pcmcia: CompactFlash driver for PA Semi Electra boards
[pv_ops_mirror.git] / mm / slab.c
blob18fa1a65f57ba906275ff1bc5062fbc91797f4e1
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 #ifdef CONFIG_DEBUG_SLAB
129 #define DEBUG 1
130 #define STATS 1
131 #define FORCED_DEBUG 1
132 #else
133 #define DEBUG 0
134 #define STATS 0
135 #define FORCED_DEBUG 0
136 #endif
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
140 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
142 #ifndef cache_line_size
143 #define cache_line_size() L1_CACHE_BYTES
144 #endif
146 #ifndef ARCH_KMALLOC_MINALIGN
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
156 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
157 #endif
159 #ifndef ARCH_SLAB_MINALIGN
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
167 #define ARCH_SLAB_MINALIGN 0
168 #endif
170 #ifndef ARCH_KMALLOC_FLAGS
171 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172 #endif
174 /* Legal flag mask for kmem_cache_create(). */
175 #if DEBUG
176 # define CREATE_MASK (SLAB_RED_ZONE | \
177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178 SLAB_CACHE_DMA | \
179 SLAB_STORE_USER | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
182 #else
183 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
184 SLAB_CACHE_DMA | \
185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
187 #endif
190 * kmem_bufctl_t:
192 * Bufctl's are used for linking objs within a slab
193 * linked offsets.
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
208 typedef unsigned int kmem_bufctl_t;
209 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
211 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
215 * struct slab
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 struct slab {
222 struct list_head list;
223 unsigned long colouroff;
224 void *s_mem; /* including colour offset */
225 unsigned int inuse; /* num of objs active in slab */
226 kmem_bufctl_t free;
227 unsigned short nodeid;
231 * struct slab_rcu
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
244 * We assume struct slab_rcu can overlay struct slab when destroying.
246 struct slab_rcu {
247 struct rcu_head head;
248 struct kmem_cache *cachep;
249 void *addr;
253 * struct array_cache
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
264 struct array_cache {
265 unsigned int avail;
266 unsigned int limit;
267 unsigned int batchcount;
268 unsigned int touched;
269 spinlock_t lock;
270 void *entry[0]; /*
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
273 * the entries.
274 * [0] is for gcc 2.95. It should really be [].
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
282 #define BOOT_CPUCACHE_ENTRIES 1
283 struct arraycache_init {
284 struct array_cache cache;
285 void *entries[BOOT_CPUCACHE_ENTRIES];
289 * The slab lists for all objects.
291 struct kmem_list3 {
292 struct list_head slabs_partial; /* partial list first, better asm code */
293 struct list_head slabs_full;
294 struct list_head slabs_free;
295 unsigned long free_objects;
296 unsigned int free_limit;
297 unsigned int colour_next; /* Per-node cache coloring */
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
301 unsigned long next_reap; /* updated without locking */
302 int free_touched; /* updated without locking */
306 * Need this for bootstrapping a per node allocator.
308 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
309 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
310 #define CACHE_CACHE 0
311 #define SIZE_AC 1
312 #define SIZE_L3 (1 + MAX_NUMNODES)
314 static int drain_freelist(struct kmem_cache *cache,
315 struct kmem_list3 *l3, int tofree);
316 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317 int node);
318 static int enable_cpucache(struct kmem_cache *cachep);
319 static void cache_reap(struct work_struct *unused);
322 * This function must be completely optimized away if a constant is passed to
323 * it. Mostly the same as what is in linux/slab.h except it returns an index.
325 static __always_inline int index_of(const size_t size)
327 extern void __bad_size(void);
329 if (__builtin_constant_p(size)) {
330 int i = 0;
332 #define CACHE(x) \
333 if (size <=x) \
334 return i; \
335 else \
336 i++;
337 #include "linux/kmalloc_sizes.h"
338 #undef CACHE
339 __bad_size();
340 } else
341 __bad_size();
342 return 0;
345 static int slab_early_init = 1;
347 #define INDEX_AC index_of(sizeof(struct arraycache_init))
348 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
350 static void kmem_list3_init(struct kmem_list3 *parent)
352 INIT_LIST_HEAD(&parent->slabs_full);
353 INIT_LIST_HEAD(&parent->slabs_partial);
354 INIT_LIST_HEAD(&parent->slabs_free);
355 parent->shared = NULL;
356 parent->alien = NULL;
357 parent->colour_next = 0;
358 spin_lock_init(&parent->list_lock);
359 parent->free_objects = 0;
360 parent->free_touched = 0;
363 #define MAKE_LIST(cachep, listp, slab, nodeid) \
364 do { \
365 INIT_LIST_HEAD(listp); \
366 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
367 } while (0)
369 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
370 do { \
371 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
374 } while (0)
377 * struct kmem_cache
379 * manages a cache.
382 struct kmem_cache {
383 /* 1) per-cpu data, touched during every alloc/free */
384 struct array_cache *array[NR_CPUS];
385 /* 2) Cache tunables. Protected by cache_chain_mutex */
386 unsigned int batchcount;
387 unsigned int limit;
388 unsigned int shared;
390 unsigned int buffer_size;
391 u32 reciprocal_buffer_size;
392 /* 3) touched by every alloc & free from the backend */
394 unsigned int flags; /* constant flags */
395 unsigned int num; /* # of objs per slab */
397 /* 4) cache_grow/shrink */
398 /* order of pgs per slab (2^n) */
399 unsigned int gfporder;
401 /* force GFP flags, e.g. GFP_DMA */
402 gfp_t gfpflags;
404 size_t colour; /* cache colouring range */
405 unsigned int colour_off; /* colour offset */
406 struct kmem_cache *slabp_cache;
407 unsigned int slab_size;
408 unsigned int dflags; /* dynamic flags */
410 /* constructor func */
411 void (*ctor)(struct kmem_cache *, void *);
413 /* 5) cache creation/removal */
414 const char *name;
415 struct list_head next;
417 /* 6) statistics */
418 #if STATS
419 unsigned long num_active;
420 unsigned long num_allocations;
421 unsigned long high_mark;
422 unsigned long grown;
423 unsigned long reaped;
424 unsigned long errors;
425 unsigned long max_freeable;
426 unsigned long node_allocs;
427 unsigned long node_frees;
428 unsigned long node_overflow;
429 atomic_t allochit;
430 atomic_t allocmiss;
431 atomic_t freehit;
432 atomic_t freemiss;
433 #endif
434 #if DEBUG
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
441 int obj_offset;
442 int obj_size;
443 #endif
445 * We put nodelists[] at the end of kmem_cache, because we want to size
446 * this array to nr_node_ids slots instead of MAX_NUMNODES
447 * (see kmem_cache_init())
448 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
449 * is statically defined, so we reserve the max number of nodes.
451 struct kmem_list3 *nodelists[MAX_NUMNODES];
453 * Do not add fields after nodelists[]
457 #define CFLGS_OFF_SLAB (0x80000000UL)
458 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
460 #define BATCHREFILL_LIMIT 16
462 * Optimization question: fewer reaps means less probability for unnessary
463 * cpucache drain/refill cycles.
465 * OTOH the cpuarrays can contain lots of objects,
466 * which could lock up otherwise freeable slabs.
468 #define REAPTIMEOUT_CPUC (2*HZ)
469 #define REAPTIMEOUT_LIST3 (4*HZ)
471 #if STATS
472 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
473 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
474 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
475 #define STATS_INC_GROWN(x) ((x)->grown++)
476 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
477 #define STATS_SET_HIGH(x) \
478 do { \
479 if ((x)->num_active > (x)->high_mark) \
480 (x)->high_mark = (x)->num_active; \
481 } while (0)
482 #define STATS_INC_ERR(x) ((x)->errors++)
483 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
484 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
485 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
486 #define STATS_SET_FREEABLE(x, i) \
487 do { \
488 if ((x)->max_freeable < i) \
489 (x)->max_freeable = i; \
490 } while (0)
491 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
492 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
493 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
494 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
495 #else
496 #define STATS_INC_ACTIVE(x) do { } while (0)
497 #define STATS_DEC_ACTIVE(x) do { } while (0)
498 #define STATS_INC_ALLOCED(x) do { } while (0)
499 #define STATS_INC_GROWN(x) do { } while (0)
500 #define STATS_ADD_REAPED(x,y) do { } while (0)
501 #define STATS_SET_HIGH(x) do { } while (0)
502 #define STATS_INC_ERR(x) do { } while (0)
503 #define STATS_INC_NODEALLOCS(x) do { } while (0)
504 #define STATS_INC_NODEFREES(x) do { } while (0)
505 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
506 #define STATS_SET_FREEABLE(x, i) do { } while (0)
507 #define STATS_INC_ALLOCHIT(x) do { } while (0)
508 #define STATS_INC_ALLOCMISS(x) do { } while (0)
509 #define STATS_INC_FREEHIT(x) do { } while (0)
510 #define STATS_INC_FREEMISS(x) do { } while (0)
511 #endif
513 #if DEBUG
516 * memory layout of objects:
517 * 0 : objp
518 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
519 * the end of an object is aligned with the end of the real
520 * allocation. Catches writes behind the end of the allocation.
521 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
522 * redzone word.
523 * cachep->obj_offset: The real object.
524 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
525 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
526 * [BYTES_PER_WORD long]
528 static int obj_offset(struct kmem_cache *cachep)
530 return cachep->obj_offset;
533 static int obj_size(struct kmem_cache *cachep)
535 return cachep->obj_size;
538 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
540 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
541 return (unsigned long long*) (objp + obj_offset(cachep) -
542 sizeof(unsigned long long));
545 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
547 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
548 if (cachep->flags & SLAB_STORE_USER)
549 return (unsigned long long *)(objp + cachep->buffer_size -
550 sizeof(unsigned long long) -
551 REDZONE_ALIGN);
552 return (unsigned long long *) (objp + cachep->buffer_size -
553 sizeof(unsigned long long));
556 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
558 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
559 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
562 #else
564 #define obj_offset(x) 0
565 #define obj_size(cachep) (cachep->buffer_size)
566 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
568 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
570 #endif
573 * Do not go above this order unless 0 objects fit into the slab.
575 #define BREAK_GFP_ORDER_HI 1
576 #define BREAK_GFP_ORDER_LO 0
577 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580 * Functions for storing/retrieving the cachep and or slab from the page
581 * allocator. These are used to find the slab an obj belongs to. With kfree(),
582 * these are used to find the cache which an obj belongs to.
584 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
586 page->lru.next = (struct list_head *)cache;
589 static inline struct kmem_cache *page_get_cache(struct page *page)
591 page = compound_head(page);
592 BUG_ON(!PageSlab(page));
593 return (struct kmem_cache *)page->lru.next;
596 static inline void page_set_slab(struct page *page, struct slab *slab)
598 page->lru.prev = (struct list_head *)slab;
601 static inline struct slab *page_get_slab(struct page *page)
603 BUG_ON(!PageSlab(page));
604 return (struct slab *)page->lru.prev;
607 static inline struct kmem_cache *virt_to_cache(const void *obj)
609 struct page *page = virt_to_head_page(obj);
610 return page_get_cache(page);
613 static inline struct slab *virt_to_slab(const void *obj)
615 struct page *page = virt_to_head_page(obj);
616 return page_get_slab(page);
619 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
620 unsigned int idx)
622 return slab->s_mem + cache->buffer_size * idx;
626 * We want to avoid an expensive divide : (offset / cache->buffer_size)
627 * Using the fact that buffer_size is a constant for a particular cache,
628 * we can replace (offset / cache->buffer_size) by
629 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
631 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
632 const struct slab *slab, void *obj)
634 u32 offset = (obj - slab->s_mem);
635 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
639 * These are the default caches for kmalloc. Custom caches can have other sizes.
641 struct cache_sizes malloc_sizes[] = {
642 #define CACHE(x) { .cs_size = (x) },
643 #include <linux/kmalloc_sizes.h>
644 CACHE(ULONG_MAX)
645 #undef CACHE
647 EXPORT_SYMBOL(malloc_sizes);
649 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
650 struct cache_names {
651 char *name;
652 char *name_dma;
655 static struct cache_names __initdata cache_names[] = {
656 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
657 #include <linux/kmalloc_sizes.h>
658 {NULL,}
659 #undef CACHE
662 static struct arraycache_init initarray_cache __initdata =
663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
664 static struct arraycache_init initarray_generic =
665 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
667 /* internal cache of cache description objs */
668 static struct kmem_cache cache_cache = {
669 .batchcount = 1,
670 .limit = BOOT_CPUCACHE_ENTRIES,
671 .shared = 1,
672 .buffer_size = sizeof(struct kmem_cache),
673 .name = "kmem_cache",
676 #define BAD_ALIEN_MAGIC 0x01020304ul
678 #ifdef CONFIG_LOCKDEP
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
691 static struct lock_class_key on_slab_l3_key;
692 static struct lock_class_key on_slab_alc_key;
694 static inline void init_lock_keys(void)
697 int q;
698 struct cache_sizes *s = malloc_sizes;
700 while (s->cs_size != ULONG_MAX) {
701 for_each_node(q) {
702 struct array_cache **alc;
703 int r;
704 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
705 if (!l3 || OFF_SLAB(s->cs_cachep))
706 continue;
707 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
708 alc = l3->alien;
710 * FIXME: This check for BAD_ALIEN_MAGIC
711 * should go away when common slab code is taught to
712 * work even without alien caches.
713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714 * for alloc_alien_cache,
716 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
717 continue;
718 for_each_node(r) {
719 if (alc[r])
720 lockdep_set_class(&alc[r]->lock,
721 &on_slab_alc_key);
724 s++;
727 #else
728 static inline void init_lock_keys(void)
731 #endif
734 * 1. Guard access to the cache-chain.
735 * 2. Protect sanity of cpu_online_map against cpu hotplug events
737 static DEFINE_MUTEX(cache_chain_mutex);
738 static struct list_head cache_chain;
741 * chicken and egg problem: delay the per-cpu array allocation
742 * until the general caches are up.
744 static enum {
745 NONE,
746 PARTIAL_AC,
747 PARTIAL_L3,
748 FULL
749 } g_cpucache_up;
752 * used by boot code to determine if it can use slab based allocator
754 int slab_is_available(void)
756 return g_cpucache_up == FULL;
759 static DEFINE_PER_CPU(struct delayed_work, reap_work);
761 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
763 return cachep->array[smp_processor_id()];
766 static inline struct kmem_cache *__find_general_cachep(size_t size,
767 gfp_t gfpflags)
769 struct cache_sizes *csizep = malloc_sizes;
771 #if DEBUG
772 /* This happens if someone tries to call
773 * kmem_cache_create(), or __kmalloc(), before
774 * the generic caches are initialized.
