLANEXTRACTIONENABLE,
1211 on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
1214 struct intr_info {
1215 unsigned int mask; /* bits to check in interrupt status */
1216 const char *msg; /* message to print or NULL */
1217 short stat_idx; /* stat counter to increment or -1 */
1218 unsigned short fatal:1; /* whether the condition reported is fatal */
1222 * t3_handle_intr_status - table driven interrupt handler
1223 * @adapter: the adapter that generated the interrupt
1224 * @reg: the interrupt status register to process
1225 * @mask: a mask to apply to the interrupt status
1226 * @acts: table of interrupt actions
1227 * @stats: statistics counters tracking interrupt occurences
1229 * A table driven interrupt handler that applies a set of masks to an
1230 * interrupt status word and performs the corresponding actions if the
1231 * interrupts described by the mask have occured. The actions include
1232 * optionally printing a warning or alert message, and optionally
1233 * incrementing a stat counter. The table is terminated by an entry
1234 * specifying mask 0. Returns the number of fatal interrupt conditions.
1236 static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
1237 unsigned int mask,
1238 const struct intr_info *acts,
1239 unsigned long *stats)
1241 int fatal = 0;
1242 unsigned int status = t3_read_reg(adapter, reg) & mask;
1244 for (; acts->mask; ++acts) {
1245 if (!(status & acts->mask))
1246 continue;
1247 if (acts->fatal) {
1248 fatal++;
1249 CH_ALERT(adapter, "%s (0x%x)\n",
1250 acts->msg, status & acts->mask);
1251 } else if (acts->msg)
1252 CH_WARN(adapter, "%s (0x%x)\n",
1253 acts->msg, status & acts->mask);
1254 if (acts->stat_idx >= 0)
1255 stats[acts->stat_idx]++;
1257 if (status) /* clear processed interrupts */
1258 t3_write_reg(adapter, reg, status);
1259 return fatal;
1262 #define SGE_INTR_MASK (F_RSPQDISABLED)
1263 #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
1264 F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
1265 F_NFASRCHFAIL)
1266 #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
1267 #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1268 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
1269 F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW)
1270 #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
1271 F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
1272 F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
1273 F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
1274 V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
1275 V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
1276 #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
1277 F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
1278 /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
1279 V_BISTERR(M_BISTERR) | F_PEXERR)
1280 #define ULPRX_INTR_MASK F_PARERR
1281 #define ULPTX_INTR_MASK 0
1282 #define CPLSW_INTR_MASK (F_TP_FRAMING_ERROR | \
1283 F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
1284 F_ZERO_SWITCH_ERROR)
1285 #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
1286 F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
1287 F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
1288 F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT)
1289 #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
1290 V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
1291 V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
1292 #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
1293 V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
1294 V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
1295 #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
1296 V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
1297 V_RXTPPARERRENB(M_RXTPPARERRENB) | \
1298 V_MCAPARERRENB(M_MCAPARERRENB))
1299 #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
1300 F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
1301 F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
1302 F_MPS0 | F_CPL_SWITCH)
1305 * Interrupt handler for the PCIX1 module.
1307 static void pci_intr_handler(struct adapter *adapter)
1309 static const struct intr_info pcix1_intr_info[] = {
1310 {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
1311 {F_SIGTARABT, "PCI signaled target abort", -1, 1},
1312 {F_RCVTARABT, "PCI received target abort", -1, 1},
1313 {F_RCVMSTABT, "PCI received master abort", -1, 1},
1314 {F_SIGSYSERR, "PCI signaled system error", -1, 1},
1315 {F_DETPARERR, "PCI detected parity error", -1, 1},
1316 {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
1317 {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
1318 {F_RCVSPLCMPERR, "PCI received split completion error", -1,
1320 {F_DETCORECCERR, "PCI correctable ECC error",
1321 STAT_PCI_CORR_ECC, 0},
1322 {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
1323 {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1324 {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
1326 {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
1328 {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
1330 {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
1331 "error", -1, 1},
1335 if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
1336 pcix1_intr_info, adapter->irq_stats))
1337 t3_fatal_err(adapter);
1341 * Interrupt handler for the PCIE module.
1343 static void pcie_intr_handler(struct adapter *adapter)
1345 static const struct intr_info pcie_intr_info[] = {
1346 {F_PEXERR, "PCI PEX error", -1, 1},
1347 {F_UNXSPLCPLERRR,
1348 "PCI unexpected split completion DMA read error", -1, 1},
1349 {F_UNXSPLCPLERRC,
1350 "PCI unexpected split completion DMA command error", -1, 1},
1351 {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1352 {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
1353 {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
1354 {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
1355 {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
1356 "PCI MSI-X table/PBA parity error", -1, 1},
1357 {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
1361 if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
1362 CH_ALERT(adapter, "PEX error code 0x%x\n",
1363 t3_read_reg(adapter, A_PCIE_PEX_ERR));
1365 if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
1366 pcie_intr_info, adapter->irq_stats))
1367 t3_fatal_err(adapter);
1371 * TP interrupt handler.
1373 static void tp_intr_handler(struct adapter *adapter)
1375 static const struct intr_info tp_intr_info[] = {
1376 {0xffffff, "TP parity error", -1, 1},
1377 {0x1000000, "TP out of Rx pages", -1, 1},
1378 {0x2000000, "TP out of Tx pages", -1, 1},
1382 if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
1383 tp_intr_info, NULL))
1384 t3_fatal_err(adapter);
1388 * CIM interrupt handler.
1390 static void cim_intr_handler(struct adapter *adapter)
1392 static const struct intr_info cim_intr_info[] = {
1393 {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
1394 {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
1395 {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
1396 {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
1397 {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
1398 {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
1399 {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
1400 {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
1401 {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
1402 {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
1403 {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
1404 {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
1408 if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
1409 cim_intr_info, NULL))
1410 t3_fatal_err(adapter);
1414 * ULP RX interrupt handler.
1416 static void ulprx_intr_handler(struct adapter *adapter)
1418 static const struct intr_info ulprx_intr_info[] = {
1419 {F_PARERR, "ULP RX parity error", -1, 1},
1423 if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
1424 ulprx_intr_info, NULL))
1425 t3_fatal_err(adapter);
1429 * ULP TX interrupt handler.
1431 static void ulptx_intr_handler(struct adapter *adapter)
1433 static const struct intr_info ulptx_intr_info[] = {
1434 {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
1435 STAT_ULP_CH0_PBL_OOB, 0},
1436 {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
1437 STAT_ULP_CH1_PBL_OOB, 0},
1441 if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
1442 ulptx_intr_info, adapter->irq_stats))
1443 t3_fatal_err(adapter);
1446 #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
1447 F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
1448 F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
1449 F_ICSPI1_TX_FRAMING_ERROR)
1450 #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
1451 F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
1452 F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
1453 F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
1456 * PM TX interrupt handler.
1458 static void pmtx_intr_handler(struct adapter *adapter)
1460 static const struct intr_info pmtx_intr_info[] = {
1461 {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
1462 {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
1463 {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
1464 {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
1465 "PMTX ispi parity error", -1, 1},
1466 {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
1467 "PMTX ospi parity error", -1, 1},
1471 if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
1472 pmtx_intr_info, NULL))
1473 t3_fatal_err(adapter);
1476 #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
1477 F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
1478 F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
1479 F_IESPI1_TX_FRAMING_ERROR)
1480 #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
1481 F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
1482 F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
1483 F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
1486 * PM RX interrupt handler.
1488 static void pmrx_intr_handler(struct adapter *adapter)
1490 static const struct intr_info pmrx_intr_info[] = {
1491 {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
1492 {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
1493 {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
1494 {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
1495 "PMRX ispi parity error", -1, 1},
1496 {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
1497 "PMRX ospi parity error", -1, 1},
1501 if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
1502 pmrx_intr_info, NULL))
1503 t3_fatal_err(adapter);
1507 * CPL switch interrupt handler.
