2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
80 * Overloading of page flags that are otherwise used for LRU management.
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
103 #define FROZEN (1 << PG_active)
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
111 static inline int SlabFrozen(struct page
*page
)
113 return page
->flags
& FROZEN
;
116 static inline void SetSlabFrozen(struct page
*page
)
118 page
->flags
|= FROZEN
;
121 static inline void ClearSlabFrozen(struct page
*page
)
123 page
->flags
&= ~FROZEN
;
126 static inline int SlabDebug(struct page
*page
)
128 return page
->flags
& SLABDEBUG
;
131 static inline void SetSlabDebug(struct page
*page
)
133 page
->flags
|= SLABDEBUG
;
136 static inline void ClearSlabDebug(struct page
*page
)
138 page
->flags
&= ~SLABDEBUG
;
142 * Issues still to be resolved:
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
146 * - Variable sizing of the per node arrays
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
155 * Small page size. Make sure that we do not fragment memory
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
163 * Large page machines are customarily able to handle larger
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
175 #define MIN_PARTIAL 2
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
182 #define MAX_PARTIAL 10
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
188 * Set of flags that will prevent slab merging
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON 0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
208 /* Not all arches define cache_line_size */
209 #ifndef cache_line_size
210 #define cache_line_size() L1_CACHE_BYTES
213 static int kmem_size
= sizeof(struct kmem_cache
);
216 static struct notifier_block slab_notifier
;
220 DOWN
, /* No slab functionality available */
221 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
222 UP
, /* Everything works but does not show up in sysfs */
226 /* A list of all slab caches on the system */
227 static DECLARE_RWSEM(slub_lock
);
228 static LIST_HEAD(slab_caches
);
231 * Tracking user of a slab.
234 void *addr
; /* Called from address */
235 int cpu
; /* Was running on cpu */
236 int pid
; /* Pid context */
237 unsigned long when
; /* When did the operation occur */
240 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
242 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
243 static int sysfs_slab_add(struct kmem_cache
*);
244 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
245 static void sysfs_slab_remove(struct kmem_cache
*);
247 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
248 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
250 static inline void sysfs_slab_remove(struct kmem_cache
*s
) {}
253 /********************************************************************
254 * Core slab cache functions
255 *******************************************************************/
257 int slab_is_available(void)
259 return slab_state
>= UP
;
262 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
265 return s
->node
[node
];
267 return &s
->local_node
;
271 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
274 return s
->cpu_slab
[cpu
];
280 static inline int check_valid_pointer(struct kmem_cache
*s
,
281 struct page
*page
, const void *object
)
288 base
= page_address(page
);
289 if (object
< base
|| object
>= base
+ s
->objects
* s
->size
||
290 (object
- base
) % s
->size
) {
298 * Slow version of get and set free pointer.
300 * This version requires touching the cache lines of kmem_cache which
301 * we avoid to do in the fast alloc free paths. There we obtain the offset
302 * from the page struct.
304 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
306 return *(void **)(object
+ s
->offset
);
309 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
311 *(void **)(object
+ s
->offset
) = fp
;
314 /* Loop over all objects in a slab */
315 #define for_each_object(__p, __s, __addr) \
316 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
320 #define for_each_free_object(__p, __s, __free) \
321 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
323 /* Determine object index from a given position */
324 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
326 return (p
- addr
) / s
->size
;
329 #ifdef CONFIG_SLUB_DEBUG
333 #ifdef CONFIG_SLUB_DEBUG_ON
334 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
336 static int slub_debug
;
339 static char *slub_debug_slabs
;
344 static void print_section(char *text
, u8
*addr
, unsigned int length
)
352 for (i
= 0; i
< length
; i
++) {
354 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
357 printk(" %02x", addr
[i
]);
359 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
361 printk(" %s\n",ascii
);
372 printk(" %s\n", ascii
);
376 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
377 enum track_item alloc
)
382 p
= object
+ s
->offset
+ sizeof(void *);
384 p
= object
+ s
->inuse
;
389 static void set_track(struct kmem_cache
*s
, void *object
,
390 enum track_item alloc
, void *addr
)
395 p
= object
+ s
->offset
+ sizeof(void *);
397 p
= object
+ s
->inuse
;
402 p
->cpu
= smp_processor_id();
403 p
->pid
= current
? current
->pid
: -1;
406 memset(p
, 0, sizeof(struct track
));
409 static void init_tracking(struct kmem_cache
*s
, void *object
)
411 if (!(s
->flags
& SLAB_STORE_USER
))
414 set_track(s
, object
, TRACK_FREE
, NULL
);
415 set_track(s
, object
, TRACK_ALLOC
, NULL
);
418 static void print_track(const char *s
, struct track
*t
)
423 printk(KERN_ERR
"INFO: %s in ", s
);
424 __print_symbol("%s", (unsigned long)t
->addr
);
425 printk(" age=%lu cpu=%u pid=%d\n", jiffies
- t
->when
, t
->cpu
, t
->pid
);
428 static void print_tracking(struct kmem_cache
*s
, void *object
)
430 if (!(s
->flags
& SLAB_STORE_USER
))
433 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
434 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
437 static void print_page_info(struct page
*page
)
439 printk(KERN_ERR
"INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
440 page
, page
->inuse
, page
->freelist
, page
->flags
);
444 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
450 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
452 printk(KERN_ERR
"========================================"
453 "=====================================\n");
454 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
455 printk(KERN_ERR
"----------------------------------------"
456 "-------------------------------------\n\n");
459 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
465 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
467 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
470 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
472 unsigned int off
; /* Offset of last byte */
473 u8
*addr
= page_address(page
);
475 print_tracking(s
, p
);
477 print_page_info(page
);
479 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
480 p
, p
- addr
, get_freepointer(s
, p
));
483 print_section("Bytes b4", p
- 16, 16);
485 print_section("Object", p
, min(s
->objsize
, 128));
487 if (s
->flags
& SLAB_RED_ZONE
)
488 print_section("Redzone", p
+ s
->objsize
,
489 s
->inuse
- s
->objsize
);
492 off
= s
->offset
+ sizeof(void *);
496 if (s
->flags
& SLAB_STORE_USER
)
497 off
+= 2 * sizeof(struct track
);
500 /* Beginning of the filler is the free pointer */
501 print_section("Padding", p
+ off
, s
->size
- off
);
506 static void object_err(struct kmem_cache
*s
, struct page
*page
,
507 u8
*object
, char *reason
)
510 print_trailer(s
, page
, object
);
513 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
519 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
522 print_page_info(page
);
526 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
530 if (s
->flags
& __OBJECT_POISON
) {
531 memset(p
, POISON_FREE
, s
->objsize
- 1);
532 p
[s
->objsize
-1] = POISON_END
;
535 if (s
->flags
& SLAB_RED_ZONE
)
536 memset(p
+ s
->objsize
,
537 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
538 s
->inuse
- s
->objsize
);
541 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
544 if (*start
!= (u8
)value
)
552 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
553 void *from
, void *to
)
555 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
556 memset(from
, data
, to
- from
);
559 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
560 u8
*object
, char *what
,
561 u8
* start
, unsigned int value
, unsigned int bytes
)
566 fault
= check_bytes(start
, value
, bytes
);
571 while (end
> fault
&& end
[-1] == value
)
574 slab_bug(s
, "%s overwritten", what
);
575 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
576 fault
, end
- 1, fault
[0], value
);
577 print_trailer(s
, page
, object
);
579 restore_bytes(s
, what
, value
, fault
, end
);
587 * Bytes of the object to be managed.
588 * If the freepointer may overlay the object then the free
589 * pointer is the first word of the object.
591 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
594 * object + s->objsize
595 * Padding to reach word boundary. This is also used for Redzoning.
596 * Padding is extended by another word if Redzoning is enabled and
599 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
600 * 0xcc (RED_ACTIVE) for objects in use.
603 * Meta data starts here.
605 * A. Free pointer (if we cannot overwrite object on free)
606 * B. Tracking data for SLAB_STORE_USER
607 * C. Padding to reach required alignment boundary or at mininum
608 * one word if debuggin is on to be able to detect writes
609 * before the word boundary.
611 * Padding is done using 0x5a (POISON_INUSE)
614 * Nothing is used beyond s->size.
616 * If slabcaches are merged then the objsize and inuse boundaries are mostly
617 * ignored. And therefore no slab options that rely on these boundaries
618 * may be used with merged slabcaches.
621 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
623 unsigned long off
= s
->inuse
; /* The end of info */
626 /* Freepointer is placed after the object. */
627 off
+= sizeof(void *);
629 if (s
->flags
& SLAB_STORE_USER
)
630 /* We also have user information there */
631 off
+= 2 * sizeof(struct track
);
636 return check_bytes_and_report(s
, page
, p
, "Object padding",
637 p
+ off
, POISON_INUSE
, s
->size
- off
);
640 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
648 if (!(s
->flags
& SLAB_POISON
))
651 start
= page_address(page
);
652 end
= start
+ (PAGE_SIZE
<< s
->order
);
653 length
= s
->objects
* s
->size
;
654 remainder
= end
- (start
+ length
);
658 fault
= check_bytes(start
+ length
, POISON_INUSE
, remainder
);
661 while (end
> fault
&& end
[-1] == POISON_INUSE
)
664 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
665 print_section("Padding", start
, length
);
667 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
671 static int check_object(struct kmem_cache
*s
, struct page
*page
,
672 void *object
, int active
)
675 u8
*endobject
= object
+ s
->objsize
;
677 if (s
->flags
& SLAB_RED_ZONE
) {
679 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
681 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
682 endobject
, red
, s
->inuse
- s
->objsize
))
685 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
)
686 check_bytes_and_report(s
, page
, p
, "Alignment padding", endobject
,
687 POISON_INUSE
, s
->inuse
- s
->objsize
);
690 if (s
->flags
& SLAB_POISON
) {
691 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
692 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
693 POISON_FREE
, s
->objsize
- 1) ||
694 !check_bytes_and_report(s
, page
, p
, "Poison",
695 p
+ s
->objsize
-1, POISON_END
, 1)))
698 * check_pad_bytes cleans up on its own.
700 check_pad_bytes(s
, page
, p
);
703 if (!s
->offset
&& active
)
705 * Object and freepointer overlap. Cannot check
706 * freepointer while object is allocated.
