4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
73 unsigned long long __attribute__((weak
)) sched_clock(void)
75 return (unsigned long long)jiffies
* (1000000000 / HZ
);
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97 * Some helpers for converting nanosecond timing to jiffy resolution
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
122 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
131 sg
->__cpu_power
+= val
;
132 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
143 static unsigned int static_prio_timeslice(int static_prio
)
145 if (static_prio
== NICE_TO_PRIO(19))
148 if (static_prio
< NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE
* 4, static_prio
);
151 return SCALE_PRIO(DEF_TIMESLICE
, static_prio
);
154 static inline int rt_policy(int policy
)
156 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
161 static inline int task_has_rt_policy(struct task_struct
*p
)
163 return rt_policy(p
->policy
);
167 * This is the priority-queue data structure of the RT scheduling class:
169 struct rt_prio_array
{
170 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
171 struct list_head queue
[MAX_RT_PRIO
];
174 #ifdef CONFIG_FAIR_GROUP_SCHED
178 /* task group related information */
180 /* schedulable entities of this group on each cpu */
181 struct sched_entity
**se
;
182 /* runqueue "owned" by this group on each cpu */
183 struct cfs_rq
**cfs_rq
;
184 unsigned long shares
;
187 /* Default task group's sched entity on each cpu */
188 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
189 /* Default task group's cfs_rq on each cpu */
190 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
192 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
193 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
195 /* Default task group.
196 * Every task in system belong to this group at bootup.
198 struct task_grp init_task_grp
= {
199 .se
= init_sched_entity_p
,
200 .cfs_rq
= init_cfs_rq_p
,
203 #ifdef CONFIG_FAIR_USER_SCHED
204 #define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
206 #define INIT_TASK_GRP_LOAD NICE_0_LOAD
209 static int init_task_grp_load
= INIT_TASK_GRP_LOAD
;
211 /* return group to which a task belongs */
212 static inline struct task_grp
*task_grp(struct task_struct
*p
)
216 #ifdef CONFIG_FAIR_USER_SCHED
225 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
226 static inline void set_task_cfs_rq(struct task_struct
*p
)
228 p
->se
.cfs_rq
= task_grp(p
)->cfs_rq
[task_cpu(p
)];
229 p
->se
.parent
= task_grp(p
)->se
[task_cpu(p
)];
234 static inline void set_task_cfs_rq(struct task_struct
*p
) { }
236 #endif /* CONFIG_FAIR_GROUP_SCHED */
238 /* CFS-related fields in a runqueue */
240 struct load_weight load
;
241 unsigned long nr_running
;
246 struct rb_root tasks_timeline
;
247 struct rb_node
*rb_leftmost
;
248 struct rb_node
*rb_load_balance_curr
;
249 /* 'curr' points to currently running entity on this cfs_rq.
250 * It is set to NULL otherwise (i.e when none are currently running).
252 struct sched_entity
*curr
;
254 unsigned long nr_spread_over
;
256 #ifdef CONFIG_FAIR_GROUP_SCHED
257 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
259 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
260 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
261 * (like users, containers etc.)
263 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
264 * list is used during load balance.
266 struct list_head leaf_cfs_rq_list
; /* Better name : task_cfs_rq_list? */
267 struct task_grp
*tg
; /* group that "owns" this runqueue */
272 /* Real-Time classes' related field in a runqueue: */
274 struct rt_prio_array active
;
275 int rt_load_balance_idx
;
276 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
280 * This is the main, per-CPU runqueue data structure.
282 * Locking rule: those places that want to lock multiple runqueues
283 * (such as the load balancing or the thread migration code), lock
284 * acquire operations must be ordered by ascending &runqueue.
287 spinlock_t lock
; /* runqueue lock */
290 * nr_running and cpu_load should be in the same cacheline because
291 * remote CPUs use both these fields when doing load calculation.
293 unsigned long nr_running
;
294 #define CPU_LOAD_IDX_MAX 5
295 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
296 unsigned char idle_at_tick
;
298 unsigned char in_nohz_recently
;
300 struct load_weight load
; /* capture load from *all* tasks on this cpu */
301 unsigned long nr_load_updates
;
305 #ifdef CONFIG_FAIR_GROUP_SCHED
306 struct list_head leaf_cfs_rq_list
; /* list of leaf cfs_rq on this cpu */
311 * This is part of a global counter where only the total sum
312 * over all CPUs matters. A task can increase this counter on
313 * one CPU and if it got migrated afterwards it may decrease
314 * it on another CPU. Always updated under the runqueue lock:
316 unsigned long nr_uninterruptible
;
318 struct task_struct
*curr
, *idle
;
319 unsigned long next_balance
;
320 struct mm_struct
*prev_mm
;
322 u64 clock
, prev_clock_raw
;
325 unsigned int clock_warps
, clock_overflows
;
327 unsigned int clock_deep_idle_events
;
333 struct sched_domain
*sd
;
335 /* For active balancing */
338 int cpu
; /* cpu of this runqueue */
340 struct task_struct
*migration_thread
;
341 struct list_head migration_queue
;
344 #ifdef CONFIG_SCHEDSTATS
346 struct sched_info rq_sched_info
;
348 /* sys_sched_yield() stats */
349 unsigned long yld_exp_empty
;
350 unsigned long yld_act_empty
;
351 unsigned long yld_both_empty
;
352 unsigned long yld_cnt
;
354 /* schedule() stats */
355 unsigned long sched_switch
;
356 unsigned long sched_cnt
;
357 unsigned long sched_goidle
;
359 /* try_to_wake_up() stats */
360 unsigned long ttwu_cnt
;
361 unsigned long ttwu_local
;
364 unsigned long bkl_cnt
;
366 struct lock_class_key rq_lock_key
;
369 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
370 static DEFINE_MUTEX(sched_hotcpu_mutex
);
372 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
374 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
377 static inline int cpu_of(struct rq
*rq
)
387 * Update the per-runqueue clock, as finegrained as the platform can give
388 * us, but without assuming monotonicity, etc.:
390 static void __update_rq_clock(struct rq
*rq
)
392 u64 prev_raw
= rq
->prev_clock_raw
;
393 u64 now
= sched_clock();
394 s64 delta
= now
- prev_raw
;
395 u64 clock
= rq
->clock
;
397 #ifdef CONFIG_SCHED_DEBUG
398 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
401 * Protect against sched_clock() occasionally going backwards:
403 if (unlikely(delta
< 0)) {
408 * Catch too large forward jumps too:
410 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
411 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
412 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
415 rq
->clock_overflows
++;
417 if (unlikely(delta
> rq
->clock_max_delta
))
418 rq
->clock_max_delta
= delta
;
423 rq
->prev_clock_raw
= now
;
427 static void update_rq_clock(struct rq
*rq
)
429 if (likely(smp_processor_id() == cpu_of(rq
)))
430 __update_rq_clock(rq
);
434 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
435 * See detach_destroy_domains: synchronize_sched for details.
