2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
23 * This code implements the DMA subsystem. It provides a HW-neutral interface
24 * for other kernel code to use asynchronous memory copy capabilities,
25 * if present, and allows different HW DMA drivers to register as providing
28 * Due to the fact we are accelerating what is already a relatively fast
29 * operation, the code goes to great lengths to avoid additional overhead,
34 * The subsystem keeps two global lists, dma_device_list and dma_client_list.
35 * Both of these are protected by a mutex, dma_list_mutex.
37 * Each device has a channels list, which runs unlocked but is never modified
38 * once the device is registered, it's just setup by the driver.
40 * Each client is responsible for keeping track of the channels it uses. See
41 * the definition of dma_event_callback in dmaengine.h.
43 * Each device has a kref, which is initialized to 1 when the device is
44 * registered. A kref_get is done for each class_device registered. When the
45 * class_device is released, the coresponding kref_put is done in the release
46 * method. Every time one of the device's channels is allocated to a client,
47 * a kref_get occurs. When the channel is freed, the coresponding kref_put
48 * happens. The device's release function does a completion, so
49 * unregister_device does a remove event, class_device_unregister, a kref_put
50 * for the first reference, then waits on the completion for all other
51 * references to finish.
53 * Each channel has an open-coded implementation of Rusty Russell's "bigref,"
54 * with a kref and a per_cpu local_t. A dma_chan_get is called when a client
55 * signals that it wants to use a channel, and dma_chan_put is called when
56 * a channel is removed or a client using it is unregesitered. A client can
57 * take extra references per outstanding transaction, as is the case with
58 * the NET DMA client. The release function does a kref_put on the device.
62 #include <linux/init.h>
63 #include <linux/module.h>
65 #include <linux/device.h>
66 #include <linux/dmaengine.h>
67 #include <linux/hardirq.h>
68 #include <linux/spinlock.h>
69 #include <linux/percpu.h>
70 #include <linux/rcupdate.h>
71 #include <linux/mutex.h>
72 #include <linux/jiffies.h>
74 static DEFINE_MUTEX(dma_list_mutex
);
75 static LIST_HEAD(dma_device_list
);
76 static LIST_HEAD(dma_client_list
);
78 /* --- sysfs implementation --- */
80 static ssize_t
show_memcpy_count(struct class_device
*cd
, char *buf
)
82 struct dma_chan
*chan
= container_of(cd
, struct dma_chan
, class_dev
);
83 unsigned long count
= 0;
86 for_each_possible_cpu(i
)
87 count
+= per_cpu_ptr(chan
->local
, i
)->memcpy_count
;
89 return sprintf(buf
, "%lu\n", count
);
92 static ssize_t
show_bytes_transferred(struct class_device
*cd
, char *buf
)
94 struct dma_chan
*chan
= container_of(cd
, struct dma_chan
, class_dev
);
95 unsigned long count
= 0;
98 for_each_possible_cpu(i
)
99 count
+= per_cpu_ptr(chan
->local
, i
)->bytes_transferred
;
101 return sprintf(buf
, "%lu\n", count
);
104 static ssize_t
show_in_use(struct class_device
*cd
, char *buf
)
106 struct dma_chan
*chan
= container_of(cd
, struct dma_chan
, class_dev
);
109 if (unlikely(chan
->slow_ref
) &&
110 atomic_read(&chan
->refcount
.refcount
) > 1)
113 if (local_read(&(per_cpu_ptr(chan
->local
,
114 get_cpu())->refcount
)) > 0)
119 return sprintf(buf
, "%d\n", in_use
);
122 static struct class_device_attribute dma_class_attrs
[] = {
123 __ATTR(memcpy_count
, S_IRUGO
, show_memcpy_count
, NULL
),
124 __ATTR(bytes_transferred
, S_IRUGO
, show_bytes_transferred
, NULL
),
125 __ATTR(in_use
, S_IRUGO
, show_in_use
, NULL
),
129 static void dma_async_device_cleanup(struct kref
*kref
);
131 static void dma_class_dev_release(struct class_device
*cd
)
133 struct dma_chan
*chan
= container_of(cd
, struct dma_chan
, class_dev
);
134 kref_put(&chan
->device
->refcount
, dma_async_device_cleanup
);
137 static struct class dma_devclass
= {
139 .class_dev_attrs
= dma_class_attrs
,
140 .release
= dma_class_dev_release
,
143 /* --- client and device registration --- */
145 #define dma_chan_satisfies_mask(chan, mask) \
146 __dma_chan_satisfies_mask((chan), &(mask))
148 __dma_chan_satisfies_mask(struct dma_chan
*chan
, dma_cap_mask_t
*want
)
152 bitmap_and(has
.bits
, want
->bits
, chan
->device
->cap_mask
.bits
,
154 return bitmap_equal(want
->bits
, has
.bits
, DMA_TX_TYPE_END
);
158 * dma_client_chan_alloc - try to allocate channels to a client
159 * @client: &dma_client
161 * Called with dma_list_mutex held.