776 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
777 #endif
778 if (!size)
779 return ZERO_SIZE_PTR;
781 while (size > csizep->cs_size)
782 csizep++;
785 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
786 * has cs_{dma,}cachep==NULL. Thus no special case
787 * for large kmalloc calls required.
789 #ifdef CONFIG_ZONE_DMA
790 if (unlikely(gfpflags & GFP_DMA))
791 return csizep->cs_dmacachep;
792 #endif
793 return csizep->cs_cachep;
796 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
798 return __find_general_cachep(size, gfpflags);
801 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
803 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
807 * Calculate the number of objects and left-over bytes for a given buffer size.
809 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
810 size_t align, int flags, size_t *left_over,
811 unsigned int *num)
813 int nr_objs;
814 size_t mgmt_size;
815 size_t slab_size = PAGE_SIZE << gfporder;
818 * The slab management structure can be either off the slab or
819 * on it. For the latter case, the memory allocated for a
820 * slab is used for:
822 * - The struct slab
823 * - One kmem_bufctl_t for each object
824 * - Padding to respect alignment of @align
825 * - @buffer_size bytes for each object
827 * If the slab management structure is off the slab, then the
828 * alignment will already be calculated into the size. Because
829 * the slabs are all pages aligned, the objects will be at the
830 * correct alignment when allocated.
832 if (flags & CFLGS_OFF_SLAB) {
833 mgmt_size = 0;
834 nr_objs = slab_size / buffer_size;
836 if (nr_objs > SLAB_LIMIT)
837 nr_objs = SLAB_LIMIT;
838 } else {
840 * Ignore padding for the initial guess. The padding
841 * is at most @align-1 bytes, and @buffer_size is at
842 * least @align. In the worst case, this result will
843 * be one greater than the number of objects that fit
844 * into the memory allocation when taking the padding
845 * into account.
847 nr_objs = (slab_size - sizeof(struct slab)) /
848 (buffer_size + sizeof(kmem_bufctl_t));
851 * This calculated number will be either the right
852 * amount, or one greater than what we want.
854 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
855 > slab_size)
856 nr_objs--;
858 if (nr_objs > SLAB_LIMIT)
859 nr_objs = SLAB_LIMIT;
861 mgmt_size = slab_mgmt_size(nr_objs, align);
863 *num = nr_objs;
864 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
867 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
869 static void __slab_error(const char *function, struct kmem_cache *cachep,
870 char *msg)
872 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
873 function, cachep->name, msg);
874 dump_stack();
878 * By default on NUMA we use alien caches to stage the freeing of
879 * objects allocated from other nodes. This causes massive memory
880 * inefficiencies when using fake NUMA setup to split memory into a
881 * large number of small nodes, so it can be disabled on the command
882 * line
885 static int use_alien_caches __read_mostly = 1;
886 static int numa_platform __read_mostly = 1;
887 static int __init noaliencache_setup(char *s)
889 use_alien_caches = 0;
890 return 1;
892 __setup("noaliencache", noaliencache_setup);
894 #ifdef CONFIG_NUMA
896 * Special reaping functions for NUMA systems called from cache_reap().
897 * These take care of doing round robin flushing of alien caches (containing
898 * objects freed on different nodes from which they were allocated) and the
899 * flushing of remote pcps by calling drain_node_pages.
901 static DEFINE_PER_CPU(unsigned long, reap_node);
903 static void init_reap_node(int cpu)
905 int node;
907 node = next_node(cpu_to_node(cpu), node_online_map);
908 if (node == MAX_NUMNODES)
909 node = first_node(node_online_map);
911 per_cpu(reap_node, cpu) = node;
914 static void next_reap_node(void)
916 int node = __get_cpu_var(reap_node);
918 node = next_node(node, node_online_map);
919 if (unlikely(node >= MAX_NUMNODES))
920 node = first_node(node_online_map);
921 __get_cpu_var(reap_node) = node;
924 #else
925 #define init_reap_node(cpu) do { } while (0)
926 #define next_reap_node(void) do { } while (0)
927 #endif
930 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
931 * via the workqueue/eventd.
932 * Add the CPU number into the expiration time to minimize the possibility of
933 * the CPUs getting into lockstep and contending for the global cache chain
934 * lock.
936 static void __cpuinit start_cpu_timer(int cpu)
938 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
941 * When this gets called from do_initcalls via cpucache_init(),
942 * init_workqueues() has already run, so keventd will be setup
943 * at that time.
945 if (keventd_up() && reap_work->work.func == NULL) {
946 init_reap_node(cpu);
947 INIT_DELAYED_WORK(reap_work, cache_reap);
948 schedule_delayed_work_on(cpu, reap_work,
949 __round_jiffies_relative(HZ, cpu));
953 static struct array_cache *alloc_arraycache(int node, int entries,
954 int batchcount)
956 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
957 struct array_cache *nc = NULL;
959 nc = kmalloc_node(memsize, GFP_KERNEL, node);
960 if (nc) {
961 nc->avail = 0;
962 nc->limit = entries;
963 nc->batchcount = batchcount;
964 nc->touched = 0;
965 spin_lock_init(&nc->lock);
967 return nc;
971 * Transfer objects in one arraycache to another.
972 * Locking must be handled by the caller.
974 * Return the number of entries transferred.
976 static int transfer_objects(struct array_cache *to,
977 struct array_cache *from, unsigned int max)
979 /* Figure out how many entries to transfer */
980 int nr = min(min(from->avail, max), to->limit - to->avail);
982 if (!nr)
983 return 0;
985 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
986 sizeof(void *) *nr);
988 from->avail -= nr;
989 to->avail += nr;
990 to->touched = 1;
991 return nr;
994 #ifndef CONFIG_NUMA
996 #define drain_alien_cache(cachep, alien) do { } while (0)
997 #define reap_alien(cachep, l3) do { } while (0)
999 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1001 return (struct array_cache **)BAD_ALIEN_MAGIC;
1004 static inline void free_alien_cache(struct array_cache **ac_ptr)
1008 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1010 return 0;
1013 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1014 gfp_t flags)
1016 return NULL;
1019 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1020 gfp_t flags, int nodeid)
1022 return NULL;
1025 #else /* CONFIG_NUMA */
1027 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1028 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1030 static struct array_cache **alloc_alien_cache(int node, int limit)
1032 struct array_cache **ac_ptr;
1033 int memsize = sizeof(void *) * nr_node_ids;
1034 int i;
1036 if (limit > 1)
1037 limit = 12;
1038 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1039 if (ac_ptr) {
1040 for_each_node(i) {
1041 if (i == node || !node_online(i)) {
1042 ac_ptr[i] = NULL;
1043 continue;
1045 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1046 if (!ac_ptr[i]) {
1047 for (i--; i <= 0; i--)
1048 kfree(ac_ptr[i]);
1049 kfree(ac_ptr);
1050 return NULL;
1054 return ac_ptr;
1057 static void free_alien_cache(struct array_cache **ac_ptr)
1059 int i;
1061 if (!ac_ptr)
1062 return;
1063 for_each_node(i)
1064 kfree(ac_ptr[i]);
1065 kfree(ac_ptr);
1068 static void __drain_alien_cache(struct kmem_cache *cachep,
1069 struct array_cache *ac, int node)
1071 struct kmem_list3 *rl3 = cachep->nodelists[node];
1073 if (ac->avail) {
1074 spin_lock(&rl3->list_lock);
1076 * Stuff objects into the remote nodes shared array first.
1077 * That way we could avoid the overhead of putting the objects
1078 * into the free lists and getting them back later.
1080 if (rl3->shared)
1081 transfer_objects(rl3->shared, ac, ac->limit);
1083 free_block(cachep, ac->entry, ac->avail, node);
1084 ac->avail = 0;
1085 spin_unlock(&rl3->list_lock);
1090 * Called from cache_reap() to regularly drain alien caches round robin.
1092 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1094 int node = __get_cpu_var(reap_node);
1096 if (l3->alien) {
1097 struct array_cache *ac = l3->alien[node];
1099 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1100 __drain_alien_cache(cachep, ac, node);
1101 spin_unlock_irq(&ac->lock);
1106 static void drain_alien_cache(struct kmem_cache *cachep,
1107 struct array_cache **alien)
1109 int i = 0;
1110 struct array_cache *ac;
1111 unsigned long flags;
1113 for_each_online_node(i) {
1114 ac = alien[i];
1115 if (ac) {
1116 spin_lock_irqsave(&ac->lock, flags);
1117 __drain_alien_cache(cachep, ac, i);
1118 spin_unlock_irqrestore(&ac->lock, flags);
1123 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1125 struct slab *slabp = virt_to_slab(objp);
1126 int nodeid = slabp->nodeid;
1127 struct kmem_list3 *l3;
1128 struct array_cache *alien = NULL;
1129 int node;
1131 node = numa_node_id();
1134 * Make sure we are not freeing a object from another node to the array
1135 * cache on this cpu.
1137 if (likely(slabp->nodeid == node))
1138 return 0;
1140 l3 = cachep->nodelists[node];
1141 STATS_INC_NODEFREES(cachep);
1142 if (l3->alien && l3->alien[nodeid]) {
1143 alien = l3->alien[nodeid];
1144 spin_lock(&alien->lock);
1145 if (unlikely(alien->avail == alien->limit)) {
1146 STATS_INC_ACOVERFLOW(cachep);
1147 __drain_alien_cache(cachep, alien, nodeid);
1149 alien->entry[alien->avail++] = objp;
1150 spin_unlock(&alien->lock);
1151 } else {
1152 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1153 free_block(cachep, &objp, 1, nodeid);
1154 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1156 return 1;
1158 #endif
1160 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1161 unsigned long action, void *hcpu)
1163 long cpu = (long)hcpu;
1164 struct kmem_cache *cachep;
1165 struct kmem_list3 *l3 = NULL;
1166 int node = cpu_to_node(cpu);
1167 const int memsize = sizeof(struct kmem_list3);
1169 switch (action) {
1170 case CPU_LOCK_ACQUIRE:
1171 mutex_lock(&cache_chain_mutex);
1172 break;
1173 case CPU_UP_PREPARE:
1174 case CPU_UP_PREPARE_FROZEN:
1176 * We need to do this right in the beginning since
1177 * alloc_arraycache's are going to use this list.
1178 * kmalloc_node allows us to add the slab to the right
1179 * kmem_list3 and not this cpu's kmem_list3
1182 list_for_each_entry(cachep, &cache_chain, next) {
1184 * Set up the size64 kmemlist for cpu before we can
1185 * begin anything. Make sure some other cpu on this
1186 * node has not already allocated this
1188 if (!cachep->nodelists[node]) {
1189 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1190 if (!l3)
1191 goto bad;
1192 kmem_list3_init(l3);
1193 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1194 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1197 * The l3s don't come and go as CPUs come and
1198 * go. cache_chain_mutex is sufficient
1199 * protection here.
1201 cachep->nodelists[node] = l3;
1204 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1205 cachep->nodelists[node]->free_limit =
1206 (1 + nr_cpus_node(node)) *
1207 cachep->batchcount + cachep->num;
1208 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1212 * Now we can go ahead with allocating the shared arrays and
1213 * array caches
1215 list_for_each_entry(cachep, &cache_chain, next) {
1216 struct array_cache *nc;
1217 struct array_cache *shared = NULL;
1218 struct array_cache **alien = NULL;
1220 nc = alloc_arraycache(node, cachep->limit,
1221 cachep->batchcount);
1222 if (!nc)
1223 goto bad;
1224 if (cachep->shared) {
1225 shared = alloc_arraycache(node,
1226 cachep->shared * cachep->batchcount,
1227 0xbaadf00d);
1228 if (!shared)
1229 goto bad;
1231 if (use_alien_caches) {
1232 alien = alloc_alien_cache(node, cachep->limit);
1233 if (!alien)
1234 goto bad;
1236 cachep->array[cpu] = nc;
1237 l3 = cachep->nodelists[node];
1238 BUG_ON(!l3);
1240 spin_lock_irq(&l3->list_lock);
1241 if (!l3->shared) {
1243 * We are serialised from CPU_DEAD or
1244 * CPU_UP_CANCELLED by the cpucontrol lock
1246 l3->shared = shared;
1247 shared = NULL;
1249 #ifdef CONFIG_NUMA
1250 if (!l3->alien) {
1251 l3->alien = alien;
1252 alien = NULL;
1254 #endif
1255 spin_unlock_irq(&l3->list_lock);
1256 kfree(shared);
1257 free_alien_cache(alien);
1259 break;
1260 case CPU_ONLINE:
1261 case CPU_ONLINE_FROZEN:
1262 start_cpu_timer(cpu);
1263 break;
1264 #ifdef CONFIG_HOTPLUG_CPU
1265 case CPU_DOWN_PREPARE:
1266 case CPU_DOWN_PREPARE_FROZEN:
1268 * Shutdown cache reaper. Note that the cache_chain_mutex is
1269 * held so that if cache_reap() is invoked it cannot do
1270 * anything expensive but will only modify reap_work
1271 * and reschedule the timer.
1273 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1274 /* Now the cache_reaper is guaranteed to be not running. */
1275 per_cpu(reap_work, cpu).work.func = NULL;
1276 break;
1277 case CPU_DOWN_FAILED:
1278 case CPU_DOWN_FAILED_FROZEN:
1279 start_cpu_timer(cpu);
1280 break;
1281 case CPU_DEAD:
1282 case CPU_DEAD_FROZEN:
1284 * Even if all the cpus of a node are down, we don't free the
1285 * kmem_list3 of any cache. This to avoid a race between
1286 * cpu_down, and a kmalloc allocation from another cpu for
1287 * memory from the node of the cpu going down. The list3
1288 * structure is usually allocated from kmem_cache_create() and
1289 * gets destroyed at kmem_cache_destroy().
