4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
51 #include <asm/byteorder.h>
53 #include <asm/uaccess.h>
55 #include <asm/bitops.h>
57 static int __ide_end_request(ide_drive_t
*drive
, struct request
*rq
,
58 int uptodate
, unsigned int nr_bytes
)
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
66 if (blk_noretry_request(rq
) && end_io_error(uptodate
))
67 nr_bytes
= rq
->hard_nr_sectors
<< 9;
69 if (!blk_fs_request(rq
) && end_io_error(uptodate
) && !rq
->errors
)
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
76 if (drive
->state
== DMA_PIO_RETRY
&& drive
->retry_pio
<= 3) {
78 HWGROUP(drive
)->hwif
->ide_dma_on(drive
);
81 if (!end_that_request_chunk(rq
, uptodate
, nr_bytes
)) {
82 add_disk_randomness(rq
->rq_disk
);
83 if (!list_empty(&rq
->queuelist
))
84 blkdev_dequeue_request(rq
);
85 HWGROUP(drive
)->rq
= NULL
;
86 end_that_request_last(rq
, uptodate
);
94 * ide_end_request - complete an IDE I/O
95 * @drive: IDE device for the I/O
97 * @nr_sectors: number of sectors completed
99 * This is our end_request wrapper function. We complete the I/O
100 * update random number input and dequeue the request, which if
101 * it was tagged may be out of order.
104 int ide_end_request (ide_drive_t
*drive
, int uptodate
, int nr_sectors
)
106 unsigned int nr_bytes
= nr_sectors
<< 9;
112 * room for locking improvements here, the calls below don't
113 * need the queue lock held at all
115 spin_lock_irqsave(&ide_lock
, flags
);
116 rq
= HWGROUP(drive
)->rq
;
119 if (blk_pc_request(rq
))
120 nr_bytes
= rq
->data_len
;
122 nr_bytes
= rq
->hard_cur_sectors
<< 9;
125 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_bytes
);
127 spin_unlock_irqrestore(&ide_lock
, flags
);
130 EXPORT_SYMBOL(ide_end_request
);
133 * Power Management state machine. This one is rather trivial for now,
134 * we should probably add more, like switching back to PIO on suspend
135 * to help some BIOSes, re-do the door locking on resume, etc...
139 ide_pm_flush_cache
= ide_pm_state_start_suspend
,
142 idedisk_pm_restore_pio
= ide_pm_state_start_resume
,
147 static void ide_complete_power_step(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 error
)
149 struct request_pm_state
*pm
= rq
->data
;
151 if (drive
->media
!= ide_disk
)
154 switch (pm
->pm_step
) {
155 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) complete */
156 if (pm
->pm_state
== PM_EVENT_FREEZE
)
157 pm
->pm_step
= ide_pm_state_completed
;
159 pm
->pm_step
= idedisk_pm_standby
;
161 case idedisk_pm_standby
: /* Suspend step 2 (standby) complete */
162 pm
->pm_step
= ide_pm_state_completed
;
164 case idedisk_pm_restore_pio
: /* Resume step 1 complete */
165 pm
->pm_step
= idedisk_pm_idle
;
167 case idedisk_pm_idle
: /* Resume step 2 (idle) complete */
168 pm
->pm_step
= ide_pm_restore_dma
;
173 static ide_startstop_t
ide_start_power_step(ide_drive_t
*drive
, struct request
*rq
)
175 struct request_pm_state
*pm
= rq
->data
;
176 ide_task_t
*args
= rq
->special
;
178 memset(args
, 0, sizeof(*args
));
180 switch (pm
->pm_step
) {
181 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) */
182 if (drive
->media
!= ide_disk
)
184 /* Not supported? Switch to next step now. */
185 if (!drive
->wcache
|| !ide_id_has_flush_cache(drive
->id
)) {
186 ide_complete_power_step(drive
, rq
, 0, 0);
189 if (ide_id_has_flush_cache_ext(drive
->id
))
190 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_FLUSH_CACHE_EXT
;
192 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_FLUSH_CACHE
;
193 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
194 args
->handler
= &task_no_data_intr
;
195 return do_rw_taskfile(drive
, args
);
197 case idedisk_pm_standby
: /* Suspend step 2 (standby) */
198 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_STANDBYNOW1
;
199 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
200 args
->handler
= &task_no_data_intr
;
201 return do_rw_taskfile(drive
, args
);
203 case idedisk_pm_restore_pio
: /* Resume step 1 (restore PIO) */
204 ide_set_max_pio(drive
);
206 * skip idedisk_pm_idle for ATAPI devices
208 if (drive
->media
!= ide_disk
)
209 pm
->pm_step
= ide_pm_restore_dma
;
211 ide_complete_power_step(drive
, rq
, 0, 0);
214 case idedisk_pm_idle
: /* Resume step 2 (idle) */
215 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_IDLEIMMEDIATE
;
216 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
217 args
->handler
= task_no_data_intr
;
218 return do_rw_taskfile(drive
, args
);
220 case ide_pm_restore_dma
: /* Resume step 3 (restore DMA) */
222 * Right now, all we do is call ide_set_dma(drive),
223 * we could be smarter and check for current xfer_speed
224 * in struct drive etc...
226 if (drive
->hwif
->ide_dma_on
== NULL
)
228 drive
->hwif
->dma_off_quietly(drive
);
230 * TODO: respect ->using_dma setting
235 pm
->pm_step
= ide_pm_state_completed
;
240 * ide_end_dequeued_request - complete an IDE I/O
241 * @drive: IDE device for the I/O
243 * @nr_sectors: number of sectors completed
245 * Complete an I/O that is no longer on the request queue. This
246 * typically occurs when we pull the request and issue a REQUEST_SENSE.
247 * We must still finish the old request but we must not tamper with the
248 * queue in the meantime.
250 * NOTE: This path does not handle barrier, but barrier is not supported
254 int ide_end_dequeued_request(ide_drive_t
*drive
, struct request
*rq
,
255 int uptodate
, int nr_sectors
)
260 spin_lock_irqsave(&ide_lock
, flags
);
262 BUG_ON(!blk_rq_started(rq
));
265 * if failfast is set on a request, override number of sectors and
266 * complete the whole request right now
268 if (blk_noretry_request(rq
) && end_io_error(uptodate
))
269 nr_sectors
= rq
->hard_nr_sectors
;
271 if (!blk_fs_request(rq
) && end_io_error(uptodate
) && !rq
->errors
)
275 * decide whether to reenable DMA -- 3 is a random magic for now,
276 * if we DMA timeout more than 3 times, just stay in PIO
278 if (drive
->state
== DMA_PIO_RETRY
&& drive
->retry_pio
<= 3) {
280 HWGROUP(drive
)->hwif
->ide_dma_on(drive
);
283 if (!end_that_request_first(rq
, uptodate
, nr_sectors
)) {
284 add_disk_randomness(rq
->rq_disk
);
285 if (blk_rq_tagged(rq
))
286 blk_queue_end_tag(drive
->queue
, rq
);
287 end_that_request_last(rq
, uptodate
);
290 spin_unlock_irqrestore(&ide_lock
, flags
);
293 EXPORT_SYMBOL_GPL(ide_end_dequeued_request
);
297 * ide_complete_pm_request - end the current Power Management request
298 * @drive: target drive
301 * This function cleans up the current PM request and stops the queue
304 static void ide_complete_pm_request (ide_drive_t
*drive
, struct request
*rq
)
309 printk("%s: completing PM request, %s\n", drive
->name
,
310 blk_pm_suspend_request(rq
) ? "suspend" : "resume");
312 spin_lock_irqsave(&ide_lock
, flags
);
313 if (blk_pm_suspend_request(rq
)) {
314 blk_stop_queue(drive
->queue
);
317 blk_start_queue(drive
->queue
);
319 blkdev_dequeue_request(rq
);
320 HWGROUP(drive
)->rq
= NULL
;
321 end_that_request_last(rq
, 1);
322 spin_unlock_irqrestore(&ide_lock
, flags
);
326 * ide_end_drive_cmd - end an explicit drive command
331 * Clean up after success/failure of an explicit drive command.