163 static void dma_client_chan_alloc(struct dma_client
*client
)
165 struct dma_device
*device
;
166 struct dma_chan
*chan
;
167 int desc
; /* allocated descriptor count */
168 enum dma_state_client ack
;
171 list_for_each_entry(device
, &dma_device_list
, global_node
)
172 list_for_each_entry(chan
, &device
->channels
, device_node
) {
173 if (!dma_chan_satisfies_mask(chan
, client
->cap_mask
))
176 desc
= chan
->device
->device_alloc_chan_resources(chan
);
178 ack
= client
->event_callback(client
,
180 DMA_RESOURCE_AVAILABLE
);
182 /* we are done once this client rejects
183 * an available resource
185 if (ack
== DMA_ACK
) {
187 kref_get(&device
->refcount
);
188 } else if (ack
== DMA_NAK
)
194 enum dma_status
dma_sync_wait(struct dma_chan
*chan
, dma_cookie_t cookie
)
196 enum dma_status status
;
197 unsigned long dma_sync_wait_timeout
= jiffies
+ msecs_to_jiffies(5000);
199 dma_async_issue_pending(chan
);
201 status
= dma_async_is_tx_complete(chan
, cookie
, NULL
, NULL
);
202 if (time_after_eq(jiffies
, dma_sync_wait_timeout
)) {
203 printk(KERN_ERR
"dma_sync_wait_timeout!\n");
206 } while (status
== DMA_IN_PROGRESS
);
210 EXPORT_SYMBOL(dma_sync_wait
);
213 * dma_chan_cleanup - release a DMA channel's resources
214 * @kref: kernel reference structure that contains the DMA channel device
216 void dma_chan_cleanup(struct kref
*kref
)
218 struct dma_chan
*chan
= container_of(kref
, struct dma_chan
, refcount
);
219 chan
->device
->device_free_chan_resources(chan
);
220 kref_put(&chan
->device
->refcount
, dma_async_device_cleanup
);
222 EXPORT_SYMBOL(dma_chan_cleanup
);
224 static void dma_chan_free_rcu(struct rcu_head
*rcu
)
226 struct dma_chan
*chan
= container_of(rcu
, struct dma_chan
, rcu
);
227 int bias
= 0x7FFFFFFF;
229 for_each_possible_cpu(i
)
230 bias
-= local_read(&per_cpu_ptr(chan
->local
, i
)->refcount
);
231 atomic_sub(bias
, &chan
->refcount
.refcount
);
232 kref_put(&chan
->refcount
, dma_chan_cleanup
);
235 static void dma_chan_release(struct dma_chan
*chan
)
237 atomic_add(0x7FFFFFFF, &chan
->refcount
.refcount
);
239 call_rcu(&chan
->rcu
, dma_chan_free_rcu
);
243 * dma_chans_notify_available - broadcast available channels to the clients
245 static void dma_clients_notify_available(void)
247 struct dma_client
*client
;
249 mutex_lock(&dma_list_mutex
);
251 list_for_each_entry(client
, &dma_client_list
, global_node
)
252 dma_client_chan_alloc(client
);
254 mutex_unlock(&dma_list_mutex
);
258 * dma_chans_notify_available - tell the clients that a channel is going away
259 * @chan: channel on its way out
261 static void dma_clients_notify_removed(struct dma_chan
*chan
)
263 struct dma_client
*client
;
264 enum dma_state_client ack
;
266 mutex_lock(&dma_list_mutex
);
268 list_for_each_entry(client
, &dma_client_list
, global_node
) {
269 ack
= client
->event_callback(client
, chan
,
270 DMA_RESOURCE_REMOVED
);
272 /* client was holding resources for this channel so
275 if (ack
== DMA_ACK
) {
277 kref_put(&chan
->device
->refcount
,
278 dma_async_device_cleanup
);
282 mutex_unlock(&dma_list_mutex
);
286 * dma_async_client_register - register a &dma_client
287 * @client: ptr to a client structure with valid 'event_callback' and 'cap_mask'
289 void dma_async_client_register(struct dma_client
*client
)
291 mutex_lock(&dma_list_mutex
);
292 list_add_tail(&client
->global_node
, &dma_client_list
);
293 mutex_unlock(&dma_list_mutex
);
295 EXPORT_SYMBOL(dma_async_client_register
);
298 * dma_async_client_unregister - unregister a client and free the &dma_client
299 * @client: &dma_client to free
301 * Force frees any allocated DMA channels, frees the &dma_client memory
303 void dma_async_client_unregister(struct dma_client
*client
)
305 struct dma_device
*device
;
306 struct dma_chan
*chan
;
307 enum dma_state_client ack
;
312 mutex_lock(&dma_list_mutex
);
313 /* free all channels the client is holding */
314 list_for_each_entry(device
, &dma_device_list
, global_node
)
315 list_for_each_entry(chan
, &device
->channels
, device_node
) {
316 ack
= client
->event_callback(client
