pcmcia: CompactFlash driver for PA Semi Electra boards
[pv_ops_mirror.git] / drivers / firmware / dmi_scan.c
blob0cdadea7a40e9f58cd027697611bf0d18eafd1bd
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/dmi.h>
6 #include <linux/efi.h>
7 #include <linux/bootmem.h>
8 #include <linux/slab.h>
9 #include <asm/dmi.h>
11 static char * __init dmi_string(const struct dmi_header *dm, u8 s)
13 const u8 *bp = ((u8 *) dm) + dm->length;
14 char *str = "";
16 if (s) {
17 s--;
18 while (s > 0 && *bp) {
19 bp += strlen(bp) + 1;
20 s--;
23 if (*bp != 0) {
24 str = dmi_alloc(strlen(bp) + 1);
25 if (str != NULL)
26 strcpy(str, bp);
27 else
28 printk(KERN_ERR "dmi_string: out of memory.\n");
32 return str;
36 * We have to be cautious here. We have seen BIOSes with DMI pointers
37 * pointing to completely the wrong place for example
39 static int __init dmi_table(u32 base, int len, int num,
40 void (*decode)(const struct dmi_header *))
42 u8 *buf, *data;
43 int i = 0;
45 buf = dmi_ioremap(base, len);
46 if (buf == NULL)
47 return -1;
49 data = buf;
52 * Stop when we see all the items the table claimed to have
53 * OR we run off the end of the table (also happens)
55 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
56 const struct dmi_header *dm = (const struct dmi_header *)data;
59 * We want to know the total length (formated area and strings)
60 * before decoding to make sure we won't run off the table in
61 * dmi_decode or dmi_string
63 data += dm->length;
64 while ((data - buf < len - 1) && (data[0] || data[1]))
65 data++;
66 if (data - buf < len - 1)
67 decode(dm);
68 data += 2;
69 i++;
71 dmi_iounmap(buf, len);
72 return 0;
75 static int __init dmi_checksum(const u8 *buf)
77 u8 sum = 0;
78 int a;
80 for (a = 0; a < 15; a++)
81 sum += buf[a];
83 return sum == 0;
86 static char *dmi_ident[DMI_STRING_MAX];
87 static LIST_HEAD(dmi_devices);
88 int dmi_available;
91 * Save a DMI string
93 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
95 const char *d = (const char*) dm;
96 char *p;
98 if (dmi_ident[slot])
99 return;
101 p = dmi_string(dm, d[string]);
102 if (p == NULL)
103 return;
105 dmi_ident[slot] = p;
108 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
110 const u8 *d = (u8*) dm + index;
111 char *s;
112 int is_ff = 1, is_00 = 1, i;
114 if (dmi_ident[slot])
115 return;
117 for (i = 0; i < 16 && (is_ff || is_00); i++) {
118 if(d[i] != 0x00) is_ff = 0;
119 if(d[i] != 0xFF) is_00 = 0;
122 if (is_ff || is_00)
123 return;
125 s = dmi_alloc(16*2+4+1);
126 if (!s)
127 return;
129 sprintf(s,
130 "%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
131 d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7],
132 d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]);
134 dmi_ident[slot] = s;
137 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
139 const u8 *d = (u8*) dm + index;
140 char *s;
142 if (dmi_ident[slot])
143 return;
145 s = dmi_alloc(4);
146 if (!s)
147 return;
149 sprintf(s, "%u", *d & 0x7F);
150 dmi_ident[slot] = s;
153 static void __init dmi_save_devices(const struct dmi_header *dm)
155 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
156 struct dmi_device *dev;
158 for (i = 0; i < count; i++) {
159 const char *d = (char *)(dm + 1) + (i * 2);
161 /* Skip disabled device */
162 if ((*d & 0x80) == 0)
163 continue;
165 dev = dmi_alloc(sizeof(*dev));
166 if (!dev) {
167 printk(KERN_ERR "dmi_save_devices: out of memory.\n");
168 break;
171 dev->type = *d++ & 0x7f;
172 dev->name = dmi_string(dm, *d);
173 dev->device_data = NULL;
174 list_add(&dev->list, &dmi_devices);
178 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
180 int i, count = *(u8 *)(dm + 1);
181 struct dmi_device *dev;
183 for (i = 1; i <= count; i++) {
184 dev = dmi_alloc(sizeof(*dev));
185 if (!dev) {
186 printk(KERN_ERR
187 "dmi_save_oem_strings_devices: out of memory.\n");
188 break;
191 dev->type = DMI_DEV_TYPE_OEM_STRING;
192 dev->name = dmi_string(dm, i);
193 dev->device_data = NULL;
195 list_add(&dev->list, &dmi_devices);
199 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
201 struct dmi_device *dev;
202 void * data;
204 data = dmi_alloc(dm->length);
205 if (data == NULL) {
206 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
207 return;
210 memcpy(data, dm, dm->length);
212 dev = dmi_alloc(sizeof(*dev));
213 if (!dev) {
214 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
215 return;
218 dev->type = DMI_DEV_TYPE_IPMI;
219 dev->name = "IPMI controller";
220 dev->device_data = data;
222 list_add(&dev->list, &dmi_devices);
226 * Process a DMI table entry. Right now all we care about are the BIOS
227 * and machine entries. For 2.5 we should pull the smbus controller info
228 * out of here.
