pcmcia: CompactFlash driver for PA Semi Electra boards
[pv_ops_mirror.git] / drivers / firewire / fw-sbp2.c
blob5596df65c8ed3b11d49c91d97cc36f3e858478c0
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/stringify.h>
41 #include <linux/timer.h>
42 #include <linux/workqueue.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
49 #include "fw-transaction.h"
50 #include "fw-topology.h"
51 #include "fw-device.h"
54 * So far only bridges from Oxford Semiconductor are known to support
55 * concurrent logins. Depending on firmware, four or two concurrent logins
56 * are possible on OXFW911 and newer Oxsemi bridges.
58 * Concurrent logins are useful together with cluster filesystems.
60 static int sbp2_param_exclusive_login = 1;
61 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
62 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
63 "(default = Y, use N for concurrent initiators)");
66 * Flags for firmware oddities
68 * - 128kB max transfer
69 * Limit transfer size. Necessary for some old bridges.
71 * - 36 byte inquiry
72 * When scsi_mod probes the device, let the inquiry command look like that
73 * from MS Windows.
75 * - skip mode page 8
76 * Suppress sending of mode_sense for mode page 8 if the device pretends to
77 * support the SCSI Primary Block commands instead of Reduced Block Commands.
79 * - fix capacity
80 * Tell sd_mod to correct the last sector number reported by read_capacity.
81 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
82 * Don't use this with devices which don't have this bug.
84 * - override internal blacklist
85 * Instead of adding to the built-in blacklist, use only the workarounds
86 * specified in the module load parameter.
87 * Useful if a blacklist entry interfered with a non-broken device.
89 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
90 #define SBP2_WORKAROUND_INQUIRY_36 0x2
91 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
92 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
93 #define SBP2_WORKAROUND_OVERRIDE 0x100
95 static int sbp2_param_workarounds;
96 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
97 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
98 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
99 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
100 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
101 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
102 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
103 ", or a combination)");
105 /* I don't know why the SCSI stack doesn't define something like this... */
106 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
108 static const char sbp2_driver_name[] = "sbp2";
111 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
112 * and one struct scsi_device per sbp2_logical_unit.
114 struct sbp2_logical_unit {
115 struct sbp2_target *tgt;
116 struct list_head link;
117 struct scsi_device *sdev;
118 struct fw_address_handler address_handler;
119 struct list_head orb_list;
121 u64 command_block_agent_address;
122 u16 lun;
123 int login_id;
126 * The generation is updated once we've logged in or reconnected
127 * to the logical unit. Thus, I/O to the device will automatically
128 * fail and get retried if it happens in a window where the device
129 * is not ready, e.g. after a bus reset but before we reconnect.
131 int generation;
132 int retries;
133 struct delayed_work work;
137 * We create one struct sbp2_target per IEEE 1212 Unit Directory
138 * and one struct Scsi_Host per sbp2_target.
140 struct sbp2_target {
141 struct kref kref;
142 struct fw_unit *unit;
144 u64 management_agent_address;
145 int directory_id;
146 int node_id;
147 int address_high;
149 unsigned workarounds;
150 struct list_head lu_list;
153 #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
154 #define SBP2_MAX_SECTORS 255 /* Max sectors supported */
155 #define SBP2_ORB_TIMEOUT 2000 /* Timeout in ms */
157 #define SBP2_ORB_NULL 0x80000000
159 #define SBP2_DIRECTION_TO_MEDIA 0x0
160 #define SBP2_DIRECTION_FROM_MEDIA 0x1
162 /* Unit directory keys */
163 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
164 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
165 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
167 /* Management orb opcodes */
168 #define SBP2_LOGIN_REQUEST 0x0
169 #define SBP2_QUERY_LOGINS_REQUEST 0x1
170 #define SBP2_RECONNECT_REQUEST 0x3
171 #define SBP2_SET_PASSWORD_REQUEST 0x4
172 #define SBP2_LOGOUT_REQUEST 0x7
173 #define SBP2_ABORT_TASK_REQUEST 0xb
174 #define SBP2_ABORT_TASK_SET 0xc
175 #define SBP2_LOGICAL_UNIT_RESET 0xe
176 #define SBP2_TARGET_RESET_REQUEST 0xf
178 /* Offsets for command block agent registers */
179 #define SBP2_AGENT_STATE 0x00
180 #define SBP2_AGENT_RESET 0x04
181 #define SBP2_ORB_POINTER 0x08
182 #define SBP2_DOORBELL 0x10
183 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
185 /* Status write response codes */
186 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
187 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
188 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
189 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
191 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
192 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
193 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
194 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
195 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
196 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
197 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
198 #define STATUS_GET_DATA(v) ((v).data)
200 struct sbp2_status {
201 u32 status;
202 u32 orb_low;
203 u8 data[24];
206 struct sbp2_pointer {
207 u32 high;
208 u32 low;
211 struct sbp2_orb {
212 struct fw_transaction t;
213 struct kref kref;