710 /* Check free pointer validity */
711 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
712 object_err(s
, page
, p
, "Freepointer corrupt");
714 * No choice but to zap it and thus loose the remainder
715 * of the free objects in this slab. May cause
716 * another error because the object count is now wrong.
718 set_freepointer(s
, p
, NULL
);
724 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
726 VM_BUG_ON(!irqs_disabled());
728 if (!PageSlab(page
)) {
729 slab_err(s
, page
, "Not a valid slab page");
732 if (page
->inuse
> s
->objects
) {
733 slab_err(s
, page
, "inuse %u > max %u",
734 s
->name
, page
->inuse
, s
->objects
);
737 /* Slab_pad_check fixes things up after itself */
738 slab_pad_check(s
, page
);
743 * Determine if a certain object on a page is on the freelist. Must hold the
744 * slab lock to guarantee that the chains are in a consistent state.
746 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
749 void *fp
= page
->freelist
;
752 while (fp
&& nr
<= s
->objects
) {
755 if (!check_valid_pointer(s
, page
, fp
)) {
757 object_err(s
, page
, object
,
758 "Freechain corrupt");
759 set_freepointer(s
, object
, NULL
);
762 slab_err(s
, page
, "Freepointer corrupt");
763 page
->freelist
= NULL
;
764 page
->inuse
= s
->objects
;
765 slab_fix(s
, "Freelist cleared");
771 fp
= get_freepointer(s
, object
);
775 if (page
->inuse
!= s
->objects
- nr
) {
776 slab_err(s
, page
, "Wrong object count. Counter is %d but "
777 "counted were %d", page
->inuse
, s
->objects
- nr
);
778 page
->inuse
= s
->objects
- nr
;
779 slab_fix(s
, "Object count adjusted.");
781 return search
== NULL
;
784 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
, int alloc
)
786 if (s
->flags
& SLAB_TRACE
) {
787 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
789 alloc
? "alloc" : "free",
794 print_section("Object", (void *)object
, s
->objsize
);
801 * Tracking of fully allocated slabs for debugging purposes.
803 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
805 spin_lock(&n
->list_lock
);
806 list_add(&page
->lru
, &n
->full
);
807 spin_unlock(&n
->list_lock
);
810 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
812 struct kmem_cache_node
*n
;
814 if (!(s
->flags
& SLAB_STORE_USER
))
817 n
= get_node(s
, page_to_nid(page
));
819 spin_lock(&n
->list_lock
);
820 list_del(&page
->lru
);
821 spin_unlock(&n
->list_lock
);
824 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
827 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
830 init_object(s
, object
, 0);
831 init_tracking(s
, object
);
834 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
835 void *object
, void *addr
)
837 if (!check_slab(s
, page
))
840 if (object
&& !on_freelist(s
, page
, object
)) {
841 object_err(s
, page
, object
, "Object already allocated");
845 if (!check_valid_pointer(s
, page
, object
)) {
846 object_err(s
, page
, object
, "Freelist Pointer check fails");
850 if (object
&& !check_object(s
, page
, object
, 0))
853 /* Success perform special debug activities for allocs */
854 if (s
->flags
& SLAB_STORE_USER
)
855 set_track(s
, object
, TRACK_ALLOC
, addr
);
856 trace(s
, page
, object
, 1);
857 init_object(s
, object
, 1);
861 if (PageSlab(page
)) {
863 * If this is a slab page then lets do the best we can
864 * to avoid issues in the future. Marking all objects
865 * as used avoids touching the remaining objects.
867 slab_fix(s
, "Marking all objects used");
868 page
->inuse
= s
->objects
;
869 page
->freelist
= NULL
;
874 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
875 void *object
, void *addr
)
877 if (!check_slab(s
, page
))
880 if (!check_valid_pointer(s
, page
, object
)) {
881 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
885 if (on_freelist(s
, page
, object
)) {
886 object_err(s
, page
, object
, "Object already free");
890 if (!check_object(s
, page
, object
, 1))
893 if (unlikely(s
!= page
->slab
)) {
895 slab_err(s
, page
, "Attempt to free object(0x%p) "
896 "outside of slab", object
);
900 "SLUB <none>: no slab for object 0x%p.\n",
905 object_err(s
, page
, object
,
906 "page slab pointer corrupt.");
910 /* Special debug activities for freeing objects */
911 if (!SlabFrozen(page
) && !page
->freelist
)
912 remove_full(s
, page
);
913 if (s
->flags
& SLAB_STORE_USER
)
914 set_track(s
, object
, TRACK_FREE
, addr
);
915 trace(s
, page
, object
, 0);
916 init_object(s
, object
, 0);
920 slab_fix(s
, "Object at 0x%p not freed", object
);
924 static int __init
setup_slub_debug(char *str
)
926 slub_debug
= DEBUG_DEFAULT_FLAGS
;
927 if (*str
++ != '=' || !*str
)
929 * No options specified. Switch on full debugging.
935 * No options but restriction on slabs. This means full
936 * debugging for slabs matching a pattern.
943 * Switch off all debugging measures.
948 * Determine which debug features should be switched on
950 for ( ;*str
&& *str
!= ','; str
++) {
951 switch (tolower(*str
)) {
953 slub_debug
|= SLAB_DEBUG_FREE
;
956 slub_debug
|= SLAB_RED_ZONE
;
959 slub_debug
|= SLAB_POISON
;
962 slub_debug
|= SLAB_STORE_USER
;
965 slub_debug
|= SLAB_TRACE
;
968 printk(KERN_ERR
"slub_debug option '%c' "
969 "unknown. skipped\n",*str
);
975 slub_debug_slabs
= str
+ 1;
980 __setup("slub_debug", setup_slub_debug
);
982 static unsigned long kmem_cache_flags(unsigned long objsize
,
983 unsigned long flags
, const char *name
,
984 void (*ctor
)(struct kmem_cache
*, void *))
987 * The page->offset field is only 16 bit wide. This is an offset
988 * in units of words from the beginning of an object. If the slab
989 * size is bigger then we cannot move the free pointer behind the
992 * On 32 bit platforms the limit is 256k. On 64bit platforms
995 * Debugging or ctor may create a need to move the free
996 * pointer. Fail if this happens.
998 if (objsize
>= 65535 * sizeof(void *)) {
999 BUG_ON(flags
& (SLAB_RED_ZONE
| SLAB_POISON
|
1000 SLAB_STORE_USER
| SLAB_DESTROY_BY_RCU
));
1004 * Enable debugging if selected on the kernel commandline.
1006 if (slub_debug
&& (!slub_debug_slabs
||
1007 strncmp(slub_debug_slabs
, name
,
1008 strlen(slub_debug_slabs
)) == 0))
1009 flags
|= slub_debug
;
1015 static inline void setup_object_debug(struct kmem_cache
*s
,
1016 struct page
*page
, void *object
) {}
1018 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1019 struct page
*page
, void *object
, void *addr
) { return 0; }
1021 static inline int free_debug_processing(struct kmem_cache
*s
,
1022 struct page
*page
, void *object
, void *addr
) { return 0; }
1024 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1026 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1027 void *object
, int active
) { return 1; }
1028 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1029 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1030 unsigned long flags
, const char *name
,
1031 void (*ctor
)(struct kmem_cache
*, void *))
1035 #define slub_debug 0
1038 * Slab allocation and freeing
1040 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1043 int pages
= 1 << s
->order
;
1046 flags
|= __GFP_COMP
;
1048 if (s
->flags
& SLAB_CACHE_DMA
)
1051 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
1052 flags
|= __GFP_RECLAIMABLE
;
1055 page
= alloc_pages(flags
, s
->order
);
1057 page
= alloc_pages_node(node
, flags
, s
->order
);
1062 mod_zone_page_state(page_zone(page
),
1063 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1064 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1070 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1073 setup_object_debug(s
, page
, object
);
1074 if (unlikely(s
->ctor
))
1078 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1081 struct kmem_cache_node
*n
;
1086 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1088 page
= allocate_slab(s
,
1089 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1093 n
= get_node(s
, page_to_nid(page
));
1095 atomic_long_inc(&n
->nr_slabs
);
1097 page
->flags
|= 1 << PG_slab
;
1098 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1099 SLAB_STORE_USER
| SLAB_TRACE
))
1102 start
= page_address(page
);
1104 if (unlikely(s
->flags
& SLAB_POISON
))
1105 memset(start
, POISON_INUSE
, PAGE_SIZE
<< s
->order
);
1108 for_each_object(p
, s
, start
) {
1109 setup_object(s
, page
, last
);
1110 set_freepointer(s
, last
, p
);
1113 setup_object(s
, page
, last
);
1114 set_freepointer(s
, last
, NULL
);
1116 page
->freelist
= start
;
1122 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1124 int pages
= 1 << s
->order
;
1126 if (unlikely(SlabDebug(page
))) {
1129 slab_pad_check(s
, page
);
1130 for_each_object(p
, s
, page_address(page
))
1131 check_object(s
, page
, p
, 0);
1132 ClearSlabDebug(page
);
1135 mod_zone_page_state(page_zone(page
),
1136 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1137 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1140 __free_pages(page
, s
->order
);
1143 static void rcu_free_slab(struct rcu_head
*h
)
1147 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1148 __free_slab(page
->slab
, page
);
1151 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1153 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1155 * RCU free overloads the RCU head over the LRU
1157 struct rcu_head
*head
= (void *)&page
->lru
;
1159 call_rcu(head
, rcu_free_slab
);
1161 __free_slab(s
, page
);
1164 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1166 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1168 atomic_long_dec(&n
->nr_slabs
);
1169 reset_page_mapcount(page
);
1170 __ClearPageSlab(page
);
1175 * Per slab locking using the pagelock
1177 static __always_inline
void slab_lock(struct page
*page
)
1179 bit_spin_lock(PG_locked
, &page
->flags
);
1182 static __always_inline
void slab_unlock(struct page
*page
)
1184 bit_spin_unlock(PG_locked
, &page
->flags
);
1187 static __always_inline
int slab_trylock(struct page
*page
)
1191 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1196 * Management of partially allocated slabs
1198 static void add_partial_tail(struct kmem_cache_node
*n
, struct page
*page
)
1200 spin_lock(&n
->list_lock
);
1202 list_add_tail(&page
->lru
, &n
->partial
);
1203 spin_unlock(&n
->list_lock
);
1206 static void add_partial(struct kmem_cache_node
*n
, struct page
*page
)
1208 spin_lock(&n
->list_lock
);
1210 list_add(&page
->lru
, &n
->partial
);
1211 spin_unlock(&n
->list_lock
);
1214 static void remove_partial(struct kmem_cache
*s
,
1217 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1219 spin_lock(&n
->list_lock
);
1220 list_del(&page
->lru
);
1222 spin_unlock(&n
->list_lock
);
1226 * Lock slab and remove from the partial list.