230 static void __init dmi_decode(const struct dmi_header *dm)
232 switch(dm->type) {
233 case 0: /* BIOS Information */
234 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
235 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
236 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
237 break;
238 case 1: /* System Information */
239 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
240 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
241 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
242 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
243 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
244 break;
245 case 2: /* Base Board Information */
246 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
247 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
248 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
249 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
250 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
251 break;
252 case 3: /* Chassis Information */
253 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
254 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
255 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
256 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
257 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
258 break;
259 case 10: /* Onboard Devices Information */
260 dmi_save_devices(dm);
261 break;
262 case 11: /* OEM Strings */
263 dmi_save_oem_strings_devices(dm);
264 break;
265 case 38: /* IPMI Device Information */
266 dmi_save_ipmi_device(dm);
270 static int __init dmi_present(const char __iomem *p)
272 u8 buf[15];
274 memcpy_fromio(buf, p, 15);
275 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
276 u16 num = (buf[13] << 8) | buf[12];
277 u16 len = (buf[7] << 8) | buf[6];
278 u32 base = (buf[11] << 24) | (buf[10] << 16) |
279 (buf[9] << 8) | buf[8];
282 * DMI version 0.0 means that the real version is taken from
283 * the SMBIOS version, which we don't know at this point.
285 if (buf[14] != 0)
286 printk(KERN_INFO "DMI %d.%d present.\n",
287 buf[14] >> 4, buf[14] & 0xF);
288 else
289 printk(KERN_INFO "DMI present.\n");
290 if (dmi_table(base,len, num, dmi_decode) == 0)
291 return 0;
293 return 1;
296 void __init dmi_scan_machine(void)
298 char __iomem *p, *q;
299 int rc;
301 if (efi_enabled) {
302 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
303 goto out;
305 /* This is called as a core_initcall() because it isn't
306 * needed during early boot. This also means we can
307 * iounmap the space when we're done with it.
309 p = dmi_ioremap(efi.smbios, 32);
310 if (p == NULL)
311 goto out;
313 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
314 dmi_iounmap(p, 32);
315 if (!rc) {
316 dmi_available = 1;
317 return;
320 else {
322 * no iounmap() for that ioremap(); it would be a no-op, but
323 * it's so early in setup that sucker gets confused into doing
324 * what it shouldn't if we actually call it.
326 p = dmi_ioremap(0xF0000, 0x10000);
327 if (p == NULL)
328 goto out;
330 for (q = p; q < p + 0x10000; q += 16) {
331 rc = dmi_present(q);
332 if (!rc) {
333 dmi_available = 1;
334 return;
338 out: printk(KERN_INFO "DMI not present or invalid.\n");
342 * dmi_check_system - check system DMI data
343 * @list: array of dmi_system_id structures to match against
344 * All non-null elements of the list must match
345 * their slot's (field index's) data (i.e., each
346 * list string must be a substring of the specified
347 * DMI slot's string data) to be considered a
348 * successful match.
350 * Walk the blacklist table running matching functions until someone
351 * returns non zero or we hit the end. Callback function is called for
352 * each successful match. Returns the number of matches.
354 int dmi_check_system(const struct dmi_system_id *list)
356 int i, count = 0;
357 const struct dmi_system_id *d = list;
359 while (d->ident) {
360 for (i = 0; i < ARRAY_SIZE(d->matches); i++) {
361 int s = d->matches[i].slot;
362 if (s == DMI_NONE)
363 continue;
364 if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr))
365 continue;
366 /* No match */
367 goto fail;
369 count++;
370 if (d->callback && d->callback(d))
371 break;
372 fail: d++;
375 return count;
377 EXPORT_SYMBOL(dmi_check_system);
380 * dmi_get_system_info - return DMI data value
381 * @field: data index (see enum dmi_field)
383 * Returns one DMI data value, can be used to perform
384 * complex DMI data checks.
386 const char *dmi_get_system_info(int field)
388 return dmi_ident[field];
390 EXPORT_SYMBOL(dmi_get_system_info);
394 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
395 * @str: Case sensitive Name
397 int dmi_name_in_vendors(const char *str)
399 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
400 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
401 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
402 int i;
403 for (i = 0; fields[i] != DMI_NONE; i++) {
404 int f = fields[i];
405 if (dmi_ident[f] && strstr(dmi_ident[f], str))
406 return 1;
408 return 0;
410 EXPORT_SYMBOL(dmi_name_in_vendors);
413 * dmi_find_device - find onboard device by type/name
414 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
415 * @name: device name string or %NULL to match all
416 * @from: previous device found in search, or %NULL for new search.
418 * Iterates through the list of known onboard devices. If a device is
419 * found with a matching @vendor and @device, a pointer to its device
420 * structure is returned. Otherwise, %NULL is returned.
421 * A new search is initiated by passing %NULL as the @from argument.
422 * If @from is not %NULL, searches continue from next device.
424 const struct dmi_device * dmi_find_device(int type, const char *name,
425 const struct dmi_device *from)
427 const struct list_head *head = from ? &from->list : &dmi_devices;
428 struct list_head *d;
430 for(d = head->next; d != &dmi_devices; d = d->next) {
431 const struct dmi_device *dev =
432 list_entry(d, struct dmi_device, list);
434 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
435 ((name == NULL) || (strcmp(dev->name, name) == 0)))
436 return dev;
439 return NULL;
441 EXPORT_SYMBOL(dmi_find_device);
444 * dmi_get_year - Return year of a DMI date
445 * @field: data index (like dmi_get_system_info)
447 * Returns -1 when the field doesn't exist. 0 when it is broken.
449 int dmi_get_year(int field)
451 int year;
452 const char *s = dmi_get_system_info(field);
454 if (!s)
455 return -1;
456 if (*s == '\0')
457 return 0;
458 s = strrchr(s, '/');
459 if (!s)
460 return 0;
462 s += 1;
463 year = simple_strtoul(s, NULL, 0);
464 if (year && year < 100) { /* 2-digit year */
465 year += 1900;
466 if (year < 1996) /* no dates < spec 1.0 */
467 year += 100;
470 return year;