214 dma_addr_t request_bus;
215 int rcode;
216 struct sbp2_pointer pointer;
217 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
218 struct list_head link;
221 #define MANAGEMENT_ORB_LUN(v) ((v))
222 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
223 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
224 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
225 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
226 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
228 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
229 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
231 struct sbp2_management_orb {
232 struct sbp2_orb base;
233 struct {
234 struct sbp2_pointer password;
235 struct sbp2_pointer response;
236 u32 misc;
237 u32 length;
238 struct sbp2_pointer status_fifo;
239 } request;
240 __be32 response[4];
241 dma_addr_t response_bus;
242 struct completion done;
243 struct sbp2_status status;
246 #define LOGIN_RESPONSE_GET_LOGIN_ID(v) ((v).misc & 0xffff)
247 #define LOGIN_RESPONSE_GET_LENGTH(v) (((v).misc >> 16) & 0xffff)
249 struct sbp2_login_response {
250 u32 misc;
251 struct sbp2_pointer command_block_agent;
252 u32 reconnect_hold;
254 #define COMMAND_ORB_DATA_SIZE(v) ((v))
255 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
256 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
257 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
258 #define COMMAND_ORB_SPEED(v) ((v) << 24)
259 #define COMMAND_ORB_DIRECTION(v) ((v) << 27)
260 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
261 #define COMMAND_ORB_NOTIFY ((1) << 31)
263 struct sbp2_command_orb {
264 struct sbp2_orb base;
265 struct {
266 struct sbp2_pointer next;
267 struct sbp2_pointer data_descriptor;
268 u32 misc;
269 u8 command_block[12];
270 } request;
271 struct scsi_cmnd *cmd;
272 scsi_done_fn_t done;
273 struct sbp2_logical_unit *lu;
275 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
276 dma_addr_t page_table_bus;
280 * List of devices with known bugs.
282 * The firmware_revision field, masked with 0xffff00, is the best
283 * indicator for the type of bridge chip of a device. It yields a few
284 * false positives but this did not break correctly behaving devices
285 * so far. We use ~0 as a wildcard, since the 24 bit values we get
286 * from the config rom can never match that.
288 static const struct {
289 u32 firmware_revision;
290 u32 model;
291 unsigned workarounds;
292 } sbp2_workarounds_table[] = {
293 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
294 .firmware_revision = 0x002800,
295 .model = 0x001010,
296 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
297 SBP2_WORKAROUND_MODE_SENSE_8,
299 /* Initio bridges, actually only needed for some older ones */ {
300 .firmware_revision = 0x000200,
301 .model = ~0,
302 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
304 /* Symbios bridge */ {
305 .firmware_revision = 0xa0b800,
306 .model = ~0,
307 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
311 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
312 * these iPods do not feature the read_capacity bug according
313 * to one report. Read_capacity behaviour as well as model_id
314 * could change due to Apple-supplied firmware updates though.
317 /* iPod 4th generation. */ {
318 .firmware_revision = 0x0a2700,
319 .model = 0x000021,
320 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
322 /* iPod mini */ {
323 .firmware_revision = 0x0a2700,
324 .model = 0x000023,
325 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
327 /* iPod Photo */ {
328 .firmware_revision = 0x0a2700,
329 .model = 0x00007e,
330 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
334 static void
335 free_orb(struct kref *kref)
337 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
339 kfree(orb);
342 static void
343 sbp2_status_write(struct fw_card *card, struct fw_request *request,
344 int tcode, int destination, int source,
345 int generation, int speed,
346 unsigned long long offset,
347 void *payload, size_t length, void *callback_data)
349 struct sbp2_logical_unit *lu = callback_data;
350 struct sbp2_orb *orb;
351 struct sbp2_status status;
352 size_t header_size;
353 unsigned long flags;
355 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
356 length == 0 || length > sizeof(status)) {
357 fw_send_response(card, request, RCODE_TYPE_ERROR);
358 return;
361 header_size = min(length, 2 * sizeof(u32));
362 fw_memcpy_from_be32(&status, payload, header_size);
363 if (length > header_size)
364 memcpy(status.data, payload + 8, length - header_size);
365 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
366 fw_notify("non-orb related status write, not handled\n");
367 fw_send_response(card, request, RCODE_COMPLETE);
368 return;
371 /* Lookup the orb corresponding to this status write. */
372 spin_lock_irqsave(&card->lock, flags);
373 list_for_each_entry(orb, &lu->orb_list, link) {
374 if (STATUS_GET_ORB_HIGH(status) == 0 &&
375 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
376 orb->rcode = RCODE_COMPLETE;
377 list_del(&orb->link);
378 break;
381 spin_unlock_irqrestore(&card->lock, flags);
383 if (&orb->link != &lu->orb_list)
384 orb->callback(orb, &status);
385 else
386 fw_error("status write for unknown orb\n");
388 kref_put(&orb->kref, free_orb);
390 fw_send_response(card, request, RCODE_COMPLETE);
393 static void
394 complete_transaction(struct fw_card *card, int rcode,
395 void *payload, size_t length, void *data)
397 struct sbp2_orb *orb = data;
398 unsigned long flags;
401 * This is a little tricky. We can get the status write for
402 * the orb before we get this callback. The status write
403 * handler above will assume the orb pointer transaction was
404 * successful and set the rcode to RCODE_COMPLETE for the orb.