1509 static void cplsw_intr_handler(struct adapter *adapter)
1511 static const struct intr_info cplsw_intr_info[] = {
1512 /* { F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 }, */
1513 {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
1514 {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
1515 {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
1516 {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
1520 if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
1521 cplsw_intr_info, NULL))
1522 t3_fatal_err(adapter);
1526 * MPS interrupt handler.
1528 static void mps_intr_handler(struct adapter *adapter)
1530 static const struct intr_info mps_intr_info[] = {
1531 {0x1ff, "MPS parity error", -1, 1},
1535 if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
1536 mps_intr_info, NULL))
1537 t3_fatal_err(adapter);
1540 #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
1543 * MC7 interrupt handler.
1545 static void mc7_intr_handler(struct mc7 *mc7)
1547 struct adapter *adapter = mc7->adapter;
1548 u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
1550 if (cause & F_CE) {
1551 mc7->stats.corr_err++;
1552 CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
1553 "data 0x%x 0x%x 0x%x\n", mc7->name,
1554 t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
1555 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
1556 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
1557 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
1560 if (cause & F_UE) {
1561 mc7->stats.uncorr_err++;
1562 CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
1563 "data 0x%x 0x%x 0x%x\n", mc7->name,
1564 t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
1565 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
1566 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
1567 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
1570 if (G_PE(cause)) {
1571 mc7->stats.parity_err++;
1572 CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
1573 mc7->name, G_PE(cause));
1576 if (cause & F_AE) {
1577 u32 addr = 0;
1579 if (adapter->params.rev > 0)
1580 addr = t3_read_reg(adapter,
1581 mc7->offset + A_MC7_ERR_ADDR);
1582 mc7->stats.addr_err++;
1583 CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
1584 mc7->name, addr);
1587 if (cause & MC7_INTR_FATAL)
1588 t3_fatal_err(adapter);
1590 t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
1593 #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1594 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
1596 * XGMAC interrupt handler.
1598 static int mac_intr_handler(struct adapter *adap, unsigned int idx)
1600 struct cmac *mac = &adap2pinfo(adap, idx)->mac;
1601 u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset);
1603 if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
1604 mac->stats.tx_fifo_parity_err++;
1605 CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
1607 if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
1608 mac->stats.rx_fifo_parity_err++;
1609 CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
1611 if (cause & F_TXFIFO_UNDERRUN)
1612 mac->stats.tx_fifo_urun++;
1613 if (cause & F_RXFIFO_OVERFLOW)
1614 mac->stats.rx_fifo_ovfl++;
1615 if (cause & V_SERDES_LOS(M_SERDES_LOS))
1616 mac->stats.serdes_signal_loss++;
1617 if (cause & F_XAUIPCSCTCERR)
1618 mac->stats.xaui_pcs_ctc_err++;
1619 if (cause & F_XAUIPCSALIGNCHANGE)
1620 mac->stats.xaui_pcs_align_change++;
1622 t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
1623 if (cause & XGM_INTR_FATAL)
1624 t3_fatal_err(adap);
1625 return cause != 0;
1629 * Interrupt handler for PHY events.
1631 int t3_phy_intr_handler(struct adapter *adapter)
1633 u32 mask, gpi = adapter_info(adapter)->gpio_intr;
1634 u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
1636 for_each_port(adapter, i) {
1637 struct port_info *p = adap2pinfo(adapter, i);
1639 mask = gpi - (gpi & (gpi - 1));
1640 gpi -= mask;
1642 if (!(p->port_type->caps & SUPPORTED_IRQ))
1643 continue;
1645 if (cause & mask) {
1646 int phy_cause = p->phy.ops->intr_handler(&p->phy);
1648 if (phy_cause & cphy_cause_link_change)
1649 t3_link_changed(adapter, i);
1650 if (phy_cause & cphy_cause_fifo_error)
1651 p->phy.fifo_errors++;
1655 t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
1656 return 0;
1660 * T3 slow path (non-data) interrupt handler.
1662 int t3_slow_intr_handler(struct adapter *adapter)
1664 u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
1666 cause &= adapter->slow_intr_mask;
1667 if (!cause)
1668 return 0;
1669 if (cause & F_PCIM0) {
1670 if (is_pcie(adapter))
1671 pcie_intr_handler(adapter);
1672 else
1673 pci_intr_handler(adapter);
1675 if (cause & F_SGE3)
1676 t3_sge_err_intr_handler(adapter);
1677 if (cause & F_MC7_PMRX)
1678 mc7_intr_handler(&adapter->pmrx);
1679 if (cause & F_MC7_PMTX)
1680 mc7_intr_handler(&adapter->pmtx);
1681 if (cause & F_MC7_CM)
1682 mc7_intr_handler(&adapter->cm);
1683 if (cause & F_CIM)
1684 cim_intr_handler(adapter);
1685 if (cause & F_TP1)
1686 tp_intr_handler(adapter);
1687 if (cause & F_ULP2_RX)
1688 ulprx_intr_handler(adapter);
1689 if (cause & F_ULP2_TX)
1690 ulptx_intr_handler(adapter);
1691 if (cause & F_PM1_RX)
1692 pmrx_intr_handler(adapter);
1693 if (cause & F_PM1_TX)
1694 pmtx_intr_handler(adapter);
1695 if (cause & F_CPL_SWITCH)
1696 cplsw_intr_handler(adapter);
1697 if (cause & F_MPS0)
1698 mps_intr_handler(adapter);
1699 if (cause & F_MC5A)
1700 t3_mc5_intr_handler(&adapter->mc5);
1701 if (cause & F_XGMAC0_0)
1702 mac_intr_handler(adapter, 0);
1703 if (cause & F_XGMAC0_1)
1704 mac_intr_handler(adapter, 1);
1705 if (cause & F_T3DBG)
1706 t3_os_ext_intr_handler(adapter);
1708 /* Clear the interrupts just processed. */
1709 t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
1710 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
1711 return 1;
1715 * t3_intr_enable - enable interrupts
1716 * @adapter: the adapter whose interrupts should be enabled
1718 * Enable interrupts by setting the interrupt enable registers of the
1719 * various HW modules and then enabling the top-level interrupt
1720 * concentrator.
1722 void t3_intr_enable(struct adapter *adapter)
1724 static const struct addr_val_pair intr_en_avp[] = {
1725 {A_SG_INT_ENABLE, SGE_INTR_MASK},
1726 {A_MC7_INT_ENABLE, MC7_INTR_MASK},
1727 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
1728 MC7_INTR_MASK},
1729 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
1730 MC7_INTR_MASK},
1731 {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
1732 {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
1733 {A_TP_INT_ENABLE, 0x3bfffff},
1734 {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
1735 {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
1736 {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
1737 {A_MPS_INT_ENABLE, MPS_INTR_MASK},
1740 adapter->slow_intr_mask = PL_INTR_MASK;
1742 t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
1744 if (adapter->params.rev > 0) {
1745 t3_write_reg(adapter, A_CPL_INTR_ENABLE,
1746 CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
1747 t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
1748 ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
1749 F_PBL_BOUND_ERR_CH1);
1750 } else {
1751 t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
1752 t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
1755 t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW,
1756 adapter_info(adapter)->gpio_intr);
1757 t3_write_reg(adapter, A_T3DBG_INT_ENABLE,
1758 adapter_info(adapter)->gpio_intr);
1759 if (is_pcie(adapter))
1760 t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
1761 else
1762 t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
1763 t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
1764 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
1768 * t3_intr_disable - disable a card's interrupts
1769 * @adapter: the adapter whose interrupts should be disabled
1771 * Disable interrupts. We only disable the top-level interrupt
1772 * concentrator and the SGE data interrupts.
1774 void t3_intr_disable(struct adapter *adapter)
1776 t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
1777 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
1778 adapter->slow_intr_mask = 0;
1782 * t3_intr_clear - clear all interrupts
1783 * @adapter: the adapter whose interrupts should be cleared
1785 * Clears all interrupts.