332 * These get thrown onto the queue so they are synchronized with
333 * real I/O operations on the drive.
335 * In LBA48 mode we have to read the register set twice to get
336 * all the extra information out.
339 void ide_end_drive_cmd (ide_drive_t
*drive
, u8 stat
, u8 err
)
341 ide_hwif_t
*hwif
= HWIF(drive
);
345 spin_lock_irqsave(&ide_lock
, flags
);
346 rq
= HWGROUP(drive
)->rq
;
347 spin_unlock_irqrestore(&ide_lock
, flags
);
349 if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
) {
350 u8
*args
= (u8
*) rq
->buffer
;
352 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
357 args
[2] = hwif
->INB(IDE_NSECTOR_REG
);
359 } else if (rq
->cmd_type
== REQ_TYPE_ATA_TASK
) {
360 u8
*args
= (u8
*) rq
->buffer
;
362 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
367 args
[2] = hwif
->INB(IDE_NSECTOR_REG
);
368 args
[3] = hwif
->INB(IDE_SECTOR_REG
);
369 args
[4] = hwif
->INB(IDE_LCYL_REG
);
370 args
[5] = hwif
->INB(IDE_HCYL_REG
);
371 args
[6] = hwif
->INB(IDE_SELECT_REG
);
373 } else if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
374 ide_task_t
*args
= (ide_task_t
*) rq
->special
;
376 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
379 if (args
->tf_in_flags
.b
.data
) {
380 u16 data
= hwif
->INW(IDE_DATA_REG
);
381 args
->tfRegister
[IDE_DATA_OFFSET
] = (data
) & 0xFF;
382 args
->hobRegister
[IDE_DATA_OFFSET
] = (data
>> 8) & 0xFF;
384 args
->tfRegister
[IDE_ERROR_OFFSET
] = err
;
385 /* be sure we're looking at the low order bits */
386 hwif
->OUTB(drive
->ctl
& ~0x80, IDE_CONTROL_REG
);
387 args
->tfRegister
[IDE_NSECTOR_OFFSET
] = hwif
->INB(IDE_NSECTOR_REG
);
388 args
->tfRegister
[IDE_SECTOR_OFFSET
] = hwif
->INB(IDE_SECTOR_REG
);
389 args
->tfRegister
[IDE_LCYL_OFFSET
] = hwif
->INB(IDE_LCYL_REG
);
390 args
->tfRegister
[IDE_HCYL_OFFSET
] = hwif
->INB(IDE_HCYL_REG
);
391 args
->tfRegister
[IDE_SELECT_OFFSET
] = hwif
->INB(IDE_SELECT_REG
);
392 args
->tfRegister
[IDE_STATUS_OFFSET
] = stat
;
394 if (drive
->addressing
== 1) {
395 hwif
->OUTB(drive
->ctl
|0x80, IDE_CONTROL_REG
);
396 args
->hobRegister
[IDE_FEATURE_OFFSET
] = hwif
->INB(IDE_FEATURE_REG
);
397 args
->hobRegister
[IDE_NSECTOR_OFFSET
] = hwif
->INB(IDE_NSECTOR_REG
);
398 args
->hobRegister
[IDE_SECTOR_OFFSET
] = hwif
->INB(IDE_SECTOR_REG
);
399 args
->hobRegister
[IDE_LCYL_OFFSET
] = hwif
->INB(IDE_LCYL_REG
);
400 args
->hobRegister
[IDE_HCYL_OFFSET
] = hwif
->INB(IDE_HCYL_REG
);
403 } else if (blk_pm_request(rq
)) {
404 struct request_pm_state
*pm
= rq
->data
;
406 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
407 drive
->name
, rq
->pm
->pm_step
, stat
, err
);
409 ide_complete_power_step(drive
, rq
, stat
, err
);
410 if (pm
->pm_step
== ide_pm_state_completed
)
411 ide_complete_pm_request(drive
, rq
);
415 spin_lock_irqsave(&ide_lock
, flags
);
416 blkdev_dequeue_request(rq
);
417 HWGROUP(drive
)->rq
= NULL
;
419 end_that_request_last(rq
, !rq
->errors
);
420 spin_unlock_irqrestore(&ide_lock
, flags
);
423 EXPORT_SYMBOL(ide_end_drive_cmd
);
426 * try_to_flush_leftover_data - flush junk
427 * @drive: drive to flush
429 * try_to_flush_leftover_data() is invoked in response to a drive
430 * unexpectedly having its DRQ_STAT bit set. As an alternative to
431 * resetting the drive, this routine tries to clear the condition
432 * by read a sector's worth of data from the drive. Of course,
433 * this may not help if the drive is *waiting* for data from *us*.