405 * So this callback only sets the rcode if it hasn't already
406 * been set and only does the cleanup if the transaction
407 * failed and we didn't already get a status write.
409 spin_lock_irqsave(&card->lock, flags);
411 if (orb->rcode == -1)
412 orb->rcode = rcode;
413 if (orb->rcode != RCODE_COMPLETE) {
414 list_del(&orb->link);
415 spin_unlock_irqrestore(&card->lock, flags);
416 orb->callback(orb, NULL);
417 } else {
418 spin_unlock_irqrestore(&card->lock, flags);
421 kref_put(&orb->kref, free_orb);
424 static void
425 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
426 int node_id, int generation, u64 offset)
428 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
429 unsigned long flags;
431 orb->pointer.high = 0;
432 orb->pointer.low = orb->request_bus;
433 fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
435 spin_lock_irqsave(&device->card->lock, flags);
436 list_add_tail(&orb->link, &lu->orb_list);
437 spin_unlock_irqrestore(&device->card->lock, flags);
439 /* Take a ref for the orb list and for the transaction callback. */
440 kref_get(&orb->kref);
441 kref_get(&orb->kref);
443 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
444 node_id, generation, device->max_speed, offset,
445 &orb->pointer, sizeof(orb->pointer),
446 complete_transaction, orb);
449 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
451 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
452 struct sbp2_orb *orb, *next;
453 struct list_head list;
454 unsigned long flags;
455 int retval = -ENOENT;
457 INIT_LIST_HEAD(&list);
458 spin_lock_irqsave(&device->card->lock, flags);
459 list_splice_init(&lu->orb_list, &list);
460 spin_unlock_irqrestore(&device->card->lock, flags);
462 list_for_each_entry_safe(orb, next, &list, link) {
463 retval = 0;
464 if (fw_cancel_transaction(device->card, &orb->t) == 0)
465 continue;
467 orb->rcode = RCODE_CANCELLED;
468 orb->callback(orb, NULL);
471 return retval;
474 static void
475 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
477 struct sbp2_management_orb *orb =
478 container_of(base_orb, struct sbp2_management_orb, base);
480 if (status)
481 memcpy(&orb->status, status, sizeof(*status));
482 complete(&orb->done);
485 static int
486 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
487 int generation, int function, int lun_or_login_id,
488 void *response)
490 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
491 struct sbp2_management_orb *orb;
492 int retval = -ENOMEM;
494 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
495 if (orb == NULL)
496 return -ENOMEM;
498 kref_init(&orb->base.kref);
499 orb->response_bus =
500 dma_map_single(device->card->device, &orb->response,
501 sizeof(orb->response), DMA_FROM_DEVICE);
502 if (dma_mapping_error(orb->response_bus))
503 goto fail_mapping_response;
505 orb->request.response.high = 0;
506 orb->request.response.low = orb->response_bus;
508 orb->request.misc =
509 MANAGEMENT_ORB_NOTIFY |
510 MANAGEMENT_ORB_FUNCTION(function) |
511 MANAGEMENT_ORB_LUN(lun_or_login_id);
512 orb->request.length =
513 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
515 orb->request.status_fifo.high = lu->address_handler.offset >> 32;
516 orb->request.status_fifo.low = lu->address_handler.offset;
518 if (function == SBP2_LOGIN_REQUEST) {
519 orb->request.misc |=
520 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) |
521 MANAGEMENT_ORB_RECONNECT(0);
524 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
526 init_completion(&orb->done);
527 orb->base.callback = complete_management_orb;
529 orb->base.request_bus =
530 dma_map_single(device->card->device, &orb->request,
531 sizeof(orb->request), DMA_TO_DEVICE);
532 if (dma_mapping_error(orb->base.request_bus))
533 goto fail_mapping_request;
535 sbp2_send_orb(&orb->base, lu, node_id, generation,
536 lu->tgt->management_agent_address);
538 wait_for_completion_timeout(&orb->done,
539 msecs_to_jiffies(SBP2_ORB_TIMEOUT));
541 retval = -EIO;
542 if (sbp2_cancel_orbs(lu) == 0) {
543 fw_error("orb reply timed out, rcode=0x%02x\n",
544 orb->base.rcode);
545 goto out;
548 if (orb->base.rcode != RCODE_COMPLETE) {
549 fw_error("management write failed, rcode 0x%02x\n",
550 orb->base.rcode);
551 goto out;
554 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