1787 void t3_intr_clear(struct adapter *adapter)
1789 static const unsigned int cause_reg_addr[] = {
1790 A_SG_INT_CAUSE,
1791 A_SG_RSPQ_FL_STATUS,
1792 A_PCIX_INT_CAUSE,
1793 A_MC7_INT_CAUSE,
1794 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
1795 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
1796 A_CIM_HOST_INT_CAUSE,
1797 A_TP_INT_CAUSE,
1798 A_MC5_DB_INT_CAUSE,
1799 A_ULPRX_INT_CAUSE,
1800 A_ULPTX_INT_CAUSE,
1801 A_CPL_INTR_CAUSE,
1802 A_PM1_TX_INT_CAUSE,
1803 A_PM1_RX_INT_CAUSE,
1804 A_MPS_INT_CAUSE,
1805 A_T3DBG_INT_CAUSE,
1807 unsigned int i;
1809 /* Clear PHY and MAC interrupts for each port. */
1810 for_each_port(adapter, i)
1811 t3_port_intr_clear(adapter, i);
1813 for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
1814 t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
1816 if (is_pcie(adapter))
1817 t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
1818 t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
1819 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
1823 * t3_port_intr_enable - enable port-specific interrupts
1824 * @adapter: associated adapter
1825 * @idx: index of port whose interrupts should be enabled
1827 * Enable port-specific (i.e., MAC and PHY) interrupts for the given
1828 * adapter port.
1830 void t3_port_intr_enable(struct adapter *adapter, int idx)
1832 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
1834 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
1835 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
1836 phy->ops->intr_enable(phy);
1840 * t3_port_intr_disable - disable port-specific interrupts
1841 * @adapter: associated adapter
1842 * @idx: index of port whose interrupts should be disabled
1844 * Disable port-specific (i.e., MAC and PHY) interrupts for the given
1845 * adapter port.
1847 void t3_port_intr_disable(struct adapter *adapter, int idx)
1849 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
1851 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
1852 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
1853 phy->ops->intr_disable(phy);
1857 * t3_port_intr_clear - clear port-specific interrupts
1858 * @adapter: associated adapter
1859 * @idx: index of port whose interrupts to clear
1861 * Clear port-specific (i.e., MAC and PHY) interrupts for the given
1862 * adapter port.
1864 void t3_port_intr_clear(struct adapter *adapter, int idx)
1866 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
1868 t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
1869 t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
1870 phy->ops->intr_clear(phy);
1874 * t3_sge_write_context - write an SGE context
1875 * @adapter: the adapter
1876 * @id: the context id
1877 * @type: the context type
1879 * Program an SGE context with the values already loaded in the
1880 * CONTEXT_DATA? registers.
1882 static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
1883 unsigned int type)
1885 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
1886 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
1887 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
1888 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
1889 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
1890 V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
1891 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
1892 0, 5, 1);
1896 * t3_sge_init_ecntxt - initialize an SGE egress context
1897 * @adapter: the adapter to configure
1898 * @id: the context id
1899 * @gts_enable: whether to enable GTS for the context
1900 * @type: the egress context type
1901 * @respq: associated response queue
1902 * @base_addr: base address of queue
1903 * @size: number of queue entries
1904 * @token: uP token
1905 * @gen: initial generation value for the context
1906 * @cidx: consumer pointer
1908 * Initialize an SGE egress context and make it ready for use. If the
1909 * platform allows concurrent context operations, the caller is
1910 * responsible for appropriate locking.
1912 int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
1913 enum sge_context_type type, int respq, u64 base_addr,
1914 unsigned int size, unsigned int token, int gen,
1915 unsigned int cidx)
1917 unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
1919 if (base_addr & 0xfff) /* must be 4K aligned */
1920 return -EINVAL;
1921 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
1922 return -EBUSY;
1924 base_addr >>= 12;
1925 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
1926 V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
1927 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
1928 V_EC_BASE_LO(base_addr & 0xffff));
1929 base_addr >>= 16;
1930 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
1931 base_addr >>= 32;
1932 t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
1933 V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
1934 V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
1935 F_EC_VALID);
1936 return t3_sge_write_context(adapter, id, F_EGRESS);
1940 * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
1941 * @adapter: the adapter to configure
1942 * @id: the context id
1943 * @gts_enable: whether to enable GTS for the context
1944 * @base_addr: base address of queue
1945 * @size: number of queue entries
1946 * @bsize: size of each buffer for this queue
1947 * @cong_thres: threshold to signal congestion to upstream producers
1948 * @gen: initial generation value for the context
1949 * @cidx: consumer pointer
1951 * Initialize an SGE free list context and make it ready for use. The
1952 * caller is responsible for ensuring only one context operation occurs
1953 * at a time.
1955 int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
1956 int gts_enable, u64 base_addr, unsigned int size,
1957 unsigned int bsize, unsigned int cong_thres, int gen,
1958 unsigned int cidx)
1960 if (base_addr & 0xfff) /* must be 4K aligned */
1961 return -EINVAL;
1962 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
1963 return -EBUSY;
1965 base_addr >>= 12;
1966 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
1967 base_addr >>= 32;
1968 t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
1969 V_FL_BASE_HI((u32) base_addr) |
1970 V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
1971 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
1972 V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
1973 V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
1974 t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
1975 V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
1976 V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
1977 return t3_sge_write_context(adapter, id, F_FREELIST);
1981 * t3_sge_init_rspcntxt - initialize an SGE response queue context
1982 * @adapter: the adapter to configure
1983 * @id: the context id
1984 * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
1985 * @base_addr: base address of queue
1986 * @size: number of queue entries
1987 * @fl_thres: threshold for selecting the normal or jumbo free list
1988 * @gen: initial generation value for the context
1989 * @cidx: consumer pointer
1991 * Initialize an SGE response queue context and make it ready for use.
1992 * The caller is responsible for ensuring only one context operation
1993 * occurs at a time.
1995 int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
1996 int irq_vec_idx, u64 base_addr, unsigned int size,
1997 unsigned int fl_thres, int gen, unsigned int cidx)
1999 unsigned int intr = 0;
2001 if (base_addr & 0xfff) /* must be 4K aligned */
2002 return -EINVAL;
2003 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2004 return -EBUSY;
2006 base_addr >>= 12;
2007 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
2008 V_CQ_INDEX(cidx));
2009 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
2010 base_addr >>= 32;
2011 if (irq_vec_idx >= 0)
2012 intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
2013 t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
2014 V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
2015 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
2016 return t3_sge_write_context(adapter, id, F_RESPONSEQ);
2020 * t3_sge_init_cqcntxt - initialize an SGE completion queue context
2021 * @adapter: the adapter to configure
2022 * @id: the context id
2023 * @base_addr: base address of queue
2024 * @size: number of queue entries
2025 * @rspq: response queue for async notifications
2026 * @ovfl_mode: CQ overflow mode
2027 * @credits: completion queue credits
2028 * @credit_thres: the credit threshold
2030 * Initialize an SGE completion queue context and make it ready for use.
2031 * The caller is responsible for ensuring only one context operation
2032 * occurs at a time.
2034 int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
2035 unsigned int size, int rspq, int ovfl_mode,
2036 unsigned int credits, unsigned int credit_thres)
2038 if (base_addr & 0xfff) /* must be 4K aligned */
2039 return -EINVAL;
2040 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2041 return -EBUSY;
2043 base_addr >>= 12;
2044 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
2045 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
2046 base_addr >>= 32;
2047 t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
2048 V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
2049 V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
2050 V_CQ_ERR(ovfl_mode));
2051 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
2052 V_CQ_CREDIT_THRES(credit_thres));
2053 return t3_sge_write_context(adapter, id, F_CQ);
2057 * t3_sge_enable_ecntxt - enable/disable an SGE egress context
2058 * @adapter: the adapter
2059 * @id: the egress context id
2060 * @enable: enable (1) or disable (0) the context
2062 * Enable or disable an SGE egress context. The caller is responsible for
2063 * ensuring only one context operation occurs at a time.