437 * The domain tree of any CPU may only be accessed from within
438 * preempt-disabled sections.
440 #define for_each_domain(cpu, __sd) \
441 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
443 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
444 #define this_rq() (&__get_cpu_var(runqueues))
445 #define task_rq(p) cpu_rq(task_cpu(p))
446 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
449 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
451 #ifdef CONFIG_SCHED_DEBUG
452 # define const_debug __read_mostly
454 # define const_debug static const
458 * Debugging: various feature bits
461 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
462 SCHED_FEAT_START_DEBIT
= 2,
463 SCHED_FEAT_USE_TREE_AVG
= 4,
464 SCHED_FEAT_APPROX_AVG
= 8,
467 const_debug
unsigned int sysctl_sched_features
=
468 SCHED_FEAT_NEW_FAIR_SLEEPERS
*1 |
469 SCHED_FEAT_START_DEBIT
*1 |
470 SCHED_FEAT_USE_TREE_AVG
*0 |
471 SCHED_FEAT_APPROX_AVG
*0;
473 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
476 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
477 * clock constructed from sched_clock():
479 unsigned long long cpu_clock(int cpu
)
481 unsigned long long now
;
485 local_irq_save(flags
);
489 local_irq_restore(flags
);
494 #ifndef prepare_arch_switch
495 # define prepare_arch_switch(next) do { } while (0)
497 #ifndef finish_arch_switch
498 # define finish_arch_switch(prev) do { } while (0)
501 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
502 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
504 return rq
->curr
== p
;
507 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
511 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
513 #ifdef CONFIG_DEBUG_SPINLOCK
514 /* this is a valid case when another task releases the spinlock */
515 rq
->lock
.owner
= current
;
518 * If we are tracking spinlock dependencies then we have to
519 * fix up the runqueue lock - which gets 'carried over' from
522 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
524 spin_unlock_irq(&rq
->lock
);
527 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
528 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
533 return rq
->curr
== p
;
537 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
541 * We can optimise this out completely for !SMP, because the
542 * SMP rebalancing from interrupt is the only thing that cares
547 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
548 spin_unlock_irq(&rq
->lock
);
550 spin_unlock(&rq
->lock
);
554 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
558 * After ->oncpu is cleared, the task can be moved to a different CPU.
559 * We must ensure this doesn't happen until the switch is completely
565 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
569 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
572 * __task_rq_lock - lock the runqueue a given task resides on.
573 * Must be called interrupts disabled.
575 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
582 spin_lock(&rq
->lock
);
583 if (unlikely(rq
!= task_rq(p
))) {
584 spin_unlock(&rq
->lock
);
585 goto repeat_lock_task
;
591 * task_rq_lock - lock the runqueue a given task resides on and disable
592 * interrupts. Note the ordering: we can safely lookup the task_rq without
593 * explicitly disabling preemption.
595 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
601 local_irq_save(*flags
);
603 spin_lock(&rq
->lock
);
604 if (unlikely(rq
!= task_rq(p
))) {
605 spin_unlock_irqrestore(&rq
->lock
, *flags
);
606 goto repeat_lock_task
;
611 static inline void __task_rq_unlock(struct rq
*rq
)
614 spin_unlock(&rq
->lock
);
617 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
620 spin_unlock_irqrestore(&rq
->lock
, *flags
);
624 * this_rq_lock - lock this runqueue and disable interrupts.
626 static inline struct rq
*this_rq_lock(void)
633 spin_lock(&rq
->lock
);
639 * We are going deep-idle (irqs are disabled):
641 void sched_clock_idle_sleep_event(void)
643 struct rq
*rq
= cpu_rq(smp_processor_id());
645 spin_lock(&rq
->lock
);
646 __update_rq_clock(rq
);
647 spin_unlock(&rq
->lock
);
648 rq
->clock_deep_idle_events
++;
650 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
653 * We just idled delta nanoseconds (called with irqs disabled):
655 void sched_clock_idle_wakeup_event(u64 delta_ns
)
657 struct rq
*rq
= cpu_rq(smp_processor_id());
658 u64 now
= sched_clock();
660 rq
->idle_clock
+= delta_ns
;
662 * Override the previous timestamp and ignore all
663 * sched_clock() deltas that occured while we idled,
664 * and use the PM-provided delta_ns to advance the
667 spin_lock(&rq
->lock
);
668 rq
->prev_clock_raw
= now
;
669 rq
->clock
+= delta_ns
;
670 spin_unlock(&rq
->lock
);
672 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
675 * resched_task - mark a task 'to be rescheduled now'.
677 * On UP this means the setting of the need_resched flag, on SMP it
678 * might also involve a cross-CPU call to trigger the scheduler on
683 #ifndef tsk_is_polling
684 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
687 static void resched_task(struct task_struct
*p
)
691 assert_spin_locked(&task_rq(p
)->lock
);
693 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
696 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
699 if (cpu
== smp_processor_id())
702 /* NEED_RESCHED must be visible before we test polling */
704 if (!tsk_is_polling(p
))
705 smp_send_reschedule(cpu
);
708 static void resched_cpu(int cpu
)
710 struct rq
*rq
= cpu_rq(cpu
);
713 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
715 resched_task(cpu_curr(cpu
));
716 spin_unlock_irqrestore(&rq
->lock
, flags
);
719 static inline void resched_task(struct task_struct
*p
)
721 assert_spin_locked(&task_rq(p
)->lock
);
722 set_tsk_need_resched(p
);
726 #if BITS_PER_LONG == 32
727 # define WMULT_CONST (~0UL)
729 # define WMULT_CONST (1UL << 32)
732 #define WMULT_SHIFT 32
735 * Shift right and round:
737 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
740 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
741 struct load_weight
*lw
)
745 if (unlikely(!lw
->inv_weight
))
746 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
748 tmp
= (u64
)delta_exec
* weight
;
750 * Check whether we'd overflow the 64-bit multiplication:
752 if (unlikely(tmp
> WMULT_CONST
))
753 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
756 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
758 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
761 static inline unsigned long
762 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
764 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
767 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
772 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
778 * To aid in avoiding the subversion of "niceness" due to uneven distribution
779 * of tasks with abnormal "nice" values across CPUs the contribution that
780 * each task makes to its run queue's load is weighted according to its
781 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
782 * scaled version of the new time slice allocation that they receive on time
786 #define WEIGHT_IDLEPRIO 2
787 #define WMULT_IDLEPRIO (1 << 31)
790 * Nice levels are multiplicative, with a gentle 10% change for every
791 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
792 * nice 1, it will get ~10% less CPU time than another CPU-bound task
793 * that remained on nice 0.