555 STATUS_GET_SBP_STATUS(orb->status) != 0) {
556 fw_error("error status: %d:%d\n",
557 STATUS_GET_RESPONSE(orb->status),
558 STATUS_GET_SBP_STATUS(orb->status));
559 goto out;
562 retval = 0;
563 out:
564 dma_unmap_single(device->card->device, orb->base.request_bus,
565 sizeof(orb->request), DMA_TO_DEVICE);
566 fail_mapping_request:
567 dma_unmap_single(device->card->device, orb->response_bus,
568 sizeof(orb->response), DMA_FROM_DEVICE);
569 fail_mapping_response:
570 if (response)
571 fw_memcpy_from_be32(response,
572 orb->response, sizeof(orb->response));
573 kref_put(&orb->base.kref, free_orb);
575 return retval;
578 static void
579 complete_agent_reset_write(struct fw_card *card, int rcode,
580 void *payload, size_t length, void *data)
582 struct fw_transaction *t = data;
584 kfree(t);
587 static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
589 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
590 struct fw_transaction *t;
591 static u32 zero;
593 t = kzalloc(sizeof(*t), GFP_ATOMIC);
594 if (t == NULL)
595 return -ENOMEM;
597 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
598 lu->tgt->node_id, lu->generation, device->max_speed,
599 lu->command_block_agent_address + SBP2_AGENT_RESET,
600 &zero, sizeof(zero), complete_agent_reset_write, t);
602 return 0;
605 static void sbp2_release_target(struct kref *kref)
607 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
608 struct sbp2_logical_unit *lu, *next;
609 struct Scsi_Host *shost =
610 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
612 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
613 if (lu->sdev)
614 scsi_remove_device(lu->sdev);
616 sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
617 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
618 fw_core_remove_address_handler(&lu->address_handler);
619 list_del(&lu->link);
620 kfree(lu);
622 scsi_remove_host(shost);
623 fw_notify("released %s\n", tgt->unit->device.bus_id);
625 put_device(&tgt->unit->device);
626 scsi_host_put(shost);
629 static struct workqueue_struct *sbp2_wq;
631 static void sbp2_reconnect(struct work_struct *work);
633 static void sbp2_login(struct work_struct *work)
635 struct sbp2_logical_unit *lu =
636 container_of(work, struct sbp2_logical_unit, work.work);
637 struct Scsi_Host *shost =
638 container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
639 struct scsi_device *sdev;
640 struct scsi_lun eight_bytes_lun;
641 struct fw_unit *unit = lu->tgt->unit;
642 struct fw_device *device = fw_device(unit->device.parent);
643 struct sbp2_login_response response;
644 int generation, node_id, local_node_id;
646 generation = device->card->generation;
647 node_id = device->node->node_id;
648 local_node_id = device->card->local_node->node_id;
650 if (sbp2_send_management_orb(lu, node_id, generation,
651 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
652 if (lu->retries++ < 5) {
653 queue_delayed_work(sbp2_wq, &lu->work,
654 DIV_ROUND_UP(HZ, 5));
655 } else {
656 fw_error("failed to login to %s LUN %04x\n",
657 unit->device.bus_id, lu->lun);
658 kref_put(&lu->tgt->kref, sbp2_release_target);
660 return;
663 lu->generation = generation;
664 lu->tgt->node_id = node_id;
665 lu->tgt->address_high = local_node_id << 16;
667 /* Get command block agent offset and login id. */
668 lu->command_block_agent_address =
669 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
670 response.command_block_agent.low;
671 lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
673 fw_notify("logged in to %s LUN %04x (%d retries)\n",
674 unit->device.bus_id, lu->lun, lu->retries);
676 #if 0
677 /* FIXME: The linux1394 sbp2 does this last step. */
678 sbp2_set_busy_timeout(scsi_id);
679 #endif
681 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
682 sbp2_agent_reset(lu);
684 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
685 eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
686 eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
688 sdev = __scsi_add_device(shost, 0, 0,
689 scsilun_to_int(&eight_bytes_lun), lu);
690 if (IS_ERR(sdev)) {
691 sbp2_send_management_orb(lu, node_id, generation,
692 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
694 * Set this back to sbp2_login so we fall back and
695 * retry login on bus reset.