1228 * Must hold list_lock.
1230 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
, struct page
*page
)
1232 if (slab_trylock(page
)) {
1233 list_del(&page
->lru
);
1235 SetSlabFrozen(page
);
1242 * Try to allocate a partial slab from a specific node.
1244 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1249 * Racy check. If we mistakenly see no partial slabs then we
1250 * just allocate an empty slab. If we mistakenly try to get a
1251 * partial slab and there is none available then get_partials()
1254 if (!n
|| !n
->nr_partial
)
1257 spin_lock(&n
->list_lock
);
1258 list_for_each_entry(page
, &n
->partial
, lru
)
1259 if (lock_and_freeze_slab(n
, page
))
1263 spin_unlock(&n
->list_lock
);
1268 * Get a page from somewhere. Search in increasing NUMA distances.
1270 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1273 struct zonelist
*zonelist
;
1278 * The defrag ratio allows a configuration of the tradeoffs between
1279 * inter node defragmentation and node local allocations. A lower
1280 * defrag_ratio increases the tendency to do local allocations
1281 * instead of attempting to obtain partial slabs from other nodes.
1283 * If the defrag_ratio is set to 0 then kmalloc() always
1284 * returns node local objects. If the ratio is higher then kmalloc()
1285 * may return off node objects because partial slabs are obtained
1286 * from other nodes and filled up.
1288 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1289 * defrag_ratio = 1000) then every (well almost) allocation will
1290 * first attempt to defrag slab caches on other nodes. This means
1291 * scanning over all nodes to look for partial slabs which may be
1292 * expensive if we do it every time we are trying to find a slab
1293 * with available objects.
1295 if (!s
->defrag_ratio
|| get_cycles() % 1024 > s
->defrag_ratio
)
1298 zonelist
= &NODE_DATA(slab_node(current
->mempolicy
))
1299 ->node_zonelists
[gfp_zone(flags
)];
1300 for (z
= zonelist
->zones
; *z
; z
++) {
1301 struct kmem_cache_node
*n
;
1303 n
= get_node(s
, zone_to_nid(*z
));
1305 if (n
&& cpuset_zone_allowed_hardwall(*z
, flags
) &&
1306 n
->nr_partial
> MIN_PARTIAL
) {
1307 page
= get_partial_node(n
);
1317 * Get a partial page, lock it and return it.
1319 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1322 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1324 page
= get_partial_node(get_node(s
, searchnode
));
1325 if (page
|| (flags
& __GFP_THISNODE
))
1328 return get_any_partial(s
, flags
);
1332 * Move a page back to the lists.
1334 * Must be called with the slab lock held.
1336 * On exit the slab lock will have been dropped.
1338 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
)
1340 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1342 ClearSlabFrozen(page
);
1346 add_partial(n
, page
);
1347 else if (SlabDebug(page
) && (s
->flags
& SLAB_STORE_USER
))
1352 if (n
->nr_partial
< MIN_PARTIAL
) {
1354 * Adding an empty slab to the partial slabs in order
1355 * to avoid page allocator overhead. This slab needs
1356 * to come after the other slabs with objects in
1357 * order to fill them up. That way the size of the
1358 * partial list stays small. kmem_cache_shrink can
1359 * reclaim empty slabs from the partial list.
1361 add_partial_tail(n
, page
);
1365 discard_slab(s
, page
);
1371 * Remove the cpu slab
1373 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1375 struct page
*page
= c
->page
;
1377 * Merge cpu freelist into freelist. Typically we get here
1378 * because both freelists are empty. So this is unlikely
1381 while (unlikely(c
->freelist
)) {
1384 /* Retrieve object from cpu_freelist */
1385 object
= c
->freelist
;
1386 c
->freelist
= c
->freelist
[c
->offset
];
1388 /* And put onto the regular freelist */
1389 object
[c
->offset
] = page
->freelist
;
1390 page
->freelist
= object
;
1394 unfreeze_slab(s
, page
);
1397 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1400 deactivate_slab(s
, c
);
1405 * Called from IPI handler with interrupts disabled.
1407 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1409 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1411 if (likely(c
&& c
->page
))
1415 static void flush_cpu_slab(void *d
)
1417 struct kmem_cache
*s
= d
;
1419 __flush_cpu_slab(s
, smp_processor_id());
1422 static void flush_all(struct kmem_cache
*s
)
1425 on_each_cpu(flush_cpu_slab
, s
, 1, 1);
1427 unsigned long flags
;
1429 local_irq_save(flags
);
1431 local_irq_restore(flags
);
1436 * Check if the objects in a per cpu structure fit numa
1437 * locality expectations.
1439 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1442 if (node
!= -1 && c
->node
!= node
)
1449 * Slow path. The lockless freelist is empty or we need to perform
1452 * Interrupts are disabled.
1454 * Processing is still very fast if new objects have been freed to the
1455 * regular freelist. In that case we simply take over the regular freelist
1456 * as the lockless freelist and zap the regular freelist.
1458 * If that is not working then we fall back to the partial lists. We take the
1459 * first element of the freelist as the object to allocate now and move the
1460 * rest of the freelist to the lockless freelist.
1462 * And if we were unable to get a new slab from the partial slab lists then
1463 * we need to allocate a new slab. This is slowest path since we may sleep.
1465 static void *__slab_alloc(struct kmem_cache
*s
,
1466 gfp_t gfpflags
, int node
, void *addr
, struct kmem_cache_cpu
*c
)
1471 /* We handle __GFP_ZERO in the caller */
1472 gfpflags
&= ~__GFP_ZERO
;
1478 if (unlikely(!node_match(c
, node
)))
1481 object
= c
->page
->freelist
;
1482 if (unlikely(!object
))
1484 if (unlikely(SlabDebug(c
->page
)))
1487 object
= c
->page
->freelist
;
1488 c
->freelist
= object
[c
->offset
];
1489 c
->page
->inuse
= s
->objects
;
1490 c
->page
->freelist
= NULL
;
1491 c
->node
= page_to_nid(c
->page
);
1492 slab_unlock(c
->page
);
1496 deactivate_slab(s
, c
);
1499 new = get_partial(s
, gfpflags
, node
);
1505 if (gfpflags
& __GFP_WAIT
)
1508 new = new_slab(s
, gfpflags
, node
);
1510 if (gfpflags
& __GFP_WAIT
)
1511 local_irq_disable();
1514 c
= get_cpu_slab(s
, smp_processor_id());
1524 object
= c
->page
->freelist
;
1525 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1529 c
->page
->freelist
= object
[c
->offset
];
1531 slab_unlock(c
->page
);
1536 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1537 * have the fastpath folded into their functions. So no function call
1538 * overhead for requests that can be satisfied on the fastpath.
1540 * The fastpath works by first checking if the lockless freelist can be used.
1541 * If not then __slab_alloc is called for slow processing.
1543 * Otherwise we can simply pick the next object from the lockless free list.
1545 static void __always_inline
*slab_alloc(struct kmem_cache
*s
,
1546 gfp_t gfpflags
, int node
, void *addr
)
1549 unsigned long flags
;
1550 struct kmem_cache_cpu
*c
;
1552 local_irq_save(flags
);
1553 c
= get_cpu_slab(s
, smp_processor_id());
1554 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1556 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1559 object
= c
->freelist
;
1560 c
->freelist
= object
[c
->offset
];
1562 local_irq_restore(flags
);
1564 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1565 memset(object
, 0, c
->objsize
);
1570 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1572 return slab_alloc(s
, gfpflags
, -1, __builtin_return_address(0));
1574 EXPORT_SYMBOL(kmem_cache_alloc
);
1577 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1579 return slab_alloc(s
, gfpflags
, node
, __builtin_return_address(0));
1581 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1585 * Slow patch handling. This may still be called frequently since objects
1586 * have a longer lifetime than the cpu slabs in most processing loads.
1588 * So we still attempt to reduce cache line usage. Just take the slab
1589 * lock and free the item. If there is no additional partial page
1590 * handling required then we can return immediately.
1592 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1593 void *x
, void *addr
, unsigned int offset
)
1596 void **object
= (void *)x
;
1600 if (unlikely(SlabDebug(page
)))
1603 prior
= object
[offset
] = page
->freelist
;
1604 page
->freelist
= object
;
1607 if (unlikely(SlabFrozen(page
)))
1610 if (unlikely(!page
->inuse
))
1614 * Objects left in the slab. If it
1615 * was not on the partial list before
1618 if (unlikely(!prior
))
1619 add_partial(get_node(s
, page_to_nid(page
)), page
);
1628 * Slab still on the partial list.
1630 remove_partial(s
, page
);
1633 discard_slab(s
, page
);
1637 if (!free_debug_processing(s
, page
, x
, addr
))
1643 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1644 * can perform fastpath freeing without additional function calls.
1646 * The fastpath is only possible if we are freeing to the current cpu slab
1647 * of this processor. This typically the case if we have just allocated
1650 * If fastpath is not possible then fall back to __slab_free where we deal
1651 * with all sorts of special processing.