795 * The "10% effect" is relative and cumulative: from _any_ nice level,
796 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
797 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
798 * If a task goes up by ~10% and another task goes down by ~10% then
799 * the relative distance between them is ~25%.)
801 static const int prio_to_weight
[40] = {
802 /* -20 */ 88761, 71755, 56483, 46273, 36291,
803 /* -15 */ 29154, 23254, 18705, 14949, 11916,
804 /* -10 */ 9548, 7620, 6100, 4904, 3906,
805 /* -5 */ 3121, 2501, 1991, 1586, 1277,
806 /* 0 */ 1024, 820, 655, 526, 423,
807 /* 5 */ 335, 272, 215, 172, 137,
808 /* 10 */ 110, 87, 70, 56, 45,
809 /* 15 */ 36, 29, 23, 18, 15,
813 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
815 * In cases where the weight does not change often, we can use the
816 * precalculated inverse to speed up arithmetics by turning divisions
817 * into multiplications:
819 static const u32 prio_to_wmult
[40] = {
820 /* -20 */ 48388, 59856, 76040, 92818, 118348,
821 /* -15 */ 147320, 184698, 229616, 287308, 360437,
822 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
823 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
824 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
825 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
826 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
827 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
830 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
833 * runqueue iterator, to support SMP load-balancing between different
834 * scheduling classes, without having to expose their internal data
835 * structures to the load-balancing proper:
839 struct task_struct
*(*start
)(void *);
840 struct task_struct
*(*next
)(void *);
843 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
844 unsigned long max_nr_move
, unsigned long max_load_move
,
845 struct sched_domain
*sd
, enum cpu_idle_type idle
,
846 int *all_pinned
, unsigned long *load_moved
,
847 int *this_best_prio
, struct rq_iterator
*iterator
);
849 #include "sched_stats.h"
850 #include "sched_rt.c"
851 #include "sched_fair.c"
852 #include "sched_idletask.c"
853 #ifdef CONFIG_SCHED_DEBUG
854 # include "sched_debug.c"
857 #define sched_class_highest (&rt_sched_class)
860 * Update delta_exec, delta_fair fields for rq.
862 * delta_fair clock advances at a rate inversely proportional to
863 * total load (rq->load.weight) on the runqueue, while
864 * delta_exec advances at the same rate as wall-clock (provided
867 * delta_exec / delta_fair is a measure of the (smoothened) load on this
868 * runqueue over any given interval. This (smoothened) load is used
869 * during load balance.
871 * This function is called /before/ updating rq->load
872 * and when switching tasks.
874 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
876 update_load_add(&rq
->load
, p
->se
.load
.weight
);
879 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
881 update_load_sub(&rq
->load
, p
->se
.load
.weight
);
884 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
890 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
896 static void set_load_weight(struct task_struct
*p
)
898 if (task_has_rt_policy(p
)) {
899 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
900 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
905 * SCHED_IDLE tasks get minimal weight:
907 if (p
->policy
== SCHED_IDLE
) {
908 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
909 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
913 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
914 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
917 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
919 sched_info_queued(p
);
920 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
924 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
926 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
931 * __normal_prio - return the priority that is based on the static prio
933 static inline int __normal_prio(struct task_struct
*p
)
935 return p
->static_prio
;
939 * Calculate the expected normal priority: i.e. priority
940 * without taking RT-inheritance into account. Might be
941 * boosted by interactivity modifiers. Changes upon fork,
942 * setprio syscalls, and whenever the interactivity
943 * estimator recalculates.
945 static inline int normal_prio(struct task_struct
*p
)
949 if (task_has_rt_policy(p
))
950 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
952 prio
= __normal_prio(p
);
957 * Calculate the current priority, i.e. the priority
958 * taken into account by the scheduler. This value might
959 * be boosted by RT tasks, or might be boosted by
960 * interactivity modifiers. Will be RT if the task got
961 * RT-boosted. If not then it returns p->normal_prio.
963 static int effective_prio(struct task_struct
*p
)
965 p
->normal_prio
= normal_prio(p
);
967 * If we are RT tasks or we were boosted to RT priority,
968 * keep the priority unchanged. Otherwise, update priority
969 * to the normal priority:
971 if (!rt_prio(p
->prio
))
972 return p
->normal_prio
;
977 * activate_task - move a task to the runqueue.
979 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
981 if (p
->state
== TASK_UNINTERRUPTIBLE
)
982 rq
->nr_uninterruptible
--;
984 enqueue_task(rq
, p
, wakeup
);
985 inc_nr_running(p
, rq
);
989 * activate_idle_task - move idle task to the _front_ of runqueue.
991 static inline void activate_idle_task(struct task_struct
*p
, struct rq
*rq
)
995 if (p
->state
== TASK_UNINTERRUPTIBLE
)
996 rq
->nr_uninterruptible
--;
998 enqueue_task(rq
, p
, 0);
999 inc_nr_running(p
, rq
);
1003 * deactivate_task - remove a task from the runqueue.
1005 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1007 if (p
->state
== TASK_UNINTERRUPTIBLE
)
1008 rq
->nr_uninterruptible
++;
1010 dequeue_task(rq
, p
, sleep
);
1011 dec_nr_running(p
, rq
);
1015 * task_curr - is this task currently executing on a CPU?
1016 * @p: the task in question.
1018 inline int task_curr(const struct task_struct
*p
)
1020 return cpu_curr(task_cpu(p
)) == p
;
1023 /* Used instead of source_load when we know the type == 0 */
1024 unsigned long weighted_cpuload(const int cpu
)
1026 return cpu_rq(cpu
)->load
.weight
;
1029 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1032 task_thread_info(p
)->cpu
= cpu
;
1039 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1041 int old_cpu
= task_cpu(p
);
1042 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1045 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1047 #ifdef CONFIG_SCHEDSTATS
1048 if (p
->se
.wait_start
)
1049 p
->se
.wait_start
-= clock_offset
;
1050 if (p
->se
.sleep_start
)
1051 p
->se
.sleep_start
-= clock_offset
;
1052 if (p
->se
.block_start
)
1053 p
->se
.block_start
-= clock_offset
;
1055 p
->se
.vruntime
-= old_rq
->cfs
.min_vruntime
- new_rq
->cfs
.min_vruntime
;
1057 __set_task_cpu(p
, new_cpu
);
1060 struct migration_req
{
1061 struct list_head list
;
1063 struct task_struct
*task
;
1066 struct completion done
;
1070 * The task's runqueue lock must be held.
1071 * Returns true if you have to wait for migration thread.