697 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
698 } else {
699 lu->sdev = sdev;
700 scsi_device_put(sdev);
702 kref_put(&lu->tgt->kref, sbp2_release_target);
705 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
707 struct sbp2_logical_unit *lu;
709 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
710 if (!lu)
711 return -ENOMEM;
713 lu->address_handler.length = 0x100;
714 lu->address_handler.address_callback = sbp2_status_write;
715 lu->address_handler.callback_data = lu;
717 if (fw_core_add_address_handler(&lu->address_handler,
718 &fw_high_memory_region) < 0) {
719 kfree(lu);
720 return -ENOMEM;
723 lu->tgt = tgt;
724 lu->sdev = NULL;
725 lu->lun = lun_entry & 0xffff;
726 lu->retries = 0;
727 INIT_LIST_HEAD(&lu->orb_list);
728 INIT_DELAYED_WORK(&lu->work, sbp2_login);
730 list_add_tail(&lu->link, &tgt->lu_list);
731 return 0;
734 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
736 struct fw_csr_iterator ci;
737 int key, value;
739 fw_csr_iterator_init(&ci, directory);
740 while (fw_csr_iterator_next(&ci, &key, &value))
741 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
742 sbp2_add_logical_unit(tgt, value) < 0)
743 return -ENOMEM;
744 return 0;
747 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
748 u32 *model, u32 *firmware_revision)
750 struct fw_csr_iterator ci;
751 int key, value;
753 fw_csr_iterator_init(&ci, directory);
754 while (fw_csr_iterator_next(&ci, &key, &value)) {
755 switch (key) {
757 case CSR_DEPENDENT_INFO | CSR_OFFSET:
758 tgt->management_agent_address =
759 CSR_REGISTER_BASE + 4 * value;
760 break;
762 case CSR_DIRECTORY_ID:
763 tgt->directory_id = value;
764 break;
766 case CSR_MODEL:
767 *model = value;
768 break;
770 case SBP2_CSR_FIRMWARE_REVISION:
771 *firmware_revision = value;
772 break;
774 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
775 if (sbp2_add_logical_unit(tgt, value) < 0)
776 return -ENOMEM;
777 break;
779 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
780 if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
781 return -ENOMEM;
782 break;
785 return 0;
788 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
789 u32 firmware_revision)
791 int i;
792 unsigned w = sbp2_param_workarounds;
794 if (w)
795 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
796 "if you need the workarounds parameter for %s\n",
797 tgt->unit->device.bus_id);
799 if (w & SBP2_WORKAROUND_OVERRIDE)
800 goto out;
802 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
804 if (sbp2_workarounds_table[i].firmware_revision !=
805 (firmware_revision & 0xffffff00))
806 continue;
808 if (sbp2_workarounds_table[i].model != model &&
809 sbp2_workarounds_table[i].model != ~0)
810 continue;
812 w |= sbp2_workarounds_table[i].workarounds;
813 break;
815 out:
816 if (w)
817 fw_notify("Workarounds for %s: 0x%x "
818 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
819 tgt->unit->device.bus_id,
820 w, firmware_revision, model);
821 tgt->workarounds = w;
824 static struct scsi_host_template scsi_driver_template;
826 static int sbp2_probe(struct device *dev)
828 struct fw_unit *unit = fw_unit(dev);
829 struct fw_device *device = fw_device(unit->device.parent);
830 struct sbp2_target *tgt;
831 struct sbp2_logical_unit *lu;
832 struct Scsi_Host *shost;
833 u32 model, firmware_revision;
835 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
836 if (shost == NULL)
837 return -ENOMEM;
839 tgt = (struct sbp2_target *)shost->hostdata;
840 unit->device.driver_data = tgt;
841 tgt->unit = unit;
842 kref_init(&tgt->kref);
843 INIT_LIST_HEAD(&tgt->lu_list);
845 if (fw_device_enable_phys_dma(device) < 0)
846 goto fail_shost_put;
848 if (scsi_add_host(shost, &unit->device) < 0)
849 goto fail_shost_put;
851 /* Initialize to values that won't match anything in our table. */
852 firmware_revision = 0xff000000;
853 model = 0xff000000;
855 /* implicit directory ID */
856 tgt->directory_id = ((unit->directory - device->config_rom) * 4
857 + CSR_CONFIG_ROM) & 0xffffff;
859 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
860 &firmware_revision) < 0)
861 goto fail_tgt_put;
863 sbp2_init_workarounds(tgt, model, firmware_revision);
865 get_device(&unit->device);
868 * We schedule work to do the login so we can easily
869 * reschedule retries. Always get the ref before scheduling
870 * work.