1291 /* fall thru */
1292 #endif
1293 case CPU_UP_CANCELED:
1294 case CPU_UP_CANCELED_FROZEN:
1295 list_for_each_entry(cachep, &cache_chain, next) {
1296 struct array_cache *nc;
1297 struct array_cache *shared;
1298 struct array_cache **alien;
1299 cpumask_t mask;
1301 mask = node_to_cpumask(node);
1302 /* cpu is dead; no one can alloc from it. */
1303 nc = cachep->array[cpu];
1304 cachep->array[cpu] = NULL;
1305 l3 = cachep->nodelists[node];
1307 if (!l3)
1308 goto free_array_cache;
1310 spin_lock_irq(&l3->list_lock);
1312 /* Free limit for this kmem_list3 */
1313 l3->free_limit -= cachep->batchcount;
1314 if (nc)
1315 free_block(cachep, nc->entry, nc->avail, node);
1317 if (!cpus_empty(mask)) {
1318 spin_unlock_irq(&l3->list_lock);
1319 goto free_array_cache;
1322 shared = l3->shared;
1323 if (shared) {
1324 free_block(cachep, shared->entry,
1325 shared->avail, node);
1326 l3->shared = NULL;
1329 alien = l3->alien;
1330 l3->alien = NULL;
1332 spin_unlock_irq(&l3->list_lock);
1334 kfree(shared);
1335 if (alien) {
1336 drain_alien_cache(cachep, alien);
1337 free_alien_cache(alien);
1339 free_array_cache:
1340 kfree(nc);
1343 * In the previous loop, all the objects were freed to
1344 * the respective cache's slabs, now we can go ahead and
1345 * shrink each nodelist to its limit.
1347 list_for_each_entry(cachep, &cache_chain, next) {
1348 l3 = cachep->nodelists[node];
1349 if (!l3)
1350 continue;
1351 drain_freelist(cachep, l3, l3->free_objects);
1353 break;
1354 case CPU_LOCK_RELEASE:
1355 mutex_unlock(&cache_chain_mutex);
1356 break;
1358 return NOTIFY_OK;
1359 bad:
1360 return NOTIFY_BAD;
1363 static struct notifier_block __cpuinitdata cpucache_notifier = {
1364 &cpuup_callback, NULL, 0
1368 * swap the static kmem_list3 with kmalloced memory
1370 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1371 int nodeid)
1373 struct kmem_list3 *ptr;
1375 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1376 BUG_ON(!ptr);
1378 local_irq_disable();
1379 memcpy(ptr, list, sizeof(struct kmem_list3));
1381 * Do not assume that spinlocks can be initialized via memcpy:
1383 spin_lock_init(&ptr->list_lock);
1385 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1386 cachep->nodelists[nodeid] = ptr;
1387 local_irq_enable();
1391 * Initialisation. Called after the page allocator have been initialised and
1392 * before smp_init().
1394 void __init kmem_cache_init(void)
1396 size_t left_over;
1397 struct cache_sizes *sizes;
1398 struct cache_names *names;
1399 int i;
1400 int order;
1401 int node;
1403 if (num_possible_nodes() == 1) {
1404 use_alien_caches = 0;
1405 numa_platform = 0;
1408 for (i = 0; i < NUM_INIT_LISTS; i++) {
1409 kmem_list3_init(&initkmem_list3[i]);
1410 if (i < MAX_NUMNODES)
1411 cache_cache.nodelists[i] = NULL;
1415 * Fragmentation resistance on low memory - only use bigger
1416 * page orders on machines with more than 32MB of memory.
1418 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1419 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1421 /* Bootstrap is tricky, because several objects are allocated
1422 * from caches that do not exist yet:
1423 * 1) initialize the cache_cache cache: it contains the struct
1424 * kmem_cache structures of all caches, except cache_cache itself:
1425 * cache_cache is statically allocated.
1426 * Initially an __init data area is used for the head array and the
1427 * kmem_list3 structures, it's replaced with a kmalloc allocated
1428 * array at the end of the bootstrap.
1429 * 2) Create the first kmalloc cache.
1430 * The struct kmem_cache for the new cache is allocated normally.
1431 * An __init data area is used for the head array.
1432 * 3) Create the remaining kmalloc caches, with minimally sized
1433 * head arrays.
1434 * 4) Replace the __init data head arrays for cache_cache and the first
1435 * kmalloc cache with kmalloc allocated arrays.
1436 * 5) Replace the __init data for kmem_list3 for cache_cache and
1437 * the other cache's with kmalloc allocated memory.
1438 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1441 node = numa_node_id();
1443 /* 1) create the cache_cache */
1444 INIT_LIST_HEAD(&cache_chain);
1445 list_add(&cache_cache.next, &cache_chain);
1446 cache_cache.colour_off = cache_line_size();
1447 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1448 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1451 * struct kmem_cache size depends on nr_node_ids, which
1452 * can be less than MAX_NUMNODES.
1454 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1455 nr_node_ids * sizeof(struct kmem_list3 *);
1456 #if DEBUG
1457 cache_cache.obj_size = cache_cache.buffer_size;
1458 #endif
1459 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1460 cache_line_size());
1461 cache_cache.reciprocal_buffer_size =
1462 reciprocal_value(cache_cache.buffer_size);
1464 for (order = 0; order < MAX_ORDER; order++) {
1465 cache_estimate(order, cache_cache.buffer_size,
1466 cache_line_size(), 0, &left_over, &cache_cache.num);
1467 if (cache_cache.num)
1468 break;
1470 BUG_ON(!cache_cache.num);
1471 cache_cache.gfporder = order;
1472 cache_cache.colour = left_over / cache_cache.colour_off;
1473 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1474 sizeof(struct slab), cache_line_size());
1476 /* 2+3) create the kmalloc caches */
1477 sizes = malloc_sizes;
1478 names = cache_names;
1481 * Initialize the caches that provide memory for the array cache and the
1482 * kmem_list3 structures first. Without this, further allocations will
1483 * bug.
1486 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1487 sizes[INDEX_AC].cs_size,
1488 ARCH_KMALLOC_MINALIGN,
1489 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1490 NULL);
1492 if (INDEX_AC != INDEX_L3) {
1493 sizes[INDEX_L3].cs_cachep =
1494 kmem_cache_create(names[INDEX_L3].name,
1495 sizes[INDEX_L3].cs_size,
1496 ARCH_KMALLOC_MINALIGN,
1497 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1498 NULL);
1501 slab_early_init = 0;
1503 while (sizes->cs_size != ULONG_MAX) {
1505 * For performance, all the general caches are L1 aligned.
1506 * This should be particularly beneficial on SMP boxes, as it
1507 * eliminates "false sharing".
1508 * Note for systems short on memory removing the alignment will
1509 * allow tighter packing of the smaller caches.
1511 if (!sizes->cs_cachep) {
1512 sizes->cs_cachep = kmem_cache_create(names->name,
1513 sizes->cs_size,
1514 ARCH_KMALLOC_MINALIGN,
1515 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1516 NULL);
1518 #ifdef CONFIG_ZONE_DMA
1519 sizes->cs_dmacachep = kmem_cache_create(
1520 names->name_dma,
1521 sizes->cs_size,
1522 ARCH_KMALLOC_MINALIGN,
1523 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1524 SLAB_PANIC,
1525 NULL);
1526 #endif
1527 sizes++;
1528 names++;
1530 /* 4) Replace the bootstrap head arrays */
1532 struct array_cache *ptr;
1534 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1536 local_irq_disable();
1537 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1538 memcpy(ptr, cpu_cache_get(&cache_cache),
1539 sizeof(struct arraycache_init));
1541 * Do not assume that spinlocks can be initialized via memcpy:
1543 spin_lock_init(&ptr->lock);
1545 cache_cache.array[smp_processor_id()] = ptr;
1546 local_irq_enable();
1548 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1550 local_irq_disable();
1551 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1552 != &initarray_generic.cache);
1553 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1554 sizeof(struct arraycache_init));
1556 * Do not assume that spinlocks can be initialized via memcpy:
1558 spin_lock_init(&ptr->lock);
1560 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1561 ptr;
1562 local_irq_enable();
1564 /* 5) Replace the bootstrap kmem_list3's */
1566 int nid;
1568 /* Replace the static kmem_list3 structures for the boot cpu */
1569 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1571 for_each_node_state(nid, N_NORMAL_MEMORY) {
1572 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1573 &initkmem_list3[SIZE_AC + nid], nid);
1575 if (INDEX_AC != INDEX_L3) {
1576 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1577 &initkmem_list3[SIZE_L3 + nid], nid);
1582 /* 6) resize the head arrays to their final sizes */
1584 struct kmem_cache *cachep;
1585 mutex_lock(&cache_chain_mutex);
1586 list_for_each_entry(cachep, &cache_chain, next)
1587 if (enable_cpucache(cachep))
1588 BUG();
1589 mutex_unlock(&cache_chain_mutex);
1592 /* Annotate slab for lockdep -- annotate the malloc caches */
1593 init_lock_keys();
1596 /* Done! */
1597 g_cpucache_up = FULL;
1600 * Register a cpu startup notifier callback that initializes
1601 * cpu_cache_get for all new cpus
1603 register_cpu_notifier(&cpucache_notifier);
1606 * The reap timers are started later, with a module init call: That part
1607 * of the kernel is not yet operational.
1611 static int __init cpucache_init(void)
1613 int cpu;
1616 * Register the timers that return unneeded pages to the page allocator
1618 for_each_online_cpu(cpu)
1619 start_cpu_timer(cpu);
1620 return 0;
1622 __initcall(cpucache_init);
1625 * Interface to system's page allocator. No need to hold the cache-lock.
1627 * If we requested dmaable memory, we will get it. Even if we
1628 * did not request dmaable memory, we might get it, but that
1629 * would be relatively rare and ignorable.
1631 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1633 struct page *page;
1634 int nr_pages;
1635 int i;
1637 #ifndef CONFIG_MMU
1639 * Nommu uses slab's for process anonymous memory allocations, and thus
1640 * requires __GFP_COMP to properly refcount higher order allocations
1642 flags |= __GFP_COMP;
1643 #endif
1645 flags |= cachep->gfpflags;
1646 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1647 flags |= __GFP_RECLAIMABLE;
1649 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1650 if (!page)
1651 return NULL;
1653 nr_pages = (1 << cachep->gfporder);
1654 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1655 add_zone_page_state(page_zone(page),
1656 NR_SLAB_RECLAIMABLE, nr_pages);
1657 else
1658 add_zone_page_state(page_zone(page),
1659 NR_SLAB_UNRECLAIMABLE, nr_pages);
1660 for (i = 0; i < nr_pages; i++)
1661 __SetPageSlab(page + i);
1662 return page_address(page);
1666 * Interface to system's page release.
1668 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1670 unsigned long i = (1 << cachep->gfporder);
1671 struct page *page = virt_to_page(addr);
1672 const unsigned long nr_freed = i;
1674 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1675 sub_zone_page_state(page_zone(page),
1676 NR_SLAB_RECLAIMABLE, nr_freed);
1677 else
1678 sub_zone_page_state(page_zone(page),
1679 NR_SLAB_UNRECLAIMABLE, nr_freed);
1680 while (i--) {
1681 BUG_ON(!PageSlab(page));
1682 __ClearPageSlab(page);
1683 page++;
1685 if (current->reclaim_state)
1686 current->reclaim_state->reclaimed_slab += nr_freed;
1687 free_pages((unsigned long)addr, cachep->gfporder);
1690 static void kmem_rcu_free(struct rcu_head *head)
1692 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1693 struct kmem_cache *cachep = slab_rcu->cachep;
1695 kmem_freepages(cachep, slab_rcu->addr);
1696 if (OFF_SLAB(cachep))
1697 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1700 #if DEBUG
1702 #ifdef CONFIG_DEBUG_PAGEALLOC
1703 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1704 unsigned long caller)
1706 int size = obj_size(cachep);
1708 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1710 if (size < 5 * sizeof(unsigned long))
1711 return;
1713 *addr++ = 0x12345678;
1714 *addr++ = caller;
1715 *addr++ = smp_processor_id();
1716 size -= 3 * sizeof(unsigned long);
1718 unsigned long *sptr = &caller;
1719 unsigned long svalue;
1721 while (!kstack_end(sptr)) {
1722 svalue = *sptr++;
1723 if (kernel_text_address(svalue)) {
1724 *addr++ = svalue;
1725 size -= sizeof(unsigned long);
1726 if (size <= sizeof(unsigned long))
1727 break;
1732 *addr++ = 0x87654321;
1734 #endif
1736 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1738 int size = obj_size(cachep);
1739 addr = &((char *)addr)[obj_offset(cachep)];
1741 memset(addr, val, size);
1742 *(unsigned char *)(addr + size - 1) = POISON_END;
1745 static void dump_line(char *data, int offset, int limit)
1747 int i;
1748 unsigned char error = 0;
1749 int bad_count = 0;
1751 printk(KERN_ERR "%03x:", offset);
1752 for (i = 0; i < limit; i++) {
1753 if (data[offset + i] != POISON_FREE) {
1754 error = data[offset + i];
1755 bad_count++;
1757 printk(" %02x", (unsigned char)data[offset + i]);
1759 printk("\n");
1761 if (bad_count == 1) {
1762 error ^= POISON_FREE;
1763 if (!(error & (error - 1))) {
1764 printk(KERN_ERR "Single bit error detected. Probably "
1765 "bad RAM.\n");
1766 #ifdef CONFIG_X86
1767 printk(KERN_ERR "Run memtest86+ or a similar memory "
1768 "test tool.\n");
1769 #else
1770 printk(KERN_ERR "Run a memory test tool.\n");
1771 #endif
1775 #endif
1777 #if DEBUG
1779 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1781 int i, size;
1782 char *realobj;
1784 if (cachep->flags & SLAB_RED_ZONE) {
1785 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1786 *dbg_redzone1(cachep, objp),
1787 *dbg_redzone2(cachep, objp));
1790 if (cachep->flags & SLAB_STORE_USER) {
1791 printk(KERN_ERR "Last user: [<%p>]",
1792 *dbg_userword(cachep, objp));
1793 print_symbol("(%s)",
1794 (unsigned long)*dbg_userword(cachep, objp));
1795 printk("\n");
1797 realobj = (char *)objp + obj_offset(cachep);
1798 size = obj_size(cachep);
1799 for (i = 0; i < size && lines; i += 16, lines--) {
1800 int limit;
1801 limit = 16;
1802 if (i + limit > size)
1803 limit = size - i;
1804 dump_line(realobj, i, limit);
1808 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1810 char *realobj;
1811 int size, i;
1812 int lines = 0;
1814 realobj = (char *)objp + obj_offset(cachep);
1815 size = obj_size(cachep);
1817 for (i = 0; i < size; i++) {
1818 char exp = POISON_FREE;
1819 if (i == size - 1)
1820 exp = POISON_END;
1821 if (realobj[i] != exp) {
1822 int limit;
1823 /* Mismatch ! */
1824 /* Print header */
1825 if (lines == 0) {
1826 printk(KERN_ERR
1827 "Slab corruption: %s start=%p, len=%d\n",
1828 cachep->name, realobj, size);
1829 print_objinfo(cachep, objp, 0);
1831 /* Hexdump the affected line */
1832 i = (i / 16) * 16;
1833 limit = 16;
1834 if (i + limit > size)
1835 limit = size - i;
1836 dump_line(realobj, i, limit);
1837 i += 16;
1838 lines++;
1839 /* Limit to 5 lines */
1840 if (lines > 5)
1841 break;
1844 if (lines != 0) {
1845 /* Print some data about the neighboring objects, if they
1846 * exist:
1848 struct slab *slabp = virt_to_slab(objp);
1849 unsigned int objnr;
1851 objnr = obj_to_index(cachep, slabp, objp);
1852 if (objnr) {
1853 objp = index_to_obj(cachep, slabp, objnr - 1);
1854 realobj = (char *)objp + obj_offset(cachep);
1855 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1856 realobj, size);
1857 print_objinfo(cachep, objp, 2);
1859 if (objnr + 1 < cachep->num) {
1860 objp = index_to_obj(cachep, slabp, objnr + 1);
1861 realobj = (char *)objp + obj_offset(cachep);
1862 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1863 realobj, size);
1864 print_objinfo(cachep, objp, 2);
1868 #endif
1870 #if DEBUG
1872 * slab_destroy_objs - destroy a slab and its objects
1873 * @cachep: cache pointer being destroyed
1874 * @slabp: slab pointer being destroyed
1876 * Call the registered destructor for each object in a slab that is being
1877 * destroyed.