1074 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1076 struct rq
*rq
= task_rq(p
);
1079 * If the task is not on a runqueue (and not running), then
1080 * it is sufficient to simply update the task's cpu field.
1082 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1083 set_task_cpu(p
, dest_cpu
);
1087 init_completion(&req
->done
);
1089 req
->dest_cpu
= dest_cpu
;
1090 list_add(&req
->list
, &rq
->migration_queue
);
1096 * wait_task_inactive - wait for a thread to unschedule.
1098 * The caller must ensure that the task *will* unschedule sometime soon,
1099 * else this function might spin for a *long* time. This function can't
1100 * be called with interrupts off, or it may introduce deadlock with
1101 * smp_call_function() if an IPI is sent by the same process we are
1102 * waiting to become inactive.
1104 void wait_task_inactive(struct task_struct
*p
)
1106 unsigned long flags
;
1112 * We do the initial early heuristics without holding
1113 * any task-queue locks at all. We'll only try to get
1114 * the runqueue lock when things look like they will
1120 * If the task is actively running on another CPU
1121 * still, just relax and busy-wait without holding
1124 * NOTE! Since we don't hold any locks, it's not
1125 * even sure that "rq" stays as the right runqueue!
1126 * But we don't care, since "task_running()" will
1127 * return false if the runqueue has changed and p
1128 * is actually now running somewhere else!
1130 while (task_running(rq
, p
))
1134 * Ok, time to look more closely! We need the rq
1135 * lock now, to be *sure*. If we're wrong, we'll
1136 * just go back and repeat.
1138 rq
= task_rq_lock(p
, &flags
);
1139 running
= task_running(rq
, p
);
1140 on_rq
= p
->se
.on_rq
;
1141 task_rq_unlock(rq
, &flags
);
1144 * Was it really running after all now that we
1145 * checked with the proper locks actually held?
1147 * Oops. Go back and try again..
1149 if (unlikely(running
)) {
1155 * It's not enough that it's not actively running,
1156 * it must be off the runqueue _entirely_, and not
1159 * So if it wa still runnable (but just not actively
1160 * running right now), it's preempted, and we should
1161 * yield - it could be a while.
1163 if (unlikely(on_rq
)) {
1169 * Ahh, all good. It wasn't running, and it wasn't
1170 * runnable, which means that it will never become
1171 * running in the future either. We're all done!
1176 * kick_process - kick a running thread to enter/exit the kernel
1177 * @p: the to-be-kicked thread
1179 * Cause a process which is running on another CPU to enter
1180 * kernel-mode, without any delay. (to get signals handled.)
1182 * NOTE: this function doesnt have to take the runqueue lock,
1183 * because all it wants to ensure is that the remote task enters
1184 * the kernel. If the IPI races and the task has been migrated
1185 * to another CPU then no harm is done and the purpose has been
1188 void kick_process(struct task_struct
*p
)
1194 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1195 smp_send_reschedule(cpu
);
1200 * Return a low guess at the load of a migration-source cpu weighted
1201 * according to the scheduling class and "nice" value.
1203 * We want to under-estimate the load of migration sources, to
1204 * balance conservatively.
1206 static inline unsigned long source_load(int cpu
, int type
)
1208 struct rq
*rq
= cpu_rq(cpu
);
1209 unsigned long total
= weighted_cpuload(cpu
);
1214 return min(rq
->cpu_load
[type
-1], total
);
1218 * Return a high guess at the load of a migration-target cpu weighted
1219 * according to the scheduling class and "nice" value.
1221 static inline unsigned long target_load(int cpu
, int type
)
1223 struct rq
*rq
= cpu_rq(cpu
);
1224 unsigned long total
= weighted_cpuload(cpu
);
1229 return max(rq
->cpu_load
[type
-1], total
);
1233 * Return the average load per task on the cpu's run queue
1235 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1237 struct rq
*rq
= cpu_rq(cpu
);
1238 unsigned long total
= weighted_cpuload(cpu
);
1239 unsigned long n
= rq
->nr_running
;
1241 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1245 * find_idlest_group finds and returns the least busy CPU group within the
1248 static struct sched_group
*
1249 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1251 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1252 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1253 int load_idx
= sd
->forkexec_idx
;
1254 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1257 unsigned long load
, avg_load
;
1261 /* Skip over this group if it has no CPUs allowed */
1262 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1265 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1267 /* Tally up the load of all CPUs in the group */
1270 for_each_cpu_mask(i
, group
->cpumask
) {
1271 /* Bias balancing toward cpus of our domain */
1273 load
= source_load(i
, load_idx
);
1275 load
= target_load(i
, load_idx
);
1280 /* Adjust by relative CPU power of the group */
1281 avg_load
= sg_div_cpu_power(group
,
1282 avg_load
* SCHED_LOAD_SCALE
);
1285 this_load
= avg_load
;
1287 } else if (avg_load
< min_load
) {
1288 min_load
= avg_load
;
1292 group
= group
->next
;
1293 } while (group
!= sd
->groups
);
1295 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1301 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1304 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1307 unsigned long load
, min_load
= ULONG_MAX
;
1311 /* Traverse only the allowed CPUs */
1312 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1314 for_each_cpu_mask(i
, tmp
) {
1315 load
= weighted_cpuload(i
);
1317 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1327 * sched_balance_self: balance the current task (running on cpu) in domains
1328 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1331 * Balance, ie. select the least loaded group.
1333 * Returns the target CPU number, or the same CPU if no balancing is needed.
1335 * preempt must be disabled.
1337 static int sched_balance_self(int cpu
, int flag
)
1339 struct task_struct
*t
= current
;
1340 struct sched_domain
*tmp
, *sd
= NULL
;
1342 for_each_domain(cpu
, tmp
) {
1344 * If power savings logic is enabled for a domain, stop there.
1346 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1348 if (tmp
->flags
& flag
)
1354 struct sched_group
*group
;
1355 int new_cpu
, weight
;
1357 if (!(sd
->flags
& flag
)) {
1363 group
= find_idlest_group(sd
, t
, cpu
);
1369 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1370 if (new_cpu
== -1 || new_cpu
== cpu
) {
1371 /* Now try balancing at a lower domain level of cpu */
1376 /* Now try balancing at a lower domain level of new_cpu */
1379 weight
= cpus_weight(span
);
1380 for_each_domain(cpu
, tmp
) {
1381 if (weight
<= cpus_weight(tmp
->span
))
1383 if (tmp
->flags
& flag
)
1386 /* while loop will break here if sd == NULL */
1392 #endif /* CONFIG_SMP */
1395 * wake_idle() will wake a task on an idle cpu if task->cpu is
1396 * not idle and an idle cpu is available. The span of cpus to
1397 * search starts with cpus closest then further out as needed,
1398 * so we always favor a closer, idle cpu.