872 list_for_each_entry(lu, &tgt->lu_list, link)
873 if (queue_delayed_work(sbp2_wq, &lu->work, 0))
874 kref_get(&tgt->kref);
875 return 0;
877 fail_tgt_put:
878 kref_put(&tgt->kref, sbp2_release_target);
879 return -ENOMEM;
881 fail_shost_put:
882 scsi_host_put(shost);
883 return -ENOMEM;
886 static int sbp2_remove(struct device *dev)
888 struct fw_unit *unit = fw_unit(dev);
889 struct sbp2_target *tgt = unit->device.driver_data;
891 kref_put(&tgt->kref, sbp2_release_target);
892 return 0;
895 static void sbp2_reconnect(struct work_struct *work)
897 struct sbp2_logical_unit *lu =
898 container_of(work, struct sbp2_logical_unit, work.work);
899 struct fw_unit *unit = lu->tgt->unit;
900 struct fw_device *device = fw_device(unit->device.parent);
901 int generation, node_id, local_node_id;
903 generation = device->card->generation;
904 node_id = device->node->node_id;
905 local_node_id = device->card->local_node->node_id;
907 if (sbp2_send_management_orb(lu, node_id, generation,
908 SBP2_RECONNECT_REQUEST,
909 lu->login_id, NULL) < 0) {
910 if (lu->retries++ >= 5) {
911 fw_error("failed to reconnect to %s\n",
912 unit->device.bus_id);
913 /* Fall back and try to log in again. */
914 lu->retries = 0;
915 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
917 queue_delayed_work(sbp2_wq, &lu->work, DIV_ROUND_UP(HZ, 5));
918 return;
921 lu->generation = generation;
922 lu->tgt->node_id = node_id;
923 lu->tgt->address_high = local_node_id << 16;
925 fw_notify("reconnected to %s LUN %04x (%d retries)\n",
926 unit->device.bus_id, lu->lun, lu->retries);
928 sbp2_agent_reset(lu);
929 sbp2_cancel_orbs(lu);
931 kref_put(&lu->tgt->kref, sbp2_release_target);
934 static void sbp2_update(struct fw_unit *unit)
936 struct sbp2_target *tgt = unit->device.driver_data;
937 struct sbp2_logical_unit *lu;
939 fw_device_enable_phys_dma(fw_device(unit->device.parent));
942 * Fw-core serializes sbp2_update() against sbp2_remove().
943 * Iteration over tgt->lu_list is therefore safe here.
945 list_for_each_entry(lu, &tgt->lu_list, link) {
946 lu->retries = 0;
947 if (queue_delayed_work(sbp2_wq, &lu->work, 0))
948 kref_get(&tgt->kref);
952 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
953 #define SBP2_SW_VERSION_ENTRY 0x00010483
955 static const struct fw_device_id sbp2_id_table[] = {
957 .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
958 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
959 .version = SBP2_SW_VERSION_ENTRY,
964 static struct fw_driver sbp2_driver = {
965 .driver = {
966 .owner = THIS_MODULE,
967 .name = sbp2_driver_name,
968 .bus = &fw_bus_type,
969 .probe = sbp2_probe,
970 .remove = sbp2_remove,
972 .update = sbp2_update,
973 .id_table = sbp2_id_table,
976 static unsigned int
977 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
979 int sam_status;
981 sense_data[0] = 0x70;
982 sense_data[1] = 0x0;
983 sense_data[2] = sbp2_status[1];
984 sense_data[3] = sbp2_status[4];
985 sense_data[4] = sbp2_status[5];
986 sense_data[5] = sbp2_status[6];
987 sense_data[6] = sbp2_status[7];
988 sense_data[7] = 10;
989 sense_data[8] = sbp2_status[8];
990 sense_data[9] = sbp2_status[9];
991 sense_data[10] = sbp2_status[10];
992 sense_data[11] = sbp2_status[11];
993 sense_data[12] = sbp2_status[2];
994 sense_data[13] = sbp2_status[3];
995 sense_data[14] = sbp2_status[12];
996 sense_data[15] = sbp2_status[13];
998 sam_status = sbp2_status[0] & 0x3f;
1000 switch (sam_status) {
1001 case SAM_STAT_GOOD:
1002 case SAM_STAT_CHECK_CONDITION:
1003 case SAM_STAT_CONDITION_MET:
1004 case SAM_STAT_BUSY:
1005 case SAM_STAT_RESERVATION_CONFLICT:
1006 case SAM_STAT_COMMAND_TERMINATED:
1007 return DID_OK << 16 | sam_status;
1009 default:
1010 return DID_ERROR << 16;
1014 static void
1015 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1017 struct sbp2_command_orb *orb =
1018 container_of(base_orb, struct sbp2_command_orb, base);
1019 struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1020 int result;
1022 if (status != NULL) {
1023 if (STATUS_GET_DEAD(*status))
1024 sbp2_agent_reset(orb->lu);
1026 switch (STATUS_GET_RESPONSE(*status)) {
1027 case SBP2_STATUS_REQUEST_COMPLETE:
1028 result = DID_OK << 16;
1029 break;
1030 case SBP2_STATUS_TRANSPORT_FAILURE:
1031 result = DID_BUS_BUSY << 16;
1032 break;
1033 case SBP2_STATUS_ILLEGAL_REQUEST:
1034 case SBP2_STATUS_VENDOR_DEPENDENT:
1035 default:
1036 result = DID_ERROR << 16;
1037 break;
1040 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1041 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1042 orb->cmd->sense_buffer);
1043 } else {
1045 * If the orb completes with status == NULL, something
1046 * went wrong, typically a bus reset happened mid-orb
1047 * or when sending the write (less likely).