1879 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1881 int i;
1882 for (i = 0; i < cachep->num; i++) {
1883 void *objp = index_to_obj(cachep, slabp, i);
1885 if (cachep->flags & SLAB_POISON) {
1886 #ifdef CONFIG_DEBUG_PAGEALLOC
1887 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1888 OFF_SLAB(cachep))
1889 kernel_map_pages(virt_to_page(objp),
1890 cachep->buffer_size / PAGE_SIZE, 1);
1891 else
1892 check_poison_obj(cachep, objp);
1893 #else
1894 check_poison_obj(cachep, objp);
1895 #endif
1897 if (cachep->flags & SLAB_RED_ZONE) {
1898 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1899 slab_error(cachep, "start of a freed object "
1900 "was overwritten");
1901 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1902 slab_error(cachep, "end of a freed object "
1903 "was overwritten");
1907 #else
1908 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1911 #endif
1914 * slab_destroy - destroy and release all objects in a slab
1915 * @cachep: cache pointer being destroyed
1916 * @slabp: slab pointer being destroyed
1918 * Destroy all the objs in a slab, and release the mem back to the system.
1919 * Before calling the slab must have been unlinked from the cache. The
1920 * cache-lock is not held/needed.
1922 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1924 void *addr = slabp->s_mem - slabp->colouroff;
1926 slab_destroy_objs(cachep, slabp);
1927 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1928 struct slab_rcu *slab_rcu;
1930 slab_rcu = (struct slab_rcu *)slabp;
1931 slab_rcu->cachep = cachep;
1932 slab_rcu->addr = addr;
1933 call_rcu(&slab_rcu->head, kmem_rcu_free);
1934 } else {
1935 kmem_freepages(cachep, addr);
1936 if (OFF_SLAB(cachep))
1937 kmem_cache_free(cachep->slabp_cache, slabp);
1942 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1943 * size of kmem_list3.
1945 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1947 int node;
1949 for_each_node_state(node, N_NORMAL_MEMORY) {
1950 cachep->nodelists[node] = &initkmem_list3[index + node];
1951 cachep->nodelists[node]->next_reap = jiffies +
1952 REAPTIMEOUT_LIST3 +
1953 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1957 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1959 int i;
1960 struct kmem_list3 *l3;
1962 for_each_online_cpu(i)
1963 kfree(cachep->array[i]);
1965 /* NUMA: free the list3 structures */
1966 for_each_online_node(i) {
1967 l3 = cachep->nodelists[i];
1968 if (l3) {
1969 kfree(l3->shared);
1970 free_alien_cache(l3->alien);
1971 kfree(l3);
1974 kmem_cache_free(&cache_cache, cachep);
1979 * calculate_slab_order - calculate size (page order) of slabs
1980 * @cachep: pointer to the cache that is being created
1981 * @size: size of objects to be created in this cache.
1982 * @align: required alignment for the objects.
1983 * @flags: slab allocation flags
1985 * Also calculates the number of objects per slab.
1987 * This could be made much more intelligent. For now, try to avoid using
1988 * high order pages for slabs. When the gfp() functions are more friendly
1989 * towards high-order requests, this should be changed.
1991 static size_t calculate_slab_order(struct kmem_cache *cachep,
1992 size_t size, size_t align, unsigned long flags)
1994 unsigned long offslab_limit;
1995 size_t left_over = 0;
1996 int gfporder;
1998 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1999 unsigned int num;
2000 size_t remainder;
2002 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2003 if (!num)
2004 continue;
2006 if (flags & CFLGS_OFF_SLAB) {
2008 * Max number of objs-per-slab for caches which
2009 * use off-slab slabs. Needed to avoid a possible
2010 * looping condition in cache_grow().
2012 offslab_limit = size - sizeof(struct slab);
2013 offslab_limit /= sizeof(kmem_bufctl_t);
2015 if (num > offslab_limit)
2016 break;
2019 /* Found something acceptable - save it away */
2020 cachep->num = num;
2021 cachep->gfporder = gfporder;
2022 left_over = remainder;
2025 * A VFS-reclaimable slab tends to have most allocations
2026 * as GFP_NOFS and we really don't want to have to be allocating
2027 * higher-order pages when we are unable to shrink dcache.
2029 if (flags & SLAB_RECLAIM_ACCOUNT)
2030 break;
2033 * Large number of objects is good, but very large slabs are
2034 * currently bad for the gfp()s.
2036 if (gfporder >= slab_break_gfp_order)
2037 break;
2040 * Acceptable internal fragmentation?
2042 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2043 break;
2045 return left_over;
2048 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2050 if (g_cpucache_up == FULL)
2051 return enable_cpucache(cachep);
2053 if (g_cpucache_up == NONE) {
2055 * Note: the first kmem_cache_create must create the cache
2056 * that's used by kmalloc(24), otherwise the creation of
2057 * further caches will BUG().
2059 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2062 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2063 * the first cache, then we need to set up all its list3s,
2064 * otherwise the creation of further caches will BUG().
2066 set_up_list3s(cachep, SIZE_AC);
2067 if (INDEX_AC == INDEX_L3)
2068 g_cpucache_up = PARTIAL_L3;
2069 else
2070 g_cpucache_up = PARTIAL_AC;
2071 } else {
2072 cachep->array[smp_processor_id()] =
2073 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2075 if (g_cpucache_up == PARTIAL_AC) {
2076 set_up_list3s(cachep, SIZE_L3);
2077 g_cpucache_up = PARTIAL_L3;
2078 } else {
2079 int node;
2080 for_each_node_state(node, N_NORMAL_MEMORY) {
2081 cachep->nodelists[node] =
2082 kmalloc_node(sizeof(struct kmem_list3),
2083 GFP_KERNEL, node);
2084 BUG_ON(!cachep->nodelists[node]);
2085 kmem_list3_init(cachep->nodelists[node]);
2089 cachep->nodelists[numa_node_id()]->next_reap =
2090 jiffies + REAPTIMEOUT_LIST3 +
2091 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2093 cpu_cache_get(cachep)->avail = 0;
2094 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2095 cpu_cache_get(cachep)->batchcount = 1;
2096 cpu_cache_get(cachep)->touched = 0;
2097 cachep->batchcount = 1;
2098 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2099 return 0;
2103 * kmem_cache_create - Create a cache.
2104 * @name: A string which is used in /proc/slabinfo to identify this cache.
2105 * @size: The size of objects to be created in this cache.
2106 * @align: The required alignment for the objects.
2107 * @flags: SLAB flags
2108 * @ctor: A constructor for the objects.
2110 * Returns a ptr to the cache on success, NULL on failure.
2111 * Cannot be called within a int, but can be interrupted.
2112 * The @ctor is run when new pages are allocated by the cache.
2114 * @name must be valid until the cache is destroyed. This implies that
2115 * the module calling this has to destroy the cache before getting unloaded.
2117 * The flags are
2119 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2120 * to catch references to uninitialised memory.
2122 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2123 * for buffer overruns.
2125 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2126 * cacheline. This can be beneficial if you're counting cycles as closely
2127 * as davem.
2129 struct kmem_cache *
2130 kmem_cache_create (const char *name, size_t size, size_t align,
2131 unsigned long flags,
2132 void (*ctor)(struct kmem_cache *, void *))
2134 size_t left_over, slab_size, ralign;
2135 struct kmem_cache *cachep = NULL, *pc;
2138 * Sanity checks... these are all serious usage bugs.
2140 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2141 size > KMALLOC_MAX_SIZE) {
2142 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2143 name);
2144 BUG();
2148 * We use cache_chain_mutex to ensure a consistent view of
2149 * cpu_online_map as well. Please see cpuup_callback
2151 mutex_lock(&cache_chain_mutex);
2153 list_for_each_entry(pc, &cache_chain, next) {
2154 char tmp;
2155 int res;
2158 * This happens when the module gets unloaded and doesn't
2159 * destroy its slab cache and no-one else reuses the vmalloc
2160 * area of the module. Print a warning.
2162 res = probe_kernel_address(pc->name, tmp);
2163 if (res) {
2164 printk(KERN_ERR
2165 "SLAB: cache with size %d has lost its name\n",
2166 pc->buffer_size);
2167 continue;
2170 if (!strcmp(pc->name, name)) {
2171 printk(KERN_ERR
2172 "kmem_cache_create: duplicate cache %s\n", name);
2173 dump_stack();
2174 goto oops;
2178 #if DEBUG
2179 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2180 #if FORCED_DEBUG
2182 * Enable redzoning and last user accounting, except for caches with
2183 * large objects, if the increased size would increase the object size
2184 * above the next power of two: caches with object sizes just above a
2185 * power of two have a significant amount of internal fragmentation.
2187 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2188 2 * sizeof(unsigned long long)))
2189 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2190 if (!(flags & SLAB_DESTROY_BY_RCU))
2191 flags |= SLAB_POISON;
2192 #endif
2193 if (flags & SLAB_DESTROY_BY_RCU)
2194 BUG_ON(flags & SLAB_POISON);
2195 #endif
2197 * Always checks flags, a caller might be expecting debug support which
2198 * isn't available.
2200 BUG_ON(flags & ~CREATE_MASK);
2203 * Check that size is in terms of words. This is needed to avoid
2204 * unaligned accesses for some archs when redzoning is used, and makes
2205 * sure any on-slab bufctl's are also correctly aligned.
2207 if (size & (BYTES_PER_WORD - 1)) {
2208 size += (BYTES_PER_WORD - 1);
2209 size &= ~(BYTES_PER_WORD - 1);
2212 /* calculate the final buffer alignment: */
2214 /* 1) arch recommendation: can be overridden for debug */
2215 if (flags & SLAB_HWCACHE_ALIGN) {
2217 * Default alignment: as specified by the arch code. Except if
2218 * an object is really small, then squeeze multiple objects into
2219 * one cacheline.
2221 ralign = cache_line_size();
2222 while (size <= ralign / 2)
2223 ralign /= 2;
2224 } else {
2225 ralign = BYTES_PER_WORD;
2229 * Redzoning and user store require word alignment or possibly larger.
2230 * Note this will be overridden by architecture or caller mandated
2231 * alignment if either is greater than BYTES_PER_WORD.
2233 if (flags & SLAB_STORE_USER)
2234 ralign = BYTES_PER_WORD;
2236 if (flags & SLAB_RED_ZONE) {
2237 ralign = REDZONE_ALIGN;
2238 /* If redzoning, ensure that the second redzone is suitably
2239 * aligned, by adjusting the object size accordingly. */
2240 size += REDZONE_ALIGN - 1;
2241 size &= ~(REDZONE_ALIGN - 1);
2244 /* 2) arch mandated alignment */
2245 if (ralign < ARCH_SLAB_MINALIGN) {
2246 ralign = ARCH_SLAB_MINALIGN;
2248 /* 3) caller mandated alignment */
2249 if (ralign < align) {
2250 ralign = align;
2252 /* disable debug if necessary */
2253 if (ralign > __alignof__(unsigned long long))
2254 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2256 * 4) Store it.
2258 align = ralign;
2260 /* Get cache's description obj. */
2261 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2262 if (!cachep)
2263 goto oops;
2265 #if DEBUG
2266 cachep->obj_size = size;
2269 * Both debugging options require word-alignment which is calculated
2270 * into align above.
2272 if (flags & SLAB_RED_ZONE) {
2273 /* add space for red zone words */
2274 cachep->obj_offset += sizeof(unsigned long long);
2275 size += 2 * sizeof(unsigned long long);
2277 if (flags & SLAB_STORE_USER) {
2278 /* user store requires one word storage behind the end of
2279 * the real object. But if the second red zone needs to be
2280 * aligned to 64 bits, we must allow that much space.
2282 if (flags & SLAB_RED_ZONE)
2283 size += REDZONE_ALIGN;
2284 else
2285 size += BYTES_PER_WORD;
2287 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2288 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2289 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2290 cachep->obj_offset += PAGE_SIZE - size;
2291 size = PAGE_SIZE;
2293 #endif
2294 #endif
2297 * Determine if the slab management is 'on' or 'off' slab.
2298 * (bootstrapping cannot cope with offslab caches so don't do
2299 * it too early on.)
2301 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2303 * Size is large, assume best to place the slab management obj
2304 * off-slab (should allow better packing of objs).
2306 flags |= CFLGS_OFF_SLAB;
2308 size = ALIGN(size, align);
2310 left_over = calculate_slab_order(cachep, size, align, flags);
2312 if (!cachep->num) {
2313 printk(KERN_ERR
2314 "kmem_cache_create: couldn't create cache %s.\n", name);
2315 kmem_cache_free(&cache_cache, cachep);
2316 cachep = NULL;
2317 goto oops;
2319 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2320 + sizeof(struct slab), align);
2323 * If the slab has been placed off-slab, and we have enough space then
2324 * move it on-slab. This is at the expense of any extra colouring.