1400 * Returns the CPU we should wake onto.
1402 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1403 static int wake_idle(int cpu
, struct task_struct
*p
)
1406 struct sched_domain
*sd
;
1410 * If it is idle, then it is the best cpu to run this task.
1412 * This cpu is also the best, if it has more than one task already.
1413 * Siblings must be also busy(in most cases) as they didn't already
1414 * pickup the extra load from this cpu and hence we need not check
1415 * sibling runqueue info. This will avoid the checks and cache miss
1416 * penalities associated with that.
1418 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1421 for_each_domain(cpu
, sd
) {
1422 if (sd
->flags
& SD_WAKE_IDLE
) {
1423 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1424 for_each_cpu_mask(i
, tmp
) {
1435 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1442 * try_to_wake_up - wake up a thread
1443 * @p: the to-be-woken-up thread
1444 * @state: the mask of task states that can be woken
1445 * @sync: do a synchronous wakeup?
1447 * Put it on the run-queue if it's not already there. The "current"
1448 * thread is always on the run-queue (except when the actual
1449 * re-schedule is in progress), and as such you're allowed to do
1450 * the simpler "current->state = TASK_RUNNING" to mark yourself
1451 * runnable without the overhead of this.
1453 * returns failure only if the task is already active.
1455 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1457 int cpu
, this_cpu
, success
= 0;
1458 unsigned long flags
;
1462 struct sched_domain
*sd
, *this_sd
= NULL
;
1463 unsigned long load
, this_load
;
1467 rq
= task_rq_lock(p
, &flags
);
1468 old_state
= p
->state
;
1469 if (!(old_state
& state
))
1476 this_cpu
= smp_processor_id();
1479 if (unlikely(task_running(rq
, p
)))
1484 schedstat_inc(rq
, ttwu_cnt
);
1485 if (cpu
== this_cpu
) {
1486 schedstat_inc(rq
, ttwu_local
);
1490 for_each_domain(this_cpu
, sd
) {
1491 if (cpu_isset(cpu
, sd
->span
)) {
1492 schedstat_inc(sd
, ttwu_wake_remote
);
1498 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1502 * Check for affine wakeup and passive balancing possibilities.
1505 int idx
= this_sd
->wake_idx
;
1506 unsigned int imbalance
;
1508 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1510 load
= source_load(cpu
, idx
);
1511 this_load
= target_load(this_cpu
, idx
);
1513 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1515 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1516 unsigned long tl
= this_load
;
1517 unsigned long tl_per_task
;
1519 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1522 * If sync wakeup then subtract the (maximum possible)
1523 * effect of the currently running task from the load
1524 * of the current CPU:
1527 tl
-= current
->se
.load
.weight
;
1530 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1531 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1533 * This domain has SD_WAKE_AFFINE and
1534 * p is cache cold in this domain, and
1535 * there is no bad imbalance.
1537 schedstat_inc(this_sd
, ttwu_move_affine
);
1543 * Start passive balancing when half the imbalance_pct
1546 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1547 if (imbalance
*this_load
<= 100*load
) {
1548 schedstat_inc(this_sd
, ttwu_move_balance
);
1554 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1556 new_cpu
= wake_idle(new_cpu
, p
);
1557 if (new_cpu
!= cpu
) {
1558 set_task_cpu(p
, new_cpu
);
1559 task_rq_unlock(rq
, &flags
);
1560 /* might preempt at this point */
1561 rq
= task_rq_lock(p
, &flags
);
1562 old_state
= p
->state
;
1563 if (!(old_state
& state
))
1568 this_cpu
= smp_processor_id();
1573 #endif /* CONFIG_SMP */
1574 update_rq_clock(rq
);
1575 activate_task(rq
, p
, 1);
1577 * Sync wakeups (i.e. those types of wakeups where the waker
1578 * has indicated that it will leave the CPU in short order)
1579 * don't trigger a preemption, if the woken up task will run on
1580 * this cpu. (in this case the 'I will reschedule' promise of
1581 * the waker guarantees that the freshly woken up task is going
1582 * to be considered on this CPU.)
1584 if (!sync
|| cpu
!= this_cpu
)
1585 check_preempt_curr(rq
, p
);
1589 p
->state
= TASK_RUNNING
;
1591 task_rq_unlock(rq
, &flags
);
1596 int fastcall
wake_up_process(struct task_struct
*p
)
1598 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1599 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1601 EXPORT_SYMBOL(wake_up_process
);
1603 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1605 return try_to_wake_up(p
, state
, 0);
1609 * Perform scheduler related setup for a newly forked process p.
1610 * p is forked by current.
1612 * __sched_fork() is basic setup used by init_idle() too:
1614 static void __sched_fork(struct task_struct
*p
)
1616 p
->se
.exec_start
= 0;
1617 p
->se
.sum_exec_runtime
= 0;
1618 p
->se
.prev_sum_exec_runtime
= 0;
1620 #ifdef CONFIG_SCHEDSTATS
1621 p
->se
.wait_start
= 0;
1622 p
->se
.sum_sleep_runtime
= 0;
1623 p
->se
.sleep_start
= 0;
1624 p
->se
.block_start
= 0;
1625 p
->se
.sleep_max
= 0;
1626 p
->se
.block_max
= 0;
1628 p
->se
.slice_max
= 0;
1632 INIT_LIST_HEAD(&p
->run_list
);
1635 #ifdef CONFIG_PREEMPT_NOTIFIERS
1636 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1640 * We mark the process as running here, but have not actually
1641 * inserted it onto the runqueue yet. This guarantees that
1642 * nobody will actually run it, and a signal or other external
1643 * event cannot wake it up and insert it on the runqueue either.
1645 p
->state
= TASK_RUNNING
;
1649 * fork()/clone()-time setup:
1651 void sched_fork(struct task_struct
*p
, int clone_flags
)
1653 int cpu
= get_cpu();
1658 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1660 set_task_cpu(p
, cpu
);
1663 * Make sure we do not leak PI boosting priority to the child:
1665 p
->prio
= current
->normal_prio
;
1666 if (!rt_prio(p
->prio
))
1667 p
->sched_class
= &fair_sched_class
;
1669 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1670 if (likely(sched_info_on()))
1671 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1673 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1676 #ifdef CONFIG_PREEMPT
1677 /* Want to start with kernel preemption disabled. */
1678 task_thread_info(p
)->preempt_count
= 1;
1684 * wake_up_new_task - wake up a newly created task for the first time.
1686 * This function will do some initial scheduler statistics housekeeping
1687 * that must be done for every newly created context, then puts the task
1688 * on the runqueue and wakes it.
