2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/ioport.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/spi/spi.h>
28 #include <linux/workqueue.h>
29 #include <linux/delay.h>
33 #include <asm/hardware.h>
34 #include <asm/delay.h>
37 #include <asm/arch/hardware.h>
38 #include <asm/arch/pxa-regs.h>
39 #include <asm/arch/pxa2xx_spi.h>
41 MODULE_AUTHOR("Stephen Street");
42 MODULE_DESCRIPTION("PXA2xx SSP SPI Contoller");
43 MODULE_LICENSE("GPL");
47 #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
48 #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
49 #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
51 /* for testing SSCR1 changes that require SSP restart, basically
52 * everything except the service and interrupt enables */
53 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_EBCEI | SSCR1_SCFR \
54 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
55 | SSCR1_RWOT | SSCR1_TRAIL | SSCR1_PINTE \
56 | SSCR1_STRF | SSCR1_EFWR |SSCR1_RFT \
57 | SSCR1_TFT | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59 #define DEFINE_SSP_REG(reg, off) \
60 static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
61 static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
63 DEFINE_SSP_REG(SSCR0
, 0x00)
64 DEFINE_SSP_REG(SSCR1
, 0x04)
65 DEFINE_SSP_REG(SSSR
, 0x08)
66 DEFINE_SSP_REG(SSITR
, 0x0c)
67 DEFINE_SSP_REG(SSDR
, 0x10)
68 DEFINE_SSP_REG(SSTO
, 0x28)
69 DEFINE_SSP_REG(SSPSP
, 0x2c)
71 #define START_STATE ((void*)0)
72 #define RUNNING_STATE ((void*)1)
73 #define DONE_STATE ((void*)2)
74 #define ERROR_STATE ((void*)-1)
76 #define QUEUE_RUNNING 0
77 #define QUEUE_STOPPED 1
80 /* Driver model hookup */
81 struct platform_device
*pdev
;
83 /* SPI framework hookup */
84 enum pxa_ssp_type ssp_type
;
85 struct spi_master
*master
;
88 struct pxa2xx_spi_master
*master_info
;
95 /* SSP register addresses */
105 /* Driver message queue */
106 struct workqueue_struct
*workqueue
;
107 struct work_struct pump_messages
;
109 struct list_head queue
;
113 /* Message Transfer pump */
114 struct tasklet_struct pump_transfers
;
116 /* Current message transfer state info */
117 struct spi_message
* cur_msg
;
118 struct spi_transfer
* cur_transfer
;
119 struct chip_data
*cur_chip
;
133 int (*write
)(struct driver_data
*drv_data
);
134 int (*read
)(struct driver_data
*drv_data
);
135 irqreturn_t (*transfer_handler
)(struct driver_data
*drv_data
);
136 void (*cs_control
)(u32 command
);
152 int (*write
)(struct driver_data
*drv_data
);
153 int (*read
)(struct driver_data
*drv_data
);
154 void (*cs_control
)(u32 command
);
157 static void pump_messages(struct work_struct
*work
);
159 static int flush(struct driver_data
*drv_data
)
161 unsigned long limit
= loops_per_jiffy
<< 1;
163 void *reg
= drv_data
->ioaddr
;
166 while (read_SSSR(reg
) & SSSR_RNE
) {
169 } while ((read_SSSR(reg
) & SSSR_BSY
) && limit
--);
170 write_SSSR(SSSR_ROR
, reg
);
175 static void null_cs_control(u32 command
)
179 static int null_writer(struct driver_data
*drv_data
)
181 void *reg
= drv_data
->ioaddr
;
182 u8 n_bytes
= drv_data
->n_bytes
;
184 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
185 || (drv_data
->tx
== drv_data
->tx_end
))
189 drv_data
->tx
+= n_bytes
;
194 static int null_reader(struct driver_data
*drv_data
)
196 void *reg
= drv_data
->ioaddr
;
197 u8 n_bytes
= drv_data
->n_bytes
;
199 while ((read_SSSR(reg
) & SSSR_RNE
)
200 && (drv_data
->rx
< drv_data
->rx_end
)) {
202 drv_data
->rx
+= n_bytes
;
205 return drv_data
->rx
== drv_data
->rx_end
;
208 static int u8_writer(struct driver_data
*drv_data
)
210 void *reg
= drv_data
->ioaddr
;
212 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
213 || (drv_data
->tx
== drv_data
->tx_end
))
216 write_SSDR(*(u8
*)(drv_data
->tx
), reg
);
222 static int u8_reader(struct driver_data
*drv_data
)
224 void *reg
= drv_data
->ioaddr
;
226 while ((read_SSSR(reg
) & SSSR_RNE
)
227 && (drv_data
->rx
< drv_data
->rx_end
)) {
228 *(u8
*)(drv_data
->rx
) = read_SSDR(reg
);
232 return drv_data
->rx
== drv_data
->rx_end
;
235 static int u16_writer(struct driver_data
*drv_data
)
237 void *reg
= drv_data
->ioaddr
;
239 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
240 || (drv_data
->tx
== drv_data
->tx_end
))
243 write_SSDR(*(u16
*)(drv_data
->tx
), reg
);
249 static int u16_reader(struct driver_data
*drv_data
)
251 void *reg
= drv_data
->ioaddr
;
253 while ((read_SSSR(reg
) & SSSR_RNE
)
254 && (drv_data
->rx
< drv_data
->rx_end
)) {
255 *(u16
*)(drv_data
->rx
) = read_SSDR(reg
);
259 return drv_data
->rx
== drv_data
->rx_end
;
262 static int u32_writer(struct driver_data
*drv_data
)
264 void *reg
= drv_data
->ioaddr
;
266 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
267 || (drv_data
->tx
== drv_data
->tx_end
))
270 write_SSDR(*(u32
*)(drv_data
->tx
), reg
);
276 static int u32_reader(struct driver_data
*drv_data
)
278 void *reg
= drv_data
->ioaddr
;
280 while ((read_SSSR(reg
) & SSSR_RNE
)
281 && (drv_data
->rx
< drv_data
->rx_end
)) {
282 *(u32
*)(drv_data
->rx
) = read_SSDR(reg
);
286 return drv_data
->rx
== drv_data
->rx_end
;
289 static void *next_transfer(struct driver_data
*drv_data
)
291 struct spi_message
*msg
= drv_data
->cur_msg
;
292 struct spi_transfer
*trans
= drv_data
->cur_transfer
;