2326 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2327 flags &= ~CFLGS_OFF_SLAB;
2328 left_over -= slab_size;
2331 if (flags & CFLGS_OFF_SLAB) {
2332 /* really off slab. No need for manual alignment */
2333 slab_size =
2334 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2337 cachep->colour_off = cache_line_size();
2338 /* Offset must be a multiple of the alignment. */
2339 if (cachep->colour_off < align)
2340 cachep->colour_off = align;
2341 cachep->colour = left_over / cachep->colour_off;
2342 cachep->slab_size = slab_size;
2343 cachep->flags = flags;
2344 cachep->gfpflags = 0;
2345 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2346 cachep->gfpflags |= GFP_DMA;
2347 cachep->buffer_size = size;
2348 cachep->reciprocal_buffer_size = reciprocal_value(size);
2350 if (flags & CFLGS_OFF_SLAB) {
2351 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2353 * This is a possibility for one of the malloc_sizes caches.
2354 * But since we go off slab only for object size greater than
2355 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2356 * this should not happen at all.
2357 * But leave a BUG_ON for some lucky dude.
2359 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2361 cachep->ctor = ctor;
2362 cachep->name = name;
2364 if (setup_cpu_cache(cachep)) {
2365 __kmem_cache_destroy(cachep);
2366 cachep = NULL;
2367 goto oops;
2370 /* cache setup completed, link it into the list */
2371 list_add(&cachep->next, &cache_chain);
2372 oops:
2373 if (!cachep && (flags & SLAB_PANIC))
2374 panic("kmem_cache_create(): failed to create slab `%s'\n",
2375 name);
2376 mutex_unlock(&cache_chain_mutex);
2377 return cachep;
2379 EXPORT_SYMBOL(kmem_cache_create);
2381 #if DEBUG
2382 static void check_irq_off(void)
2384 BUG_ON(!irqs_disabled());
2387 static void check_irq_on(void)
2389 BUG_ON(irqs_disabled());
2392 static void check_spinlock_acquired(struct kmem_cache *cachep)
2394 #ifdef CONFIG_SMP
2395 check_irq_off();
2396 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2397 #endif
2400 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2402 #ifdef CONFIG_SMP
2403 check_irq_off();
2404 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2405 #endif
2408 #else
2409 #define check_irq_off() do { } while(0)
2410 #define check_irq_on() do { } while(0)
2411 #define check_spinlock_acquired(x) do { } while(0)
2412 #define check_spinlock_acquired_node(x, y) do { } while(0)
2413 #endif
2415 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2416 struct array_cache *ac,
2417 int force, int node);
2419 static void do_drain(void *arg)
2421 struct kmem_cache *cachep = arg;
2422 struct array_cache *ac;
2423 int node = numa_node_id();
2425 check_irq_off();
2426 ac = cpu_cache_get(cachep);
2427 spin_lock(&cachep->nodelists[node]->list_lock);
2428 free_block(cachep, ac->entry, ac->avail, node);
2429 spin_unlock(&cachep->nodelists[node]->list_lock);
2430 ac->avail = 0;
2433 static void drain_cpu_caches(struct kmem_cache *cachep)
2435 struct kmem_list3 *l3;
2436 int node;
2438 on_each_cpu(do_drain, cachep, 1, 1);
2439 check_irq_on();
2440 for_each_online_node(node) {
2441 l3 = cachep->nodelists[node];
2442 if (l3 && l3->alien)
2443 drain_alien_cache(cachep, l3->alien);
2446 for_each_online_node(node) {
2447 l3 = cachep->nodelists[node];
2448 if (l3)
2449 drain_array(cachep, l3, l3->shared, 1, node);
2454 * Remove slabs from the list of free slabs.
2455 * Specify the number of slabs to drain in tofree.
2457 * Returns the actual number of slabs released.
2459 static int drain_freelist(struct kmem_cache *cache,
2460 struct kmem_list3 *l3, int tofree)
2462 struct list_head *p;
2463 int nr_freed;
2464 struct slab *slabp;
2466 nr_freed = 0;
2467 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2469 spin_lock_irq(&l3->list_lock);
2470 p = l3->slabs_free.prev;
2471 if (p == &l3->slabs_free) {
2472 spin_unlock_irq(&l3->list_lock);
2473 goto out;
2476 slabp = list_entry(p, struct slab, list);
2477 #if DEBUG
2478 BUG_ON(slabp->inuse);
2479 #endif
2480 list_del(&slabp->list);
2482 * Safe to drop the lock. The slab is no longer linked
2483 * to the cache.
2485 l3->free_objects -= cache->num;
2486 spin_unlock_irq(&l3->list_lock);
2487 slab_destroy(cache, slabp);
2488 nr_freed++;
2490 out:
2491 return nr_freed;
2494 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2495 static int __cache_shrink(struct kmem_cache *cachep)
2497 int ret = 0, i = 0;
2498 struct kmem_list3 *l3;
2500 drain_cpu_caches(cachep);
2502 check_irq_on();
2503 for_each_online_node(i) {
2504 l3 = cachep->nodelists[i];
2505 if (!l3)
2506 continue;
2508 drain_freelist(cachep, l3, l3->free_objects);
2510 ret += !list_empty(&l3->slabs_full) ||
2511 !list_empty(&l3->slabs_partial);
2513 return (ret ? 1 : 0);
2517 * kmem_cache_shrink - Shrink a cache.
2518 * @cachep: The cache to shrink.
2520 * Releases as many slabs as possible for a cache.
2521 * To help debugging, a zero exit status indicates all slabs were released.
2523 int kmem_cache_shrink(struct kmem_cache *cachep)
2525 int ret;
2526 BUG_ON(!cachep || in_interrupt());
2528 mutex_lock(&cache_chain_mutex);
2529 ret = __cache_shrink(cachep);
2530 mutex_unlock(&cache_chain_mutex);
2531 return ret;
2533 EXPORT_SYMBOL(kmem_cache_shrink);
2536 * kmem_cache_destroy - delete a cache
2537 * @cachep: the cache to destroy
2539 * Remove a &struct kmem_cache object from the slab cache.
2541 * It is expected this function will be called by a module when it is
2542 * unloaded. This will remove the cache completely, and avoid a duplicate
2543 * cache being allocated each time a module is loaded and unloaded, if the
2544 * module doesn't have persistent in-kernel storage across loads and unloads.
2546 * The cache must be empty before calling this function.
2548 * The caller must guarantee that noone will allocate memory from the cache
2549 * during the kmem_cache_destroy().
2551 void kmem_cache_destroy(struct kmem_cache *cachep)
2553 BUG_ON(!cachep || in_interrupt());
2555 /* Find the cache in the chain of caches. */
2556 mutex_lock(&cache_chain_mutex);
2558 * the chain is never empty, cache_cache is never destroyed
2560 list_del(&cachep->next);
2561 if (__cache_shrink(cachep)) {
2562 slab_error(cachep, "Can't free all objects");
2563 list_add(&cachep->next, &cache_chain);
2564 mutex_unlock(&cache_chain_mutex);
2565 return;
2568 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2569 synchronize_rcu();
2571 __kmem_cache_destroy(cachep);
2572 mutex_unlock(&cache_chain_mutex);
2574 EXPORT_SYMBOL(kmem_cache_destroy);
2577 * Get the memory for a slab management obj.
2578 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2579 * always come from malloc_sizes caches. The slab descriptor cannot
2580 * come from the same cache which is getting created because,
2581 * when we are searching for an appropriate cache for these
2582 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2583 * If we are creating a malloc_sizes cache here it would not be visible to
2584 * kmem_find_general_cachep till the initialization is complete.
2585 * Hence we cannot have slabp_cache same as the original cache.
2587 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2588 int colour_off, gfp_t local_flags,
2589 int nodeid)
2591 struct slab *slabp;
2593 if (OFF_SLAB(cachep)) {
2594 /* Slab management obj is off-slab. */
2595 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2596 local_flags & ~GFP_THISNODE, nodeid);
2597 if (!slabp)
2598 return NULL;
2599 } else {
2600 slabp = objp + colour_off;
2601 colour_off += cachep->slab_size;
2603 slabp->inuse = 0;
2604 slabp->colouroff = colour_off;
2605 slabp->s_mem = objp + colour_off;
2606 slabp->nodeid = nodeid;
2607 return slabp;
2610 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2612 return (kmem_bufctl_t *) (slabp + 1);
2615 static void cache_init_objs(struct kmem_cache *cachep,
2616 struct slab *slabp)
2618 int i;
2620 for (i = 0; i < cachep->num; i++) {
2621 void *objp = index_to_obj(cachep, slabp, i);
2622 #if DEBUG
2623 /* need to poison the objs? */
2624 if (cachep->flags & SLAB_POISON)
2625 poison_obj(cachep, objp, POISON_FREE);
2626 if (cachep->flags & SLAB_STORE_USER)
2627 *dbg_userword(cachep, objp) = NULL;
2629 if (cachep->flags & SLAB_RED_ZONE) {
2630 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2631 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2634 * Constructors are not allowed to allocate memory from the same
2635 * cache which they are a constructor for. Otherwise, deadlock.
2636 * They must also be threaded.
2638 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2639 cachep->ctor(cachep, objp + obj_offset(cachep));
2641 if (cachep->flags & SLAB_RED_ZONE) {
2642 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2643 slab_error(cachep, "constructor overwrote the"
2644 " end of an object");
2645 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2646 slab_error(cachep, "constructor overwrote the"
2647 " start of an object");
2649 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2650 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2651 kernel_map_pages(virt_to_page(objp),
2652 cachep->buffer_size / PAGE_SIZE, 0);
2653 #else
2654 if (cachep->ctor)
2655 cachep->ctor(cachep, objp);
2656 #endif
2657 slab_bufctl(slabp)[i] = i + 1;
2659 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2660 slabp->free = 0;
2663 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2665 if (CONFIG_ZONE_DMA_FLAG) {
2666 if (flags & GFP_DMA)
2667 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2668 else
2669 BUG_ON(cachep->gfpflags & GFP_DMA);
2673 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2674 int nodeid)
2676 void *objp = index_to_obj(cachep, slabp, slabp->free);
2677 kmem_bufctl_t next;
2679 slabp->inuse++;
2680 next = slab_bufctl(slabp)[slabp->free];
2681 #if DEBUG
2682 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2683 WARN_ON(slabp->nodeid != nodeid);
2684 #endif
2685 slabp->free = next;
2687 return objp;
2690 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2691 void *objp, int nodeid)
2693 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2695 #if DEBUG
2696 /* Verify that the slab belongs to the intended node */
2697 WARN_ON(slabp->nodeid != nodeid);
2699 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2700 printk(KERN_ERR "slab: double free detected in cache "
2701 "'%s', objp %p\n", cachep->name, objp);
2702 BUG();
2704 #endif
2705 slab_bufctl(slabp)[objnr] = slabp->free;
2706 slabp->free = objnr;
2707 slabp->inuse--;
2711 * Map pages beginning at addr to the given cache and slab. This is required
2712 * for the slab allocator to be able to lookup the cache and slab of a
2713 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2715 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2716 void *addr)
2718 int nr_pages;
2719 struct page *page;
2721 page = virt_to_page(addr);
2723 nr_pages = 1;
2724 if (likely(!PageCompound(page)))
2725 nr_pages <<= cache->gfporder;
2727 do {
2728 page_set_cache(page, cache);
2729 page_set_slab(page, slab);
2730 page++;
2731 } while (--nr_pages);
2735 * Grow (by 1) the number of slabs within a cache. This is called by
2736 * kmem_cache_alloc() when there are no active objs left in a cache.
2738 static int cache_grow(struct kmem_cache *cachep,
2739 gfp_t flags, int nodeid, void *objp)
2741 struct slab *slabp;
2742 size_t offset;
2743 gfp_t local_flags;
2744 struct kmem_list3 *l3;
2747 * Be lazy and only check for valid flags here, keeping it out of the
2748 * critical path in kmem_cache_alloc().
2750 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2751 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2753 /* Take the l3 list lock to change the colour_next on this node */
2754 check_irq_off();
2755 l3 = cachep->nodelists[nodeid];
2756 spin_lock(&l3->list_lock);
2758 /* Get colour for the slab, and cal the next value. */
2759 offset = l3->colour_next;
2760 l3->colour_next++;
2761 if (l3->colour_next >= cachep->colour)
2762 l3->colour_next = 0;
2763 spin_unlock(&l3->list_lock);
2765 offset *= cachep->colour_off;
2767 if (local_flags & __GFP_WAIT)
2768 local_irq_enable();
2771 * The test for missing atomic flag is performed here, rather than
2772 * the more obvious place, simply to reduce the critical path length
2773 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2774 * will eventually be caught here (where it matters).
2776 kmem_flagcheck(cachep, flags);
2779 * Get mem for the objs. Attempt to allocate a physical page from
2780 * 'nodeid'.
2782 if (!objp)
2783 objp = kmem_getpages(cachep, local_flags, nodeid);
2784 if (!objp)
2785 goto failed;
2787 /* Get slab management. */
2788 slabp = alloc_slabmgmt(cachep, objp, offset,
2789 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2790 if (!slabp)
2791 goto opps1;
2793 slabp->nodeid = nodeid;
2794 slab_map_pages(cachep, slabp, objp);
2796 cache_init_objs(cachep, slabp);
2798 if (local_flags & __GFP_WAIT)
2799 local_irq_disable();
2800 check_irq_off();
2801 spin_lock(&l3->list_lock);
2803 /* Make slab active. */
2804 list_add_tail(&slabp->list, &(l3->slabs_free));
2805 STATS_INC_GROWN(cachep);
2806 l3->free_objects += cachep->num;
2807 spin_unlock(&l3->list_lock);
2808 return 1;
2809 opps1:
2810 kmem_freepages(cachep, objp);
2811 failed:
2812 if (local_flags & __GFP_WAIT)
2813 local_irq_disable();
2814 return 0;
2817 #if DEBUG
2820 * Perform extra freeing checks:
2821 * - detect bad pointers.
2822 * - POISON/RED_ZONE checking
2824 static void kfree_debugcheck(const void *objp)
2826 if (!virt_addr_valid(objp)) {
2827 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2828 (unsigned long)objp);
2829 BUG();
2833 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2835 unsigned long long redzone1, redzone2;
2837 redzone1 = *dbg_redzone1(cache, obj);
2838 redzone2 = *dbg_redzone2(cache, obj);
2841 * Redzone is ok.