1653 static void __always_inline
slab_free(struct kmem_cache
*s
,
1654 struct page
*page
, void *x
, void *addr
)
1656 void **object
= (void *)x
;
1657 unsigned long flags
;
1658 struct kmem_cache_cpu
*c
;
1660 local_irq_save(flags
);
1661 debug_check_no_locks_freed(object
, s
->objsize
);
1662 c
= get_cpu_slab(s
, smp_processor_id());
1663 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1664 object
[c
->offset
] = c
->freelist
;
1665 c
->freelist
= object
;
1667 __slab_free(s
, page
, x
, addr
, c
->offset
);
1669 local_irq_restore(flags
);
1672 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1676 page
= virt_to_head_page(x
);
1678 slab_free(s
, page
, x
, __builtin_return_address(0));
1680 EXPORT_SYMBOL(kmem_cache_free
);
1682 /* Figure out on which slab object the object resides */
1683 static struct page
*get_object_page(const void *x
)
1685 struct page
*page
= virt_to_head_page(x
);
1687 if (!PageSlab(page
))
1694 * Object placement in a slab is made very easy because we always start at
1695 * offset 0. If we tune the size of the object to the alignment then we can
1696 * get the required alignment by putting one properly sized object after
1699 * Notice that the allocation order determines the sizes of the per cpu
1700 * caches. Each processor has always one slab available for allocations.
1701 * Increasing the allocation order reduces the number of times that slabs
1702 * must be moved on and off the partial lists and is therefore a factor in
1707 * Mininum / Maximum order of slab pages. This influences locking overhead
1708 * and slab fragmentation. A higher order reduces the number of partial slabs
1709 * and increases the number of allocations possible without having to
1710 * take the list_lock.
1712 static int slub_min_order
;
1713 static int slub_max_order
= DEFAULT_MAX_ORDER
;
1714 static int slub_min_objects
= DEFAULT_MIN_OBJECTS
;
1717 * Merge control. If this is set then no merging of slab caches will occur.
1718 * (Could be removed. This was introduced to pacify the merge skeptics.)
1720 static int slub_nomerge
;
1723 * Calculate the order of allocation given an slab object size.
1725 * The order of allocation has significant impact on performance and other
1726 * system components. Generally order 0 allocations should be preferred since
1727 * order 0 does not cause fragmentation in the page allocator. Larger objects
1728 * be problematic to put into order 0 slabs because there may be too much
1729 * unused space left. We go to a higher order if more than 1/8th of the slab
1732 * In order to reach satisfactory performance we must ensure that a minimum
1733 * number of objects is in one slab. Otherwise we may generate too much
1734 * activity on the partial lists which requires taking the list_lock. This is
1735 * less a concern for large slabs though which are rarely used.
1737 * slub_max_order specifies the order where we begin to stop considering the
1738 * number of objects in a slab as critical. If we reach slub_max_order then
1739 * we try to keep the page order as low as possible. So we accept more waste
1740 * of space in favor of a small page order.
1742 * Higher order allocations also allow the placement of more objects in a
1743 * slab and thereby reduce object handling overhead. If the user has
1744 * requested a higher mininum order then we start with that one instead of
1745 * the smallest order which will fit the object.
1747 static inline int slab_order(int size
, int min_objects
,
1748 int max_order
, int fract_leftover
)
1752 int min_order
= slub_min_order
;
1754 for (order
= max(min_order
,
1755 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1756 order
<= max_order
; order
++) {
1758 unsigned long slab_size
= PAGE_SIZE
<< order
;
1760 if (slab_size
< min_objects
* size
)
1763 rem
= slab_size
% size
;
1765 if (rem
<= slab_size
/ fract_leftover
)
1773 static inline int calculate_order(int size
)
1780 * Attempt to find best configuration for a slab. This
1781 * works by first attempting to generate a layout with
1782 * the best configuration and backing off gradually.
1784 * First we reduce the acceptable waste in a slab. Then
1785 * we reduce the minimum objects required in a slab.
1787 min_objects
= slub_min_objects
;
1788 while (min_objects
> 1) {
1790 while (fraction
>= 4) {
1791 order
= slab_order(size
, min_objects
,
1792 slub_max_order
, fraction
);
1793 if (order
<= slub_max_order
)
1801 * We were unable to place multiple objects in a slab. Now
1802 * lets see if we can place a single object there.
1804 order
= slab_order(size
, 1, slub_max_order
, 1);
1805 if (order
<= slub_max_order
)
1809 * Doh this slab cannot be placed using slub_max_order.
1811 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1812 if (order
<= MAX_ORDER
)
1818 * Figure out what the alignment of the objects will be.
1820 static unsigned long calculate_alignment(unsigned long flags
,
1821 unsigned long align
, unsigned long size
)
1824 * If the user wants hardware cache aligned objects then
1825 * follow that suggestion if the object is sufficiently
1828 * The hardware cache alignment cannot override the
1829 * specified alignment though. If that is greater
1832 if ((flags
& SLAB_HWCACHE_ALIGN
) &&
1833 size
> cache_line_size() / 2)
1834 return max_t(unsigned long, align
, cache_line_size());
1836 if (align
< ARCH_SLAB_MINALIGN
)
1837 return ARCH_SLAB_MINALIGN
;
1839 return ALIGN(align
, sizeof(void *));
1842 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1843 struct kmem_cache_cpu
*c
)
1848 c
->offset
= s
->offset
/ sizeof(void *);
1849 c
->objsize
= s
->objsize
;
1852 static void init_kmem_cache_node(struct kmem_cache_node
*n
)
1855 atomic_long_set(&n
->nr_slabs
, 0);
1856 spin_lock_init(&n
->list_lock
);
1857 INIT_LIST_HEAD(&n
->partial
);
1858 #ifdef CONFIG_SLUB_DEBUG
1859 INIT_LIST_HEAD(&n
->full
);
1865 * Per cpu array for per cpu structures.
1867 * The per cpu array places all kmem_cache_cpu structures from one processor
1868 * close together meaning that it becomes possible that multiple per cpu
1869 * structures are contained in one cacheline. This may be particularly
1870 * beneficial for the kmalloc caches.
1872 * A desktop system typically has around 60-80 slabs. With 100 here we are
1873 * likely able to get per cpu structures for all caches from the array defined
1874 * here. We must be able to cover all kmalloc caches during bootstrap.
1876 * If the per cpu array is exhausted then fall back to kmalloc
1877 * of individual cachelines. No sharing is possible then.
1879 #define NR_KMEM_CACHE_CPU 100
1881 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
1882 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
1884 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
1885 static cpumask_t kmem_cach_cpu_free_init_once
= CPU_MASK_NONE
;
1887 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
1888 int cpu
, gfp_t flags
)
1890 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
1893 per_cpu(kmem_cache_cpu_free
, cpu
) =
1894 (void *)c
->freelist
;
1896 /* Table overflow: So allocate ourselves */
1898 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
1899 flags
, cpu_to_node(cpu
));
1904 init_kmem_cache_cpu(s
, c
);
1908 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
1910 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
1911 c
> per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
1915 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
1916 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
1919 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
1923 for_each_online_cpu(cpu
) {
1924 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1927 s
->cpu_slab
[cpu
] = NULL
;
1928 free_kmem_cache_cpu(c
, cpu
);
1933 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
1937 for_each_online_cpu(cpu
) {
1938 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1943 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
1945 free_kmem_cache_cpus(s
);
1948 s
->cpu_slab
[cpu
] = c
;
1954 * Initialize the per cpu array.
1956 static void init_alloc_cpu_cpu(int cpu
)
1960 if (cpu_isset(cpu
, kmem_cach_cpu_free_init_once
))
1963 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
1964 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
1966 cpu_set(cpu
, kmem_cach_cpu_free_init_once
);
1969 static void __init
init_alloc_cpu(void)
1973 for_each_online_cpu(cpu
)
1974 init_alloc_cpu_cpu(cpu
);
1978 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
1979 static inline void init_alloc_cpu(void) {}
1981 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
1983 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
1990 * No kmalloc_node yet so do it by hand. We know that this is the first
1991 * slab on the node for this slabcache. There are no concurrent accesses
1994 * Note that this function only works on the kmalloc_node_cache
1995 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
1996 * memory on a fresh node that has no slab structures yet.
1998 static struct kmem_cache_node
*early_kmem_cache_node_alloc(gfp_t gfpflags
,
2002 struct kmem_cache_node
*n
;
2004 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2006 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2009 if (page_to_nid(page
) != node
) {
2010 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2012 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2013 "in order to be able to continue\n");
2018 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2020 kmalloc_caches
->node
[node
] = n
;
2021 #ifdef CONFIG_SLUB_DEBUG
2022 init_object(kmalloc_caches
, n
, 1);
2023 init_tracking(kmalloc_caches
, n
);
2025 init_kmem_cache_node(n
);
2026 atomic_long_inc(&n
->nr_slabs
);
2027 add_partial(n
, page
);
2031 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2035 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2036 struct kmem_cache_node
*n
= s
->node
[node
];
2037 if (n
&& n
!= &s
->local_node
)
2038 kmem_cache_free(kmalloc_caches
, n
);
2039 s
->node
[node
] = NULL
;
2043 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2048 if (slab_state
>= UP
)
2049 local_node
= page_to_nid(virt_to_page(s
));
2053 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2054 struct kmem_cache_node
*n
;
2056 if (local_node
== node
)
2059 if (slab_state
== DOWN
) {
2060 n
= early_kmem_cache_node_alloc(gfpflags
,
2064 n
= kmem_cache_alloc_node(kmalloc_caches
,
2068 free_kmem_cache_nodes(s
);
2074 init_kmem_cache_node(n
);
2079 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2083 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2085 init_kmem_cache_node(&s
->local_node
);
2091 * calculate_sizes() determines the order and the distribution of data within
2094 static int calculate_sizes(struct kmem_cache
*s
)
2096 unsigned long flags
= s
->flags
;
2097 unsigned long size
= s
->objsize
;
2098 unsigned long align
= s
->align
;
2101 * Determine if we can poison the object itself. If the user of
2102 * the slab may touch the object after free or before allocation
2103 * then we should never poison the object itself.
2105 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2107 s
->flags
|= __OBJECT_POISON
;
2109 s
->flags
&= ~__OBJECT_POISON
;
2112 * Round up object size to the next word boundary. We can only
2113 * place the free pointer at word boundaries and this determines
2114 * the possible location of the free pointer.
2116 size
= ALIGN(size
, sizeof(void *));
2118 #ifdef CONFIG_SLUB_DEBUG
2120 * If we are Redzoning then check if there is some space between the
2121 * end of the object and the free pointer. If not then add an
2122 * additional word to have some bytes to store Redzone information.
2124 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2125 size
+= sizeof(void *);
2129 * With that we have determined the number of bytes in actual use
2130 * by the object. This is the potential offset to the free pointer.