294 /* Move to next transfer */
295 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
296 drv_data
->cur_transfer
=
297 list_entry(trans
->transfer_list
.next
,
300 return RUNNING_STATE
;
305 static int map_dma_buffers(struct driver_data
*drv_data
)
307 struct spi_message
*msg
= drv_data
->cur_msg
;
308 struct device
*dev
= &msg
->spi
->dev
;
310 if (!drv_data
->cur_chip
->enable_dma
)
313 if (msg
->is_dma_mapped
)
314 return drv_data
->rx_dma
&& drv_data
->tx_dma
;
316 if (!IS_DMA_ALIGNED(drv_data
->rx
) || !IS_DMA_ALIGNED(drv_data
->tx
))
319 /* Modify setup if rx buffer is null */
320 if (drv_data
->rx
== NULL
) {
321 *drv_data
->null_dma_buf
= 0;
322 drv_data
->rx
= drv_data
->null_dma_buf
;
323 drv_data
->rx_map_len
= 4;
325 drv_data
->rx_map_len
= drv_data
->len
;
328 /* Modify setup if tx buffer is null */
329 if (drv_data
->tx
== NULL
) {
330 *drv_data
->null_dma_buf
= 0;
331 drv_data
->tx
= drv_data
->null_dma_buf
;
332 drv_data
->tx_map_len
= 4;
334 drv_data
->tx_map_len
= drv_data
->len
;
336 /* Stream map the rx buffer */
337 drv_data
->rx_dma
= dma_map_single(dev
, drv_data
->rx
,
338 drv_data
->rx_map_len
,
340 if (dma_mapping_error(drv_data
->rx_dma
))
343 /* Stream map the tx buffer */
344 drv_data
->tx_dma
= dma_map_single(dev
, drv_data
->tx
,
345 drv_data
->tx_map_len
,
348 if (dma_mapping_error(drv_data
->tx_dma
)) {
349 dma_unmap_single(dev
, drv_data
->rx_dma
,
350 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
357 static void unmap_dma_buffers(struct driver_data
*drv_data
)
361 if (!drv_data
->dma_mapped
)
364 if (!drv_data
->cur_msg
->is_dma_mapped
) {
365 dev
= &drv_data
->cur_msg
->spi
->dev
;
366 dma_unmap_single(dev
, drv_data
->rx_dma
,
367 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
368 dma_unmap_single(dev
, drv_data
->tx_dma
,
369 drv_data
->tx_map_len
, DMA_TO_DEVICE
);
372 drv_data
->dma_mapped
= 0;
375 /* caller already set message->status; dma and pio irqs are blocked */
376 static void giveback(struct driver_data
*drv_data
)
378 struct spi_transfer
* last_transfer
;
380 struct spi_message
*msg
;
382 spin_lock_irqsave(&drv_data
->lock
, flags
);
383 msg
= drv_data
->cur_msg
;
384 drv_data
->cur_msg
= NULL
;
385 drv_data
->cur_transfer
= NULL
;
386 drv_data
->cur_chip
= NULL
;
387 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
388 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
390 last_transfer
= list_entry(msg
->transfers
.prev
,
394 if (!last_transfer
->cs_change
)
395 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
399 msg
->complete(msg
->context
);
402 static int wait_ssp_rx_stall(void *ioaddr
)
404 unsigned long limit
= loops_per_jiffy
<< 1;
406 while ((read_SSSR(ioaddr
) & SSSR_BSY
) && limit
--)
412 static int wait_dma_channel_stop(int channel
)
414 unsigned long limit
= loops_per_jiffy
<< 1;
416 while (!(DCSR(channel
) & DCSR_STOPSTATE
) && limit
--)
422 void dma_error_stop(struct driver_data
*drv_data
, const char *msg
)
424 void *reg
= drv_data
->ioaddr
;
427 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
428 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
429 write_SSSR(drv_data
->clear_sr
, reg
);
430 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
431 if (drv_data
->ssp_type
!= PXA25x_SSP
)
434 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
436 unmap_dma_buffers(drv_data
);
438 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
440 drv_data
->cur_msg
->state
= ERROR_STATE
;
441 tasklet_schedule(&drv_data
->pump_transfers
);
444 static void dma_transfer_complete(struct driver_data
*drv_data
)
446 void *reg
= drv_data
->ioaddr
;
447 struct spi_message
*msg
= drv_data
->cur_msg
;
449 /* Clear and disable interrupts on SSP and DMA channels*/
450 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
451 write_SSSR(drv_data
->clear_sr
, reg
);
452 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
453 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
455 if (wait_dma_channel_stop(drv_data
->rx_channel
) == 0)
456 dev_err(&drv_data
->pdev
->dev
,
457 "dma_handler: dma rx channel stop failed\n");
459 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
460 dev_err(&drv_data
->pdev
->dev
,
461 "dma_transfer: ssp rx stall failed\n");
463 unmap_dma_buffers(drv_data
);
465 /* update the buffer pointer for the amount completed in dma */
466 drv_data
->rx
+= drv_data
->len
-
467 (DCMD(drv_data
->rx_channel
) & DCMD_LENGTH
);
469 /* read trailing data from fifo, it does not matter how many
470 * bytes are in the fifo just read until buffer is full
471 * or fifo is empty, which ever occurs first */
472 drv_data
->read(drv_data
);
474 /* return count of what was actually read */
475 msg
->actual_length
+= drv_data
->len
-
476 (drv_data
->rx_end
- drv_data
->rx
);
478 /* Release chip select if requested, transfer delays are
479 * handled in pump_transfers */
480 if (drv_data
->cs_change
)
481 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
483 /* Move to next transfer */
484 msg
->state
= next_transfer(drv_data
);
486 /* Schedule transfer tasklet */
487 tasklet_schedule(&drv_data
->pump_transfers
);
490 static void dma_handler(int channel
, void *data
)
492 struct driver_data
*drv_data
= data
;
493 u32 irq_status
= DCSR(channel
) & DMA_INT_MASK