1690 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1692 unsigned long flags
;
1696 rq
= task_rq_lock(p
, &flags
);
1697 BUG_ON(p
->state
!= TASK_RUNNING
);
1698 this_cpu
= smp_processor_id(); /* parent's CPU */
1699 update_rq_clock(rq
);
1701 p
->prio
= effective_prio(p
);
1703 if (task_cpu(p
) != this_cpu
|| !p
->sched_class
->task_new
||
1704 !current
->se
.on_rq
) {
1705 activate_task(rq
, p
, 0);
1708 * Let the scheduling class do new task startup
1709 * management (if any):
1711 p
->sched_class
->task_new(rq
, p
);
1712 inc_nr_running(p
, rq
);
1714 check_preempt_curr(rq
, p
);
1715 task_rq_unlock(rq
, &flags
);
1718 #ifdef CONFIG_PREEMPT_NOTIFIERS
1721 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1722 * @notifier: notifier struct to register
1724 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1726 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1728 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1731 * preempt_notifier_unregister - no longer interested in preemption notifications
1732 * @notifier: notifier struct to unregister
1734 * This is safe to call from within a preemption notifier.
1736 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1738 hlist_del(¬ifier
->link
);
1740 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1742 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1744 struct preempt_notifier
*notifier
;
1745 struct hlist_node
*node
;
1747 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1748 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1752 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1753 struct task_struct
*next
)
1755 struct preempt_notifier
*notifier
;
1756 struct hlist_node
*node
;
1758 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1759 notifier
->ops
->sched_out(notifier
, next
);
1764 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1769 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1770 struct task_struct
*next
)
1777 * prepare_task_switch - prepare to switch tasks
1778 * @rq: the runqueue preparing to switch
1779 * @prev: the current task that is being switched out
1780 * @next: the task we are going to switch to.
1782 * This is called with the rq lock held and interrupts off. It must
1783 * be paired with a subsequent finish_task_switch after the context
1786 * prepare_task_switch sets up locking and calls architecture specific
1790 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1791 struct task_struct
*next
)
1793 fire_sched_out_preempt_notifiers(prev
, next
);
1794 prepare_lock_switch(rq
, next
);
1795 prepare_arch_switch(next
);
1799 * finish_task_switch - clean up after a task-switch
1800 * @rq: runqueue associated with task-switch
1801 * @prev: the thread we just switched away from.
1803 * finish_task_switch must be called after the context switch, paired
1804 * with a prepare_task_switch call before the context switch.
1805 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1806 * and do any other architecture-specific cleanup actions.
1808 * Note that we may have delayed dropping an mm in context_switch(). If
1809 * so, we finish that here outside of the runqueue lock. (Doing it
1810 * with the lock held can cause deadlocks; see schedule() for
1813 static inline void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1814 __releases(rq
->lock
)
1816 struct mm_struct
*mm
= rq
->prev_mm
;
1822 * A task struct has one reference for the use as "current".
1823 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1824 * schedule one last time. The schedule call will never return, and
1825 * the scheduled task must drop that reference.
1826 * The test for TASK_DEAD must occur while the runqueue locks are
1827 * still held, otherwise prev could be scheduled on another cpu, die
1828 * there before we look at prev->state, and then the reference would
1830 * Manfred Spraul <manfred@colorfullife.com>
1832 prev_state
= prev
->state
;
1833 finish_arch_switch(prev
);
1834 finish_lock_switch(rq
, prev
);
1835 fire_sched_in_preempt_notifiers(current
);
1838 if (unlikely(prev_state
== TASK_DEAD
)) {
1840 * Remove function-return probe instances associated with this
1841 * task and put them back on the free list.
1843 kprobe_flush_task(prev
);
1844 put_task_struct(prev
);
1849 * schedule_tail - first thing a freshly forked thread must call.
1850 * @prev: the thread we just switched away from.
1852 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1853 __releases(rq
->lock
)
1855 struct rq
*rq
= this_rq();
1857 finish_task_switch(rq
, prev
);
1858 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1859 /* In this case, finish_task_switch does not reenable preemption */
1862 if (current
->set_child_tid
)
1863 put_user(current
->pid
, current
->set_child_tid
);
1867 * context_switch - switch to the new MM and the new
1868 * thread's register state.
1871 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1872 struct task_struct
*next
)
1874 struct mm_struct
*mm
, *oldmm
;
1876 prepare_task_switch(rq
, prev
, next
);
1878 oldmm
= prev
->active_mm
;
1880 * For paravirt, this is coupled with an exit in switch_to to
1881 * combine the page table reload and the switch backend into
1884 arch_enter_lazy_cpu_mode();
1886 if (unlikely(!mm
)) {
1887 next
->active_mm
= oldmm
;
1888 atomic_inc(&oldmm
->mm_count
);
1889 enter_lazy_tlb(oldmm
, next
);
1891 switch_mm(oldmm
, mm
, next
);
1893 if (unlikely(!prev
->mm
)) {
1894 prev
->active_mm
= NULL
;
1895 rq
->prev_mm
= oldmm
;
1898 * Since the runqueue lock will be released by the next
1899 * task (which is an invalid locking op but in the case
1900 * of the scheduler it's an obvious special-case), so we
1901 * do an early lockdep release here:
1903 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1904 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1907 /* Here we just switch the register state and the stack. */
1908 switch_to(prev
, next
, prev
);
1912 * this_rq must be evaluated again because prev may have moved
1913 * CPUs since it called schedule(), thus the 'rq' on its stack
1914 * frame will be invalid.
1916 finish_task_switch(this_rq(), prev
);
1920 * nr_running, nr_uninterruptible and nr_context_switches:
1922 * externally visible scheduler statistics: current number of runnable
1923 * threads, current number of uninterruptible-sleeping threads, total
1924 * number of context switches performed since bootup.
1926 unsigned long nr_running(void)
1928 unsigned long i
, sum
= 0;
1930 for_each_online_cpu(i
)
1931 sum
+= cpu_rq(i
)->nr_running
;
1936 unsigned long nr_uninterruptible(void)
1938 unsigned long i
, sum
= 0;
1940 for_each_possible_cpu(i
)
1941 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1944 * Since we read the counters lockless, it might be slightly
1945 * inaccurate. Do not allow it to go below zero though:
1947 if (unlikely((long)sum
< 0))
1953 unsigned long long nr_context_switches(void)
1956 unsigned long long sum
= 0;
1958 for_each_possible_cpu(i
)
1959 sum
+= cpu_rq(i
)->nr_switches
;
1964 unsigned long nr_iowait(void)
1966 unsigned long i
, sum
= 0;
1968 for_each_possible_cpu(i
)
1969 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1974 unsigned long nr_active(void)
1976 unsigned long i
, running
= 0, uninterruptible
= 0;
1978 for_each_online_cpu(i
) {
1979 running
+= cpu_rq(i
)->nr_running
;
1980 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
1983 if (unlikely((long)uninterruptible
< 0))
1984 uninterruptible
= 0;
1986 return running
+ uninterruptible
;
1990 * Update rq->cpu_load[] statistics. This function is usually called every
1991 * scheduler tick (TICK_NSEC).