2065 int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
2067 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2068 return -EBUSY;
2070 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
2071 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2072 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2073 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
2074 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
2075 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2076 V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
2077 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2078 0, 5, 1);
2082 * t3_sge_disable_fl - disable an SGE free-buffer list
2083 * @adapter: the adapter
2084 * @id: the free list context id
2086 * Disable an SGE free-buffer list. The caller is responsible for
2087 * ensuring only one context operation occurs at a time.
2089 int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
2091 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2092 return -EBUSY;
2094 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
2095 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2096 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
2097 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2098 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
2099 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2100 V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
2101 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2102 0, 5, 1);
2106 * t3_sge_disable_rspcntxt - disable an SGE response queue
2107 * @adapter: the adapter
2108 * @id: the response queue context id
2110 * Disable an SGE response queue. The caller is responsible for
2111 * ensuring only one context operation occurs at a time.
2113 int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
2115 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2116 return -EBUSY;
2118 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2119 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2120 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2121 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2122 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2123 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2124 V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
2125 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2126 0, 5, 1);
2130 * t3_sge_disable_cqcntxt - disable an SGE completion queue
2131 * @adapter: the adapter
2132 * @id: the completion queue context id
2134 * Disable an SGE completion queue. The caller is responsible for
2135 * ensuring only one context operation occurs at a time.
2137 int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
2139 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2140 return -EBUSY;
2142 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2143 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2144 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2145 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2146 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2147 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2148 V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
2149 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2150 0, 5, 1);
2154 * t3_sge_cqcntxt_op - perform an operation on a completion queue context
2155 * @adapter: the adapter
2156 * @id: the context id
2157 * @op: the operation to perform
2159 * Perform the selected operation on an SGE completion queue context.
2160 * The caller is responsible for ensuring only one context operation
2161 * occurs at a time.
2163 int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
2164 unsigned int credits)
2166 u32 val;
2168 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2169 return -EBUSY;
2171 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
2172 t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
2173 V_CONTEXT(id) | F_CQ);
2174 if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2175 0, 5, 1, &val))
2176 return -EIO;
2178 if (op >= 2 && op < 7) {
2179 if (adapter->params.rev > 0)
2180 return G_CQ_INDEX(val);
2182 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2183 V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
2184 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
2185 F_CONTEXT_CMD_BUSY, 0, 5, 1))
2186 return -EIO;
2187 return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
2189 return 0;
2193 * t3_sge_read_context - read an SGE context
2194 * @type: the context type
2195 * @adapter: the adapter
2196 * @id: the context id
2197 * @data: holds the retrieved context
2199 * Read an SGE egress context. The caller is responsible for ensuring
2200 * only one context operation occurs at a time.
2202 static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
2203 unsigned int id, u32 data[4])
2205 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2206 return -EBUSY;
2208 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2209 V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
2210 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
2211 5, 1))
2212 return -EIO;
2213 data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
2214 data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
2215 data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
2216 data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
2217 return 0;
2221 * t3_sge_read_ecntxt - read an SGE egress context
2222 * @adapter: the adapter
2223 * @id: the context id
2224 * @data: holds the retrieved context
2226 * Read an SGE egress context. The caller is responsible for ensuring
2227 * only one context operation occurs at a time.
2229 int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
2231 if (id >= 65536)
2232 return -EINVAL;
2233 return t3_sge_read_context(F_EGRESS, adapter, id, data);
2237 * t3_sge_read_cq - read an SGE CQ context
2238 * @adapter: the adapter
2239 * @id: the context id
2240 * @data: holds the retrieved context
2242 * Read an SGE CQ context. The caller is responsible for ensuring
2243 * only one context operation occurs at a time.
2245 int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
2247 if (id >= 65536)
2248 return -EINVAL;
2249 return t3_sge_read_context(F_CQ, adapter, id, data);
2253 * t3_sge_read_fl - read an SGE free-list context
2254 * @adapter: the adapter
2255 * @id: the context id
2256 * @data: holds the retrieved context
2258 * Read an SGE free-list context. The caller is responsible for ensuring
2259 * only one context operation occurs at a time.
2261 int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
2263 if (id >= SGE_QSETS * 2)
2264 return -EINVAL;
2265 return t3_sge_read_context(F_FREELIST, adapter, id, data);
2269 * t3_sge_read_rspq - read an SGE response queue context
2270 * @adapter: the adapter
2271 * @id: the context id
2272 * @data: holds the retrieved context
2274 * Read an SGE response queue context. The caller is responsible for
2275 * ensuring only one context operation occurs at a time.
2277 int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
2279 if (id >= SGE_QSETS)
2280 return -EINVAL;
2281 return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
2285 * t3_config_rss - configure Rx packet steering
2286 * @adapter: the adapter
2287 * @rss_config: RSS settings (written to TP_RSS_CONFIG)
2288 * @cpus: values for the CPU lookup table (0xff terminated)
2289 * @rspq: values for the response queue lookup table (0xffff terminated)
2291 * Programs the receive packet steering logic. @cpus and @rspq provide
2292 * the values for the CPU and response queue lookup tables. If they
2293 * provide fewer values than the size of the tables the supplied values
2294 * are used repeatedly until the tables are fully populated.
2296 void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
2297 const u8 * cpus, const u16 *rspq)
2299 int i, j, cpu_idx = 0, q_idx = 0;
2301 if (cpus)
2302 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2303 u32 val = i << 16;
2305 for (j = 0; j < 2; ++j) {
2306 val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
2307 if (cpus[cpu_idx] == 0xff)
2308 cpu_idx = 0;
2310 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
2313 if (rspq)
2314 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2315 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
2316 (i << 16) | rspq[q_idx++]);
2317 if (rspq[q_idx] == 0xffff)
2318 q_idx = 0;
2321 t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
2325 * t3_read_rss - read the contents of the RSS tables
2326 * @adapter: the adapter
2327 * @lkup: holds the contents of the RSS lookup table
2328 * @map: holds the contents of the RSS map table
2330 * Reads the contents of the receive packet steering tables.
2332 int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
2334 int i;
2335 u32 val;
2337 if (lkup)
2338 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2339 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
2340 0xffff0000 | i);
2341 val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
2342 if (!(val & 0x80000000))
2343 return -EAGAIN;
2344 *lkup++ = val;
2345 *lkup++ = (val >> 8);
2348 if (map)
2349 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2350 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
2351 0xffff0000 | i);
2352 val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
2353 if (!(val & 0x80000000))
2354 return -EAGAIN;
2355 *map++ = val;
2357 return 0;
2361 * t3_tp_set_offload_mode - put TP in NIC/offload mode
2362 * @adap: the adapter
2363 * @enable: 1 to select offload mode, 0 for regular NIC
2365 * Switches TP to NIC/offload mode.
2367 void t3_tp_set_offload_mode(struct adapter *adap, int enable)
2369 if (is_offload(adap) || !enable)
2370 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
2371 V_NICMODE(!enable));
2375 * pm_num_pages - calculate the number of pages of the payload memory
2376 * @mem_size: the size of the payload memory
2377 * @pg_size: the size of each payload memory page
2379 * Calculate the number of pages, each of the given size, that fit in a
2380 * memory of the specified size, respecting the HW requirement that the
2381 * number of pages must be a multiple of 24.
2383 static inline unsigned int pm_num_pages(unsigned int mem_size,
2384 unsigned int pg_size)
2386 unsigned int n = mem_size / pg_size;
2388 return n - n % 24;
2391 #define mem_region(adap, start, size, reg) \
2392 t3_write_reg((adap), A_ ## reg, (start)); \
2393 start += size
2396 * partition_mem - partition memory and configure TP memory settings
2397 * @adap: the adapter
2398 * @p: the TP parameters
2400 * Partitions context and payload memory and configures TP's memory
2401 * registers.