;
495 if (irq_status
& DCSR_BUSERR
) {
497 if (channel
== drv_data
->tx_channel
)
498 dma_error_stop(drv_data
,
500 "bad bus address on tx channel");
502 dma_error_stop(drv_data
,
504 "bad bus address on rx channel");
508 /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
509 if ((channel
== drv_data
->tx_channel
)
510 && (irq_status
& DCSR_ENDINTR
)
511 && (drv_data
->ssp_type
== PXA25x_SSP
)) {
513 /* Wait for rx to stall */
514 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
515 dev_err(&drv_data
->pdev
->dev
,
516 "dma_handler: ssp rx stall failed\n");
518 /* finish this transfer, start the next */
519 dma_transfer_complete(drv_data
);
523 static irqreturn_t
dma_transfer(struct driver_data
*drv_data
)
526 void *reg
= drv_data
->ioaddr
;
528 irq_status
= read_SSSR(reg
) & drv_data
->mask_sr
;
529 if (irq_status
& SSSR_ROR
) {
530 dma_error_stop(drv_data
, "dma_transfer: fifo overrun");
534 /* Check for false positive timeout */
535 if ((irq_status
& SSSR_TINT
)
536 && (DCSR(drv_data
->tx_channel
) & DCSR_RUN
)) {
537 write_SSSR(SSSR_TINT
, reg
);
541 if (irq_status
& SSSR_TINT
|| drv_data
->rx
== drv_data
->rx_end
) {
543 /* Clear and disable timeout interrupt, do the rest in
544 * dma_transfer_complete */
545 if (drv_data
->ssp_type
!= PXA25x_SSP
)
548 /* finish this transfer, start the next */
549 dma_transfer_complete(drv_data
);
554 /* Opps problem detected */
558 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
560 void *reg
= drv_data
->ioaddr
;
562 /* Stop and reset SSP */
563 write_SSSR(drv_data
->clear_sr
, reg
);
564 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
565 if (drv_data
->ssp_type
!= PXA25x_SSP
)
568 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
570 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
572 drv_data
->cur_msg
->state
= ERROR_STATE
;
573 tasklet_schedule(&drv_data
->pump_transfers
);
576 static void int_transfer_complete(struct driver_data
*drv_data
)
578 void *reg
= drv_data
->ioaddr
;
581 write_SSSR(drv_data
->clear_sr
, reg
);
582 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
583 if (drv_data
->ssp_type
!= PXA25x_SSP
)
586 /* Update total byte transfered return count actual bytes read */
587 drv_data
->cur_msg
->actual_length
+= drv_data
->len
-
588 (drv_data
->rx_end
- drv_data
->rx
);
590 /* Release chip select if requested, transfer delays are
591 * handled in pump_transfers */
592 if (drv_data
->cs_change
)
593 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
595 /* Move to next transfer */
596 drv_data
->cur_msg
->state
= next_transfer(drv_data
);
598 /* Schedule transfer tasklet */
599 tasklet_schedule(&drv_data
->pump_transfers
);
602 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
604 void *reg
= drv_data
->ioaddr
;
606 u32 irq_mask
= (read_SSCR1(reg
) & SSCR1_TIE
) ?
607 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
609 u32 irq_status
= read_SSSR(reg
) & irq_mask
;
611 if (irq_status
& SSSR_ROR
) {
612 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
616 if (irq_status
& SSSR_TINT
) {
617 write_SSSR(SSSR_TINT
, reg
);
618 if (drv_data
->read(drv_data
)) {
619 int_transfer_complete(drv_data
);
624 /* Drain rx fifo, Fill tx fifo and prevent overruns */
626 if (drv_data
->read(drv_data
)) {
627 int_transfer_complete(drv_data
);
630 } while (drv_data
->write(drv_data
));
632 if (drv_data
->read(drv_data
)) {
633 int_transfer_complete(drv_data
);
637 if (drv_data
->tx
== drv_data
->tx_end
) {
638 write_SSCR1(read_SSCR1(reg
) & ~SSCR1_TIE
, reg
);
639 /* PXA25x_SSP has no timeout, read trailing bytes */
640 if (drv_data
->ssp_type
== PXA25x_SSP
) {
641 if (!wait_ssp_rx_stall(reg
))
643 int_error_stop(drv_data
, "interrupt_transfer: "
647 if (!drv_data
->read(drv_data
))
649 int_error_stop(drv_data
,
650 "interrupt_transfer: "
651 "trailing byte read failed");
654 int_transfer_complete(drv_data
);
658 /* We did something */
662 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
664 struct driver_data
*drv_data
= dev_id
;
665 void *reg
= drv_data
->ioaddr
;
667 if (!drv_data
->cur_msg
) {
669 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
670 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
671 if (drv_data
->ssp_type
!= PXA25x_SSP
)
673 write_SSSR(drv_data
->clear_sr
, reg
);
675 dev_err(&drv_data
->pdev
->dev
, "bad message state "
676 "in interrupt handler\n");
682 return drv_data
->transfer_handler(drv_data
);
685 int set_dma_burst_and_threshold(struct chip_data
*chip
, struct spi_device
*spi
,
686 u8 bits_per_word
, u32
*burst_code
,
689 struct pxa2xx_spi_chip
*chip_info
=
690 (struct pxa2xx_spi_chip
*)spi
->controller_data
;
697 /* Set the threshold (in registers) to equal the same amount of data
698 * as represented by burst size (in bytes). The computation below
699 * is (burst_size rounded up to nearest 8 byte, word or long word)
700 * divided by (bytes/register); the tx threshold is the inverse of
701 * the rx, so that there will always be enough data in the rx fifo
702 * to satisfy a burst, and there will always be enough space in the
703 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
704 * there is not enough space), there must always remain enough empty
705 * space in the rx fifo for any data loaded to the tx fifo.