, chan
,
317 DMA_RESOURCE_REMOVED
);
319 if (ack
== DMA_ACK
) {
321 kref_put(&chan
->device
->refcount
,
322 dma_async_device_cleanup
);
326 list_del(&client
->global_node
);
327 mutex_unlock(&dma_list_mutex
);
329 EXPORT_SYMBOL(dma_async_client_unregister
);
332 * dma_async_client_chan_request - send all available channels to the
333 * client that satisfy the capability mask
334 * @client - requester
336 void dma_async_client_chan_request(struct dma_client
*client
)
338 mutex_lock(&dma_list_mutex
);
339 dma_client_chan_alloc(client
);
340 mutex_unlock(&dma_list_mutex
);
342 EXPORT_SYMBOL(dma_async_client_chan_request
);
345 * dma_async_device_register - registers DMA devices found
346 * @device: &dma_device
348 int dma_async_device_register(struct dma_device
*device
)
352 struct dma_chan
* chan
;
357 /* validate device routines */
358 BUG_ON(dma_has_cap(DMA_MEMCPY
, device
->cap_mask
) &&
359 !device
->device_prep_dma_memcpy
);
360 BUG_ON(dma_has_cap(DMA_XOR
, device
->cap_mask
) &&
361 !device
->device_prep_dma_xor
);
362 BUG_ON(dma_has_cap(DMA_ZERO_SUM
, device
->cap_mask
) &&
363 !device
->device_prep_dma_zero_sum
);
364 BUG_ON(dma_has_cap(DMA_MEMSET
, device
->cap_mask
) &&
365 !device
->device_prep_dma_memset
);
366 BUG_ON(dma_has_cap(DMA_ZERO_SUM
, device
->cap_mask
) &&
367 !device
->device_prep_dma_interrupt
);
369 BUG_ON(!device
->device_alloc_chan_resources
);
370 BUG_ON(!device
->device_free_chan_resources
);
371 BUG_ON(!device
->device_dependency_added
);
372 BUG_ON(!device
->device_is_tx_complete
);
373 BUG_ON(!device
->device_issue_pending
);
374 BUG_ON(!device
->dev
);
376 init_completion(&device
->done
);
377 kref_init(&device
->refcount
);
378 device
->dev_id
= id
++;
380 /* represent channels in sysfs. Probably want devs too */
381 list_for_each_entry(chan
, &device
->channels
, device_node
) {
382 chan
->local
= alloc_percpu(typeof(*chan
->local
));
383 if (chan
->local
== NULL
)
386 chan
->chan_id
= chancnt
++;
387 chan
->class_dev
.class = &dma_devclass
;
388 chan
->class_dev
.dev
= NULL
;
389 snprintf(chan
->class_dev
.class_id
, BUS_ID_SIZE
, "dma%dchan%d",
390 device
->dev_id
, chan
->chan_id
);
392 rc
= class_device_register(&chan
->class_dev
);
395 free_percpu(chan
->local
);
400 kref_get(&device
->refcount
);
401 kref_init(&chan
->refcount
);
403 INIT_RCU_HEAD(&chan
->rcu
);
406 mutex_lock(&dma_list_mutex
);
407 list_add_tail(&device
->global_node
, &dma_device_list
);
408 mutex_unlock(&dma_list_mutex
);
410 dma_clients_notify_available();
415 list_for_each_entry(chan
, &device
->channels
, device_node
) {
416 if (chan
->local
== NULL
)
418 kref_put(&device
->refcount
, dma_async_device_cleanup
);
419 class_device_unregister(&chan
->class_dev
);
421 free_percpu(chan
->local
);
425 EXPORT_SYMBOL(dma_async_device_register
);
428 * dma_async_device_cleanup - function called when all references are released
429 * @kref: kernel reference object
431 static void dma_async_device_cleanup(struct kref
*kref
)
433 struct dma_device
*device
;
435 device
= container_of(kref
, struct dma_device
, refcount
);
436 complete(&device
->done
);
440 * dma_async_device_unregister - unregisters DMA devices
441 * @device: &dma_device
443 void dma_async_device_unregister(struct dma_device
*device
)
445 struct dma_chan
*chan
;
447 mutex_lock(&dma_list_mutex
);
448 list_del(&device
->global_node
);
449 mutex_unlock(&dma_list_mutex
);
451 list_for_each_entry(chan
, &device
->channels
, device_node
) {
452 dma_clients_notify_removed(chan
);
453 class_device_unregister(&chan
->class_dev
);
454 dma_chan_release(chan
);
457 kref_put(&device
->refcount
, dma_async_device_cleanup
);
458 wait_for_completion(&device
->done
);
460 EXPORT_SYMBOL(dma_async_device_unregister
);
463 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
464 * @chan: DMA channel to offload copy to
465 * @dest: destination address (virtual)
466 * @src: source address (virtual)
469 * Both @dest and @src must be mappable to a bus address according to the
470 * DMA mapping API rules for streaming mappings.