1993 static void update_cpu_load(struct rq
*this_rq
)
1995 unsigned long this_load
= this_rq
->load
.weight
;
1998 this_rq
->nr_load_updates
++;
2000 /* Update our load: */
2001 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2002 unsigned long old_load
, new_load
;
2004 /* scale is effectively 1 << i now, and >> i divides by scale */
2006 old_load
= this_rq
->cpu_load
[i
];
2007 new_load
= this_load
;
2009 * Round up the averaging division if load is increasing. This
2010 * prevents us from getting stuck on 9 if the load is 10, for
2013 if (new_load
> old_load
)
2014 new_load
+= scale
-1;
2015 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2022 * double_rq_lock - safely lock two runqueues
2024 * Note this does not disable interrupts like task_rq_lock,
2025 * you need to do so manually before calling.
2027 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2028 __acquires(rq1
->lock
)
2029 __acquires(rq2
->lock
)
2031 BUG_ON(!irqs_disabled());
2033 spin_lock(&rq1
->lock
);
2034 __acquire(rq2
->lock
); /* Fake it out ;) */
2037 spin_lock(&rq1
->lock
);
2038 spin_lock(&rq2
->lock
);
2040 spin_lock(&rq2
->lock
);
2041 spin_lock(&rq1
->lock
);
2044 update_rq_clock(rq1
);
2045 update_rq_clock(rq2
);
2049 * double_rq_unlock - safely unlock two runqueues
2051 * Note this does not restore interrupts like task_rq_unlock,
2052 * you need to do so manually after calling.
2054 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2055 __releases(rq1
->lock
)
2056 __releases(rq2
->lock
)
2058 spin_unlock(&rq1
->lock
);
2060 spin_unlock(&rq2
->lock
);
2062 __release(rq2
->lock
);
2066 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2068 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2069 __releases(this_rq
->lock
)
2070 __acquires(busiest
->lock
)
2071 __acquires(this_rq
->lock
)
2073 if (unlikely(!irqs_disabled())) {
2074 /* printk() doesn't work good under rq->lock */
2075 spin_unlock(&this_rq
->lock
);
2078 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2079 if (busiest
< this_rq
) {
2080 spin_unlock(&this_rq
->lock
);
2081 spin_lock(&busiest
->lock
);
2082 spin_lock(&this_rq
->lock
);
2084 spin_lock(&busiest
->lock
);
2089 * If dest_cpu is allowed for this process, migrate the task to it.
2090 * This is accomplished by forcing the cpu_allowed mask to only
2091 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2092 * the cpu_allowed mask is restored.
2094 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2096 struct migration_req req
;
2097 unsigned long flags
;
2100 rq
= task_rq_lock(p
, &flags
);
2101 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2102 || unlikely(cpu_is_offline(dest_cpu
)))
2105 /* force the process onto the specified CPU */
2106 if (migrate_task(p
, dest_cpu
, &req
)) {
2107 /* Need to wait for migration thread (might exit: take ref). */
2108 struct task_struct
*mt
= rq
->migration_thread
;
2110 get_task_struct(mt
);
2111 task_rq_unlock(rq
, &flags
);
2112 wake_up_process(mt
);
2113 put_task_struct(mt
);
2114 wait_for_completion(&req
.done
);
2119 task_rq_unlock(rq
, &flags
);
2123 * sched_exec - execve() is a valuable balancing opportunity, because at
2124 * this point the task has the smallest effective memory and cache footprint.
2126 void sched_exec(void)
2128 int new_cpu
, this_cpu
= get_cpu();
2129 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2131 if (new_cpu
!= this_cpu
)
2132 sched_migrate_task(current
, new_cpu
);
2136 * pull_task - move a task from a remote runqueue to the local runqueue.
2137 * Both runqueues must be locked.
2139 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2140 struct rq
*this_rq
, int this_cpu
)
2142 deactivate_task(src_rq
, p
, 0);
2143 set_task_cpu(p
, this_cpu
);
2144 activate_task(this_rq
, p
, 0);
2146 * Note that idle threads have a prio of MAX_PRIO, for this test
2147 * to be always true for them.
2149 check_preempt_curr(this_rq
, p
);
2153 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2156 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2157 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2161 * We do not migrate tasks that are:
2162 * 1) running (obviously), or
2163 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2164 * 3) are cache-hot on their current CPU.
2166 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
2170 if (task_running(rq
, p
))
2176 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2177 unsigned long max_nr_move
, unsigned long max_load_move
,
2178 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2179 int *all_pinned
, unsigned long *load_moved
,
2180 int *this_best_prio
, struct rq_iterator
*iterator
)
2182 int pulled
= 0, pinned
= 0, skip_for_load
;
2183 struct task_struct
*p
;
2184 long rem_load_move
= max_load_move
;
2186 if (max_nr_move
== 0 || max_load_move
== 0)
2192 * Start the load-balancing iterator:
2194 p
= iterator
->start(iterator
->arg
);
2199 * To help distribute high priority tasks accross CPUs we don't
2200 * skip a task if it will be the highest priority task (i.e. smallest
2201 * prio value) on its new queue regardless of its load weight
2203 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2204 SCHED_LOAD_SCALE_FUZZ
;
2205 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2206 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2207 p
= iterator
->next(iterator
->arg
);
2211 pull_task(busiest
, p
, this_rq
, this_cpu
);
2213 rem_load_move
-= p
->se
.load
.weight
;
2216 * We only want to steal up to the prescribed number of tasks
2217 * and the prescribed amount of weighted load.
2219 if (pulled
< max_nr_move
&& rem_load_move
> 0) {
2220 if (p
->prio
< *this_best_prio
)
2221 *this_best_prio
= p
->prio
;
2222 p
= iterator
->next(iterator
->arg
);
2227 * Right now, this is the only place pull_task() is called,
2228 * so we can safely collect pull_task() stats here rather than
2229 * inside pull_task().
2231 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2234 *all_pinned
= pinned
;
2235 *load_moved
= max_load_move
- rem_load_move
;
2240 * move_tasks tries to move up to max_load_move weighted load from busiest to
2241 * this_rq, as part of a balancing operation within domain "sd".
2242 * Returns 1 if successful and 0 otherwise.
2244 * Called with both runqueues locked.