435 static void try_to_flush_leftover_data (ide_drive_t
*drive
)
437 int i
= (drive
->mult_count
? drive
->mult_count
: 1) * SECTOR_WORDS
;
439 if (drive
->media
!= ide_disk
)
443 u32 wcount
= (i
> 16) ? 16 : i
;
446 HWIF(drive
)->ata_input_data(drive
, buffer
, wcount
);
450 static void ide_kill_rq(ide_drive_t
*drive
, struct request
*rq
)
455 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
456 drv
->end_request(drive
, 0, 0);
458 ide_end_request(drive
, 0, 0);
461 static ide_startstop_t
ide_ata_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
463 ide_hwif_t
*hwif
= drive
->hwif
;
465 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
466 /* other bits are useless when BUSY */
467 rq
->errors
|= ERROR_RESET
;
468 } else if (stat
& ERR_STAT
) {
469 /* err has different meaning on cdrom and tape */
470 if (err
== ABRT_ERR
) {
471 if (drive
->select
.b
.lba
&&
472 /* some newer drives don't support WIN_SPECIFY */
473 hwif
->INB(IDE_COMMAND_REG
) == WIN_SPECIFY
)
475 } else if ((err
& BAD_CRC
) == BAD_CRC
) {
476 /* UDMA crc error, just retry the operation */
478 } else if (err
& (BBD_ERR
| ECC_ERR
)) {
479 /* retries won't help these */
480 rq
->errors
= ERROR_MAX
;
481 } else if (err
& TRK0_ERR
) {
482 /* help it find track zero */
483 rq
->errors
|= ERROR_RECAL
;
487 if ((stat
& DRQ_STAT
) && rq_data_dir(rq
) == READ
&& hwif
->err_stops_fifo
== 0)
488 try_to_flush_leftover_data(drive
);
490 if (rq
->errors
>= ERROR_MAX
|| blk_noretry_request(rq
)) {
491 ide_kill_rq(drive
, rq
);
495 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
496 rq
->errors
|= ERROR_RESET
;
498 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
500 return ide_do_reset(drive
);
503 if ((rq
->errors
& ERROR_RECAL
) == ERROR_RECAL
)
504 drive
->special
.b
.recalibrate
= 1;
511 static ide_startstop_t
ide_atapi_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
513 ide_hwif_t
*hwif
= drive
->hwif
;
515 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
516 /* other bits are useless when BUSY */
517 rq
->errors
|= ERROR_RESET
;
519 /* add decoding error stuff */
522 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
524 hwif
->OUTB(WIN_IDLEIMMEDIATE
, IDE_COMMAND_REG
);
526 if (rq
->errors
>= ERROR_MAX
) {
527 ide_kill_rq(drive
, rq
);
529 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
531 return ide_do_reset(drive
);
540 __ide_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
542 if (drive
->media
== ide_disk
)
543 return ide_ata_error(drive
, rq
, stat
, err
);
544 return ide_atapi_error(drive
, rq
, stat
, err
);
547 EXPORT_SYMBOL_GPL(__ide_error
);
550 * ide_error - handle an error on the IDE
551 * @drive: drive the error occurred on
552 * @msg: message to report
555 * ide_error() takes action based on the error returned by the drive.
556 * For normal I/O that may well include retries. We deal with
557 * both new-style (taskfile) and old style command handling here.
558 * In the case of taskfile command handling there is work left to
562 ide_startstop_t
ide_error (ide_drive_t
*drive
, const char *msg
, u8 stat
)
567 err
= ide_dump_status(drive
, msg
, stat
);
569 if ((rq
= HWGROUP(drive
)->rq
) == NULL
)
572 /* retry only "normal" I/O: */
573 if (!blk_fs_request(rq
)) {
575 ide_end_drive_cmd(drive
, stat
, err
);
582 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
583 return drv
->error(drive
, rq
, stat
, err
);
585 return __ide_error(drive
, rq
, stat
, err
);
588 EXPORT_SYMBOL_GPL(ide_error
);
590 ide_startstop_t
__ide_abort(ide_drive_t
*drive
, struct request
*rq
)
592 if (drive
->media
!= ide_disk
)
593 rq
->errors
|= ERROR_RESET
;
595 ide_kill_rq(drive
, rq
);
600 EXPORT_SYMBOL_GPL(__ide_abort
);
603 * ide_abort - abort pending IDE operations
604 * @drive: drive the error occurred on
605 * @msg: message to report
607 * ide_abort kills and cleans up when we are about to do a
608 * host initiated reset on active commands. Longer term we
609 * want handlers to have sensible abort handling themselves
611 * This differs fundamentally from ide_error because in
612 * this case the command is doing just fine when we
616 ide_startstop_t
ide_abort(ide_drive_t
*drive
, const char *msg
)
620 if (drive
== NULL
|| (rq
= HWGROUP(drive
)->rq
) == NULL
)
623 /* retry only "normal" I/O: */
624 if (!blk_fs_request(rq
)) {
626 ide_end_drive_cmd(drive
, BUSY_STAT
, 0);
633 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
634 return drv
->abort(drive
, rq
);
636 return __ide_abort(drive
, rq
);
640 * ide_cmd - issue a simple drive command
641 * @drive: drive the command is for
643 * @nsect: sector byte
644 * @handler: handler for the command completion
646 * Issue a simple drive command with interrupts.
647 * The drive must be selected beforehand.
650 static void ide_cmd (ide_drive_t
*drive
, u8 cmd
, u8 nsect
,
651 ide_handler_t
*handler
)
653 ide_hwif_t
*hwif
= HWIF(drive
);
655 hwif
->OUTB(drive
->ctl
,IDE_CONTROL_REG
); /* clear nIEN */
656 SELECT_MASK(drive
,0);
657 hwif
->OUTB(nsect
,IDE_NSECTOR_REG
);
658 ide_execute_command(drive
, cmd
, handler
, WAIT_CMD
, NULL
);
662 * drive_cmd_intr - drive command completion interrupt
663 * @drive: drive the completion interrupt occurred on
665 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
666 * We do any necessary data reading and then wait for the drive to
667 * go non busy. At that point we may read the error data and complete
671 static ide_startstop_t
drive_cmd_intr (ide_drive_t
*drive
)
673 struct request
*rq
= HWGROUP(drive
)->rq
;
674 ide_hwif_t
*hwif
= HWIF(drive
);
675 u8
*args
= (u8
*) rq
->buffer
;
676 u8 stat
= hwif
->INB(IDE_STATUS_REG
);
679 local_irq_enable_in_hardirq();
680 if ((stat
& DRQ_STAT
) && args
&& args
[3]) {
681 u8 io_32bit
= drive
->io_32bit
;
683 hwif
->ata_input_data(drive
, &args
[4], args
[3] * SECTOR_WORDS
);
684 drive
->io_32bit
= io_32bit
;
685 while (((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) && retries
--)
689 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
))
690 return ide_error(drive
, "drive_cmd", stat
);
691 /* calls ide_end_drive_cmd */
692 ide_end_drive_cmd(drive
, stat
, hwif
->INB(IDE_ERROR_REG