2403 static void partition_mem(struct adapter *adap, const struct tp_params *p)
2405 unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
2406 unsigned int timers = 0, timers_shift = 22;
2408 if (adap->params.rev > 0) {
2409 if (tids <= 16 * 1024) {
2410 timers = 1;
2411 timers_shift = 16;
2412 } else if (tids <= 64 * 1024) {
2413 timers = 2;
2414 timers_shift = 18;
2415 } else if (tids <= 256 * 1024) {
2416 timers = 3;
2417 timers_shift = 20;
2421 t3_write_reg(adap, A_TP_PMM_SIZE,
2422 p->chan_rx_size | (p->chan_tx_size >> 16));
2424 t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
2425 t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
2426 t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
2427 t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
2428 V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
2430 t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
2431 t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
2432 t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
2434 pstructs = p->rx_num_pgs + p->tx_num_pgs;
2435 /* Add a bit of headroom and make multiple of 24 */
2436 pstructs += 48;
2437 pstructs -= pstructs % 24;
2438 t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
2440 m = tids * TCB_SIZE;
2441 mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
2442 mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
2443 t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
2444 m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
2445 mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
2446 mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
2447 mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
2448 mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
2450 m = (m + 4095) & ~0xfff;
2451 t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
2452 t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
2454 tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
2455 m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
2456 adap->params.mc5.nfilters - adap->params.mc5.nroutes;
2457 if (tids < m)
2458 adap->params.mc5.nservers += m - tids;
2461 static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
2462 u32 val)
2464 t3_write_reg(adap, A_TP_PIO_ADDR, addr);
2465 t3_write_reg(adap, A_TP_PIO_DATA, val);
2468 static void tp_config(struct adapter *adap, const struct tp_params *p)
2470 t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
2471 F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
2472 F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
2473 t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
2474 F_MTUENABLE | V_WINDOWSCALEMODE(1) |
2475 V_TIMESTAMPSMODE(0) | V_SACKMODE(1) | V_SACKRX(1));
2476 t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
2477 V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
2478 V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) |
2479 F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
2480 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_IPV6ENABLE | F_NICMODE,
2481 F_IPV6ENABLE | F_NICMODE);
2482 t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
2483 t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
2484 t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
2485 adap->params.rev > 0 ? F_ENABLEESND :
2486 F_T3A_ENABLEESND);
2488 t3_set_reg_field(adap, A_TP_PC_CONFIG,
2489 F_ENABLEEPCMDAFULL,
2490 F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
2491 F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
2492 t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL, 0);
2493 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
2494 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
2496 if (adap->params.rev > 0) {
2497 tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
2498 t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
2499 F_TXPACEAUTO);
2500 t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
2501 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
2502 } else
2503 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
2505 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
2506 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
2507 t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
2508 t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
2511 /* Desired TP timer resolution in usec */
2512 #define TP_TMR_RES 50
2514 /* TCP timer values in ms */
2515 #define TP_DACK_TIMER 50
2516 #define TP_RTO_MIN 250
2519 * tp_set_timers - set TP timing parameters
2520 * @adap: the adapter to set
2521 * @core_clk: the core clock frequency in Hz
2523 * Set TP's timing parameters, such as the various timer resolutions and
2524 * the TCP timer values.
2526 static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
2528 unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
2529 unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
2530 unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
2531 unsigned int tps = core_clk >> tre;
2533 t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
2534 V_DELAYEDACKRESOLUTION(dack_re) |
2535 V_TIMESTAMPRESOLUTION(tstamp_re));
2536 t3_write_reg(adap, A_TP_DACK_TIMER,
2537 (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
2538 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
2539 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
2540 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
2541 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
2542 t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
2543 V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
2544 V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
2545 V_KEEPALIVEMAX(9));
2547 #define SECONDS * tps
2549 t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
2550 t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
2551 t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
2552 t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
2553 t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
2554 t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
2555 t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
2556 t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
2557 t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
2559 #undef SECONDS
2563 * t3_tp_set_coalescing_size - set receive coalescing size
2564 * @adap: the adapter
2565 * @size: the receive coalescing size
2566 * @psh: whether a set PSH bit should deliver coalesced data
2568 * Set the receive coalescing size and PSH bit handling.
2570 int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
2572 u32 val;
2574 if (size > MAX_RX_COALESCING_LEN)
2575 return -EINVAL;
2577 val = t3_read_reg(adap, A_TP_PARA_REG3);
2578 val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
2580 if (size) {
2581 val |= F_RXCOALESCEENABLE;
2582 if (psh)
2583 val |= F_RXCOALESCEPSHEN;
2584 size = min(MAX_RX_COALESCING_LEN, size);
2585 t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
2586 V_MAXRXDATA(MAX_RX_COALESCING_LEN));
2588 t3_write_reg(adap, A_TP_PARA_REG3, val);
2589 return 0;
2593 * t3_tp_set_max_rxsize - set the max receive size
2594 * @adap: the adapter
2595 * @size: the max receive size
2597 * Set TP's max receive size. This is the limit that applies when
2598 * receive coalescing is disabled.
2600 void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
2602 t3_write_reg(adap, A_TP_PARA_REG7,
2603 V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
2606 static void __devinit init_mtus(unsigned short mtus[])
2609 * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
2610 * it can accomodate max size TCP/IP headers when SACK and timestamps
2611 * are enabled and still have at least 8 bytes of payload.
2613 mtus[1] = 88;
2614 mtus[1] = 88;
2615 mtus[2] = 256;
2616 mtus[3] = 512;
2617 mtus[4] = 576;
2618 mtus[5] = 1024;
2619 mtus[6] = 1280;
2620 mtus[7] = 1492;
2621 mtus[8] = 1500;
2622 mtus[9] = 2002;
2623 mtus[10] = 2048;
2624 mtus[11] = 4096;
2625 mtus[12] = 4352;
2626 mtus[13] = 8192;
2627 mtus[14] = 9000;
2628 mtus[15] = 9600;
2632 * Initial congestion control parameters.
2634 static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
2636 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
2637 a[9] = 2;
2638 a[10] = 3;
2639 a[11] = 4;
2640 a[12] = 5;
2641 a[13] = 6;
2642 a[14] = 7;
2643 a[15] = 8;
2644 a[16] = 9;
2645 a[17] = 10;
2646 a[18] = 14;
2647 a[19] = 17;
2648 a[20] = 21;
2649 a[21] = 25;
2650 a[22] = 30;
2651 a[23] = 35;
2652 a[24] = 45;
2653 a[25] = 60;
2654 a[26] = 80;
2655 a[27] = 100;
2656 a[28] = 200;
2657 a[29] = 300;
2658 a[30] = 400;
2659 a[31] = 500;
2661 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
2662 b[9] = b[10] = 1;
2663 b[11] = b[12] = 2;
2664 b[13] = b[14] = b[15] = b[16] = 3;
2665 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
2666 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
2667 b[28] = b[29] = 6;
2668 b[30] = b[31] = 7;
2671 /* The minimum additive increment value for the congestion control table */
2672 #define CC_MIN_INCR 2U
2675 * t3_load_mtus - write the MTU and congestion control HW tables
2676 * @adap: the adapter
2677 * @mtus: the unrestricted values for the MTU table
2678 * @alphs: the values for the congestion control alpha parameter
2679 * @beta: the values for the congestion control beta parameter
2680 * @mtu_cap: the maximum permitted effective MTU
2682 * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
2683 * Update the high-speed congestion control table with the supplied alpha,
2684 * beta, and MTUs.
2686 void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
2687 unsigned short alpha[NCCTRL_WIN],
2688 unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
2690 static const unsigned int avg_pkts[NCCTRL_WIN] = {
2691 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
2692 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
2693 28672, 40960, 57344, 81920, 114688, 163840, 229376
2696 unsigned int i, w;
2698 for (i = 0; i < NMTUS; ++i) {
2699 unsigned int mtu = min(mtus[i], mtu_cap);
2700 unsigned int log2 = fls(mtu);
2702 if (!(mtu & ((1 << log2) >> 2))) /* round */
2703 log2--;
2704 t3_write_reg(adap, A_TP_MTU_TABLE,
2705 (i << 24) | (log2 << 16) | mtu);
2707 for (w = 0; w < NCCTRL_WIN; ++w) {
2708 unsigned int inc;
2710 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
2711 CC_MIN_INCR);
2713 t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
2714 (w << 16) | (beta[w] << 13) | inc);
2720 * t3_read_hw_mtus - returns the values in the HW MTU table
2721 * @adap: the adapter
2722 * @mtus: where to store the HW MTU values
2724 * Reads the HW MTU table.