1049 result = DID_BUS_BUSY << 16;
1052 dma_unmap_single(device->card->device, orb->base.request_bus,
1053 sizeof(orb->request), DMA_TO_DEVICE);
1055 if (scsi_sg_count(orb->cmd) > 0)
1056 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1057 scsi_sg_count(orb->cmd),
1058 orb->cmd->sc_data_direction);
1060 if (orb->page_table_bus != 0)
1061 dma_unmap_single(device->card->device, orb->page_table_bus,
1062 sizeof(orb->page_table), DMA_TO_DEVICE);
1064 orb->cmd->result = result;
1065 orb->done(orb->cmd);
1068 static int
1069 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1070 struct sbp2_logical_unit *lu)
1072 struct scatterlist *sg;
1073 int sg_len, l, i, j, count;
1074 dma_addr_t sg_addr;
1076 sg = scsi_sglist(orb->cmd);
1077 count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1078 orb->cmd->sc_data_direction);
1079 if (count == 0)
1080 goto fail;
1083 * Handle the special case where there is only one element in
1084 * the scatter list by converting it to an immediate block
1085 * request. This is also a workaround for broken devices such
1086 * as the second generation iPod which doesn't support page
1087 * tables.
1089 if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1090 orb->request.data_descriptor.high = lu->tgt->address_high;
1091 orb->request.data_descriptor.low = sg_dma_address(sg);
1092 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1093 return 0;
1097 * Convert the scatterlist to an sbp2 page table. If any
1098 * scatterlist entries are too big for sbp2, we split them as we
1099 * go. Even if we ask the block I/O layer to not give us sg
1100 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1101 * during DMA mapping, and Linux currently doesn't prevent this.
1103 for (i = 0, j = 0; i < count; i++) {
1104 sg_len = sg_dma_len(sg + i);
1105 sg_addr = sg_dma_address(sg + i);
1106 while (sg_len) {
1107 /* FIXME: This won't get us out of the pinch. */
1108 if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1109 fw_error("page table overflow\n");
1110 goto fail_page_table;
1112 l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1113 orb->page_table[j].low = sg_addr;
1114 orb->page_table[j].high = (l << 16);
1115 sg_addr += l;
1116 sg_len -= l;
1117 j++;
1121 fw_memcpy_to_be32(orb->page_table, orb->page_table,
1122 sizeof(orb->page_table[0]) * j);
1123 orb->page_table_bus =
1124 dma_map_single(device->card->device, orb->page_table,
1125 sizeof(orb->page_table), DMA_TO_DEVICE);
1126 if (dma_mapping_error(orb->page_table_bus))
1127 goto fail_page_table;
1130 * The data_descriptor pointer is the one case where we need
1131 * to fill in the node ID part of the address. All other
1132 * pointers assume that the data referenced reside on the
1133 * initiator (i.e. us), but data_descriptor can refer to data
1134 * on other nodes so we need to put our ID in descriptor.high.
1136 orb->request.data_descriptor.high = lu->tgt->address_high;
1137 orb->request.data_descriptor.low = orb->page_table_bus;
1138 orb->request.misc |=
1139 COMMAND_ORB_PAGE_TABLE_PRESENT |
1140 COMMAND_ORB_DATA_SIZE(j);
1142 return 0;
1144 fail_page_table:
1145 dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1146 orb->cmd->sc_data_direction);
1147 fail:
1148 return -ENOMEM;
1151 /* SCSI stack integration */
1153 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1155 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1156 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1157 struct sbp2_command_orb *orb;
1158 unsigned max_payload;
1159 int retval = SCSI_MLQUEUE_HOST_BUSY;
1162 * Bidirectional commands are not yet implemented, and unknown
1163 * transfer direction not handled.