));
696 static void ide_init_specify_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
698 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->sect
;
699 task
->tfRegister
[IDE_SECTOR_OFFSET
] = drive
->sect
;
700 task
->tfRegister
[IDE_LCYL_OFFSET
] = drive
->cyl
;
701 task
->tfRegister
[IDE_HCYL_OFFSET
] = drive
->cyl
>>8;
702 task
->tfRegister
[IDE_SELECT_OFFSET
] = ((drive
->head
-1)|drive
->select
.all
)&0xBF;
703 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_SPECIFY
;
705 task
->handler
= &set_geometry_intr
;
708 static void ide_init_restore_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
710 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->sect
;
711 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_RESTORE
;
713 task
->handler
= &recal_intr
;
716 static void ide_init_setmult_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
718 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->mult_req
;
719 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_SETMULT
;
721 task
->handler
= &set_multmode_intr
;
724 static ide_startstop_t
ide_disk_special(ide_drive_t
*drive
)
726 special_t
*s
= &drive
->special
;
729 memset(&args
, 0, sizeof(ide_task_t
));
730 args
.command_type
= IDE_DRIVE_TASK_NO_DATA
;
732 if (s
->b
.set_geometry
) {
733 s
->b
.set_geometry
= 0;
734 ide_init_specify_cmd(drive
, &args
);
735 } else if (s
->b
.recalibrate
) {
736 s
->b
.recalibrate
= 0;
737 ide_init_restore_cmd(drive
, &args
);
738 } else if (s
->b
.set_multmode
) {
739 s
->b
.set_multmode
= 0;
740 if (drive
->mult_req
> drive
->id
->max_multsect
)
741 drive
->mult_req
= drive
->id
->max_multsect
;
742 ide_init_setmult_cmd(drive
, &args
);
744 int special
= s
->all
;
746 printk(KERN_ERR
"%s: bad special flag: 0x%02x\n", drive
->name
, special
);
750 do_rw_taskfile(drive
, &args
);
756 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
758 static int set_pio_mode_abuse(ide_hwif_t
*hwif
, u8 req_pio
)
767 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_DMA_MODES
) ? 1 : 0;
770 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_PREFETCH
) ? 1 : 0;
773 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_FAST_DEVSEL
) ? 1 : 0;
780 * do_special - issue some special commands
781 * @drive: drive the command is for
783 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
784 * commands to a drive. It used to do much more, but has been scaled
788 static ide_startstop_t
do_special (ide_drive_t
*drive
)
790 special_t
*s
= &drive
->special
;
793 printk("%s: do_special: 0x%02x\n", drive
->name
, s
->all
);
796 ide_hwif_t
*hwif
= drive
->hwif
;
797 u8 req_pio
= drive
->tune_req
;
801 if (set_pio_mode_abuse(drive
->hwif
, req_pio
)) {
802 if (hwif
->set_pio_mode
)
803 hwif
->set_pio_mode(drive
, req_pio
);
805 int keep_dma
= drive
->using_dma
;
807 ide_set_pio(drive
, req_pio
);
809 if (hwif
->host_flags
& IDE_HFLAG_SET_PIO_MODE_KEEP_DMA
) {
811 hwif
->ide_dma_on(drive
);
817 if (drive
->media
== ide_disk
)
818 return ide_disk_special(drive
);
826 void ide_map_sg(ide_drive_t
*drive
, struct request
*rq
)
828 ide_hwif_t
*hwif
= drive
->hwif
;
829 struct scatterlist
*sg
= hwif
->sg_table
;
831 if (hwif
->sg_mapped
) /* needed by ide-scsi */
834 if (rq
->cmd_type
!= REQ_TYPE_ATA_TASKFILE
) {
835 hwif
->sg_nents
= blk_rq_map_sg(drive
->queue
, rq
, sg
);
837 sg_init_one(sg
, rq
->buffer
, rq
->nr_sectors
* SECTOR_SIZE
);
842 EXPORT_SYMBOL_GPL(ide_map_sg
);
844 void ide_init_sg_cmd(ide_drive_t
*drive
, struct request
*rq
)
846 ide_hwif_t
*hwif
= drive
->hwif
;
848 hwif
->nsect
= hwif
->nleft
= rq
->nr_sectors
;
853 EXPORT_SYMBOL_GPL(ide_init_sg_cmd
);
856 * execute_drive_command - issue special drive command
857 * @drive: the drive to issue the command on
858 * @rq: the request structure holding the command
860 * execute_drive_cmd() issues a special drive command, usually
861 * initiated by ioctl() from the external hdparm program. The
862 * command can be a drive command, drive task or taskfile
863 * operation. Weirdly you can call it with NULL to wait for
864 * all commands to finish. Don't do this as that is due to change
867 static ide_startstop_t
execute_drive_cmd (ide_drive_t
*drive
,
870 ide_hwif_t
*hwif
= HWIF(drive
);
871 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
872 ide_task_t
*args
= rq
->special
;
877 hwif
->data_phase
= args
->data_phase
;
879 switch (hwif
->data_phase
) {
880 case TASKFILE_MULTI_OUT
:
882 case TASKFILE_MULTI_IN
:
884 ide_init_sg_cmd(drive
, rq
);
885 ide_map_sg(drive
, rq
);
890 if (args
->tf_out_flags
.all
!= 0)
891 return flagged_taskfile(drive
, args
);
892 return do_rw_taskfile(drive
, args
);
893 } else if (rq
->cmd_type
== REQ_TYPE_ATA_TASK
) {
894 u8
*args
= rq
->buffer
;
900 printk("%s: DRIVE_TASK_CMD ", drive
->name
);
901 printk("cmd=0x%02x ", args
[0]);
902 printk("fr=0x%02x ", args
[1]);
903 printk("ns=0x%02x ", args
[2]);
904 printk("sc=0x%02x ", args
[3]);
905 printk("lcyl=0x%02x ", args
[4]);
906 printk("hcyl=0x%02x ", args
[5]);
907 printk("sel=0x%02x\n", args
[6]);
909 hwif
->OUTB(args
[1], IDE_FEATURE_REG
);
910 hwif
->OUTB(args
[3], IDE_SECTOR_REG
);
911 hwif
->OUTB(args
[4], IDE_LCYL_REG
);
912 hwif
->OUTB(args
[5], IDE_HCYL_REG
);
913 sel
= (args
[6] & ~0x10);
914 if (drive
->select
.b
.unit
)
916 hwif
->OUTB(sel
, IDE_SELECT_REG
);
917 ide_cmd(drive
, args
[0], args
[2], &drive_cmd_intr
);
919 } else if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
) {
920 u8
*args
= rq
->buffer
;
925 printk("%s: DRIVE_CMD ", drive
->name
);
926 printk("cmd=0x%02x ", args
[0]);
927 printk("sc=0x%02x ", args
[1]);
928 printk("fr=0x%02x ", args
[2]);
929 printk("xx=0x%02x\n", args
[3]);
931 if (args
[0] == WIN_SMART
) {
932 hwif
->OUTB(0x4f, IDE_LCYL_REG
);
933 hwif
->OUTB(0xc2, IDE_HCYL_REG
);
934 hwif
->OUTB(args
[2],IDE_FEATURE_REG
);
935 hwif
->OUTB(args
[1],IDE_SECTOR_REG
);
936 ide_cmd(drive
, args
[0], args
[3], &drive_cmd_intr
);
939 hwif
->OUTB(args
[2],IDE_FEATURE_REG
);
940 ide_cmd(drive
, args
[0], args
[1], &drive_cmd_intr
);
946 * NULL is actually a valid way of waiting for
947 * all current requests to be flushed from the queue.