706 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
707 * will be 8, or half the fifo;
708 * The threshold can only be set to 2, 4 or 8, but not 16, because
709 * to burst 16 to the tx fifo, the fifo would have to be empty;
710 * however, the minimum fifo trigger level is 1, and the tx will
711 * request service when the fifo is at this level, with only 15 spaces.
714 /* find bytes/word */
715 if (bits_per_word
<= 8)
717 else if (bits_per_word
<= 16)
722 /* use struct pxa2xx_spi_chip->dma_burst_size if available */
724 req_burst_size
= chip_info
->dma_burst_size
;
726 switch (chip
->dma_burst_size
) {
728 /* if the default burst size is not set,
730 chip
->dma_burst_size
= DCMD_BURST8
;
742 if (req_burst_size
<= 8) {
743 *burst_code
= DCMD_BURST8
;
745 } else if (req_burst_size
<= 16) {
746 if (bytes_per_word
== 1) {
747 /* don't burst more than 1/2 the fifo */
748 *burst_code
= DCMD_BURST8
;
752 *burst_code
= DCMD_BURST16
;
756 if (bytes_per_word
== 1) {
757 /* don't burst more than 1/2 the fifo */
758 *burst_code
= DCMD_BURST8
;
761 } else if (bytes_per_word
== 2) {
762 /* don't burst more than 1/2 the fifo */
763 *burst_code
= DCMD_BURST16
;
767 *burst_code
= DCMD_BURST32
;
772 thresh_words
= burst_bytes
/ bytes_per_word
;
774 /* thresh_words will be between 2 and 8 */
775 *threshold
= (SSCR1_RxTresh(thresh_words
) & SSCR1_RFT
)
776 | (SSCR1_TxTresh(16-thresh_words
) & SSCR1_TFT
);
781 static void pump_transfers(unsigned long data
)
783 struct driver_data
*drv_data
= (struct driver_data
*)data
;
784 struct spi_message
*message
= NULL
;
785 struct spi_transfer
*transfer
= NULL
;
786 struct spi_transfer
*previous
= NULL
;
787 struct chip_data
*chip
= NULL
;
788 void *reg
= drv_data
->ioaddr
;
794 u32 dma_thresh
= drv_data
->cur_chip
->dma_threshold
;
795 u32 dma_burst
= drv_data
->cur_chip
->dma_burst_size
;
797 /* Get current state information */
798 message
= drv_data
->cur_msg
;
799 transfer
= drv_data
->cur_transfer
;
800 chip
= drv_data
->cur_chip
;
802 /* Handle for abort */
803 if (message
->state
== ERROR_STATE
) {
804 message
->status
= -EIO
;
809 /* Handle end of message */
810 if (message
->state
== DONE_STATE
) {
816 /* Delay if requested at end of transfer*/
817 if (message
->state
== RUNNING_STATE
) {
818 previous
= list_entry(transfer
->transfer_list
.prev
,
821 if (previous
->delay_usecs
)
822 udelay(previous
->delay_usecs
);
825 /* Check transfer length */
826 if (transfer
->len
> 8191)
828 dev_warn(&drv_data
->pdev
->dev
, "pump_transfers: transfer "
829 "length greater than 8191\n");
830 message
->status
= -EINVAL
;
835 /* Setup the transfer state based on the type of transfer */
836 if (flush(drv_data
) == 0) {
837 dev_err(&drv_data
->pdev
->dev
, "pump_transfers: flush failed\n");
838 message
->status
= -EIO
;
842 drv_data
->n_bytes
= chip
->n_bytes
;
843 drv_data
->dma_width
= chip
->dma_width
;
844 drv_data
->cs_control
= chip
->cs_control
;
845 drv_data
->tx
= (void *)transfer
->tx_buf
;
846 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
847 drv_data
->rx
= transfer
->rx_buf
;
848 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
849 drv_data
->rx_dma
= transfer
->rx_dma
;
850 drv_data
->tx_dma
= transfer
->tx_dma
;
851 drv_data
->len
= transfer
->len
& DCMD_LENGTH
;
852 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
853 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
854 drv_data
->cs_change
= transfer
->cs_change
;
856 /* Change speed and bit per word on a per transfer */
858 if (transfer
->speed_hz
|| transfer
->bits_per_word
) {
860 bits
= chip
->bits_per_word
;
861 speed
= chip
->speed_hz
;
863 if (transfer
->speed_hz
)
864 speed
= transfer
->speed_hz
;
866 if (transfer
->bits_per_word
)
867 bits
= transfer
->bits_per_word
;
869 if (reg
== SSP1_VIRT
)
870 clk_div
= SSP1_SerClkDiv(speed
);
871 else if (reg
== SSP2_VIRT
)
872 clk_div
= SSP2_SerClkDiv(speed
);
873 else if (reg
== SSP3_VIRT
)
874 clk_div
= SSP3_SerClkDiv(speed
);
877 drv_data
->n_bytes
= 1;
878 drv_data
->dma_width
= DCMD_WIDTH1
;
879 drv_data
->read
= drv_data
->read
!= null_reader
?
880 u8_reader
: null_reader
;
881 drv_data
->write
= drv_data
->write
!= null_writer
?
882 u8_writer
: null_writer
;
883 } else if (bits
<= 16) {
884 drv_data
->n_bytes
= 2;
885 drv_data
->dma_width
= DCMD_WIDTH2
;
886 drv_data
->read
= drv_data
->read
!= null_reader
?
887 u16_reader
: null_reader
;
888 drv_data
->write
= drv_data
->write
!= null_writer
?
889 u16_writer
: null_writer
;
890 } else if (bits
<= 32) {
891 drv_data
->n_bytes
= 4;
892 drv_data
->dma_width
= DCMD_WIDTH4
;
893 drv_data
->read
= drv_data
->read
!= null_reader
?
894 u32_reader
: null_reader
;
895 drv_data
->write
= drv_data
->write
!= null_writer
?