2134 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2137 * Relocate free pointer after the object if it is not
2138 * permitted to overwrite the first word of the object on
2141 * This is the case if we do RCU, have a constructor or
2142 * destructor or are poisoning the objects.
2145 size
+= sizeof(void *);
2148 #ifdef CONFIG_SLUB_DEBUG
2149 if (flags
& SLAB_STORE_USER
)
2151 * Need to store information about allocs and frees after
2154 size
+= 2 * sizeof(struct track
);
2156 if (flags
& SLAB_RED_ZONE
)
2158 * Add some empty padding so that we can catch
2159 * overwrites from earlier objects rather than let
2160 * tracking information or the free pointer be
2161 * corrupted if an user writes before the start
2164 size
+= sizeof(void *);
2168 * Determine the alignment based on various parameters that the
2169 * user specified and the dynamic determination of cache line size
2172 align
= calculate_alignment(flags
, align
, s
->objsize
);
2175 * SLUB stores one object immediately after another beginning from
2176 * offset 0. In order to align the objects we have to simply size
2177 * each object to conform to the alignment.
2179 size
= ALIGN(size
, align
);
2182 s
->order
= calculate_order(size
);
2187 * Determine the number of objects per slab
2189 s
->objects
= (PAGE_SIZE
<< s
->order
) / size
;
2191 return !!s
->objects
;
2195 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2196 const char *name
, size_t size
,
2197 size_t align
, unsigned long flags
,
2198 void (*ctor
)(struct kmem_cache
*, void *))
2200 memset(s
, 0, kmem_size
);
2205 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2207 if (!calculate_sizes(s
))
2212 s
->defrag_ratio
= 100;
2214 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2217 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2219 free_kmem_cache_nodes(s
);
2221 if (flags
& SLAB_PANIC
)
2222 panic("Cannot create slab %s size=%lu realsize=%u "
2223 "order=%u offset=%u flags=%lx\n",
2224 s
->name
, (unsigned long)size
, s
->size
, s
->order
,
2230 * Check if a given pointer is valid
2232 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2236 page
= get_object_page(object
);
2238 if (!page
|| s
!= page
->slab
)
2239 /* No slab or wrong slab */
2242 if (!check_valid_pointer(s
, page
, object
))
2246 * We could also check if the object is on the slabs freelist.
2247 * But this would be too expensive and it seems that the main
2248 * purpose of kmem_ptr_valid is to check if the object belongs
2249 * to a certain slab.
2253 EXPORT_SYMBOL(kmem_ptr_validate
);
2256 * Determine the size of a slab object
2258 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2262 EXPORT_SYMBOL(kmem_cache_size
);
2264 const char *kmem_cache_name(struct kmem_cache
*s
)
2268 EXPORT_SYMBOL(kmem_cache_name
);
2271 * Attempt to free all slabs on a node. Return the number of slabs we
2272 * were unable to free.
2274 static int free_list(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
2275 struct list_head
*list
)
2277 int slabs_inuse
= 0;
2278 unsigned long flags
;
2279 struct page
*page
, *h
;
2281 spin_lock_irqsave(&n
->list_lock
, flags
);
2282 list_for_each_entry_safe(page
, h
, list
, lru
)
2284 list_del(&page
->lru
);
2285 discard_slab(s
, page
);
2288 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2293 * Release all resources used by a slab cache.
2295 static inline int kmem_cache_close(struct kmem_cache
*s
)
2301 /* Attempt to free all objects */
2302 free_kmem_cache_cpus(s
);
2303 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2304 struct kmem_cache_node
*n
= get_node(s
, node
);
2306 n
->nr_partial
-= free_list(s
, n
, &n
->partial
);
2307 if (atomic_long_read(&n
->nr_slabs
))
2310 free_kmem_cache_nodes(s
);
2315 * Close a cache and release the kmem_cache structure
2316 * (must be used for caches created using kmem_cache_create)
2318 void kmem_cache_destroy(struct kmem_cache
*s
)
2320 down_write(&slub_lock
);
2324 up_write(&slub_lock
);
2325 if (kmem_cache_close(s
))
2327 sysfs_slab_remove(s
);
2330 up_write(&slub_lock
);
2332 EXPORT_SYMBOL(kmem_cache_destroy
);
2334 /********************************************************************
2336 *******************************************************************/
2338 struct kmem_cache kmalloc_caches
[PAGE_SHIFT
] __cacheline_aligned
;
2339 EXPORT_SYMBOL(kmalloc_caches
);
2341 #ifdef CONFIG_ZONE_DMA
2342 static struct kmem_cache
*kmalloc_caches_dma
[PAGE_SHIFT
];
2345 static int __init
setup_slub_min_order(char *str
)
2347 get_option (&str
, &slub_min_order
);
2352 __setup("slub_min_order=", setup_slub_min_order
);
2354 static int __init
setup_slub_max_order(char *str
)
2356 get_option (&str
, &slub_max_order
);
2361 __setup("slub_max_order=", setup_slub_max_order
);
2363 static int __init
setup_slub_min_objects(char *str
)
2365 get_option (&str
, &slub_min_objects
);
2370 __setup("slub_min_objects=", setup_slub_min_objects
);
2372 static int __init
setup_slub_nomerge(char *str
)
2378 __setup("slub_nomerge", setup_slub_nomerge
);
2380 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2381 const char *name
, int size
, gfp_t gfp_flags
)
2383 unsigned int flags
= 0;
2385 if (gfp_flags
& SLUB_DMA
)
2386 flags
= SLAB_CACHE_DMA
;
2388 down_write(&slub_lock
);
2389 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2393 list_add(&s
->list
, &slab_caches
);
2394 up_write(&slub_lock
);
2395 if (sysfs_slab_add(s
))
2400 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2403 #ifdef CONFIG_ZONE_DMA
2405 static void sysfs_add_func(struct work_struct
*w
)
2407 struct kmem_cache
*s
;
2409 down_write(&slub_lock
);
2410 list_for_each_entry(s
, &slab_caches
, list
) {
2411 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2412 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2416 up_write(&slub_lock
);
2419 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2421 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2423 struct kmem_cache
*s
;
2427 s
= kmalloc_caches_dma
[index
];
2431 /* Dynamically create dma cache */
2432 if (flags
& __GFP_WAIT
)
2433 down_write(&slub_lock
);
2435 if (!down_write_trylock(&slub_lock
))
2439 if (kmalloc_caches_dma
[index
])
2442 realsize
= kmalloc_caches
[index
].objsize
;
2443 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d", (unsigned int)realsize
),
2444 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2446 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2447 realsize
, ARCH_KMALLOC_MINALIGN
,
2448 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2454 list_add(&s
->list
, &slab_caches
);
2455 kmalloc_caches_dma
[index
] = s
;
2457 schedule_work(&sysfs_add_work
);
2460 up_write(&slub_lock
);
2462 return kmalloc_caches_dma
[index
];
2467 * Conversion table for small slabs sizes / 8 to the index in the
2468 * kmalloc array. This is necessary for slabs < 192 since we have non power
2469 * of two cache sizes there. The size of larger slabs can be determined using
2472 static s8 size_index
[24] = {
2499 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2505 return ZERO_SIZE_PTR
;
2507 index
= size_index
[(size
- 1) / 8];
2509 index
= fls(size
- 1);
2511 #ifdef CONFIG_ZONE_DMA
2512 if (unlikely((flags
& SLUB_DMA
)))
2513 return dma_kmalloc_cache(index
, flags
);
2516 return &kmalloc_caches
[index
];
2519 void *__kmalloc(size_t size
, gfp_t flags
)
2521 struct kmem_cache
*s
;
2523 if (unlikely(size
> PAGE_SIZE
/ 2))
2524 return (void *)__get_free_pages(flags
| __GFP_COMP
,
2527 s
= get_slab(size
, flags
);
2529 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2532 return slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2534 EXPORT_SYMBOL(__kmalloc
);
2537 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2539 struct kmem_cache
*s
;
2541 if (unlikely(size
> PAGE_SIZE
/ 2))
2542 return (void *)__get_free_pages(flags
| __GFP_COMP
,
2545 s
= get_slab(size
, flags
);
2547 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2550 return slab_alloc(s
, flags
, node
, __builtin_return_address(0));
2552 EXPORT_SYMBOL(__kmalloc_node
);
2555 size_t ksize(const void *object
)
2558 struct kmem_cache
*s
;
2561 if (unlikely(object
== ZERO_SIZE_PTR
))
2564 page
= virt_to_head_page(object
);
2567 if (unlikely(!PageSlab(page
)))
2568 return PAGE_SIZE
<< compound_order(page
);
2574 * Debugging requires use of the padding between object
2575 * and whatever may come after it.
2577 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2581 * If we have the need to store the freelist pointer
2582 * back there or track user information then we can
2583 * only use the space before that information.
2585 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2589 * Else we can use all the padding etc for the allocation
2593 EXPORT_SYMBOL(ksize
);
2595 void kfree(const void *x
)
2599 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2602 page
= virt_to_head_page(x
);
2603 if (unlikely(!PageSlab(page
))) {
2607 slab_free(page
->slab
, page
, (void *)x
, __builtin_return_address(0));
2609 EXPORT_SYMBOL(kfree
);
2612 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2613 * the remaining slabs by the number of items in use. The slabs with the
2614 * most items in use come first. New allocations will then fill those up
2615 * and thus they can be removed from the partial lists.
2617 * The slabs with the least items are placed last. This results in them
2618 * being allocated from last increasing the chance that the last objects
2619 * are freed in them.
2621 int kmem_cache_shrink(struct kmem_cache
*s
)
2625 struct kmem_cache_node
*n
;
2628 struct list_head
*slabs_by_inuse
=
2629 kmalloc(sizeof(struct list_head
) * s
->objects
, GFP_KERNEL
);
2630 unsigned long flags
;
2632 if (!slabs_by_inuse
)
2636 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2637 n
= get_node(s
, node
);
2642 for (i
= 0; i
< s
->objects
; i
++)
2643 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2645 spin_lock_irqsave(&n
->list_lock
, flags
);
2648 * Build lists indexed by the items in use in each slab.
2650 * Note that concurrent frees may occur while we hold the
2651 * list_lock. page->inuse here is the upper limit.