950 printk("%s: DRIVE_CMD (null)\n", drive
->name
);
952 ide_end_drive_cmd(drive
,
953 hwif
->INB(IDE_STATUS_REG
),
954 hwif
->INB(IDE_ERROR_REG
));
958 static void ide_check_pm_state(ide_drive_t
*drive
, struct request
*rq
)
960 struct request_pm_state
*pm
= rq
->data
;
962 if (blk_pm_suspend_request(rq
) &&
963 pm
->pm_step
== ide_pm_state_start_suspend
)
964 /* Mark drive blocked when starting the suspend sequence. */
966 else if (blk_pm_resume_request(rq
) &&
967 pm
->pm_step
== ide_pm_state_start_resume
) {
969 * The first thing we do on wakeup is to wait for BSY bit to
970 * go away (with a looong timeout) as a drive on this hwif may
971 * just be POSTing itself.
972 * We do that before even selecting as the "other" device on
973 * the bus may be broken enough to walk on our toes at this
978 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive
->name
);
980 rc
= ide_wait_not_busy(HWIF(drive
), 35000);
982 printk(KERN_WARNING
"%s: bus not ready on wakeup\n", drive
->name
);
984 HWIF(drive
)->OUTB(8, HWIF(drive
)->io_ports
[IDE_CONTROL_OFFSET
]);
985 rc
= ide_wait_not_busy(HWIF(drive
), 100000);
987 printk(KERN_WARNING
"%s: drive not ready on wakeup\n", drive
->name
);
992 * start_request - start of I/O and command issuing for IDE
994 * start_request() initiates handling of a new I/O request. It
995 * accepts commands and I/O (read/write) requests. It also does
996 * the final remapping for weird stuff like EZDrive. Once
997 * device mapper can work sector level the EZDrive stuff can go away
999 * FIXME: this function needs a rename
1002 static ide_startstop_t
start_request (ide_drive_t
*drive
, struct request
*rq
)
1004 ide_startstop_t startstop
;
1007 BUG_ON(!blk_rq_started(rq
));
1010 printk("%s: start_request: current=0x%08lx\n",
1011 HWIF(drive
)->name
, (unsigned long) rq
);
1014 /* bail early if we've exceeded max_failures */
1015 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
1020 if (blk_fs_request(rq
) &&
1021 (drive
->media
== ide_disk
|| drive
->media
== ide_floppy
)) {
1022 block
+= drive
->sect0
;
1024 /* Yecch - this will shift the entire interval,
1025 possibly killing some innocent following sector */
1026 if (block
== 0 && drive
->remap_0_to_1
== 1)
1027 block
= 1; /* redirect MBR access to EZ-Drive partn table */
1029 if (blk_pm_request(rq
))
1030 ide_check_pm_state(drive
, rq
);
1032 SELECT_DRIVE(drive
);
1033 if (ide_wait_stat(&startstop
, drive
, drive
->ready_stat
, BUSY_STAT
|DRQ_STAT
, WAIT_READY
)) {
1034 printk(KERN_ERR
"%s: drive not ready for command\n", drive
->name
);
1037 if (!drive
->special
.all
) {
1041 * We reset the drive so we need to issue a SETFEATURES.
1042 * Do it _after_ do_special() restored device parameters.
1044 if (drive
->current_speed
== 0xff)
1045 ide_config_drive_speed(drive
, drive
->desired_speed
);
1047 if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
||
1048 rq
->cmd_type
== REQ_TYPE_ATA_TASK
||
1049 rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
)
1050 return execute_drive_cmd(drive
, rq
);
1051 else if (blk_pm_request(rq
)) {
1052 struct request_pm_state
*pm
= rq
->data
;
1054 printk("%s: start_power_step(step: %d)\n",
1055 drive
->name
, rq
->pm
->pm_step
);
1057 startstop
= ide_start_power_step(drive
, rq
);
1058 if (startstop
== ide_stopped
&&
1059 pm
->pm_step
== ide_pm_state_completed
)
1060 ide_complete_pm_request(drive
, rq
);
1064 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
1065 return drv
->do_request(drive
, rq
, block
);
1067 return do_special(drive
);
1069 ide_kill_rq(drive
, rq
);
1074 * ide_stall_queue - pause an IDE device
1075 * @drive: drive to stall
1076 * @timeout: time to stall for (jiffies)
1078 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1079 * to the hwgroup by sleeping for timeout jiffies.
1082 void ide_stall_queue (ide_drive_t
*drive
, unsigned long timeout
)
1084 if (timeout
> WAIT_WORSTCASE
)
1085 timeout
= WAIT_WORSTCASE
;
1086 drive
->sleep
= timeout
+ jiffies
;
1087 drive
->sleeping
= 1;
1090 EXPORT_SYMBOL(ide_stall_queue
);
1092 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1095 * choose_drive - select a drive to service
1096 * @hwgroup: hardware group to select on
1098 * choose_drive() selects the next drive which will be serviced.
1099 * This is necessary because the IDE layer can't issue commands
1100 * to both drives on the same cable, unlike SCSI.
1103 static inline ide_drive_t
*choose_drive (ide_hwgroup_t
*hwgroup
)
1105 ide_drive_t
*drive
, *best
;
1109 drive
= hwgroup
->drive
;
1112 * drive is doing pre-flush, ordered write, post-flush sequence. even
1113 * though that is 3 requests, it must be seen as a single transaction.
1114 * we must not preempt this drive until that is complete
1116 if (blk_queue_flushing(drive
->queue
)) {
1118 * small race where queue could get replugged during
1119 * the 3-request flush cycle, just yank the plug since
1120 * we want it to finish asap
1122 blk_remove_plug(drive
->queue
);
1127 if ((!drive
->sleeping
|| time_after_eq(jiffies
, drive
->sleep
))
1128 && !elv_queue_empty(drive
->queue
)) {
1130 || (drive
->sleeping
&& (!best
->sleeping
|| time_before(drive
->sleep
, best
->sleep
)))
1131 || (!best
->sleeping
&& time_before(WAKEUP(drive
), WAKEUP(best
))))
1133 if (!blk_queue_plugged(drive
->queue
))
1137 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1138 if (best
&& best
->nice1
&& !best
->sleeping
&& best
!= hwgroup
->drive
&& best
->service_time
> WAIT_MIN_SLEEP
) {
1139 long t
= (signed long)(WAKEUP(best
) - jiffies
);
1140 if (t
>= WAIT_MIN_SLEEP
) {
1142 * We *may* have some time to spare, but first let's see if
1143 * someone can potentially benefit from our nice mood today..
1147 if (!drive
->sleeping
1148 && time_before(jiffies
- best
->service_time
, WAKEUP(drive
))
1149 && time_before(WAKEUP(drive
), jiffies
+ t
))
1151 ide_stall_queue(best
, min_t(long, t
, 10 * WAIT_MIN_SLEEP
));
1154 } while ((drive
= drive
->next
) != best
);
1161 * Issue a new request to a drive from hwgroup
1162 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1164 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1165 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1166 * may have both interfaces in a single hwgroup to "serialize" access.
1167 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1168 * together into one hwgroup for serialized access.
1170 * Note also that several hwgroups can end up sharing a single IRQ,
1171 * possibly along with many other devices. This is especially common in
1172 * PCI-based systems with off-board IDE controller cards.