2843 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2844 return;
2846 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2847 slab_error(cache, "double free detected");
2848 else
2849 slab_error(cache, "memory outside object was overwritten");
2851 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2852 obj, redzone1, redzone2);
2855 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2856 void *caller)
2858 struct page *page;
2859 unsigned int objnr;
2860 struct slab *slabp;
2862 objp -= obj_offset(cachep);
2863 kfree_debugcheck(objp);
2864 page = virt_to_head_page(objp);
2866 slabp = page_get_slab(page);
2868 if (cachep->flags & SLAB_RED_ZONE) {
2869 verify_redzone_free(cachep, objp);
2870 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2871 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2873 if (cachep->flags & SLAB_STORE_USER)
2874 *dbg_userword(cachep, objp) = caller;
2876 objnr = obj_to_index(cachep, slabp, objp);
2878 BUG_ON(objnr >= cachep->num);
2879 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2881 #ifdef CONFIG_DEBUG_SLAB_LEAK
2882 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2883 #endif
2884 if (cachep->flags & SLAB_POISON) {
2885 #ifdef CONFIG_DEBUG_PAGEALLOC
2886 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2887 store_stackinfo(cachep, objp, (unsigned long)caller);
2888 kernel_map_pages(virt_to_page(objp),
2889 cachep->buffer_size / PAGE_SIZE, 0);
2890 } else {
2891 poison_obj(cachep, objp, POISON_FREE);
2893 #else
2894 poison_obj(cachep, objp, POISON_FREE);
2895 #endif
2897 return objp;
2900 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2902 kmem_bufctl_t i;
2903 int entries = 0;
2905 /* Check slab's freelist to see if this obj is there. */
2906 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2907 entries++;
2908 if (entries > cachep->num || i >= cachep->num)
2909 goto bad;
2911 if (entries != cachep->num - slabp->inuse) {
2912 bad:
2913 printk(KERN_ERR "slab: Internal list corruption detected in "
2914 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2915 cachep->name, cachep->num, slabp, slabp->inuse);
2916 for (i = 0;
2917 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2918 i++) {
2919 if (i % 16 == 0)
2920 printk("\n%03x:", i);
2921 printk(" %02x", ((unsigned char *)slabp)[i]);
2923 printk("\n");
2924 BUG();
2927 #else
2928 #define kfree_debugcheck(x) do { } while(0)
2929 #define cache_free_debugcheck(x,objp,z) (objp)
2930 #define check_slabp(x,y) do { } while(0)
2931 #endif
2933 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2935 int batchcount;
2936 struct kmem_list3 *l3;
2937 struct array_cache *ac;
2938 int node;
2940 node = numa_node_id();
2942 check_irq_off();
2943 ac = cpu_cache_get(cachep);
2944 retry:
2945 batchcount = ac->batchcount;
2946 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2948 * If there was little recent activity on this cache, then
2949 * perform only a partial refill. Otherwise we could generate
2950 * refill bouncing.
2952 batchcount = BATCHREFILL_LIMIT;
2954 l3 = cachep->nodelists[node];
2956 BUG_ON(ac->avail > 0 || !l3);
2957 spin_lock(&l3->list_lock);
2959 /* See if we can refill from the shared array */
2960 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2961 goto alloc_done;
2963 while (batchcount > 0) {
2964 struct list_head *entry;
2965 struct slab *slabp;
2966 /* Get slab alloc is to come from. */
2967 entry = l3->slabs_partial.next;
2968 if (entry == &l3->slabs_partial) {
2969 l3->free_touched = 1;
2970 entry = l3->slabs_free.next;
2971 if (entry == &l3->slabs_free)
2972 goto must_grow;
2975 slabp = list_entry(entry, struct slab, list);
2976 check_slabp(cachep, slabp);
2977 check_spinlock_acquired(cachep);
2980 * The slab was either on partial or free list so
2981 * there must be at least one object available for
2982 * allocation.
2984 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2986 while (slabp->inuse < cachep->num && batchcount--) {
2987 STATS_INC_ALLOCED(cachep);
2988 STATS_INC_ACTIVE(cachep);
2989 STATS_SET_HIGH(cachep);
2991 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2992 node);
2994 check_slabp(cachep, slabp);
2996 /* move slabp to correct slabp list: */
2997 list_del(&slabp->list);
2998 if (slabp->free == BUFCTL_END)
2999 list_add(&slabp->list, &l3->slabs_full);
3000 else
3001 list_add(&slabp->list, &l3->slabs_partial);
3004 must_grow:
3005 l3->free_objects -= ac->avail;
3006 alloc_done:
3007 spin_unlock(&l3->list_lock);
3009 if (unlikely(!ac->avail)) {
3010 int x;
3011 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3013 /* cache_grow can reenable interrupts, then ac could change. */
3014 ac = cpu_cache_get(cachep);
3015 if (!x && ac->avail == 0) /* no objects in sight? abort */
3016 return NULL;
3018 if (!ac->avail) /* objects refilled by interrupt? */
3019 goto retry;
3021 ac->touched = 1;
3022 return ac->entry[--ac->avail];
3025 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3026 gfp_t flags)
3028 might_sleep_if(flags & __GFP_WAIT);
3029 #if DEBUG
3030 kmem_flagcheck(cachep, flags);
3031 #endif
3034 #if DEBUG
3035 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3036 gfp_t flags, void *objp, void *caller)
3038 if (!objp)
3039 return objp;
3040 if (cachep->flags & SLAB_POISON) {
3041 #ifdef CONFIG_DEBUG_PAGEALLOC
3042 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3043 kernel_map_pages(virt_to_page(objp),
3044 cachep->buffer_size / PAGE_SIZE, 1);
3045 else
3046 check_poison_obj(cachep, objp);
3047 #else
3048 check_poison_obj(cachep, objp);
3049 #endif
3050 poison_obj(cachep, objp, POISON_INUSE);
3052 if (cachep->flags & SLAB_STORE_USER)
3053 *dbg_userword(cachep, objp) = caller;
3055 if (cachep->flags & SLAB_RED_ZONE) {
3056 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3057 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3058 slab_error(cachep, "double free, or memory outside"
3059 " object was overwritten");
3060 printk(KERN_ERR
3061 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3062 objp, *dbg_redzone1(cachep, objp),
3063 *dbg_redzone2(cachep, objp));
3065 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3066 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3068 #ifdef CONFIG_DEBUG_SLAB_LEAK
3070 struct slab *slabp;
3071 unsigned objnr;
3073 slabp = page_get_slab(virt_to_head_page(objp));
3074 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3075 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3077 #endif
3078 objp += obj_offset(cachep);
3079 if (cachep->ctor && cachep->flags & SLAB_POISON)
3080 cachep->ctor(cachep, objp);
3081 #if ARCH_SLAB_MINALIGN
3082 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3083 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3084 objp, ARCH_SLAB_MINALIGN);
3086 #endif
3087 return objp;
3089 #else
3090 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3091 #endif
3093 #ifdef CONFIG_FAILSLAB
3095 static struct failslab_attr {
3097 struct fault_attr attr;
3099 u32 ignore_gfp_wait;
3100 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3101 struct dentry *ignore_gfp_wait_file;
3102 #endif
3104 } failslab = {
3105 .attr = FAULT_ATTR_INITIALIZER,
3106 .ignore_gfp_wait = 1,
3109 static int __init setup_failslab(char *str)
3111 return setup_fault_attr(&failslab.attr, str);
3113 __setup("failslab=", setup_failslab);
3115 static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3117 if (cachep == &cache_cache)
3118 return 0;
3119 if (flags & __GFP_NOFAIL)
3120 return 0;
3121 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3122 return 0;
3124 return should_fail(&failslab.attr, obj_size(cachep));
3127 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3129 static int __init failslab_debugfs(void)
3131 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3132 struct dentry *dir;
3133 int err;
3135 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3136 if (err)
3137 return err;
3138 dir = failslab.attr.dentries.dir;
3140 failslab.ignore_gfp_wait_file =
3141 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3142 &failslab.ignore_gfp_wait);
3144 if (!failslab.ignore_gfp_wait_file) {
3145 err = -ENOMEM;
3146 debugfs_remove(failslab.ignore_gfp_wait_file);
3147 cleanup_fault_attr_dentries(&failslab.attr);
3150 return err;
3153 late_initcall(failslab_debugfs);
3155 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3157 #else /* CONFIG_FAILSLAB */
3159 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3161 return 0;
3164 #endif /* CONFIG_FAILSLAB */
3166 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3168 void *objp;
3169 struct array_cache *ac;
3171 check_irq_off();
3173 ac = cpu_cache_get(cachep);
3174 if (likely(ac->avail)) {
3175 STATS_INC_ALLOCHIT(cachep);
3176 ac->touched = 1;
3177 objp = ac->entry[--ac->avail];
3178 } else {
3179 STATS_INC_ALLOCMISS(cachep);
3180 objp = cache_alloc_refill(cachep, flags);
3182 return objp;
3185 #ifdef CONFIG_NUMA
3187 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3189 * If we are in_interrupt, then process context, including cpusets and
3190 * mempolicy, may not apply and should not be used for allocation policy.
3192 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3194 int nid_alloc, nid_here;
3196 if (in_interrupt() || (flags & __GFP_THISNODE))
3197 return NULL;
3198 nid_alloc = nid_here = numa_node_id();
3199 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3200 nid_alloc = cpuset_mem_spread_node();
3201 else if (current->mempolicy)
3202 nid_alloc = slab_node(current->mempolicy);
3203 if (nid_alloc != nid_here)
3204 return ____cache_alloc_node(cachep, flags, nid_alloc);
3205 return NULL;
3209 * Fallback function if there was no memory available and no objects on a
3210 * certain node and fall back is permitted. First we scan all the
3211 * available nodelists for available objects. If that fails then we
3212 * perform an allocation without specifying a node. This allows the page
3213 * allocator to do its reclaim / fallback magic. We then insert the
3214 * slab into the proper nodelist and then allocate from it.
3216 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3218 struct zonelist *zonelist;
3219 gfp_t local_flags;
3220 struct zone **z;
3221 void *obj = NULL;
3222 int nid;
3224 if (flags & __GFP_THISNODE)
3225 return NULL;
3227 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3228 ->node_zonelists[gfp_zone(flags)];
3229 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3231 retry:
3233 * Look through allowed nodes for objects available
3234 * from existing per node queues.
3236 for (z = zonelist->zones; *z && !obj; z++) {
3237 nid = zone_to_nid(*z);
3239 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3240 cache->nodelists[nid] &&
3241 cache->nodelists[nid]->free_objects)
3242 obj = ____cache_alloc_node(cache,
3243 flags | GFP_THISNODE, nid);
3246 if (!obj) {
3248 * This allocation will be performed within the constraints
3249 * of the current cpuset / memory policy requirements.
3250 * We may trigger various forms of reclaim on the allowed
3251 * set and go into memory reserves if necessary.
3253 if (local_flags & __GFP_WAIT)
3254 local_irq_enable();
3255 kmem_flagcheck(cache, flags);
3256 obj = kmem_getpages(cache, flags, -1);
3257 if (local_flags & __GFP_WAIT)
3258 local_irq_disable();
3259 if (obj) {
3261 * Insert into the appropriate per node queues
3263 nid = page_to_nid(virt_to_page(obj));
3264 if (cache_grow(cache, flags, nid, obj)) {
3265 obj = ____cache_alloc_node(cache,
3266 flags | GFP_THISNODE, nid);
3267 if (!obj)
3269 * Another processor may allocate the
3270 * objects in the slab since we are
3271 * not holding any locks.
3273 goto retry;
3274 } else {
3275 /* cache_grow already freed obj */
3276 obj = NULL;
3280 return obj;
3284 * A interface to enable slab creation on nodeid
3286 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3287 int nodeid)
3289 struct list_head *entry;
3290 struct slab *slabp;
3291 struct kmem_list3 *l3;
3292 void *obj;
3293 int x;
3295 l3 = cachep->nodelists[nodeid];
3296 BUG_ON(!l3);
3298 retry:
3299 check_irq_off();
3300 spin_lock(&l3->list_lock);
3301 entry = l3->slabs_partial.next;
3302 if (entry == &l3->slabs_partial) {
3303 l3->free_touched = 1;
3304 entry = l3->slabs_free.next;
3305 if (entry == &l3->slabs_free)
3306 goto must_grow;
3309 slabp = list_entry(entry, struct slab, list);
3310 check_spinlock_acquired_node(cachep, nodeid);
3311 check_slabp(cachep, slabp);
3313 STATS_INC_NODEALLOCS(cachep);
3314 STATS_INC_ACTIVE(cachep);
3315 STATS_SET_HIGH(cachep);
3317 BUG_ON(slabp->inuse == cachep->num);
3319 obj = slab_get_obj(cachep, slabp, nodeid);
3320 check_slabp(cachep, slabp);
3321 l3->free_objects--;
3322 /* move slabp to correct slabp list: */
3323 list_del(&slabp->list);
3325 if (slabp->free == BUFCTL_END)
3326 list_add(&slabp->list, &l3->slabs_full);
3327 else
3328 list_add(&slabp->list, &l3->slabs_partial);
3330 spin_unlock(&l3->list_lock);
3331 goto done;
3333 must_grow:
3334 spin_unlock(&l3->list_lock);
3335 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3336 if (x)
3337 goto retry;
3339 return fallback_alloc(cachep, flags);
3341 done:
3342 return obj;
3346 * kmem_cache_alloc_node - Allocate an object on the specified node
3347 * @cachep: The cache to allocate from.
3348 * @flags: See kmalloc().
3349 * @nodeid: node number of the target node.
3350 * @caller: return address of caller, used for debug information
3352 * Identical to kmem_cache_alloc but it will allocate memory on the given
3353 * node, which can improve the performance for cpu bound structures.
3355 * Fallback to other node is possible if __GFP_THISNODE is not set.
3357 static __always_inline void *
3358 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3359 void *caller)
3361 unsigned long save_flags;
3362 void *ptr;
3364 if (should_failslab(cachep, flags))
3365 return NULL;
3367 cache_alloc_debugcheck_before(cachep, flags);
3368 local_irq_save(save_flags);
3370 if (unlikely(nodeid == -1))
3371 nodeid = numa_node_id();
3373 if (unlikely(!cachep->nodelists[nodeid])) {
3374 /* Node not bootstrapped yet */
3375 ptr = fallback_alloc(cachep, flags);
3376 goto out;
3379 if (nodeid == numa_node_id()) {
3381 * Use the locally cached objects if possible.