2653 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2654 if (!page
->inuse
&& slab_trylock(page
)) {
2656 * Must hold slab lock here because slab_free
2657 * may have freed the last object and be
2658 * waiting to release the slab.
2660 list_del(&page
->lru
);
2663 discard_slab(s
, page
);
2665 list_move(&page
->lru
,
2666 slabs_by_inuse
+ page
->inuse
);
2671 * Rebuild the partial list with the slabs filled up most
2672 * first and the least used slabs at the end.
2674 for (i
= s
->objects
- 1; i
>= 0; i
--)
2675 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2677 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2680 kfree(slabs_by_inuse
);
2683 EXPORT_SYMBOL(kmem_cache_shrink
);
2685 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2686 static int slab_mem_going_offline_callback(void *arg
)
2688 struct kmem_cache
*s
;
2690 down_read(&slub_lock
);
2691 list_for_each_entry(s
, &slab_caches
, list
)
2692 kmem_cache_shrink(s
);
2693 up_read(&slub_lock
);
2698 static void slab_mem_offline_callback(void *arg
)
2700 struct kmem_cache_node
*n
;
2701 struct kmem_cache
*s
;
2702 struct memory_notify
*marg
= arg
;
2705 offline_node
= marg
->status_change_nid
;
2708 * If the node still has available memory. we need kmem_cache_node
2711 if (offline_node
< 0)
2714 down_read(&slub_lock
);
2715 list_for_each_entry(s
, &slab_caches
, list
) {
2716 n
= get_node(s
, offline_node
);
2719 * if n->nr_slabs > 0, slabs still exist on the node
2720 * that is going down. We were unable to free them,
2721 * and offline_pages() function shoudn't call this
2722 * callback. So, we must fail.
2724 BUG_ON(atomic_long_read(&n
->nr_slabs
));
2726 s
->node
[offline_node
] = NULL
;
2727 kmem_cache_free(kmalloc_caches
, n
);
2730 up_read(&slub_lock
);
2733 static int slab_mem_going_online_callback(void *arg
)
2735 struct kmem_cache_node
*n
;
2736 struct kmem_cache
*s
;
2737 struct memory_notify
*marg
= arg
;
2738 int nid
= marg
->status_change_nid
;
2742 * If the node's memory is already available, then kmem_cache_node is
2743 * already created. Nothing to do.
2749 * We are bringing a node online. No memory is availabe yet. We must
2750 * allocate a kmem_cache_node structure in order to bring the node
2753 down_read(&slub_lock
);
2754 list_for_each_entry(s
, &slab_caches
, list
) {
2756 * XXX: kmem_cache_alloc_node will fallback to other nodes
2757 * since memory is not yet available from the node that
2760 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2765 init_kmem_cache_node(n
);
2769 up_read(&slub_lock
);
2773 static int slab_memory_callback(struct notifier_block
*self
,
2774 unsigned long action
, void *arg
)
2779 case MEM_GOING_ONLINE
:
2780 ret
= slab_mem_going_online_callback(arg
);
2782 case MEM_GOING_OFFLINE
:
2783 ret
= slab_mem_going_offline_callback(arg
);
2786 case MEM_CANCEL_ONLINE
:
2787 slab_mem_offline_callback(arg
);
2790 case MEM_CANCEL_OFFLINE
:
2794 ret
= notifier_from_errno(ret
);
2798 #endif /* CONFIG_MEMORY_HOTPLUG */
2800 /********************************************************************
2801 * Basic setup of slabs
2802 *******************************************************************/
2804 void __init
kmem_cache_init(void)
2813 * Must first have the slab cache available for the allocations of the
2814 * struct kmem_cache_node's. There is special bootstrap code in
2815 * kmem_cache_open for slab_state == DOWN.
2817 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2818 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2819 kmalloc_caches
[0].refcount
= -1;
2822 hotplug_memory_notifier(slab_memory_callback
, 1);
2825 /* Able to allocate the per node structures */
2826 slab_state
= PARTIAL
;
2828 /* Caches that are not of the two-to-the-power-of size */
2829 if (KMALLOC_MIN_SIZE
<= 64) {
2830 create_kmalloc_cache(&kmalloc_caches
[1],
2831 "kmalloc-96", 96, GFP_KERNEL
);
2834 if (KMALLOC_MIN_SIZE
<= 128) {
2835 create_kmalloc_cache(&kmalloc_caches
[2],
2836 "kmalloc-192", 192, GFP_KERNEL
);
2840 for (i
= KMALLOC_SHIFT_LOW
; i
< PAGE_SHIFT
; i
++) {
2841 create_kmalloc_cache(&kmalloc_caches
[i
],
2842 "kmalloc", 1 << i
, GFP_KERNEL
);
2848 * Patch up the size_index table if we have strange large alignment
2849 * requirements for the kmalloc array. This is only the case for
2850 * mips it seems. The standard arches will not generate any code here.
2852 * Largest permitted alignment is 256 bytes due to the way we
2853 * handle the index determination for the smaller caches.
2855 * Make sure that nothing crazy happens if someone starts tinkering
2856 * around with ARCH_KMALLOC_MINALIGN
2858 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
2859 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
2861 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
2862 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
2866 /* Provide the correct kmalloc names now that the caches are up */
2867 for (i
= KMALLOC_SHIFT_LOW
; i
< PAGE_SHIFT
; i
++)
2868 kmalloc_caches
[i
]. name
=
2869 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
2872 register_cpu_notifier(&slab_notifier
);
2873 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
2874 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
2876 kmem_size
= sizeof(struct kmem_cache
);
2880 printk(KERN_INFO
"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2881 " CPUs=%d, Nodes=%d\n",
2882 caches
, cache_line_size(),
2883 slub_min_order
, slub_max_order
, slub_min_objects
,
2884 nr_cpu_ids
, nr_node_ids
);
2888 * Find a mergeable slab cache
2890 static int slab_unmergeable(struct kmem_cache
*s
)
2892 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
2899 * We may have set a slab to be unmergeable during bootstrap.
2901 if (s
->refcount
< 0)
2907 static struct kmem_cache
*find_mergeable(size_t size
,
2908 size_t align
, unsigned long flags
, const char *name
,
2909 void (*ctor
)(struct kmem_cache
*, void *))
2911 struct kmem_cache
*s
;
2913 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
2919 size
= ALIGN(size
, sizeof(void *));
2920 align
= calculate_alignment(flags
, align
, size
);
2921 size
= ALIGN(size
, align
);
2922 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
2924 list_for_each_entry(s
, &slab_caches
, list
) {
2925 if (slab_unmergeable(s
))
2931 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
2934 * Check if alignment is compatible.
2935 * Courtesy of Adrian Drzewiecki
2937 if ((s
->size
& ~(align
-1)) != s
->size
)
2940 if (s
->size
- size
>= sizeof(void *))
2948 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
2949 size_t align
, unsigned long flags
,
2950 void (*ctor
)(struct kmem_cache
*, void *))
2952 struct kmem_cache
*s
;
2954 down_write(&slub_lock
);
2955 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
2961 * Adjust the object sizes so that we clear
2962 * the complete object on kzalloc.
2964 s
->objsize
= max(s
->objsize
, (int)size
);
2967 * And then we need to update the object size in the
2968 * per cpu structures
2970 for_each_online_cpu(cpu
)
2971 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
2972 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
2973 up_write(&slub_lock
);
2974 if (sysfs_slab_alias(s
, name
))
2978 s
= kmalloc(kmem_size
, GFP_KERNEL
);
2980 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
2981 size
, align
, flags
, ctor
)) {
2982 list_add(&s
->list
, &slab_caches
);
2983 up_write(&slub_lock
);
2984 if (sysfs_slab_add(s
))
2990 up_write(&slub_lock
);
2993 if (flags
& SLAB_PANIC
)
2994 panic("Cannot create slabcache %s\n", name
);
2999 EXPORT_SYMBOL(kmem_cache_create
);
3003 * Use the cpu notifier to insure that the cpu slabs are flushed when
3006 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3007 unsigned long action
, void *hcpu
)
3009 long cpu
= (long)hcpu
;
3010 struct kmem_cache
*s
;
3011 unsigned long flags
;
3014 case CPU_UP_PREPARE
:
3015 case CPU_UP_PREPARE_FROZEN
:
3016 init_alloc_cpu_cpu(cpu
);
3017 down_read(&slub_lock
);
3018 list_for_each_entry(s
, &slab_caches
, list
)
3019 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3021 up_read(&slub_lock
);
3024 case CPU_UP_CANCELED
:
3025 case CPU_UP_CANCELED_FROZEN
:
3027 case CPU_DEAD_FROZEN
:
3028 down_read(&slub_lock
);
3029 list_for_each_entry(s
, &slab_caches
, list
) {
3030 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3032 local_irq_save(flags
);
3033 __flush_cpu_slab(s
, cpu
);
3034 local_irq_restore(flags
);
3035 free_kmem_cache_cpu(c
, cpu
);
3036 s
->cpu_slab
[cpu
] = NULL
;
3038 up_read(&slub_lock
);
3046 static struct notifier_block __cpuinitdata slab_notifier
=
3047 { &slab_cpuup_callback
, NULL
, 0 };
3051 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, void *caller
)
3053 struct kmem_cache
*s
;
3055 if (unlikely(size
> PAGE_SIZE
/ 2))
3056 return (void *)__get_free_pages(gfpflags
| __GFP_COMP
,
3058 s
= get_slab(size
, gfpflags
);
3060 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3063 return slab_alloc(s
, gfpflags
, -1, caller
);
3066 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3067 int node
, void *caller
)
3069 struct kmem_cache
*s
;
3071 if (unlikely(size
> PAGE_SIZE
/ 2))
3072 return (void *)__get_free_pages(gfpflags
| __GFP_COMP
,
3074 s
= get_slab(size
, gfpflags
);
3076 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3079 return slab_alloc(s
, gfpflags
, node
, caller
);
3082 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3083 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3087 void *addr
= page_address(page
);
3089 if (!check_slab(s
, page
) ||
3090 !on_freelist(s
, page
, NULL
))
3093 /* Now we know that a valid freelist exists */
3094 bitmap_zero(map
, s
->objects
);
3096 for_each_free_object(p
, s
, page