2726 void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
2728 int i;
2730 for (i = 0; i < NMTUS; ++i) {
2731 unsigned int val;
2733 t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
2734 val = t3_read_reg(adap, A_TP_MTU_TABLE);
2735 mtus[i] = val & 0x3fff;
2740 * t3_get_cong_cntl_tab - reads the congestion control table
2741 * @adap: the adapter
2742 * @incr: where to store the alpha values
2744 * Reads the additive increments programmed into the HW congestion
2745 * control table.
2747 void t3_get_cong_cntl_tab(struct adapter *adap,
2748 unsigned short incr[NMTUS][NCCTRL_WIN])
2750 unsigned int mtu, w;
2752 for (mtu = 0; mtu < NMTUS; ++mtu)
2753 for (w = 0; w < NCCTRL_WIN; ++w) {
2754 t3_write_reg(adap, A_TP_CCTRL_TABLE,
2755 0xffff0000 | (mtu << 5) | w);
2756 incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
2757 0x1fff;
2762 * t3_tp_get_mib_stats - read TP's MIB counters
2763 * @adap: the adapter
2764 * @tps: holds the returned counter values
2766 * Returns the values of TP's MIB counters.
2768 void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
2770 t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
2771 sizeof(*tps) / sizeof(u32), 0);
2774 #define ulp_region(adap, name, start, len) \
2775 t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
2776 t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
2777 (start) + (len) - 1); \
2778 start += len
2780 #define ulptx_region(adap, name, start, len) \
2781 t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
2782 t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
2783 (start) + (len) - 1)
2785 static void ulp_config(struct adapter *adap, const struct tp_params *p)
2787 unsigned int m = p->chan_rx_size;
2789 ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
2790 ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
2791 ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
2792 ulp_region(adap, STAG, m, p->chan_rx_size / 4);
2793 ulp_region(adap, RQ, m, p->chan_rx_size / 4);
2794 ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
2795 ulp_region(adap, PBL, m, p->chan_rx_size / 4);
2796 t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
2800 * t3_set_proto_sram - set the contents of the protocol sram
2801 * @adapter: the adapter
2802 * @data: the protocol image
2804 * Write the contents of the protocol SRAM.
2806 int t3_set_proto_sram(struct adapter *adap, u8 *data)
2808 int i;
2809 u32 *buf = (u32 *)data;
2811 for (i = 0; i < PROTO_SRAM_LINES; i++) {
2812 t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, cpu_to_be32(*buf++));
2813 t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, cpu_to_be32(*buf++));
2814 t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, cpu_to_be32(*buf++));
2815 t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, cpu_to_be32(*buf++));
2816 t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, cpu_to_be32(*buf++));
2818 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
2819 if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
2820 return -EIO;
2822 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
2824 return 0;
2827 void t3_config_trace_filter(struct adapter *adapter,
2828 const struct trace_params *tp, int filter_index,
2829 int invert, int enable)
2831 u32 addr, key[4], mask[4];
2833 key[0] = tp->sport | (tp->sip << 16);
2834 key[1] = (tp->sip >> 16) | (tp->dport << 16);
2835 key[2] = tp->dip;
2836 key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
2838 mask[0] = tp->sport_mask | (tp->sip_mask << 16);
2839 mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
2840 mask[2] = tp->dip_mask;
2841 mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
2843 if (invert)
2844 key[3] |= (1 << 29);
2845 if (enable)
2846 key[3] |= (1 << 28);
2848 addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
2849 tp_wr_indirect(adapter, addr++, key[0]);
2850 tp_wr_indirect(adapter, addr++, mask[0]);
2851 tp_wr_indirect(adapter, addr++, key[1]);
2852 tp_wr_indirect(adapter, addr++, mask[1]);
2853 tp_wr_indirect(adapter, addr++, key[2]);
2854 tp_wr_indirect(adapter, addr++, mask[2]);
2855 tp_wr_indirect(adapter, addr++, key[3]);
2856 tp_wr_indirect(adapter, addr, mask[3]);
2857 t3_read_reg(adapter, A_TP_PIO_DATA);
2861 * t3_config_sched - configure a HW traffic scheduler
2862 * @adap: the adapter
2863 * @kbps: target rate in Kbps
2864 * @sched: the scheduler index
2866 * Configure a HW scheduler for the target rate
2868 int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
2870 unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
2871 unsigned int clk = adap->params.vpd.cclk * 1000;
2872 unsigned int selected_cpt = 0, selected_bpt = 0;
2874 if (kbps > 0) {
2875 kbps *= 125; /* -> bytes */
2876 for (cpt = 1; cpt <= 255; cpt++) {
2877 tps = clk / cpt;
2878 bpt = (kbps + tps / 2) / tps;
2879 if (bpt > 0 && bpt <= 255) {
2880 v = bpt * tps;
2881 delta = v >= kbps ? v - kbps : kbps - v;
2882 if (delta <= mindelta) {
2883 mindelta = delta;
2884 selected_cpt = cpt;
2885 selected_bpt = bpt;
2887 } else if (selected_cpt)
2888 break;
2890 if (!selected_cpt)
2891 return -EINVAL;
2893 t3_write_reg(adap, A_TP_TM_PIO_ADDR,
2894 A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
2895 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
2896 if (sched & 1)
2897 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
2898 else
2899 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
2900 t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
2901 return 0;
2904 static int tp_init(struct adapter *adap, const struct tp_params *p)
2906 int busy = 0;
2908 tp_config(adap, p);
2909 t3_set_vlan_accel(adap, 3, 0);
2911 if (is_offload(adap)) {
2912 tp_set_timers(adap, adap->params.vpd.cclk * 1000);
2913 t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
2914 busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
2915 0, 1000, 5);
2916 if (busy)
2917 CH_ERR(adap, "TP initialization timed out\n");
2920 if (!busy)
2921 t3_write_reg(adap, A_TP_RESET, F_TPRESET);
2922 return busy;
2925 int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
2927 if (port_mask & ~((1 << adap->params.nports) - 1))
2928 return -EINVAL;
2929 t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
2930 port_mask << S_PORT0ACTIVE);
2931 return 0;
2935 * Perform the bits of HW initialization that are dependent on the number
2936 * of available ports.
2938 static void init_hw_for_avail_ports(struct adapter *adap, int nports)
2940 int i;
2942 if (nports == 1) {
2943 t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
2944 t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
2945 t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN |
2946 F_PORT0ACTIVE | F_ENFORCEPKT);
2947 t3_write_reg(adap, A_PM1_TX_CFG, 0xffffffff);
2948 } else {
2949 t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
2950 t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
2951 t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
2952 V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
2953 t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
2954 F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
2955 F_ENFORCEPKT);
2956 t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
2957 t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
2958 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
2959 V_TX_MOD_QUEUE_REQ_MAP(0xaa));
2960 for (i = 0; i < 16; i++)
2961 t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
2962 (i << 16) | 0x1010);
2966 static int calibrate_xgm(struct adapter *adapter)
2968 if (uses_xaui(adapter)) {
2969 unsigned int v, i;
2971 for (i = 0; i < 5; ++i) {
2972 t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
2973 t3_read_reg(adapter, A_XGM_XAUI_IMP);
2974 msleep(1);
2975 v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
2976 if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
2977 t3_write_reg(adapter, A_XGM_XAUI_IMP,
2978 V_XAUIIMP(G_CALIMP(v) >> 2));
2979 return 0;
2982 CH_ERR(adapter, "MAC calibration failed\n");
2983 return -1;
2984 } else {
2985 t3_write_reg(adapter, A_XGM_RGMII_IMP,
2986 V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
2987 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
2988 F_XGM_IMPSETUPDATE);
2990 return 0;
2993 static void calibrate_xgm_t3b(struct adapter *adapter)
2995 if (!uses_xaui(adapter)) {
2996 t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
2997 F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
2998 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
2999 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
3000 F_XGM_IMPSETUPDATE);
3001 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
3003 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
3004 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
3008 struct mc7_timing_params {
3009 unsigned char ActToPreDly;
3010 unsigned char ActToRdWrDly;
3011 unsigned char PreCyc;
3012 unsigned char RefCyc[5];
3013 unsigned char BkCyc;
3014 unsigned char WrToRdDly;
3015 unsigned char RdToWrDly;
3019 * Write a value to a register and check that the write completed. These
3020 * writes normally complete in a cycle or two, so one read should suffice.