3382 * However ____cache_alloc does not allow fallback
3383 * to other nodes. It may fail while we still have
3384 * objects on other nodes available.
3386 ptr = ____cache_alloc(cachep, flags);
3387 if (ptr)
3388 goto out;
3390 /* ___cache_alloc_node can fall back to other nodes */
3391 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3392 out:
3393 local_irq_restore(save_flags);
3394 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3396 if (unlikely((flags & __GFP_ZERO) && ptr))
3397 memset(ptr, 0, obj_size(cachep));
3399 return ptr;
3402 static __always_inline void *
3403 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3405 void *objp;
3407 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3408 objp = alternate_node_alloc(cache, flags);
3409 if (objp)
3410 goto out;
3412 objp = ____cache_alloc(cache, flags);
3415 * We may just have run out of memory on the local node.
3416 * ____cache_alloc_node() knows how to locate memory on other nodes
3418 if (!objp)
3419 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3421 out:
3422 return objp;
3424 #else
3426 static __always_inline void *
3427 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3429 return ____cache_alloc(cachep, flags);
3432 #endif /* CONFIG_NUMA */
3434 static __always_inline void *
3435 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3437 unsigned long save_flags;
3438 void *objp;
3440 if (should_failslab(cachep, flags))
3441 return NULL;
3443 cache_alloc_debugcheck_before(cachep, flags);
3444 local_irq_save(save_flags);
3445 objp = __do_cache_alloc(cachep, flags);
3446 local_irq_restore(save_flags);
3447 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3448 prefetchw(objp);
3450 if (unlikely((flags & __GFP_ZERO) && objp))
3451 memset(objp, 0, obj_size(cachep));
3453 return objp;
3457 * Caller needs to acquire correct kmem_list's list_lock
3459 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3460 int node)
3462 int i;
3463 struct kmem_list3 *l3;
3465 for (i = 0; i < nr_objects; i++) {
3466 void *objp = objpp[i];
3467 struct slab *slabp;
3469 slabp = virt_to_slab(objp);
3470 l3 = cachep->nodelists[node];
3471 list_del(&slabp->list);
3472 check_spinlock_acquired_node(cachep, node);
3473 check_slabp(cachep, slabp);
3474 slab_put_obj(cachep, slabp, objp, node);
3475 STATS_DEC_ACTIVE(cachep);
3476 l3->free_objects++;
3477 check_slabp(cachep, slabp);
3479 /* fixup slab chains */
3480 if (slabp->inuse == 0) {
3481 if (l3->free_objects > l3->free_limit) {
3482 l3->free_objects -= cachep->num;
3483 /* No need to drop any previously held
3484 * lock here, even if we have a off-slab slab
3485 * descriptor it is guaranteed to come from
3486 * a different cache, refer to comments before
3487 * alloc_slabmgmt.
3489 slab_destroy(cachep, slabp);
3490 } else {
3491 list_add(&slabp->list, &l3->slabs_free);
3493 } else {
3494 /* Unconditionally move a slab to the end of the
3495 * partial list on free - maximum time for the
3496 * other objects to be freed, too.
3498 list_add_tail(&slabp->list, &l3->slabs_partial);
3503 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3505 int batchcount;
3506 struct kmem_list3 *l3;
3507 int node = numa_node_id();
3509 batchcount = ac->batchcount;
3510 #if DEBUG
3511 BUG_ON(!batchcount || batchcount > ac->avail);
3512 #endif
3513 check_irq_off();
3514 l3 = cachep->nodelists[node];
3515 spin_lock(&l3->list_lock);
3516 if (l3->shared) {
3517 struct array_cache *shared_array = l3->shared;
3518 int max = shared_array->limit - shared_array->avail;
3519 if (max) {
3520 if (batchcount > max)
3521 batchcount = max;
3522 memcpy(&(shared_array->entry[shared_array->avail]),
3523 ac->entry, sizeof(void *) * batchcount);
3524 shared_array->avail += batchcount;
3525 goto free_done;
3529 free_block(cachep, ac->entry, batchcount, node);
3530 free_done:
3531 #if STATS
3533 int i = 0;
3534 struct list_head *p;
3536 p = l3->slabs_free.next;
3537 while (p != &(l3->slabs_free)) {
3538 struct slab *slabp;
3540 slabp = list_entry(p, struct slab, list);
3541 BUG_ON(slabp->inuse);
3543 i++;
3544 p = p->next;
3546 STATS_SET_FREEABLE(cachep, i);
3548 #endif
3549 spin_unlock(&l3->list_lock);
3550 ac->avail -= batchcount;
3551 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3555 * Release an obj back to its cache. If the obj has a constructed state, it must
3556 * be in this state _before_ it is released. Called with disabled ints.
3558 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3560 struct array_cache *ac = cpu_cache_get(cachep);
3562 check_irq_off();
3563 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3566 * Skip calling cache_free_alien() when the platform is not numa.
3567 * This will avoid cache misses that happen while accessing slabp (which
3568 * is per page memory reference) to get nodeid. Instead use a global
3569 * variable to skip the call, which is mostly likely to be present in
3570 * the cache.
3572 if (numa_platform && cache_free_alien(cachep, objp))
3573 return;
3575 if (likely(ac->avail < ac->limit)) {
3576 STATS_INC_FREEHIT(cachep);
3577 ac->entry[ac->avail++] = objp;
3578 return;
3579 } else {
3580 STATS_INC_FREEMISS(cachep);
3581 cache_flusharray(cachep, ac);
3582 ac->entry[ac->avail++] = objp;
3587 * kmem_cache_alloc - Allocate an object
3588 * @cachep: The cache to allocate from.
3589 * @flags: See kmalloc().
3591 * Allocate an object from this cache. The flags are only relevant
3592 * if the cache has no available objects.
3594 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3596 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3598 EXPORT_SYMBOL(kmem_cache_alloc);
3601 * kmem_ptr_validate - check if an untrusted pointer might
3602 * be a slab entry.
3603 * @cachep: the cache we're checking against
3604 * @ptr: pointer to validate
3606 * This verifies that the untrusted pointer looks sane:
3607 * it is _not_ a guarantee that the pointer is actually
3608 * part of the slab cache in question, but it at least
3609 * validates that the pointer can be dereferenced and
3610 * looks half-way sane.
3612 * Currently only used for dentry validation.
3614 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3616 unsigned long addr = (unsigned long)ptr;
3617 unsigned long min_addr = PAGE_OFFSET;
3618 unsigned long align_mask = BYTES_PER_WORD - 1;
3619 unsigned long size = cachep->buffer_size;
3620 struct page *page;
3622 if (unlikely(addr < min_addr))
3623 goto out;
3624 if (unlikely(addr > (unsigned long)high_memory - size))
3625 goto out;
3626 if (unlikely(addr & align_mask))
3627 goto out;
3628 if (unlikely(!kern_addr_valid(addr)))
3629 goto out;
3630 if (unlikely(!kern_addr_valid(addr + size - 1)))
3631 goto out;
3632 page = virt_to_page(ptr);
3633 if (unlikely(!PageSlab(page)))
3634 goto out;
3635 if (unlikely(page_get_cache(page) != cachep))
3636 goto out;
3637 return 1;
3638 out:
3639 return 0;
3642 #ifdef CONFIG_NUMA
3643 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3645 return __cache_alloc_node(cachep, flags, nodeid,
3646 __builtin_return_address(0));
3648 EXPORT_SYMBOL(kmem_cache_alloc_node);
3650 static __always_inline void *
3651 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3653 struct kmem_cache *cachep;
3655 cachep = kmem_find_general_cachep(size, flags);
3656 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3657 return cachep;
3658 return kmem_cache_alloc_node(cachep, flags, node);
3661 #ifdef CONFIG_DEBUG_SLAB
3662 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3664 return __do_kmalloc_node(size, flags, node,
3665 __builtin_return_address(0));
3667 EXPORT_SYMBOL(__kmalloc_node);
3669 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3670 int node, void *caller)
3672 return __do_kmalloc_node(size, flags, node, caller);
3674 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3675 #else
3676 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3678 return __do_kmalloc_node(size, flags, node, NULL);
3680 EXPORT_SYMBOL(__kmalloc_node);
3681 #endif /* CONFIG_DEBUG_SLAB */
3682 #endif /* CONFIG_NUMA */
3685 * __do_kmalloc - allocate memory
3686 * @size: how many bytes of memory are required.
3687 * @flags: the type of memory to allocate (see kmalloc).
3688 * @caller: function caller for debug tracking of the caller
3690 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3691 void *caller)
3693 struct kmem_cache *cachep;
3695 /* If you want to save a few bytes .text space: replace
3696 * __ with kmem_.
3697 * Then kmalloc uses the uninlined functions instead of the inline
3698 * functions.
3700 cachep = __find_general_cachep(size, flags);
3701 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3702 return cachep;
3703 return __cache_alloc(cachep, flags, caller);
3707 #ifdef CONFIG_DEBUG_SLAB
3708 void *__kmalloc(size_t size, gfp_t flags)
3710 return __do_kmalloc(size, flags, __builtin_return_address(0));
3712 EXPORT_SYMBOL(__kmalloc);
3714 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3716 return __do_kmalloc(size, flags, caller);
3718 EXPORT_SYMBOL(__kmalloc_track_caller);
3720 #else
3721 void *__kmalloc(size_t size, gfp_t flags)
3723 return __do_kmalloc(size, flags, NULL);
3725 EXPORT_SYMBOL(__kmalloc);
3726 #endif
3729 * kmem_cache_free - Deallocate an object
3730 * @cachep: The cache the allocation was from.
3731 * @objp: The previously allocated object.
3733 * Free an object which was previously allocated from this
3734 * cache.
3736 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3738 unsigned long flags;
3740 BUG_ON(virt_to_cache(objp) != cachep);
3742 local_irq_save(flags);
3743 debug_check_no_locks_freed(objp, obj_size(cachep));
3744 __cache_free(cachep, objp);
3745 local_irq_restore(flags);
3747 EXPORT_SYMBOL(kmem_cache_free);
3750 * kfree - free previously allocated memory
3751 * @objp: pointer returned by kmalloc.
3753 * If @objp is NULL, no operation is performed.
3755 * Don't free memory not originally allocated by kmalloc()
3756 * or you will run into trouble.
3758 void kfree(const void *objp)
3760 struct kmem_cache *c;
3761 unsigned long flags;
3763 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3764 return;
3765 local_irq_save(flags);
3766 kfree_debugcheck(objp);
3767 c = virt_to_cache(objp);
3768 debug_check_no_locks_freed(objp, obj_size(c));
3769 __cache_free(c, (void *)objp);
3770 local_irq_restore(flags);
3772 EXPORT_SYMBOL(kfree);
3774 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3776 return obj_size(cachep);
3778 EXPORT_SYMBOL(kmem_cache_size);
3780 const char *kmem_cache_name(struct kmem_cache *cachep)
3782 return cachep->name;
3784 EXPORT_SYMBOL_GPL(kmem_cache_name);
3787 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3789 static int alloc_kmemlist(struct kmem_cache *cachep)
3791 int node;
3792 struct kmem_list3 *l3;
3793 struct array_cache *new_shared;
3794 struct array_cache **new_alien = NULL;
3796 for_each_node_state(node, N_NORMAL_MEMORY) {
3798 if (use_alien_caches) {
3799 new_alien = alloc_alien_cache(node, cachep->limit);
3800 if (!new_alien)
3801 goto fail;
3804 new_shared = NULL;
3805 if (cachep->shared) {
3806 new_shared = alloc_arraycache(node,
3807 cachep->shared*cachep->batchcount,
3808 0xbaadf00d);
3809 if (!new_shared) {
3810 free_alien_cache(new_alien);
3811 goto fail;
3815 l3 = cachep->nodelists[node];
3816 if (l3) {
3817 struct array_cache *shared = l3->shared;
3819 spin_lock_irq(&l3->list_lock);
3821 if (shared)
3822 free_block(cachep, shared->entry,
3823 shared->avail, node);
3825 l3->shared = new_shared;
3826 if (!l3->alien) {
3827 l3->alien = new_alien;
3828 new_alien = NULL;
3830 l3->free_limit = (1 + nr_cpus_node(node)) *
3831 cachep->batchcount + cachep->num;
3832 spin_unlock_irq(&l3->list_lock);
3833 kfree(shared);
3834 free_alien_cache(new_alien);
3835 continue;
3837 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3838 if (!l3) {
3839 free_alien_cache(new_alien);
3840 kfree(new_shared);
3841 goto fail;
3844 kmem_list3_init(l3);
3845 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3846 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3847 l3->shared = new_shared;
3848 l3->alien = new_alien;
3849 l3->free_limit = (1 + nr_cpus_node(node)) *
3850 cachep->batchcount + cachep->num;
3851 cachep->nodelists[node] = l3;
3853 return 0;
3855 fail:
3856 if (!cachep->next.next) {
3857 /* Cache is not active yet. Roll back what we did */
3858 node--;
3859 while (node >= 0) {
3860 if (cachep->nodelists[node]) {
3861 l3 = cachep->nodelists[node];
3863 kfree(l3->shared);
3864 free_alien_cache(l3->alien);
3865 kfree(l3);
3866 cachep->nodelists[node] = NULL;
3868 node--;
3871 return -ENOMEM;
3874 struct ccupdate_struct {
3875 struct kmem_cache *cachep;
3876 struct array_cache *new[NR_CPUS];
3879 static void do_ccupdate_local(void *info)
3881 struct ccupdate_struct *new = info;
3882 struct array_cache *old;
3884 check_irq_off();
3885 old = cpu_cache_get(new->cachep);
3887 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3888 new->new[smp_processor_id()] = old;
3891 /* Always called with the cache_chain_mutex held */
3892 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3893 int batchcount, int shared)
3895 struct ccupdate_struct *new;
3896 int i;
3898 new = kzalloc(sizeof(*new), GFP_KERNEL);
3899 if (!new)
3900 return -ENOMEM;
3902 for_each_online_cpu(i) {
3903 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3904 batchcount);
3905 if (!new->new[i]) {
3906 for (i--; i >= 0; i--)
3907 kfree(new->new[i]);
3908 kfree(new);
3909 return -ENOMEM;
3912 new->cachep = cachep;
3914 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3916 check_irq_on();
3917 cachep->batchcount = batchcount;
3918 cachep->limit = limit;
3919 cachep->shared = shared;
3921 for_each_online_cpu(i) {
3922 struct array_cache *ccold = new->new[i];
3923 if (!ccold)
3924 continue;
3925 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3926 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3927 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3928 kfree(ccold);
3930 kfree(new);
3931 return alloc_kmemlist(cachep);
3934 /* Called with cache_chain_mutex held always */
3935 static int enable_cpucache(struct kmem_cache *cachep)
3937 int err;
3938 int limit, shared;
3941 * The head array serves three purposes:
3942 * - create a LIFO ordering, i.e. return objects that are cache-warm
3943 * - reduce the number of spinlock operations.