->freelist
) {
3097 set_bit(slab_index(p
, s
, addr
), map
);
3098 if (!check_object(s
, page
, p
, 0))
3102 for_each_object(p
, s
, addr
)
3103 if (!test_bit(slab_index(p
, s
, addr
), map
))
3104 if (!check_object(s
, page
, p
, 1))
3109 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3112 if (slab_trylock(page
)) {
3113 validate_slab(s
, page
, map
);
3116 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3119 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3120 if (!SlabDebug(page
))
3121 printk(KERN_ERR
"SLUB %s: SlabDebug not set "
3122 "on slab 0x%p\n", s
->name
, page
);
3124 if (SlabDebug(page
))
3125 printk(KERN_ERR
"SLUB %s: SlabDebug set on "
3126 "slab 0x%p\n", s
->name
, page
);
3130 static int validate_slab_node(struct kmem_cache
*s
,
3131 struct kmem_cache_node
*n
, unsigned long *map
)
3133 unsigned long count
= 0;
3135 unsigned long flags
;
3137 spin_lock_irqsave(&n
->list_lock
, flags
);
3139 list_for_each_entry(page
, &n
->partial
, lru
) {
3140 validate_slab_slab(s
, page
, map
);
3143 if (count
!= n
->nr_partial
)
3144 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3145 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3147 if (!(s
->flags
& SLAB_STORE_USER
))
3150 list_for_each_entry(page
, &n
->full
, lru
) {
3151 validate_slab_slab(s
, page
, map
);
3154 if (count
!= atomic_long_read(&n
->nr_slabs
))
3155 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3156 "counter=%ld\n", s
->name
, count
,
3157 atomic_long_read(&n
->nr_slabs
));
3160 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3164 static long validate_slab_cache(struct kmem_cache
*s
)
3167 unsigned long count
= 0;
3168 unsigned long *map
= kmalloc(BITS_TO_LONGS(s
->objects
) *
3169 sizeof(unsigned long), GFP_KERNEL
);
3175 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3176 struct kmem_cache_node
*n
= get_node(s
, node
);
3178 count
+= validate_slab_node(s
, n
, map
);
3184 #ifdef SLUB_RESILIENCY_TEST
3185 static void resiliency_test(void)
3189 printk(KERN_ERR
"SLUB resiliency testing\n");
3190 printk(KERN_ERR
"-----------------------\n");
3191 printk(KERN_ERR
"A. Corruption after allocation\n");
3193 p
= kzalloc(16, GFP_KERNEL
);
3195 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3196 " 0x12->0x%p\n\n", p
+ 16);
3198 validate_slab_cache(kmalloc_caches
+ 4);
3200 /* Hmmm... The next two are dangerous */
3201 p
= kzalloc(32, GFP_KERNEL
);
3202 p
[32 + sizeof(void *)] = 0x34;
3203 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3204 " 0x34 -> -0x%p\n", p
);
3205 printk(KERN_ERR
"If allocated object is overwritten then not detectable\n\n");
3207 validate_slab_cache(kmalloc_caches
+ 5);
3208 p
= kzalloc(64, GFP_KERNEL
);
3209 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3211 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3213 printk(KERN_ERR
"If allocated object is overwritten then not detectable\n\n");
3214 validate_slab_cache(kmalloc_caches
+ 6);
3216 printk(KERN_ERR
"\nB. Corruption after free\n");
3217 p
= kzalloc(128, GFP_KERNEL
);
3220 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3221 validate_slab_cache(kmalloc_caches
+ 7);
3223 p
= kzalloc(256, GFP_KERNEL
);
3226 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
3227 validate_slab_cache(kmalloc_caches
+ 8);
3229 p
= kzalloc(512, GFP_KERNEL
);
3232 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3233 validate_slab_cache(kmalloc_caches
+ 9);
3236 static void resiliency_test(void) {};
3240 * Generate lists of code addresses where slabcache objects are allocated
3245 unsigned long count
;
3258 unsigned long count
;
3259 struct location
*loc
;
3262 static void free_loc_track(struct loc_track
*t
)
3265 free_pages((unsigned long)t
->loc
,
3266 get_order(sizeof(struct location
) * t
->max
));
3269 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3274 order
= get_order(sizeof(struct location
) * max
);
3276 l
= (void *)__get_free_pages(flags
, order
);
3281 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3289 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3290 const struct track
*track
)
3292 long start
, end
, pos
;
3295 unsigned long age
= jiffies
- track
->when
;
3301 pos
= start
+ (end
- start
+ 1) / 2;
3304 * There is nothing at "end". If we end up there
3305 * we need to add something to before end.
3310 caddr
= t
->loc
[pos
].addr
;
3311 if (track
->addr
== caddr
) {
3317 if (age
< l
->min_time
)
3319 if (age
> l
->max_time
)
3322 if (track
->pid
< l
->min_pid
)
3323 l
->min_pid
= track
->pid
;
3324 if (track
->pid
> l
->max_pid
)
3325 l
->max_pid
= track
->pid
;
3327 cpu_set(track
->cpu
, l
->cpus
);
3329 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3333 if (track
->addr
< caddr
)
3340 * Not found. Insert new tracking element.
3342 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3348 (t
->count
- pos
) * sizeof(struct location
));
3351 l
->addr
= track
->addr
;
3355 l
->min_pid
= track
->pid
;
3356 l
->max_pid
= track
->pid
;
3357 cpus_clear(l
->cpus
);
3358 cpu_set(track
->cpu
, l
->cpus
);
3359 nodes_clear(l
->nodes
);
3360 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3364 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3365 struct page
*page
, enum track_item alloc
)
3367 void *addr
= page_address(page
);
3368 DECLARE_BITMAP(map
, s
->objects
);
3371 bitmap_zero(map
, s
->objects
);
3372 for_each_free_object(p
, s
, page
->freelist
)
3373 set_bit(slab_index(p
, s
, addr
), map
);
3375 for_each_object(p
, s
, addr
)
3376 if (!test_bit(slab_index(p
, s
, addr
), map
))
3377 add_location(t
, s
, get_track(s
, p
, alloc
));
3380 static int list_locations(struct kmem_cache
*s
, char *buf
,
3381 enum track_item alloc
)
3385 struct loc_track t
= { 0, 0, NULL
};
3388 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3390 return sprintf(buf
, "Out of memory\n");
3392 /* Push back cpu slabs */
3395 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3396 struct kmem_cache_node
*n
= get_node(s
, node
);
3397 unsigned long flags
;
3400 if (!atomic_long_read(&n
->nr_slabs
))
3403 spin_lock_irqsave(&n
->list_lock
, flags
);
3404 list_for_each_entry(page
, &n
->partial
, lru
)
3405 process_slab(&t
, s
, page
, alloc
);
3406 list_for_each_entry(page
, &n
->full
, lru
)
3407 process_slab(&t
, s
, page
, alloc
);
3408 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3411 for (i
= 0; i
< t
.count
; i
++) {
3412 struct location
*l
= &t
.loc
[i
];
3414 if (n
> PAGE_SIZE
- 100)
3416 n
+= sprintf(buf
+ n
, "%7ld ", l
->count
);
3419 n
+= sprint_symbol(buf
+ n
, (unsigned long)l
->addr
);
3421 n
+= sprintf(buf
+ n
, "<not-available>");
3423 if (l
->sum_time
!= l
->min_time
) {
3424 unsigned long remainder
;
3426 n
+= sprintf(buf
+ n
, " age=%ld/%ld/%ld",
3428 div_long_long_rem(l
->sum_time
, l
->count
, &remainder
),
3431 n
+= sprintf(buf
+ n
, " age=%ld",
3434 if (l
->min_pid
!= l
->max_pid
)
3435 n
+= sprintf(buf
+ n
, " pid=%ld-%ld",
3436 l
->min_pid
, l
->max_pid
);
3438 n
+= sprintf(buf
+ n
, " pid=%ld",
3441 if (num_online_cpus() > 1 && !cpus_empty(l
->cpus
) &&
3442 n
< PAGE_SIZE
- 60) {
3443 n
+= sprintf(buf
+ n
, " cpus=");
3444 n
+= cpulist_scnprintf(buf
+ n
, PAGE_SIZE
- n
- 50,
3448 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3449 n
< PAGE_SIZE
- 60) {
3450 n
+= sprintf(buf
+ n
, " nodes=");
3451 n
+= nodelist_scnprintf(buf
+ n
, PAGE_SIZE
- n
- 50,
3455 n
+= sprintf(buf
+ n
, "\n");
3460 n
+= sprintf(buf
, "No data\n");
3464 static unsigned long count_partial(struct kmem_cache_node
*n
)
3466 unsigned long flags
;
3467 unsigned long x
= 0;
3470 spin_lock_irqsave(&n
->list_lock
, flags
);
3471 list_for_each_entry(page
, &n
->partial
, lru
)
3473 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3477 enum slab_stat_type
{
3484 #define SO_FULL (1 << SL_FULL)
3485 #define SO_PARTIAL (1 << SL_PARTIAL)
3486 #define SO_CPU (1 << SL_CPU)
3487 #define SO_OBJECTS (1 << SL_OBJECTS)
3489 static unsigned long slab_objects(struct kmem_cache
*s
,
3490 char *buf
, unsigned long flags
)
3492 unsigned long total
= 0;
3496 unsigned long *nodes
;
3497 unsigned long *per_cpu
;
3499 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3500 per_cpu
= nodes
+ nr_node_ids
;
3502 for_each_possible_cpu(cpu
) {
3505 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3515 if (flags
& SO_CPU
) {
3518 if (flags
& SO_OBJECTS
)
3529 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3530 struct kmem_cache_node
*n
= get_node(s
, node
);
3532 if (flags
& SO_PARTIAL
) {
3533 if (flags
& SO_OBJECTS
)
3534 x
= count_partial(n
);
3541 if (flags
& SO_FULL
) {
3542 int full_slabs
= atomic_long_read(&n
->nr_slabs
)
3546 if (flags
& SO_OBJECTS
)
3547 x
= full_slabs
* s
->objects
;
3555 x
= sprintf(buf
, "%lu", total
);
3557 for_each_node_state(node
, N_NORMAL_MEMORY
)
3559 x
+= sprintf(buf
+ x
, " N%d=%lu",
3563 return x
+ sprintf(buf
+ x
, "\n");
3566 static int any_slab_objects(struct kmem_cache
*s
)
3571 for_each_possible_cpu(cpu
) {
3572 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3578 for_each_online_node(node
) {
3579 struct kmem_cache_node
*n
= get_node(s
, node
);
3584 if (n
->nr_partial
|| atomic_long_read(&n
->nr_slabs
))
3590 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3591 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3593 struct slab_attribute
{
3594 struct attribute attr
;
3595 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3596 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3599 #define SLAB_ATTR_RO(_name) \
3600 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3602 #define SLAB_ATTR(_name) \
3603 static struct slab_attribute _name##_attr = \
3604 __ATTR(_name, 0644, _name##_show, _name##_store)
3606 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3608 return sprintf(buf