1174 * The IDE driver uses the single global ide_lock spinlock to protect
1175 * access to the request queues, and to protect the hwgroup->busy flag.
1177 * The first thread into the driver for a particular hwgroup sets the
1178 * hwgroup->busy flag to indicate that this hwgroup is now active,
1179 * and then initiates processing of the top request from the request queue.
1181 * Other threads attempting entry notice the busy setting, and will simply
1182 * queue their new requests and exit immediately. Note that hwgroup->busy
1183 * remains set even when the driver is merely awaiting the next interrupt.
1184 * Thus, the meaning is "this hwgroup is busy processing a request".
1186 * When processing of a request completes, the completing thread or IRQ-handler
1187 * will start the next request from the queue. If no more work remains,
1188 * the driver will clear the hwgroup->busy flag and exit.
1190 * The ide_lock (spinlock) is used to protect all access to the
1191 * hwgroup->busy flag, but is otherwise not needed for most processing in
1192 * the driver. This makes the driver much more friendlier to shared IRQs
1193 * than previous designs, while remaining 100% (?) SMP safe and capable.
1195 static void ide_do_request (ide_hwgroup_t
*hwgroup
, int masked_irq
)
1200 ide_startstop_t startstop
;
1203 /* for atari only: POSSIBLY BROKEN HERE(?) */
1204 ide_get_lock(ide_intr
, hwgroup
);
1206 /* caller must own ide_lock */
1207 BUG_ON(!irqs_disabled());
1209 while (!hwgroup
->busy
) {
1211 drive
= choose_drive(hwgroup
);
1212 if (drive
== NULL
) {
1214 unsigned long sleep
= 0; /* shut up, gcc */
1216 drive
= hwgroup
->drive
;
1218 if (drive
->sleeping
&& (!sleeping
|| time_before(drive
->sleep
, sleep
))) {
1220 sleep
= drive
->sleep
;
1222 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1225 * Take a short snooze, and then wake up this hwgroup again.
1226 * This gives other hwgroups on the same a chance to
1227 * play fairly with us, just in case there are big differences
1228 * in relative throughputs.. don't want to hog the cpu too much.
1230 if (time_before(sleep
, jiffies
+ WAIT_MIN_SLEEP
))
1231 sleep
= jiffies
+ WAIT_MIN_SLEEP
;
1233 if (timer_pending(&hwgroup
->timer
))
1234 printk(KERN_CRIT
"ide_set_handler: timer already active\n");
1236 /* so that ide_timer_expiry knows what to do */
1237 hwgroup
->sleeping
= 1;
1238 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
1239 mod_timer(&hwgroup
->timer
, sleep
);
1240 /* we purposely leave hwgroup->busy==1
1243 /* Ugly, but how can we sleep for the lock
1244 * otherwise? perhaps from tq_disk?
1247 /* for atari only */
1252 /* no more work for this hwgroup (for now) */
1257 if (hwgroup
->hwif
->sharing_irq
&&
1258 hwif
!= hwgroup
->hwif
&&
1259 hwif
->io_ports
[IDE_CONTROL_OFFSET
]) {
1260 /* set nIEN for previous hwif */
1261 SELECT_INTERRUPT(drive
);
1263 hwgroup
->hwif
= hwif
;
1264 hwgroup
->drive
= drive
;
1265 drive
->sleeping
= 0;
1266 drive
->service_start
= jiffies
;
1268 if (blk_queue_plugged(drive
->queue
)) {
1269 printk(KERN_ERR
"ide: huh? queue was plugged!\n");
1274 * we know that the queue isn't empty, but this can happen
1275 * if the q->prep_rq_fn() decides to kill a request
1277 rq
= elv_next_request(drive
->queue
);
1284 * Sanity: don't accept a request that isn't a PM request
1285 * if we are currently power managed. This is very important as
1286 * blk_stop_queue() doesn't prevent the elv_next_request()
1287 * above to return us whatever is in the queue. Since we call
1288 * ide_do_request() ourselves, we end up taking requests while
1289 * the queue is blocked...
1291 * We let requests forced at head of queue with ide-preempt
1292 * though. I hope that doesn't happen too much, hopefully not
1293 * unless the subdriver triggers such a thing in its own PM
1296 * We count how many times we loop here to make sure we service
1297 * all drives in the hwgroup without looping for ever
1299 if (drive
->blocked
&& !blk_pm_request(rq
) && !(rq
->cmd_flags
& REQ_PREEMPT
)) {
1300 drive
= drive
->next
? drive
->next
: hwgroup
->drive
;
1301 if (loops
++ < 4 && !blk_queue_plugged(drive
->queue
))
1303 /* We clear busy, there should be no pending ATA command at this point. */
1311 * Some systems have trouble with IDE IRQs arriving while
1312 * the driver is still setting things up. So, here we disable
1313 * the IRQ used by this interface while the request is being started.
1314 * This may look bad at first, but pretty much the same thing
1315 * happens anyway when any interrupt comes in, IDE or otherwise
1316 * -- the kernel masks the IRQ while it is being handled.
1318 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1319 disable_irq_nosync(hwif
->irq
);
1320 spin_unlock(&ide_lock
);
1321 local_irq_enable_in_hardirq();
1322 /* allow other IRQs while we start this request */
1323 startstop
= start_request(drive
, rq
);
1324 spin_lock_irq(&ide_lock
);
1325 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1326 enable_irq(hwif
->irq
);
1327 if (startstop
== ide_stopped
)
1333 * Passes the stuff to ide_do_request
1335 void do_ide_request(struct request_queue
*q
)
1337 ide_drive_t
*drive
= q
->queuedata
;
1339 ide_do_request(HWGROUP(drive
), IDE_NO_IRQ
);
1343 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1344 * retry the current request in pio mode instead of risking tossing it
1347 static ide_startstop_t
ide_dma_timeout_retry(ide_drive_t
*drive
, int error
)
1349 ide_hwif_t
*hwif
= HWIF(drive
);
1351 ide_startstop_t ret
= ide_stopped
;
1354 * end current dma transaction
1358 printk(KERN_WARNING
"%s: DMA timeout error\n", drive
->name
);
1359 (void)HWIF(drive
)->ide_dma_end(drive
);
1360 ret
= ide_error(drive
, "dma timeout error",
1361 hwif
->INB(IDE_STATUS_REG
));
1363 printk(KERN_WARNING
"%s: DMA timeout retry\n", drive
->name
);
1364 hwif
->dma_timeout(drive
);
1368 * disable dma for now, but remember that we did so because of
1369 * a timeout -- we'll reenable after we finish this next request
1370 * (or rather the first chunk of it) in pio.