896 u32_writer
: null_writer
;
898 /* if bits/word is changed in dma mode, then must check the
899 * thresholds and burst also */
900 if (chip
->enable_dma
) {
901 if (set_dma_burst_and_threshold(chip
, message
->spi
,
904 if (printk_ratelimit())
905 dev_warn(&message
->spi
->dev
,
907 "DMA burst size reduced to "
908 "match bits_per_word\n");
913 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
915 | (bits
> 16 ? SSCR0_EDSS
: 0);
918 message
->state
= RUNNING_STATE
;
920 /* Try to map dma buffer and do a dma transfer if successful */
921 if ((drv_data
->dma_mapped
= map_dma_buffers(drv_data
))) {
923 /* Ensure we have the correct interrupt handler */
924 drv_data
->transfer_handler
= dma_transfer
;
926 /* Setup rx DMA Channel */
927 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
928 DSADR(drv_data
->rx_channel
) = drv_data
->ssdr_physical
;
929 DTADR(drv_data
->rx_channel
) = drv_data
->rx_dma
;
930 if (drv_data
->rx
== drv_data
->null_dma_buf
)
931 /* No target address increment */
932 DCMD(drv_data
->rx_channel
) = DCMD_FLOWSRC
933 | drv_data
->dma_width
937 DCMD(drv_data
->rx_channel
) = DCMD_INCTRGADDR
939 | drv_data
->dma_width
943 /* Setup tx DMA Channel */
944 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
945 DSADR(drv_data
->tx_channel
) = drv_data
->tx_dma
;
946 DTADR(drv_data
->tx_channel
) = drv_data
->ssdr_physical
;
947 if (drv_data
->tx
== drv_data
->null_dma_buf
)
948 /* No source address increment */
949 DCMD(drv_data
->tx_channel
) = DCMD_FLOWTRG
950 | drv_data
->dma_width
954 DCMD(drv_data
->tx_channel
) = DCMD_INCSRCADDR
956 | drv_data
->dma_width
960 /* Enable dma end irqs on SSP to detect end of transfer */
961 if (drv_data
->ssp_type
== PXA25x_SSP
)
962 DCMD(drv_data
->tx_channel
) |= DCMD_ENDIRQEN
;
964 /* Fix me, need to handle cs polarity */
965 drv_data
->cs_control(PXA2XX_CS_ASSERT
);
967 /* Clear status and start DMA engine */
968 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
969 write_SSSR(drv_data
->clear_sr
, reg
);
970 DCSR(drv_data
->rx_channel
) |= DCSR_RUN
;
971 DCSR(drv_data
->tx_channel
) |= DCSR_RUN
;
973 /* Ensure we have the correct interrupt handler */
974 drv_data
->transfer_handler
= interrupt_transfer
;
976 /* Fix me, need to handle cs polarity */
977 drv_data
->cs_control(PXA2XX_CS_ASSERT
);
980 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
981 write_SSSR(drv_data
->clear_sr
, reg
);
984 /* see if we need to reload the config registers */
985 if ((read_SSCR0(reg
) != cr0
)
986 || (read_SSCR1(reg
) & SSCR1_CHANGE_MASK
) !=
987 (cr1
& SSCR1_CHANGE_MASK
)) {
989 write_SSCR0(cr0
& ~SSCR0_SSE
, reg
);
990 if (drv_data
->ssp_type
!= PXA25x_SSP
)
991 write_SSTO(chip
->timeout
, reg
);
992 write_SSCR1(cr1
, reg
);
993 write_SSCR0(cr0
, reg
);
995 if (drv_data
->ssp_type
!= PXA25x_SSP
)
996 write_SSTO(chip
->timeout
, reg
);
997 write_SSCR1(cr1
, reg
);
1001 static void pump_messages(struct work_struct
*work
)
1003 struct driver_data
*drv_data
=
1004 container_of(work
, struct driver_data
, pump_messages
);
1005 unsigned long flags
;
1007 /* Lock queue and check for queue work */
1008 spin_lock_irqsave(&drv_data
->lock
, flags
);
1009 if (list_empty(&drv_data
->queue
) || drv_data
->run
== QUEUE_STOPPED
) {
1011 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1015 /* Make sure we are not already running a message */
1016 if (drv_data
->cur_msg
) {
1017 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1021 /* Extract head of queue */
1022 drv_data
->cur_msg
= list_entry(drv_data
->queue
.next
,
1023 struct spi_message
, queue
);
1024 list_del_init(&drv_data
->cur_msg
->queue
);
1026 /* Initial message state*/
1027 drv_data
->cur_msg
->state
= START_STATE
;
1028 drv_data
->cur_transfer
= list_entry(drv_data
->cur_msg
->transfers
.next
,
1029 struct spi_transfer
,
1032 /* prepare to setup the SSP, in pump_transfers, using the per
1033 * chip configuration */
1034 drv_data
->cur_chip
= spi_get_ctldata(drv_data
->cur_msg
->spi
);
1036 /* Mark as busy and launch transfers */
1037 tasklet_schedule(&drv_data
->pump_transfers
);
1040 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1043 static int transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1045 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1046 unsigned long flags
;
1048 spin_lock_irqsave(&drv_data
->lock
, flags
);
1050 if (drv_data
->run
== QUEUE_STOPPED
) {
1051 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1055 msg
->actual_length
= 0;
1056 msg
->status
= -EINPROGRESS
;
1057 msg
->state
= START_STATE
;
1059 list_add_tail(&msg
->queue
, &drv_data
->queue
);
1061 if (drv_data
->run
== QUEUE_RUNNING
&& !drv_data
->busy
)
1062 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1064 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1069 /* the spi->mode bits understood by this driver: */
1070 #define MODEBITS (SPI_CPOL | SPI_CPHA)
1072 static int setup(struct spi_device
*spi
)
1074 struct pxa2xx_spi_chip
*chip_info
= NULL
;
1075 struct chip_data
*chip
;
1076 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1077 unsigned int clk_div
;
1079 if (!spi
->bits_per_word
)
1080 spi
->bits_per_word
= 8;
1082 if (drv_data
->ssp_type
!= PXA25x_SSP
1083 && (spi
->bits_per_word
< 4 || spi
->bits_per_word
> 32)) {
1084 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1085 "b/w not 4-32 for type non-PXA25x_SSP\n",
1086 drv_data
->ssp_type
, spi
->bits_per_word
);
1089 else if (drv_data
->ssp_type
== PXA25x_SSP
1090 && (spi
->bits_per_word
< 4
1091 || spi
->bits_per_word
> 16)) {
1092 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1093 "b/w not 4-16 for type PXA25x_SSP\n",
1094 drv_data
->ssp_type
, spi
->bits_per_word
);
1098 if (spi
->mode
& ~MODEBITS
) {
1099 dev_dbg(&spi
->dev
, "setup: unsupported mode bits %x\n",
1100 spi
->mode
& ~MODEBITS
);
1104 /* Only alloc on first setup */
1105 chip
= spi_get_ctldata(spi
);
1107 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1110 "failed setup: can't allocate chip data\n");
1114 chip
->cs_control
= null_cs_control
;
1115 chip
->enable_dma
= 0;
1116 chip
->timeout
= 1000;
1117 chip
->threshold
= SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
1118 chip
->dma_burst_size
= drv_data
->master_info
->enable_dma
?