, "%d\n", s
->size
);
3610 SLAB_ATTR_RO(slab_size
);
3612 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3614 return sprintf(buf
, "%d\n", s
->align
);
3616 SLAB_ATTR_RO(align
);
3618 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3620 return sprintf(buf
, "%d\n", s
->objsize
);
3622 SLAB_ATTR_RO(object_size
);
3624 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3626 return sprintf(buf
, "%d\n", s
->objects
);
3628 SLAB_ATTR_RO(objs_per_slab
);
3630 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3632 return sprintf(buf
, "%d\n", s
->order
);
3634 SLAB_ATTR_RO(order
);
3636 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3639 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3641 return n
+ sprintf(buf
+ n
, "\n");
3647 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3649 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3651 SLAB_ATTR_RO(aliases
);
3653 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3655 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
);
3657 SLAB_ATTR_RO(slabs
);
3659 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3661 return slab_objects(s
, buf
, SO_PARTIAL
);
3663 SLAB_ATTR_RO(partial
);
3665 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3667 return slab_objects(s
, buf
, SO_CPU
);
3669 SLAB_ATTR_RO(cpu_slabs
);
3671 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3673 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
|SO_OBJECTS
);
3675 SLAB_ATTR_RO(objects
);
3677 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3679 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3682 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3683 const char *buf
, size_t length
)
3685 s
->flags
&= ~SLAB_DEBUG_FREE
;
3687 s
->flags
|= SLAB_DEBUG_FREE
;
3690 SLAB_ATTR(sanity_checks
);
3692 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3694 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3697 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3700 s
->flags
&= ~SLAB_TRACE
;
3702 s
->flags
|= SLAB_TRACE
;
3707 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3709 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3712 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3713 const char *buf
, size_t length
)
3715 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3717 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3720 SLAB_ATTR(reclaim_account
);
3722 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3724 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3726 SLAB_ATTR_RO(hwcache_align
);
3728 #ifdef CONFIG_ZONE_DMA
3729 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3731 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3733 SLAB_ATTR_RO(cache_dma
);
3736 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3738 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3740 SLAB_ATTR_RO(destroy_by_rcu
);
3742 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3744 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3747 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3748 const char *buf
, size_t length
)
3750 if (any_slab_objects(s
))
3753 s
->flags
&= ~SLAB_RED_ZONE
;
3755 s
->flags
|= SLAB_RED_ZONE
;
3759 SLAB_ATTR(red_zone
);
3761 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3763 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3766 static ssize_t
poison_store(struct kmem_cache
*s
,
3767 const char *buf
, size_t length
)
3769 if (any_slab_objects(s
))
3772 s
->flags
&= ~SLAB_POISON
;
3774 s
->flags
|= SLAB_POISON
;
3780 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
3782 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
3785 static ssize_t
store_user_store(struct kmem_cache
*s
,
3786 const char *buf
, size_t length
)
3788 if (any_slab_objects(s
))
3791 s
->flags
&= ~SLAB_STORE_USER
;
3793 s
->flags
|= SLAB_STORE_USER
;
3797 SLAB_ATTR(store_user
);
3799 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
3804 static ssize_t
validate_store(struct kmem_cache
*s
,
3805 const char *buf
, size_t length
)
3809 if (buf
[0] == '1') {
3810 ret
= validate_slab_cache(s
);
3816 SLAB_ATTR(validate
);
3818 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
3823 static ssize_t
shrink_store(struct kmem_cache
*s
,
3824 const char *buf
, size_t length
)
3826 if (buf
[0] == '1') {
3827 int rc
= kmem_cache_shrink(s
);
3837 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
3839 if (!(s
->flags
& SLAB_STORE_USER
))
3841 return list_locations(s
, buf
, TRACK_ALLOC
);
3843 SLAB_ATTR_RO(alloc_calls
);
3845 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
3847 if (!(s
->flags
& SLAB_STORE_USER
))
3849 return list_locations(s
, buf
, TRACK_FREE
);
3851 SLAB_ATTR_RO(free_calls
);
3854 static ssize_t
defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
3856 return sprintf(buf
, "%d\n", s
->defrag_ratio
/ 10);
3859 static ssize_t
defrag_ratio_store(struct kmem_cache
*s
,
3860 const char *buf
, size_t length
)
3862 int n
= simple_strtoul(buf
, NULL
, 10);
3865 s
->defrag_ratio
= n
* 10;
3868 SLAB_ATTR(defrag_ratio
);
3871 static struct attribute
* slab_attrs
[] = {
3872 &slab_size_attr
.attr
,
3873 &object_size_attr
.attr
,
3874 &objs_per_slab_attr
.attr
,
3879 &cpu_slabs_attr
.attr
,
3883 &sanity_checks_attr
.attr
,
3885 &hwcache_align_attr
.attr
,
3886 &reclaim_account_attr
.attr
,
3887 &destroy_by_rcu_attr
.attr
,
3888 &red_zone_attr
.attr
,
3890 &store_user_attr
.attr
,
3891 &validate_attr
.attr
,
3893 &alloc_calls_attr
.attr
,
3894 &free_calls_attr
.attr
,
3895 #ifdef CONFIG_ZONE_DMA
3896 &cache_dma_attr
.attr
,
3899 &defrag_ratio_attr
.attr
,
3904 static struct attribute_group slab_attr_group
= {
3905 .attrs
= slab_attrs
,
3908 static ssize_t
slab_attr_show(struct kobject
*kobj
,
3909 struct attribute
*attr
,
3912 struct slab_attribute
*attribute
;
3913 struct kmem_cache
*s
;
3916 attribute
= to_slab_attr(attr
);
3919 if (!attribute
->show
)
3922 err
= attribute
->show(s
, buf
);
3927 static ssize_t
slab_attr_store(struct kobject
*kobj
,
3928 struct attribute
*attr
,
3929 const char *buf
, size_t len
)
3931 struct slab_attribute
*attribute
;
3932 struct kmem_cache
*s
;
3935 attribute
= to_slab_attr(attr
);
3938 if (!attribute
->store
)
3941 err
= attribute
->store(s
, buf
, len
);
3946 static struct sysfs_ops slab_sysfs_ops
= {
3947 .show
= slab_attr_show
,
3948 .store
= slab_attr_store
,
3951 static struct kobj_type slab_ktype
= {
3952 .sysfs_ops
= &slab_sysfs_ops
,
3955 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
3957 struct kobj_type
*ktype
= get_ktype(kobj
);
3959 if (ktype
== &slab_ktype
)
3964 static struct kset_uevent_ops slab_uevent_ops
= {
3965 .filter
= uevent_filter
,
3968 static decl_subsys(slab
, &slab_ktype
, &slab_uevent_ops
);
3970 #define ID_STR_LENGTH 64
3972 /* Create a unique string id for a slab cache:
3974 * :[flags-]size:[memory address of kmemcache]
3976 static char *create_unique_id(struct kmem_cache
*s
)
3978 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
3985 * First flags affecting slabcache operations. We will only
3986 * get here for aliasable slabs so we do not need to support
3987 * too many flags. The flags here must cover all flags that
3988 * are matched during merging to guarantee that the id is
3991 if (s
->flags
& SLAB_CACHE_DMA
)
3993 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3995 if (s
->flags
& SLAB_DEBUG_FREE
)
3999 p
+= sprintf(p
, "%07d", s
->size
);
4000 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4004 static int sysfs_slab_add(struct kmem_cache
*s
)
4010 if (slab_state
< SYSFS
)
4011 /* Defer until later */
4014 unmergeable
= slab_unmergeable(s
);
4017 * Slabcache can never be merged so we can use the name proper.
4018 * This is typically the case for debug situations. In that
4019 * case we can catch duplicate names easily.
4021 sysfs_remove_link(&slab_subsys
.kobj
, s
->name
);
4025 * Create a unique name for the slab as a target
4028 name
= create_unique_id(s
);
4031 kobj_set_kset_s(s
, slab_subsys
);
4032 kobject_set_name(&s
->kobj
, name
);
4033 kobject_init(&s
->kobj
);
4034 err
= kobject_add(&s
->kobj
);
4038 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4041 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4043 /* Setup first alias */
4044 sysfs_slab_alias(s
, s
->name
);
4050 static void sysfs_slab_remove(struct kmem_cache
*s
)
4052 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4053 kobject_del(&s
->kobj
);
4057 * Need to buffer aliases during bootup until sysfs becomes
4058 * available lest we loose that information.
4060 struct saved_alias
{
4061 struct kmem_cache
*s
;
4063 struct saved_alias
*next
;
4066 static struct saved_alias
*alias_list
;
4068 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4070 struct saved_alias
*al
;
4072 if (slab_state
== SYSFS
) {
4074 * If we have a leftover link then remove it.
4076 sysfs_remove_link(&slab_subsys
.kobj
, name
);
4077 return sysfs_create_link(&slab_subsys
.kobj
,
4081 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4087 al
->next
= alias_list
;
4092 static int __init
slab_sysfs_init(void)
4094 struct kmem_cache
*s
;
4097 err
= subsystem_register(&slab_subsys
);
4099 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4105 list_for_each_entry(s
, &slab_caches
, list
) {
4106 err
= sysfs_slab_add(s
);
4108 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4109 " to sysfs\n", s
->name
);
4112 while (alias_list
) {
4113 struct saved_alias
*al
= alias_list
;
4115 alias_list
= alias_list
->next
;
4116 err
= sysfs_slab_alias(al
->s
, al
->name
);
4118 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4119 " %s to sysfs\n", s
->name
);
4127 __initcall(slab_sysfs_init
);