1373 drive
->state
= DMA_PIO_RETRY
;
1374 hwif
->dma_off_quietly(drive
);
1377 * un-busy drive etc (hwgroup->busy is cleared on return) and
1378 * make sure request is sane
1380 rq
= HWGROUP(drive
)->rq
;
1385 HWGROUP(drive
)->rq
= NULL
;
1392 rq
->sector
= rq
->bio
->bi_sector
;
1393 rq
->current_nr_sectors
= bio_iovec(rq
->bio
)->bv_len
>> 9;
1394 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
1395 rq
->buffer
= bio_data(rq
->bio
);
1401 * ide_timer_expiry - handle lack of an IDE interrupt
1402 * @data: timer callback magic (hwgroup)
1404 * An IDE command has timed out before the expected drive return
1405 * occurred. At this point we attempt to clean up the current
1406 * mess. If the current handler includes an expiry handler then
1407 * we invoke the expiry handler, and providing it is happy the
1408 * work is done. If that fails we apply generic recovery rules
1409 * invoking the handler and checking the drive DMA status. We
1410 * have an excessively incestuous relationship with the DMA
1411 * logic that wants cleaning up.
1414 void ide_timer_expiry (unsigned long data
)
1416 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*) data
;
1417 ide_handler_t
*handler
;
1418 ide_expiry_t
*expiry
;
1419 unsigned long flags
;
1420 unsigned long wait
= -1;
1422 spin_lock_irqsave(&ide_lock
, flags
);
1424 if (((handler
= hwgroup
->handler
) == NULL
) ||
1425 (hwgroup
->req_gen
!= hwgroup
->req_gen_timer
)) {
1427 * Either a marginal timeout occurred
1428 * (got the interrupt just as timer expired),
1429 * or we were "sleeping" to give other devices a chance.
1430 * Either way, we don't really want to complain about anything.
1432 if (hwgroup
->sleeping
) {
1433 hwgroup
->sleeping
= 0;
1437 ide_drive_t
*drive
= hwgroup
->drive
;
1439 printk(KERN_ERR
"ide_timer_expiry: hwgroup->drive was NULL\n");
1440 hwgroup
->handler
= NULL
;
1443 ide_startstop_t startstop
= ide_stopped
;
1444 if (!hwgroup
->busy
) {
1445 hwgroup
->busy
= 1; /* paranoia */
1446 printk(KERN_ERR
"%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive
->name
);
1448 if ((expiry
= hwgroup
->expiry
) != NULL
) {
1450 if ((wait
= expiry(drive
)) > 0) {
1452 hwgroup
->timer
.expires
= jiffies
+ wait
;
1453 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
1454 add_timer(&hwgroup
->timer
);
1455 spin_unlock_irqrestore(&ide_lock
, flags
);
1459 hwgroup
->handler
= NULL
;
1461 * We need to simulate a real interrupt when invoking
1462 * the handler() function, which means we need to
1463 * globally mask the specific IRQ:
1465 spin_unlock(&ide_lock
);
1467 #if DISABLE_IRQ_NOSYNC
1468 disable_irq_nosync(hwif
->irq
);
1470 /* disable_irq_nosync ?? */
1471 disable_irq(hwif
->irq
);
1472 #endif /* DISABLE_IRQ_NOSYNC */
1474 * as if we were handling an interrupt */
1475 local_irq_disable();
1476 if (hwgroup
->polling
) {
1477 startstop
= handler(drive
);
1478 } else if (drive_is_ready(drive
)) {
1479 if (drive
->waiting_for_dma
)
1480 hwgroup
->hwif
->dma_lost_irq(drive
);
1481 (void)ide_ack_intr(hwif
);
1482 printk(KERN_WARNING
"%s: lost interrupt\n", drive
->name
);
1483 startstop
= handler(drive
);
1485 if (drive
->waiting_for_dma
) {
1486 startstop
= ide_dma_timeout_retry(drive
, wait
);
1489 ide_error(drive
, "irq timeout", hwif
->INB(IDE_STATUS_REG
));
1491 drive
->service_time
= jiffies
- drive
->service_start
;
1492 spin_lock_irq(&ide_lock
);
1493 enable_irq(hwif
->irq
);
1494 if (startstop
== ide_stopped
)
1498 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1499 spin_unlock_irqrestore(&ide_lock
, flags
);
1503 * unexpected_intr - handle an unexpected IDE interrupt
1504 * @irq: interrupt line
1505 * @hwgroup: hwgroup being processed
1507 * There's nothing really useful we can do with an unexpected interrupt,
1508 * other than reading the status register (to clear it), and logging it.
1509 * There should be no way that an irq can happen before we're ready for it,
1510 * so we needn't worry much about losing an "important" interrupt here.
1512 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1513 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1514 * looks "good", we just ignore the interrupt completely.
1516 * This routine assumes __cli() is in effect when called.
1518 * If an unexpected interrupt happens on irq15 while we are handling irq14
1519 * and if the two interfaces are "serialized" (CMD640), then it looks like
1520 * we could screw up by interfering with a new request being set up for
1523 * In reality, this is a non-issue. The new command is not sent unless
1524 * the drive is ready to accept one, in which case we know the drive is
1525 * not trying to interrupt us. And ide_set_handler() is always invoked
1526 * before completing the issuance of any new drive command, so we will not
1527 * be accidentally invoked as a result of any valid command completion
1530 * Note that we must walk the entire hwgroup here. We know which hwif
1531 * is doing the current command, but we don't know which hwif burped
1535 static void unexpected_intr (int irq
, ide_hwgroup_t
*hwgroup
)
1538 ide_hwif_t
*hwif
= hwgroup
->hwif
;
1541 * handle the unexpected interrupt
1544 if (hwif
->irq
== irq
) {
1545 stat
= hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1546 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
)) {
1547 /* Try to not flood the console with msgs */
1548 static unsigned long last_msgtime
, count
;
1550 if (time_after(jiffies
, last_msgtime
+ HZ
)) {
1551 last_msgtime
= jiffies
;
1552 printk(KERN_ERR
"%s%s: unexpected interrupt, "
1553 "status=0x%02x, count=%ld\n",
1555 (hwif
->next
==hwgroup
->hwif
) ? "" : "(?)", stat
, count
);
1559 } while ((hwif
= hwif
->next
) != hwgroup
->hwif
);
1563 * ide_intr - default IDE interrupt handler
1564 * @irq: interrupt number
1565 * @dev_id: hwif group
1566 * @regs: unused weirdness from the kernel irq layer
1568 * This is the default IRQ handler for the IDE layer. You should
1569 * not need to override it. If you do be aware it is subtle in
1572 * hwgroup->hwif is the interface in the group currently performing
1573 * a command. hwgroup->drive is the drive and hwgroup->handler is
1574 * the IRQ handler to call. As we issue a command the handlers
1575 * step through multiple states, reassigning the handler to the
1576 * next step in the process. Unlike a smart SCSI controller IDE
1577 * expects the main processor to sequence the various transfer
1578 * stages. We also manage a poll timer to catch up with most
1579 * timeout situations. There are still a few where the handlers
1580 * don't ever decide to give up.
1582 * The handler eventually returns ide_stopped to indicate the
1583 * request completed. At this point we issue the next request
1584 * on the hwgroup and the process begins again.