1165 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1166 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1167 cmd->result = DID_ERROR << 16;
1168 done(cmd);
1169 return 0;
1172 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1173 if (orb == NULL) {
1174 fw_notify("failed to alloc orb\n");
1175 return SCSI_MLQUEUE_HOST_BUSY;
1178 /* Initialize rcode to something not RCODE_COMPLETE. */
1179 orb->base.rcode = -1;
1180 kref_init(&orb->base.kref);
1182 orb->lu = lu;
1183 orb->done = done;
1184 orb->cmd = cmd;
1186 orb->request.next.high = SBP2_ORB_NULL;
1187 orb->request.next.low = 0x0;
1189 * At speed 100 we can do 512 bytes per packet, at speed 200,
1190 * 1024 bytes per packet etc. The SBP-2 max_payload field
1191 * specifies the max payload size as 2 ^ (max_payload + 2), so
1192 * if we set this to max_speed + 7, we get the right value.
1194 max_payload = min(device->max_speed + 7,
1195 device->card->max_receive - 1);
1196 orb->request.misc =
1197 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1198 COMMAND_ORB_SPEED(device->max_speed) |
1199 COMMAND_ORB_NOTIFY;
1201 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1202 orb->request.misc |=
1203 COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1204 else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1205 orb->request.misc |=
1206 COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1208 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1209 goto out;
1211 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1213 memset(orb->request.command_block,
1214 0, sizeof(orb->request.command_block));
1215 memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1217 orb->base.callback = complete_command_orb;
1218 orb->base.request_bus =
1219 dma_map_single(device->card->device, &orb->request,
1220 sizeof(orb->request), DMA_TO_DEVICE);
1221 if (dma_mapping_error(orb->base.request_bus))
1222 goto out;
1224 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1225 lu->command_block_agent_address + SBP2_ORB_POINTER);
1226 retval = 0;
1227 out:
1228 kref_put(&orb->base.kref, free_orb);
1229 return retval;
1232 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1234 struct sbp2_logical_unit *lu = sdev->hostdata;
1236 sdev->allow_restart = 1;
1238 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1239 sdev->inquiry_len = 36;
1241 return 0;
1244 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1246 struct sbp2_logical_unit *lu = sdev->hostdata;
1248 sdev->use_10_for_rw = 1;
1250 if (sdev->type == TYPE_ROM)
1251 sdev->use_10_for_ms = 1;
1253 if (sdev->type == TYPE_DISK &&
1254 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1255 sdev->skip_ms_page_8 = 1;
1257 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1258 sdev->fix_capacity = 1;
1260 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1261 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1263 return 0;
1267 * Called by scsi stack when something has really gone wrong. Usually
1268 * called when a command has timed-out for some reason.
1270 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1272 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1274 fw_notify("sbp2_scsi_abort\n");
1275 sbp2_agent_reset(lu);
1276 sbp2_cancel_orbs(lu);
1278 return SUCCESS;
1282 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1283 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1285 * This is the concatenation of target port identifier and logical unit
1286 * identifier as per SAM-2...SAM-4 annex A.
1288 static ssize_t
1289 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1290 char *buf)
1292 struct scsi_device *sdev = to_scsi_device(dev);
1293 struct sbp2_logical_unit *lu;
1294 struct fw_device *device;
1296 if (!sdev)
1297 return 0;
1299 lu = sdev->hostdata;
1300 device = fw_device(lu->tgt->unit->device.parent);
1302 return sprintf(buf, "%08x%08x:%06x:%04x\n",
1303 device->config_rom[3], device->config_rom[4],
1304 lu->tgt->directory_id, lu->lun);
1307 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1309 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1310 &dev_attr_ieee1394_id,
1311 NULL
1314 static struct scsi_host_template scsi_driver_template = {
1315 .module = THIS_MODULE,
1316 .name = "SBP-2 IEEE-1394",
1317 .proc_name = sbp2_driver_name,
1318 .queuecommand = sbp2_scsi_queuecommand,
1319 .slave_alloc = sbp2_scsi_slave_alloc,
1320 .slave_configure = sbp2_scsi_slave_configure,
1321 .eh_abort_handler = sbp2_scsi_abort,
1322 .this_id = -1,
1323 .sg_tablesize = SG_ALL,
1324 .use_clustering = ENABLE_CLUSTERING,
1325 .cmd_per_lun = 1,
1326 .can_queue = 1,
1327 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1330 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1331 MODULE_DESCRIPTION("SCSI over IEEE1394");
1332 MODULE_LICENSE("GPL");
1333 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1335 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1336 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1337 MODULE_ALIAS("sbp2");
1338 #endif
1340 static int __init sbp2_init(void)
1342 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1343 if (!sbp2_wq)
1344 return -ENOMEM;
1346 return driver_register(&sbp2_driver.driver);
1349 static void __exit sbp2_cleanup(void)
1351 driver_unregister(&sbp2_driver.driver);
1352 destroy_workqueue(sbp2_wq);
1355 module_init(sbp2_init);
1356 module_exit(sbp2_cleanup);