3021 * The very first read exists to flush the posted write to the device.
3023 static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
3025 t3_write_reg(adapter, addr, val);
3026 t3_read_reg(adapter, addr); /* flush */
3027 if (!(t3_read_reg(adapter, addr) & F_BUSY))
3028 return 0;
3029 CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
3030 return -EIO;
3033 static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
3035 static const unsigned int mc7_mode[] = {
3036 0x632, 0x642, 0x652, 0x432, 0x442
3038 static const struct mc7_timing_params mc7_timings[] = {
3039 {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
3040 {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
3041 {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
3042 {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
3043 {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
3046 u32 val;
3047 unsigned int width, density, slow, attempts;
3048 struct adapter *adapter = mc7->adapter;
3049 const struct mc7_timing_params *p = &mc7_timings[mem_type];
3051 if (!mc7->size)
3052 return 0;
3054 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
3055 slow = val & F_SLOW;
3056 width = G_WIDTH(val);
3057 density = G_DEN(val);
3059 t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
3060 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
3061 msleep(1);
3063 if (!slow) {
3064 t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
3065 t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
3066 msleep(1);
3067 if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
3068 (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
3069 CH_ERR(adapter, "%s MC7 calibration timed out\n",
3070 mc7->name);
3071 goto out_fail;
3075 t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
3076 V_ACTTOPREDLY(p->ActToPreDly) |
3077 V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
3078 V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
3079 V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
3081 t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
3082 val | F_CLKEN | F_TERM150);
3083 t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
3085 if (!slow)
3086 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
3087 F_DLLENB);
3088 udelay(1);
3090 val = slow ? 3 : 6;
3091 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
3092 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
3093 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
3094 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
3095 goto out_fail;
3097 if (!slow) {
3098 t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
3099 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
3100 udelay(5);
3103 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
3104 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
3105 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
3106 wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
3107 mc7_mode[mem_type]) ||
3108 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
3109 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
3110 goto out_fail;
3112 /* clock value is in KHz */
3113 mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
3114 mc7_clock /= 1000000; /* KHz->MHz, ns->us */
3116 t3_write_reg(adapter, mc7->offset + A_MC7_REF,
3117 F_PERREFEN | V_PREREFDIV(mc7_clock));
3118 t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
3120 t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
3121 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
3122 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
3123 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
3124 (mc7->size << width) - 1);
3125 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
3126 t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
3128 attempts = 50;
3129 do {
3130 msleep(250);
3131 val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
3132 } while ((val & F_BUSY) && --attempts);
3133 if (val & F_BUSY) {
3134 CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
3135 goto out_fail;
3138 /* Enable normal memory accesses. */
3139 t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
3140 return 0;
3142 out_fail:
3143 return -1;
3146 static void config_pcie(struct adapter *adap)
3148 static const u16 ack_lat[4][6] = {
3149 {237, 416, 559, 1071, 2095, 4143},
3150 {128, 217, 289, 545, 1057, 2081},
3151 {73, 118, 154, 282, 538, 1050},
3152 {67, 107, 86, 150, 278, 534}
3154 static const u16 rpl_tmr[4][6] = {
3155 {711, 1248, 1677, 3213, 6285, 12429},
3156 {384, 651, 867, 1635, 3171, 6243},
3157 {219, 354, 462, 846, 1614, 3150},
3158 {201, 321, 258, 450, 834, 1602}
3161 u16 val;
3162 unsigned int log2_width, pldsize;
3163 unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
3165 pci_read_config_word(adap->pdev,
3166 adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
3167 &val);
3168 pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
3169 pci_read_config_word(adap->pdev,
3170 adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
3171 &val);
3173 fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
3174 fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
3175 G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
3176 log2_width = fls(adap->params.pci.width) - 1;
3177 acklat = ack_lat[log2_width][pldsize];
3178 if (val & 1) /* check LOsEnable */
3179 acklat += fst_trn_tx * 4;
3180 rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
3182 if (adap->params.rev == 0)
3183 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
3184 V_T3A_ACKLAT(M_T3A_ACKLAT),
3185 V_T3A_ACKLAT(acklat));
3186 else
3187 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
3188 V_ACKLAT(acklat));
3190 t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
3191 V_REPLAYLMT(rpllmt));
3193 t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
3194 t3_set_reg_field(adap, A_PCIE_CFG, F_PCIE_CLIDECEN, F_PCIE_CLIDECEN);
3198 * Initialize and configure T3 HW modules. This performs the
3199 * initialization steps that need to be done once after a card is reset.
3200 * MAC and PHY initialization is handled separarely whenever a port is enabled.
3202 * fw_params are passed to FW and their value is platform dependent. Only the
3203 * top 8 bits are available for use, the rest must be 0.
3205 int t3_init_hw(struct adapter *adapter, u32 fw_params)
3207 int err = -EIO, attempts = 100;
3208 const struct vpd_params *vpd = &adapter->params.vpd;
3210 if (adapter->params.rev > 0)
3211 calibrate_xgm_t3b(adapter);
3212 else if (calibrate_xgm(adapter))
3213 goto out_err;
3215 if (vpd->mclk) {
3216 partition_mem(adapter, &adapter->params.tp);
3218 if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
3219 mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
3220 mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
3221 t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
3222 adapter->params.mc5.nfilters,
3223 adapter->params.mc5.nroutes))
3224 goto out_err;
3227 if (tp_init(adapter, &adapter->params.tp))
3228 goto out_err;
3230 t3_tp_set_coalescing_size(adapter,
3231 min(adapter->params.sge.max_pkt_size,
3232 MAX_RX_COALESCING_LEN), 1);
3233 t3_tp_set_max_rxsize(adapter,
3234 min(adapter->params.sge.max_pkt_size, 16384U));
3235 ulp_config(adapter, &adapter->params.tp);
3237 if (is_pcie(adapter))
3238 config_pcie(adapter);
3239 else
3240 t3_set_reg_field(adapter, A_PCIX_CFG, 0, F_CLIDECEN);
3242 t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
3243 t3_write_reg(adapter, A_PM1_RX_MODE, 0);
3244 t3_write_reg(adapter, A_PM1_TX_MODE, 0);
3245 init_hw_for_avail_ports(adapter, adapter->params.nports);
3246 t3_sge_init(adapter, &adapter->params.sge);
3248 t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
3249 t3_write_reg(adapter, A_CIM_BOOT_CFG,
3250 V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
3251 t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
3253 do { /* wait for uP to initialize */
3254 msleep(20);
3255 } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
3256 if (!attempts) {
3257 CH_ERR(adapter, "uP initialization timed out\n");
3258 goto out_err;
3261 err = 0;
3262 out_err:
3263 return err;
3267 * get_pci_mode - determine a card's PCI mode
3268 * @adapter: the adapter
3269 * @p: where to store the PCI settings
3271 * Determines a card's PCI mode and associated parameters, such as speed
3272 * and width.