1122 /* protocol drivers may change the chip settings, so...
1123 * if chip_info exists, use it */
1124 chip_info
= spi
->controller_data
;
1126 /* chip_info isn't always needed */
1129 if (chip_info
->cs_control
)
1130 chip
->cs_control
= chip_info
->cs_control
;
1132 chip
->timeout
= chip_info
->timeout
;
1134 chip
->threshold
= (SSCR1_RxTresh(chip_info
->rx_threshold
) &
1136 (SSCR1_TxTresh(chip_info
->tx_threshold
) &
1139 chip
->enable_dma
= chip_info
->dma_burst_size
!= 0
1140 && drv_data
->master_info
->enable_dma
;
1141 chip
->dma_threshold
= 0;
1143 if (chip_info
->enable_loopback
)
1144 chip
->cr1
= SSCR1_LBM
;
1147 /* set dma burst and threshold outside of chip_info path so that if
1148 * chip_info goes away after setting chip->enable_dma, the
1149 * burst and threshold can still respond to changes in bits_per_word */
1150 if (chip
->enable_dma
) {
1151 /* set up legal burst and threshold for dma */
1152 if (set_dma_burst_and_threshold(chip
, spi
, spi
->bits_per_word
,
1153 &chip
->dma_burst_size
,
1154 &chip
->dma_threshold
)) {
1155 dev_warn(&spi
->dev
, "in setup: DMA burst size reduced "
1156 "to match bits_per_word\n");
1160 if (drv_data
->ioaddr
== SSP1_VIRT
)
1161 clk_div
= SSP1_SerClkDiv(spi
->max_speed_hz
);
1162 else if (drv_data
->ioaddr
== SSP2_VIRT
)
1163 clk_div
= SSP2_SerClkDiv(spi
->max_speed_hz
);
1164 else if (drv_data
->ioaddr
== SSP3_VIRT
)
1165 clk_div
= SSP3_SerClkDiv(spi
->max_speed_hz
);
1168 dev_err(&spi
->dev
, "failed setup: unknown IO address=0x%p\n",
1172 chip
->speed_hz
= spi
->max_speed_hz
;
1176 | SSCR0_DataSize(spi
->bits_per_word
> 16 ?
1177 spi
->bits_per_word
- 16 : spi
->bits_per_word
)
1179 | (spi
->bits_per_word
> 16 ? SSCR0_EDSS
: 0);
1180 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1181 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1182 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1184 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1185 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1186 dev_dbg(&spi
->dev
, "%d bits/word, %d Hz, mode %d\n",
1189 / (1 + ((chip
->cr0
& SSCR0_SCR
) >> 8)),
1192 dev_dbg(&spi
->dev
, "%d bits/word, %d Hz, mode %d\n",
1195 / (1 + ((chip
->cr0
& SSCR0_SCR
) >> 8)),
1198 if (spi
->bits_per_word
<= 8) {
1200 chip
->dma_width
= DCMD_WIDTH1
;
1201 chip
->read
= u8_reader
;
1202 chip
->write
= u8_writer
;
1203 } else if (spi
->bits_per_word
<= 16) {
1205 chip
->dma_width
= DCMD_WIDTH2
;
1206 chip
->read
= u16_reader
;
1207 chip
->write
= u16_writer
;
1208 } else if (spi
->bits_per_word
<= 32) {
1209 chip
->cr0
|= SSCR0_EDSS
;
1211 chip
->dma_width
= DCMD_WIDTH4
;
1212 chip
->read
= u32_reader
;
1213 chip
->write
= u32_writer
;
1215 dev_err(&spi
->dev
, "invalid wordsize\n");
1218 chip
->bits_per_word
= spi
->bits_per_word
;
1220 spi_set_ctldata(spi
, chip
);
1225 static void cleanup(struct spi_device
*spi
)
1227 struct chip_data
*chip
= spi_get_ctldata(spi
);
1232 static int __init
init_queue(struct driver_data
*drv_data
)
1234 INIT_LIST_HEAD(&drv_data
->queue
);
1235 spin_lock_init(&drv_data
->lock
);
1237 drv_data
->run
= QUEUE_STOPPED
;
1240 tasklet_init(&drv_data
->pump_transfers
,
1241 pump_transfers
, (unsigned long)drv_data
);
1243 INIT_WORK(&drv_data
->pump_messages
, pump_messages
);
1244 drv_data
->workqueue
= create_singlethread_workqueue(
1245 drv_data
->master
->dev
.parent
->bus_id
);
1246 if (drv_data
->workqueue
== NULL
)
1252 static int start_queue(struct driver_data
*drv_data
)
1254 unsigned long flags
;
1256 spin_lock_irqsave(&drv_data
->lock
, flags
);
1258 if (drv_data
->run
== QUEUE_RUNNING
|| drv_data
->busy
) {
1259 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1263 drv_data
->run
= QUEUE_RUNNING
;
1264 drv_data
->cur_msg
= NULL
;
1265 drv_data
->cur_transfer
= NULL
;
1266 drv_data
->cur_chip
= NULL
;
1267 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1269 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1274 static int stop_queue(struct driver_data
*drv_data
)
1276 unsigned long flags
;
1277 unsigned limit
= 500;
1280 spin_lock_irqsave(&drv_data
->lock
, flags
);
1282 /* This is a bit lame, but is optimized for the common execution path.