471 * Both @dest and @src must stay memory resident (kernel memory or locked
475 dma_async_memcpy_buf_to_buf(struct dma_chan
*chan
, void *dest
,
476 void *src
, size_t len
)
478 struct dma_device
*dev
= chan
->device
;
479 struct dma_async_tx_descriptor
*tx
;
484 tx
= dev
->device_prep_dma_memcpy(chan
, len
, 0);
490 addr
= dma_map_single(dev
->dev
, src
, len
, DMA_TO_DEVICE
);
491 tx
->tx_set_src(addr
, tx
, 0);
492 addr
= dma_map_single(dev
->dev
, dest
, len
, DMA_FROM_DEVICE
);
493 tx
->tx_set_dest(addr
, tx
, 0);
494 cookie
= tx
->tx_submit(tx
);
497 per_cpu_ptr(chan
->local
, cpu
)->bytes_transferred
+= len
;
498 per_cpu_ptr(chan
->local
, cpu
)->memcpy_count
++;
503 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf
);
506 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
507 * @chan: DMA channel to offload copy to
508 * @page: destination page
509 * @offset: offset in page to copy to
510 * @kdata: source address (virtual)
513 * Both @page/@offset and @kdata must be mappable to a bus address according
514 * to the DMA mapping API rules for streaming mappings.
515 * Both @page/@offset and @kdata must stay memory resident (kernel memory or
516 * locked user space pages)
519 dma_async_memcpy_buf_to_pg(struct dma_chan
*chan
, struct page
*page
,
520 unsigned int offset
, void *kdata
, size_t len
)
522 struct dma_device
*dev
= chan
->device
;
523 struct dma_async_tx_descriptor
*tx
;
528 tx
= dev
->device_prep_dma_memcpy(chan
, len
, 0);
534 addr
= dma_map_single(dev
->dev
, kdata
, len
, DMA_TO_DEVICE
);
535 tx
->tx_set_src(addr
, tx
, 0);
536 addr
= dma_map_page(dev
->dev
, page
, offset
, len
, DMA_FROM_DEVICE
);
537 tx
->tx_set_dest(addr
, tx
, 0);
538 cookie
= tx
->tx_submit(tx
);
541 per_cpu_ptr(chan
->local
, cpu
)->bytes_transferred
+= len
;
542 per_cpu_ptr(chan
->local
, cpu
)->memcpy_count
++;
547 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg
);
550 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
551 * @chan: DMA channel to offload copy to
552 * @dest_pg: destination page
553 * @dest_off: offset in page to copy to
554 * @src_pg: source page
555 * @src_off: offset in page to copy from
558 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
559 * address according to the DMA mapping API rules for streaming mappings.
560 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
561 * (kernel memory or locked user space pages).
564 dma_async_memcpy_pg_to_pg(struct dma_chan
*chan
, struct page
*dest_pg
,
565 unsigned int dest_off
, struct page
*src_pg
, unsigned int src_off
,
568 struct dma_device
*dev
= chan
->device
;
569 struct dma_async_tx_descriptor
*tx
;
574 tx
= dev
->device_prep_dma_memcpy(chan
, len
, 0);
580 addr
= dma_map_page(dev
->dev
, src_pg
, src_off
, len
, DMA_TO_DEVICE
);
581 tx
->tx_set_src(addr
, tx
, 0);
582 addr
= dma_map_page(dev
->dev
, dest_pg
, dest_off
, len
, DMA_FROM_DEVICE
);
583 tx
->tx_set_dest(addr
, tx
, 0);
584 cookie
= tx
->tx_submit(tx
);
587 per_cpu_ptr(chan
->local
, cpu
)->bytes_transferred
+= len
;
588 per_cpu_ptr(chan
->local
, cpu
)->memcpy_count
++;
593 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg
);
595 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor
*tx
,
596 struct dma_chan
*chan
)
599 spin_lock_init(&tx
->lock
);
600 INIT_LIST_HEAD(&tx
->depend_node
);
601 INIT_LIST_HEAD(&tx
->depend_list
);
603 EXPORT_SYMBOL(dma_async_tx_descriptor_init
);
605 static int __init
dma_bus_init(void)
607 mutex_init(&dma_list_mutex
);
608 return class_register(&dma_devclass
);
610 subsys_initcall(dma_bus_init
);