1587 irqreturn_t
ide_intr (int irq
, void *dev_id
)
1589 unsigned long flags
;
1590 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*)dev_id
;
1593 ide_handler_t
*handler
;
1594 ide_startstop_t startstop
;
1596 spin_lock_irqsave(&ide_lock
, flags
);
1597 hwif
= hwgroup
->hwif
;
1599 if (!ide_ack_intr(hwif
)) {
1600 spin_unlock_irqrestore(&ide_lock
, flags
);
1604 if ((handler
= hwgroup
->handler
) == NULL
|| hwgroup
->polling
) {
1606 * Not expecting an interrupt from this drive.
1607 * That means this could be:
1608 * (1) an interrupt from another PCI device
1609 * sharing the same PCI INT# as us.
1610 * or (2) a drive just entered sleep or standby mode,
1611 * and is interrupting to let us know.
1612 * or (3) a spurious interrupt of unknown origin.
1614 * For PCI, we cannot tell the difference,
1615 * so in that case we just ignore it and hope it goes away.
1617 * FIXME: unexpected_intr should be hwif-> then we can
1618 * remove all the ifdef PCI crap
1620 #ifdef CONFIG_BLK_DEV_IDEPCI
1621 if (hwif
->pci_dev
&& !hwif
->pci_dev
->vendor
)
1622 #endif /* CONFIG_BLK_DEV_IDEPCI */
1625 * Probably not a shared PCI interrupt,
1626 * so we can safely try to do something about it:
1628 unexpected_intr(irq
, hwgroup
);
1629 #ifdef CONFIG_BLK_DEV_IDEPCI
1632 * Whack the status register, just in case
1633 * we have a leftover pending IRQ.
1635 (void) hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1636 #endif /* CONFIG_BLK_DEV_IDEPCI */
1638 spin_unlock_irqrestore(&ide_lock
, flags
);
1641 drive
= hwgroup
->drive
;
1644 * This should NEVER happen, and there isn't much
1645 * we could do about it here.
1647 * [Note - this can occur if the drive is hot unplugged]
1649 spin_unlock_irqrestore(&ide_lock
, flags
);
1652 if (!drive_is_ready(drive
)) {
1654 * This happens regularly when we share a PCI IRQ with
1655 * another device. Unfortunately, it can also happen
1656 * with some buggy drives that trigger the IRQ before
1657 * their status register is up to date. Hopefully we have
1658 * enough advance overhead that the latter isn't a problem.
1660 spin_unlock_irqrestore(&ide_lock
, flags
);
1663 if (!hwgroup
->busy
) {
1664 hwgroup
->busy
= 1; /* paranoia */
1665 printk(KERN_ERR
"%s: ide_intr: hwgroup->busy was 0 ??\n", drive
->name
);
1667 hwgroup
->handler
= NULL
;
1669 del_timer(&hwgroup
->timer
);
1670 spin_unlock(&ide_lock
);
1672 /* Some controllers might set DMA INTR no matter DMA or PIO;
1673 * bmdma status might need to be cleared even for
1674 * PIO interrupts to prevent spurious/lost irq.
1676 if (hwif
->ide_dma_clear_irq
&& !(drive
->waiting_for_dma
))
1677 /* ide_dma_end() needs bmdma status for error checking.
1678 * So, skip clearing bmdma status here and leave it
1679 * to ide_dma_end() if this is dma interrupt.
1681 hwif
->ide_dma_clear_irq(drive
);
1684 local_irq_enable_in_hardirq();
1685 /* service this interrupt, may set handler for next interrupt */
1686 startstop
= handler(drive
);
1687 spin_lock_irq(&ide_lock
);
1690 * Note that handler() may have set things up for another
1691 * interrupt to occur soon, but it cannot happen until
1692 * we exit from this routine, because it will be the
1693 * same irq as is currently being serviced here, and Linux
1694 * won't allow another of the same (on any CPU) until we return.
1696 drive
->service_time
= jiffies
- drive
->service_start
;
1697 if (startstop
== ide_stopped
) {
1698 if (hwgroup
->handler
== NULL
) { /* paranoia */
1700 ide_do_request(hwgroup
, hwif
->irq
);
1702 printk(KERN_ERR
"%s: ide_intr: huh? expected NULL handler "
1703 "on exit\n", drive
->name
);
1706 spin_unlock_irqrestore(&ide_lock
, flags
);
1711 * ide_init_drive_cmd - initialize a drive command request
1712 * @rq: request object
1714 * Initialize a request before we fill it in and send it down to
1715 * ide_do_drive_cmd. Commands must be set up by this function. Right
1716 * now it doesn't do a lot, but if that changes abusers will have a
1720 void ide_init_drive_cmd (struct request
*rq
)
1722 memset(rq
, 0, sizeof(*rq
));
1723 rq
->cmd_type
= REQ_TYPE_ATA_CMD
;
1727 EXPORT_SYMBOL(ide_init_drive_cmd
);
1730 * ide_do_drive_cmd - issue IDE special command
1731 * @drive: device to issue command
1732 * @rq: request to issue
1733 * @action: action for processing
1735 * This function issues a special IDE device request
1736 * onto the request queue.
1738 * If action is ide_wait, then the rq is queued at the end of the
1739 * request queue, and the function sleeps until it has been processed.
1740 * This is for use when invoked from an ioctl handler.
1742 * If action is ide_preempt, then the rq is queued at the head of
1743 * the request queue, displacing the currently-being-processed
1744 * request and this function returns immediately without waiting
1745 * for the new rq to be completed. This is VERY DANGEROUS, and is
1746 * intended for careful use by the ATAPI tape/cdrom driver code.
1748 * If action is ide_end, then the rq is queued at the end of the
1749 * request queue, and the function returns immediately without waiting
1750 * for the new rq to be completed. This is again intended for careful
1751 * use by the ATAPI tape/cdrom driver code.
1754 int ide_do_drive_cmd (ide_drive_t
*drive
, struct request
*rq
, ide_action_t action
)
1756 unsigned long flags
;
1757 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1758 DECLARE_COMPLETION_ONSTACK(wait
);
1759 int where
= ELEVATOR_INSERT_BACK
, err
;
1760 int must_wait
= (action
== ide_wait
|| action
== ide_head_wait
);
1765 * we need to hold an extra reference to request for safe inspection
1770 rq
->end_io_data
= &wait
;
1771 rq
->end_io
= blk_end_sync_rq
;
1774 spin_lock_irqsave(&ide_lock
, flags
);
1775 if (action
== ide_preempt
)
1777 if (action
== ide_preempt
|| action
== ide_head_wait
) {
1778 where
= ELEVATOR_INSERT_FRONT
;
1779 rq
->cmd_flags
|= REQ_PREEMPT
;
1781 __elv_add_request(drive
->queue
, rq
, where
, 0);
1782 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1783 spin_unlock_irqrestore(&ide_lock
, flags
);
1787 wait_for_completion(&wait
);
1791 blk_put_request(rq
);
1797 EXPORT_SYMBOL(ide_do_drive_cmd
);