1283 * A wait_queue on the drv_data->busy could be used, but then the common
1284 * execution path (pump_messages) would be required to call wake_up or
1285 * friends on every SPI message. Do this instead */
1286 drv_data
->run
= QUEUE_STOPPED
;
1287 while (!list_empty(&drv_data
->queue
) && drv_data
->busy
&& limit
--) {
1288 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1290 spin_lock_irqsave(&drv_data
->lock
, flags
);
1293 if (!list_empty(&drv_data
->queue
) || drv_data
->busy
)
1296 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1301 static int destroy_queue(struct driver_data
*drv_data
)
1305 status
= stop_queue(drv_data
);
1306 /* we are unloading the module or failing to load (only two calls
1307 * to this routine), and neither call can handle a return value.
1308 * However, destroy_workqueue calls flush_workqueue, and that will
1309 * block until all work is done. If the reason that stop_queue
1310 * timed out is that the work will never finish, then it does no
1311 * good to call destroy_workqueue, so return anyway. */
1315 destroy_workqueue(drv_data
->workqueue
);
1320 static int __init
pxa2xx_spi_probe(struct platform_device
*pdev
)
1322 struct device
*dev
= &pdev
->dev
;
1323 struct pxa2xx_spi_master
*platform_info
;
1324 struct spi_master
*master
;
1325 struct driver_data
*drv_data
= 0;
1326 struct resource
*memory_resource
;
1330 platform_info
= dev
->platform_data
;
1332 if (platform_info
->ssp_type
== SSP_UNDEFINED
) {
1333 dev_err(&pdev
->dev
, "undefined SSP\n");
1337 /* Allocate master with space for drv_data and null dma buffer */
1338 master
= spi_alloc_master(dev
, sizeof(struct driver_data
) + 16);
1340 dev_err(&pdev
->dev
, "can not alloc spi_master\n");
1343 drv_data
= spi_master_get_devdata(master
);
1344 drv_data
->master
= master
;
1345 drv_data
->master_info
= platform_info
;
1346 drv_data
->pdev
= pdev
;
1348 master
->bus_num
= pdev
->id
;
1349 master
->num_chipselect
= platform_info
->num_chipselect
;
1350 master
->cleanup
= cleanup
;
1351 master
->setup
= setup
;
1352 master
->transfer
= transfer
;
1354 drv_data
->ssp_type
= platform_info
->ssp_type
;
1355 drv_data
->null_dma_buf
= (u32
*)ALIGN((u32
)(drv_data
+
1356 sizeof(struct driver_data
)), 8);
1358 /* Setup register addresses */
1359 memory_resource
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1360 if (!memory_resource
) {
1361 dev_err(&pdev
->dev
, "memory resources not defined\n");
1363 goto out_error_master_alloc
;
1366 drv_data
->ioaddr
= (void *)io_p2v((unsigned long)(memory_resource
->start
));
1367 drv_data
->ssdr_physical
= memory_resource
->start
+ 0x00000010;
1368 if (platform_info
->ssp_type
== PXA25x_SSP
) {
1369 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1370 drv_data
->dma_cr1
= 0;
1371 drv_data
->clear_sr
= SSSR_ROR
;
1372 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1374 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1375 drv_data
->dma_cr1
= SSCR1_TSRE
| SSCR1_RSRE
| SSCR1_TINTE
;
1376 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1377 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1381 irq
= platform_get_irq(pdev
, 0);
1383 dev_err(&pdev
->dev
, "irq resource not defined\n");
1385 goto out_error_master_alloc
;
1388 status
= request_irq(irq
, ssp_int
, 0, dev
->bus_id
, drv_data
);
1390 dev_err(&pdev
->dev
, "can not get IRQ\n");
1391 goto out_error_master_alloc
;
1394 /* Setup DMA if requested */
1395 drv_data
->tx_channel
= -1;
1396 drv_data
->rx_channel
= -1;
1397 if (platform_info
->enable_dma
) {
1399 /* Get two DMA channels (rx and tx) */
1400 drv_data
->rx_channel
= pxa_request_dma("pxa2xx_spi_ssp_rx",
1404 if (drv_data
->rx_channel
< 0) {
1405 dev_err(dev
, "problem (%d) requesting rx channel\n",
1406 drv_data
->rx_channel
);
1408 goto out_error_irq_alloc
;
1410 drv_data
->tx_channel
= pxa_request_dma("pxa2xx_spi_ssp_tx",
1414 if (drv_data
->tx_channel
< 0) {
1415 dev_err(dev
, "problem (%d) requesting tx channel\n",
1416 drv_data
->tx_channel
);
1418 goto out_error_dma_alloc
;
1421 if (drv_data
->ioaddr
== SSP1_VIRT
) {
1422 DRCMRRXSSDR
= DRCMR_MAPVLD
1423 | drv_data
->rx_channel
;
1424 DRCMRTXSSDR
= DRCMR_MAPVLD
1425 | drv_data
->tx_channel
;
1426 } else if (drv_data
->ioaddr
== SSP2_VIRT
) {
1427 DRCMRRXSS2DR
= DRCMR_MAPVLD
1428 | drv_data
->rx_channel
;
1429 DRCMRTXSS2DR
= DRCMR_MAPVLD
1430 | drv_data
->tx_channel
;
1431 } else if (drv_data
->ioaddr
== SSP3_VIRT
) {
1432 DRCMRRXSS3DR
= DRCMR_MAPVLD
1433 | drv_data
->rx_channel
;
1434 DRCMRTXSS3DR
= DRCMR_MAPVLD
1435 | drv_data
->tx_channel
;
1437 dev_err(dev
, "bad SSP type\n");
1438 goto out_error_dma_alloc
;
1442 /* Enable SOC clock */
1443 pxa_set_cken(platform_info