3274 static void __devinit get_pci_mode(struct adapter *adapter,
3275 struct pci_params *p)
3277 static unsigned short speed_map[] = { 33, 66, 100, 133 };
3278 u32 pci_mode, pcie_cap;
3280 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
3281 if (pcie_cap) {
3282 u16 val;
3284 p->variant = PCI_VARIANT_PCIE;
3285 p->pcie_cap_addr = pcie_cap;
3286 pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
3287 &val);
3288 p->width = (val >> 4) & 0x3f;
3289 return;
3292 pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
3293 p->speed = speed_map[G_PCLKRANGE(pci_mode)];
3294 p->width = (pci_mode & F_64BIT) ? 64 : 32;
3295 pci_mode = G_PCIXINITPAT(pci_mode);
3296 if (pci_mode == 0)
3297 p->variant = PCI_VARIANT_PCI;
3298 else if (pci_mode < 4)
3299 p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
3300 else if (pci_mode < 8)
3301 p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
3302 else
3303 p->variant = PCI_VARIANT_PCIX_266_MODE2;
3307 * init_link_config - initialize a link's SW state
3308 * @lc: structure holding the link state
3309 * @ai: information about the current card
3311 * Initializes the SW state maintained for each link, including the link's
3312 * capabilities and default speed/duplex/flow-control/autonegotiation
3313 * settings.
3315 static void __devinit init_link_config(struct link_config *lc,
3316 unsigned int caps)
3318 lc->supported = caps;
3319 lc->requested_speed = lc->speed = SPEED_INVALID;
3320 lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
3321 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
3322 if (lc->supported & SUPPORTED_Autoneg) {
3323 lc->advertising = lc->supported;
3324 lc->autoneg = AUTONEG_ENABLE;
3325 lc->requested_fc |= PAUSE_AUTONEG;
3326 } else {
3327 lc->advertising = 0;
3328 lc->autoneg = AUTONEG_DISABLE;
3333 * mc7_calc_size - calculate MC7 memory size
3334 * @cfg: the MC7 configuration
3336 * Calculates the size of an MC7 memory in bytes from the value of its
3337 * configuration register.
3339 static unsigned int __devinit mc7_calc_size(u32 cfg)
3341 unsigned int width = G_WIDTH(cfg);
3342 unsigned int banks = !!(cfg & F_BKS) + 1;
3343 unsigned int org = !!(cfg & F_ORG) + 1;
3344 unsigned int density = G_DEN(cfg);
3345 unsigned int MBs = ((256 << density) * banks) / (org << width);
3347 return MBs << 20;
3350 static void __devinit mc7_prep(struct adapter *adapter, struct mc7 *mc7,
3351 unsigned int base_addr, const char *name)
3353 u32 cfg;
3355 mc7->adapter = adapter;
3356 mc7->name = name;
3357 mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
3358 cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
3359 mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
3360 mc7->width = G_WIDTH(cfg);
3363 void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
3365 mac->adapter = adapter;
3366 mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
3367 mac->nucast = 1;
3369 if (adapter->params.rev == 0 && uses_xaui(adapter)) {
3370 t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
3371 is_10G(adapter) ? 0x2901c04 : 0x2301c04);
3372 t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
3373 F_ENRGMII, 0);
3377 void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
3379 u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
3381 mi1_init(adapter, ai);
3382 t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
3383 V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
3384 t3_write_reg(adapter, A_T3DBG_GPIO_EN,
3385 ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
3386 t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
3388 if (adapter->params.rev == 0 || !uses_xaui(adapter))
3389 val |= F_ENRGMII;
3391 /* Enable MAC clocks so we can access the registers */
3392 t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3393 t3_read_reg(adapter, A_XGM_PORT_CFG);
3395 val |= F_CLKDIVRESET_;
3396 t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3397 t3_read_reg(adapter, A_XGM_PORT_CFG);
3398 t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
3399 t3_read_reg(adapter, A_XGM_PORT_CFG);
3403 * Reset the adapter.
3404 * Older PCIe cards lose their config space during reset, PCI-X
3405 * ones don't.
3407 int t3_reset_adapter(struct adapter *adapter)
3409 int i, save_and_restore_pcie =
3410 adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
3411 uint16_t devid = 0;
3413 if (save_and_restore_pcie)
3414 pci_save_state(adapter->pdev);
3415 t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
3418 * Delay. Give Some time to device to reset fully.
3419 * XXX The delay time should be modified.
3421 for (i = 0; i < 10; i++) {
3422 msleep(50);
3423 pci_read_config_word(adapter->pdev, 0x00, &devid);
3424 if (devid == 0x1425)
3425 break;
3428 if (devid != 0x1425)
3429 return -1;
3431 if (save_and_restore_pcie)
3432 pci_restore_state(adapter->pdev);
3433 return 0;
3437 * Initialize adapter SW state for the various HW modules, set initial values
3438 * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
3439 * interface.
3441 int __devinit t3_prep_adapter(struct adapter *adapter,
3442 const struct adapter_info *ai, int reset)
3444 int ret;
3445 unsigned int i, j = 0;
3447 get_pci_mode(adapter, &adapter->params.pci);
3449 adapter->params.info = ai;
3450 adapter->params.nports = ai->nports;
3451 adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
3452 adapter->params.linkpoll_period = 0;
3453 adapter->params.stats_update_period = is_10G(adapter) ?
3454 MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
3455 adapter->params.pci.vpd_cap_addr =
3456 pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
3457 ret = get_vpd_params(adapter, &adapter->params.vpd);
3458 if (ret < 0)
3459 return ret;
3461 if (reset && t3_reset_adapter(adapter))
3462 return -1;
3464 t3_sge_prep(adapter, &adapter->params.sge);
3466 if (adapter->params.vpd.mclk) {
3467 struct tp_params *p = &adapter->params.tp;
3469 mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
3470 mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
3471 mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
3473 p->nchan = ai->nports;
3474 p->pmrx_size = t3_mc7_size(&adapter->pmrx);
3475 p->pmtx_size = t3_mc7_size(&adapter->pmtx);
3476 p->cm_size = t3_mc7_size(&adapter->cm);
3477 p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
3478 p->chan_tx_size = p->pmtx_size / p->nchan;
3479 p->rx_pg_size = 64 * 1024;
3480 p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
3481 p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
3482 p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
3483 p->ntimer_qs = p->cm_size >= (128 << 20) ||
3484 adapter->params.rev > 0 ? 12 : 6;
3487 adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
3488 t3_mc7_size(&adapter->pmtx) &&
3489 t3_mc7_size(&adapter->cm);
3491 if (is_offload(adapter)) {
3492 adapter->params.mc5.nservers = DEFAULT_NSERVERS;
3493 adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
3494 DEFAULT_NFILTERS : 0;
3495 adapter->params.mc5.nroutes = 0;
3496 t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
3498 init_mtus(adapter->params.mtus);
3499 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
3502 early_hw_init(adapter, ai);
3504 for_each_port(adapter, i) {
3505 u8 hw_addr[6];
3506 struct port_info *p = adap2pinfo(adapter, i);
3508 while (!adapter->params.vpd.port_type[j])
3509 ++j;
3511 p->port_type = &port_types[adapter->params.vpd.port_type[j]];
3512 p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
3513 ai->mdio_ops);
3514 mac_prep(&p->mac, adapter, j);
3515 ++j;
3518 * The VPD EEPROM stores the base Ethernet address for the
3519 * card. A port's address is derived from the base by adding
3520 * the port's index to the base's low octet.
3522 memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
3523 hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
3525 memcpy(adapter->port[i]->dev_addr, hw_addr,
3526 ETH_ALEN);
3527 memcpy(adapter->port[i]->perm_addr, hw_addr,
3528 ETH_ALEN);
3529 init_link_config(&p->link_config, p->port_type->caps);
3530 p->phy.ops->power_down(&p->phy, 1);
3531 if (!(p->port_type->caps & SUPPORTED_IRQ))
3532 adapter->params.linkpoll_period = 10;
3535 return 0;
3538 void t3_led_ready(struct adapter *adapter)
3540 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
3541 F_GPIO0_OUT_VAL);