3944 * - reduce the number of linked list operations on the slab and
3945 * bufctl chains: array operations are cheaper.
3946 * The numbers are guessed, we should auto-tune as described by
3947 * Bonwick.
3949 if (cachep->buffer_size > 131072)
3950 limit = 1;
3951 else if (cachep->buffer_size > PAGE_SIZE)
3952 limit = 8;
3953 else if (cachep->buffer_size > 1024)
3954 limit = 24;
3955 else if (cachep->buffer_size > 256)
3956 limit = 54;
3957 else
3958 limit = 120;
3961 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3962 * allocation behaviour: Most allocs on one cpu, most free operations
3963 * on another cpu. For these cases, an efficient object passing between
3964 * cpus is necessary. This is provided by a shared array. The array
3965 * replaces Bonwick's magazine layer.
3966 * On uniprocessor, it's functionally equivalent (but less efficient)
3967 * to a larger limit. Thus disabled by default.
3969 shared = 0;
3970 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3971 shared = 8;
3973 #if DEBUG
3975 * With debugging enabled, large batchcount lead to excessively long
3976 * periods with disabled local interrupts. Limit the batchcount
3978 if (limit > 32)
3979 limit = 32;
3980 #endif
3981 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3982 if (err)
3983 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3984 cachep->name, -err);
3985 return err;
3989 * Drain an array if it contains any elements taking the l3 lock only if
3990 * necessary. Note that the l3 listlock also protects the array_cache
3991 * if drain_array() is used on the shared array.
3993 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3994 struct array_cache *ac, int force, int node)
3996 int tofree;
3998 if (!ac || !ac->avail)
3999 return;
4000 if (ac->touched && !force) {
4001 ac->touched = 0;
4002 } else {
4003 spin_lock_irq(&l3->list_lock);
4004 if (ac->avail) {
4005 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4006 if (tofree > ac->avail)
4007 tofree = (ac->avail + 1) / 2;
4008 free_block(cachep, ac->entry, tofree, node);
4009 ac->avail -= tofree;
4010 memmove(ac->entry, &(ac->entry[tofree]),
4011 sizeof(void *) * ac->avail);
4013 spin_unlock_irq(&l3->list_lock);
4018 * cache_reap - Reclaim memory from caches.
4019 * @w: work descriptor
4021 * Called from workqueue/eventd every few seconds.
4022 * Purpose:
4023 * - clear the per-cpu caches for this CPU.
4024 * - return freeable pages to the main free memory pool.
4026 * If we cannot acquire the cache chain mutex then just give up - we'll try
4027 * again on the next iteration.
4029 static void cache_reap(struct work_struct *w)
4031 struct kmem_cache *searchp;
4032 struct kmem_list3 *l3;
4033 int node = numa_node_id();
4034 struct delayed_work *work =
4035 container_of(w, struct delayed_work, work);
4037 if (!mutex_trylock(&cache_chain_mutex))
4038 /* Give up. Setup the next iteration. */
4039 goto out;
4041 list_for_each_entry(searchp, &cache_chain, next) {
4042 check_irq_on();
4045 * We only take the l3 lock if absolutely necessary and we
4046 * have established with reasonable certainty that
4047 * we can do some work if the lock was obtained.
4049 l3 = searchp->nodelists[node];
4051 reap_alien(searchp, l3);
4053 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4056 * These are racy checks but it does not matter
4057 * if we skip one check or scan twice.
4059 if (time_after(l3->next_reap, jiffies))
4060 goto next;
4062 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4064 drain_array(searchp, l3, l3->shared, 0, node);
4066 if (l3->free_touched)
4067 l3->free_touched = 0;
4068 else {
4069 int freed;
4071 freed = drain_freelist(searchp, l3, (l3->free_limit +
4072 5 * searchp->num - 1) / (5 * searchp->num));
4073 STATS_ADD_REAPED(searchp, freed);
4075 next:
4076 cond_resched();
4078 check_irq_on();
4079 mutex_unlock(&cache_chain_mutex);
4080 next_reap_node();
4081 out:
4082 /* Set up the next iteration */
4083 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4086 #ifdef CONFIG_PROC_FS
4088 static void print_slabinfo_header(struct seq_file *m)
4091 * Output format version, so at least we can change it
4092 * without _too_ many complaints.
4094 #if STATS
4095 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4096 #else
4097 seq_puts(m, "slabinfo - version: 2.1\n");
4098 #endif
4099 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4100 "<objperslab> <pagesperslab>");
4101 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4102 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4103 #if STATS
4104 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4105 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4106 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4107 #endif
4108 seq_putc(m, '\n');
4111 static void *s_start(struct seq_file *m, loff_t *pos)
4113 loff_t n = *pos;
4115 mutex_lock(&cache_chain_mutex);
4116 if (!n)
4117 print_slabinfo_header(m);
4119 return seq_list_start(&cache_chain, *pos);
4122 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4124 return seq_list_next(p, &cache_chain, pos);
4127 static void s_stop(struct seq_file *m, void *p)
4129 mutex_unlock(&cache_chain_mutex);
4132 static int s_show(struct seq_file *m, void *p)
4134 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4135 struct slab *slabp;
4136 unsigned long active_objs;
4137 unsigned long num_objs;
4138 unsigned long active_slabs = 0;
4139 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4140 const char *name;
4141 char *error = NULL;
4142 int node;
4143 struct kmem_list3 *l3;
4145 active_objs = 0;
4146 num_slabs = 0;
4147 for_each_online_node(node) {
4148 l3 = cachep->nodelists[node];
4149 if (!l3)
4150 continue;
4152 check_irq_on();
4153 spin_lock_irq(&l3->list_lock);
4155 list_for_each_entry(slabp, &l3->slabs_full, list) {
4156 if (slabp->inuse != cachep->num && !error)
4157 error = "slabs_full accounting error";
4158 active_objs += cachep->num;
4159 active_slabs++;
4161 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4162 if (slabp->inuse == cachep->num && !error)
4163 error = "slabs_partial inuse accounting error";
4164 if (!slabp->inuse && !error)
4165 error = "slabs_partial/inuse accounting error";
4166 active_objs += slabp->inuse;
4167 active_slabs++;
4169 list_for_each_entry(slabp, &l3->slabs_free, list) {
4170 if (slabp->inuse && !error)
4171 error = "slabs_free/inuse accounting error";
4172 num_slabs++;
4174 free_objects += l3->free_objects;
4175 if (l3->shared)
4176 shared_avail += l3->shared->avail;
4178 spin_unlock_irq(&l3->list_lock);
4180 num_slabs += active_slabs;
4181 num_objs = num_slabs * cachep->num;
4182 if (num_objs - active_objs != free_objects && !error)
4183 error = "free_objects accounting error";
4185 name = cachep->name;
4186 if (error)
4187 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4189 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4190 name, active_objs, num_objs, cachep->buffer_size,
4191 cachep->num, (1 << cachep->gfporder));
4192 seq_printf(m, " : tunables %4u %4u %4u",
4193 cachep->limit, cachep->batchcount, cachep->shared);
4194 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4195 active_slabs, num_slabs, shared_avail);
4196 #if STATS
4197 { /* list3 stats */
4198 unsigned long high = cachep->high_mark;
4199 unsigned long allocs = cachep->num_allocations;
4200 unsigned long grown = cachep->grown;
4201 unsigned long reaped = cachep->reaped;
4202 unsigned long errors = cachep->errors;
4203 unsigned long max_freeable = cachep->max_freeable;
4204 unsigned long node_allocs = cachep->node_allocs;
4205 unsigned long node_frees = cachep->node_frees;
4206 unsigned long overflows = cachep->node_overflow;
4208 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4209 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4210 reaped, errors, max_freeable, node_allocs,
4211 node_frees, overflows);
4213 /* cpu stats */
4215 unsigned long allochit = atomic_read(&cachep->allochit);
4216 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4217 unsigned long freehit = atomic_read(&cachep->freehit);
4218 unsigned long freemiss = atomic_read(&cachep->freemiss);
4220 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4221 allochit, allocmiss, freehit, freemiss);
4223 #endif
4224 seq_putc(m, '\n');
4225 return 0;
4229 * slabinfo_op - iterator that generates /proc/slabinfo
4231 * Output layout:
4232 * cache-name
4233 * num-active-objs
4234 * total-objs
4235 * object size
4236 * num-active-slabs
4237 * total-slabs
4238 * num-pages-per-slab
4239 * + further values on SMP and with statistics enabled
4242 const struct seq_operations slabinfo_op = {
4243 .start = s_start,
4244 .next = s_next,
4245 .stop = s_stop,
4246 .show = s_show,
4249 #define MAX_SLABINFO_WRITE 128
4251 * slabinfo_write - Tuning for the slab allocator
4252 * @file: unused
4253 * @buffer: user buffer
4254 * @count: data length
4255 * @ppos: unused
4257 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4258 size_t count, loff_t *ppos)
4260 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4261 int limit, batchcount, shared, res;
4262 struct kmem_cache *cachep;
4264 if (count > MAX_SLABINFO_WRITE)
4265 return -EINVAL;
4266 if (copy_from_user(&kbuf, buffer, count))
4267 return -EFAULT;
4268 kbuf[MAX_SLABINFO_WRITE] = '\0';
4270 tmp = strchr(kbuf, ' ');
4271 if (!tmp)
4272 return -EINVAL;
4273 *tmp = '\0';
4274 tmp++;
4275 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4276 return -EINVAL;
4278 /* Find the cache in the chain of caches. */
4279 mutex_lock(&cache_chain_mutex);
4280 res = -EINVAL;
4281 list_for_each_entry(cachep, &cache_chain, next) {
4282 if (!strcmp(cachep->name, kbuf)) {
4283 if (limit < 1 || batchcount < 1 ||
4284 batchcount > limit || shared < 0) {
4285 res = 0;
4286 } else {
4287 res = do_tune_cpucache(cachep, limit,
4288 batchcount, shared);
4290 break;
4293 mutex_unlock(&cache_chain_mutex);
4294 if (res >= 0)
4295 res = count;
4296 return res;
4299 #ifdef CONFIG_DEBUG_SLAB_LEAK
4301 static void *leaks_start(struct seq_file *m, loff_t *pos)
4303 mutex_lock(&cache_chain_mutex);
4304 return seq_list_start(&cache_chain, *pos);
4307 static inline int add_caller(unsigned long *n, unsigned long v)
4309 unsigned long *p;
4310 int l;
4311 if (!v)
4312 return 1;
4313 l = n[1];
4314 p = n + 2;
4315 while (l) {
4316 int i = l/2;
4317 unsigned long *q = p + 2 * i;
4318 if (*q == v) {
4319 q[1]++;
4320 return 1;
4322 if (*q > v) {
4323 l = i;
4324 } else {
4325 p = q + 2;
4326 l -= i + 1;
4329 if (++n[1] == n[0])
4330 return 0;
4331 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4332 p[0] = v;
4333 p[1] = 1;
4334 return 1;
4337 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4339 void *p;
4340 int i;
4341 if (n[0] == n[1])
4342 return;
4343 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4344 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4345 continue;
4346 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4347 return;
4351 static void show_symbol(struct seq_file *m, unsigned long address)
4353 #ifdef CONFIG_KALLSYMS
4354 unsigned long offset, size;
4355 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4357 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4358 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4359 if (modname[0])
4360 seq_printf(m, " [%s]", modname);
4361 return;
4363 #endif
4364 seq_printf(m, "%p", (void *)address);
4367 static int leaks_show(struct seq_file *m, void *p)
4369 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4370 struct slab *slabp;
4371 struct kmem_list3 *l3;
4372 const char *name;
4373 unsigned long *n = m->private;
4374 int node;
4375 int i;
4377 if (!(cachep->flags & SLAB_STORE_USER))
4378 return 0;
4379 if (!(cachep->flags & SLAB_RED_ZONE))
4380 return 0;
4382 /* OK, we can do it */
4384 n[1] = 0;
4386 for_each_online_node(node) {
4387 l3 = cachep->nodelists[node];
4388 if (!l3)
4389 continue;
4391 check_irq_on();
4392 spin_lock_irq(&l3->list_lock);
4394 list_for_each_entry(slabp, &l3->slabs_full, list)
4395 handle_slab(n, cachep, slabp);
4396 list_for_each_entry(slabp, &l3->slabs_partial, list)
4397 handle_slab(n, cachep, slabp);
4398 spin_unlock_irq(&l3->list_lock);
4400 name = cachep->name;
4401 if (n[0] == n[1]) {
4402 /* Increase the buffer size */
4403 mutex_unlock(&cache_chain_mutex);
4404 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4405 if (!m->private) {
4406 /* Too bad, we are really out */
4407 m->private = n;
4408 mutex_lock(&cache_chain_mutex);
4409 return -ENOMEM;
4411 *(unsigned long *)m->private = n[0] * 2;
4412 kfree(n);
4413 mutex_lock(&cache_chain_mutex);
4414 /* Now make sure this entry will be retried */
4415 m->count = m->size;
4416 return 0;
4418 for (i = 0; i < n[1]; i++) {
4419 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4420 show_symbol(m, n[2*i+2]);
4421 seq_putc(m, '\n');
4424 return 0;
4427 const struct seq_operations slabstats_op = {
4428 .start = leaks_start,
4429 .next = s_next,
4430 .stop = s_stop,
4431 .show = leaks_show,
4433 #endif
4434 #endif
4437 * ksize - get the actual amount of memory allocated for a given object
4438 * @objp: Pointer to the object
4440 * kmalloc may internally round up allocations and return more memory
4441 * than requested. ksize() can be used to determine the actual amount of
4442 * memory allocated. The caller may use this additional memory, even though
4443 * a smaller amount of memory was initially specified with the kmalloc call.
4444 * The caller must guarantee that objp points to a valid object previously
4445 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4446 * must not be freed during the duration of the call.
4448 size_t ksize(const void *objp)
4450 BUG_ON(!objp);
4451 if (unlikely(objp == ZERO_SIZE_PTR))
4452 return 0;
4454 return obj_size(virt_to_cache(objp));