->clock_enable
, 1);
1445 /* Load default SSP configuration */
1446 write_SSCR0(0, drv_data
->ioaddr
);
1447 write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data
->ioaddr
);
1448 write_SSCR0(SSCR0_SerClkDiv(2)
1450 | SSCR0_DataSize(8),
1452 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1453 write_SSTO(0, drv_data
->ioaddr
);
1454 write_SSPSP(0, drv_data
->ioaddr
);
1456 /* Initial and start queue */
1457 status
= init_queue(drv_data
);
1459 dev_err(&pdev
->dev
, "problem initializing queue\n");
1460 goto out_error_clock_enabled
;
1462 status
= start_queue(drv_data
);
1464 dev_err(&pdev
->dev
, "problem starting queue\n");
1465 goto out_error_clock_enabled
;
1468 /* Register with the SPI framework */
1469 platform_set_drvdata(pdev
, drv_data
);
1470 status
= spi_register_master(master
);
1472 dev_err(&pdev
->dev
, "problem registering spi master\n");
1473 goto out_error_queue_alloc
;
1478 out_error_queue_alloc
:
1479 destroy_queue(drv_data
);
1481 out_error_clock_enabled
:
1482 pxa_set_cken(platform_info
->clock_enable
, 0);
1484 out_error_dma_alloc
:
1485 if (drv_data
->tx_channel
!= -1)
1486 pxa_free_dma(drv_data
->tx_channel
);
1487 if (drv_data
->rx_channel
!= -1)
1488 pxa_free_dma(drv_data
->rx_channel
);
1490 out_error_irq_alloc
:
1491 free_irq(irq
, drv_data
);
1493 out_error_master_alloc
:
1494 spi_master_put(master
);
1498 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1500 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1507 /* Remove the queue */
1508 status
= destroy_queue(drv_data
);
1510 /* the kernel does not check the return status of this
1511 * this routine (mod->exit, within the kernel). Therefore
1512 * nothing is gained by returning from here, the module is
1513 * going away regardless, and we should not leave any more
1514 * resources allocated than necessary. We cannot free the
1515 * message memory in drv_data->queue, but we can release the
1516 * resources below. I think the kernel should honor -EBUSY
1518 dev_err(&pdev
->dev
, "pxa2xx_spi_remove: workqueue will not "
1519 "complete, message memory not freed\n");
1521 /* Disable the SSP at the peripheral and SOC level */
1522 write_SSCR0(0, drv_data
->ioaddr
);
1523 pxa_set_cken(drv_data
->master_info
->clock_enable
, 0);
1526 if (drv_data
->master_info
->enable_dma
) {
1527 if (drv_data
->ioaddr
== SSP1_VIRT
) {
1530 } else if (drv_data
->ioaddr
== SSP2_VIRT
) {
1533 } else if (drv_data
->ioaddr
== SSP3_VIRT
) {
1537 pxa_free_dma(drv_data
->tx_channel
);
1538 pxa_free_dma(drv_data
->rx_channel
);
1542 irq
= platform_get_irq(pdev
, 0);
1544 free_irq(irq
, drv_data
);
1546 /* Disconnect from the SPI framework */
1547 spi_unregister_master(drv_data
->master
);
1549 /* Prevent double remove */
1550 platform_set_drvdata(pdev
, NULL
);
1555 static void pxa2xx_spi_shutdown(struct platform_device
*pdev
)
1559 if ((status
= pxa2xx_spi_remove(pdev
)) != 0)
1560 dev_err(&pdev
->dev
, "shutdown failed with %d\n", status
);
1564 static int suspend_devices(struct device
*dev
, void *pm_message
)
1566 pm_message_t
*state
= pm_message
;
1568 if (dev
->power
.power_state
.event
!= state
->event
) {
1569 dev_warn(dev
, "pm state does not match request\n");
1576 static int pxa2xx_spi_suspend(struct platform_device
*pdev
, pm_message_t state
)
1578 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1581 /* Check all childern for current power state */
1582 if (device_for_each_child(&pdev
->dev
, &state
, suspend_devices
) != 0) {
1583 dev_warn(&pdev
->dev
, "suspend aborted\n");
1587 status
= stop_queue(drv_data
);
1590 write_SSCR0(0, drv_data
->ioaddr
);
1591 pxa_set_cken(drv_data
->master_info
->clock_enable
, 0);
1596 static int pxa2xx_spi_resume(struct platform_device
*pdev
)
1598 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1601 /* Enable the SSP clock */
1602 pxa_set_cken(drv_data
->master_info
->clock_enable
, 1);
1604 /* Start the queue running */
1605 status
= start_queue(drv_data
);
1607 dev_err(&pdev
->dev
, "problem starting queue (%d)\n", status
);
1614 #define pxa2xx_spi_suspend NULL
1615 #define pxa2xx_spi_resume NULL
1616 #endif /* CONFIG_PM */
1618 static struct platform_driver driver
= {
1620 .name
= "pxa2xx-spi",
1621 .bus
= &platform_bus_type
,
1622 .owner
= THIS_MODULE
,
1624 .remove
= pxa2xx_spi_remove
,
1625 .shutdown
= pxa2xx_spi_shutdown
,
1626 .suspend
= pxa2xx_spi_suspend
,
1627 .resume
= pxa2xx_spi_resume
,
1630 static int __init
pxa2xx_spi_init(void)
1632 return platform_driver_probe(&driver
, pxa2xx_spi_probe
);
1634 module_init(pxa2xx_spi_init
);
1636 static void __exit
pxa2xx_spi_exit(void)
1638 platform_driver_unregister(&driver
);
1640 module_exit(pxa2xx_spi_exit
);