2246 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2247 unsigned long max_load_move
,
2248 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2251 struct sched_class
*class = sched_class_highest
;
2252 unsigned long total_load_moved
= 0;
2253 int this_best_prio
= this_rq
->curr
->prio
;
2257 class->load_balance(this_rq
, this_cpu
, busiest
,
2258 ULONG_MAX
, max_load_move
- total_load_moved
,
2259 sd
, idle
, all_pinned
, &this_best_prio
);
2260 class = class->next
;
2261 } while (class && max_load_move
> total_load_moved
);
2263 return total_load_moved
> 0;
2267 * move_one_task tries to move exactly one task from busiest to this_rq, as
2268 * part of active balancing operations within "domain".
2269 * Returns 1 if successful and 0 otherwise.
2271 * Called with both runqueues locked.
2273 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2274 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2276 struct sched_class
*class;
2277 int this_best_prio
= MAX_PRIO
;
2279 for (class = sched_class_highest
; class; class = class->next
)
2280 if (class->load_balance(this_rq
, this_cpu
, busiest
,
2281 1, ULONG_MAX
, sd
, idle
, NULL
,
2289 * find_busiest_group finds and returns the busiest CPU group within the
2290 * domain. It calculates and returns the amount of weighted load which
2291 * should be moved to restore balance via the imbalance parameter.
2293 static struct sched_group
*
2294 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2295 unsigned long *imbalance
, enum cpu_idle_type idle
,
2296 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2298 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2299 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2300 unsigned long max_pull
;
2301 unsigned long busiest_load_per_task
, busiest_nr_running
;
2302 unsigned long this_load_per_task
, this_nr_running
;
2304 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2305 int power_savings_balance
= 1;
2306 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2307 unsigned long min_nr_running
= ULONG_MAX
;
2308 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2311 max_load
= this_load
= total_load
= total_pwr
= 0;
2312 busiest_load_per_task
= busiest_nr_running
= 0;
2313 this_load_per_task
= this_nr_running
= 0;
2314 if (idle
== CPU_NOT_IDLE
)
2315 load_idx
= sd
->busy_idx
;
2316 else if (idle
== CPU_NEWLY_IDLE
)
2317 load_idx
= sd
->newidle_idx
;
2319 load_idx
= sd
->idle_idx
;
2322 unsigned long load
, group_capacity
;
2325 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2326 unsigned long sum_nr_running
, sum_weighted_load
;
2328 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2331 balance_cpu
= first_cpu(group
->cpumask
);
2333 /* Tally up the load of all CPUs in the group */
2334 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2336 for_each_cpu_mask(i
, group
->cpumask
) {
2339 if (!cpu_isset(i
, *cpus
))
2344 if (*sd_idle
&& rq
->nr_running
)
2347 /* Bias balancing toward cpus of our domain */
2349 if (idle_cpu(i
) && !first_idle_cpu
) {
2354 load
= target_load(i
, load_idx
);
2356 load
= source_load(i
, load_idx
);
2359 sum_nr_running
+= rq
->nr_running
;
2360 sum_weighted_load
+= weighted_cpuload(i
);
2364 * First idle cpu or the first cpu(busiest) in this sched group
2365 * is eligible for doing load balancing at this and above
2366 * domains. In the newly idle case, we will allow all the cpu's
2367 * to do the newly idle load balance.
2369 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2370 balance_cpu
!= this_cpu
&& balance
) {
2375 total_load
+= avg_load
;
2376 total_pwr
+= group
->__cpu_power
;
2378 /* Adjust by relative CPU power of the group */
2379 avg_load
= sg_div_cpu_power(group
,
2380 avg_load
* SCHED_LOAD_SCALE
);
2382 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2385 this_load
= avg_load
;
2387 this_nr_running
= sum_nr_running
;
2388 this_load_per_task
= sum_weighted_load
;
2389 } else if (avg_load
> max_load
&&
2390 sum_nr_running
> group_capacity
) {
2391 max_load
= avg_load
;
2393 busiest_nr_running
= sum_nr_running
;
2394 busiest_load_per_task
= sum_weighted_load
;
2397 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2399 * Busy processors will not participate in power savings
2402 if (idle
== CPU_NOT_IDLE
||
2403 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2407 * If the local group is idle or completely loaded
2408 * no need to do power savings balance at this domain
2410 if (local_group
&& (this_nr_running
>= group_capacity
||
2412 power_savings_balance
= 0;
2415 * If a group is already running at full capacity or idle,
2416 * don't include that group in power savings calculations
2418 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2423 * Calculate the group which has the least non-idle load.
2424 * This is the group from where we need to pick up the load
2427 if ((sum_nr_running
< min_nr_running
) ||
2428 (sum_nr_running
== min_nr_running
&&
2429 first_cpu(group
->cpumask
) <
2430 first_cpu(group_min
->cpumask
))) {
2432 min_nr_running
= sum_nr_running
;
2433 min_load_per_task
= sum_weighted_load
/
2438 * Calculate the group which is almost near its
2439 * capacity but still has some space to pick up some load
2440 * from other group and save more power
2442 if (sum_nr_running
<= group_capacity
- 1) {
2443 if (sum_nr_running
> leader_nr_running
||
2444 (sum_nr_running
== leader_nr_running
&&
2445 first_cpu(group
->cpumask
) >
2446 first_cpu(group_leader
->cpumask
))) {
2447 group_leader
= group
;
2448 leader_nr_running
= sum_nr_running
;
2453 group
= group
->next
;
2454 } while (group
!= sd
->groups
);
2456 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2459 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2461 if (this_load
>= avg_load
||
2462 100*max_load
<= sd
->imbalance_pct
*this_load
)
2465 busiest_load_per_task
/= busiest_nr_running
;
2467 * We're trying to get all the cpus to the average_load, so we don't
2468 * want to push ourselves above the average load, nor do we wish to
2469 * reduce the max loaded cpu below the average load, as either of these
2470 * actions would just result in more rebalancing later, and ping-pong
2471 * tasks around. Thus we look for the minimum possible imbalance.
2472 * Negative imbalances (*we* are more loaded than anyone else) will
2473 * be counted as no imbalance for these purposes -- we can't fix that
2474 * by pulling tasks to us. Be careful of negative numbers as they'll
2475 * appear as very large values with unsigned longs.
2477 if (max_load
<= busiest_load_per_task
)
2481 * In the presence of smp nice balancing, certain scenarios can have
2482 * max load less than avg load(as we skip the groups at or below
2483 * its cpu_power, while calculating max_load..)
2485 if (max_load
< avg_load
) {
2487 goto small_imbalance
;
2490 /* Don't want to pull so many tasks that a group would go idle */
2491 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2493 /* How much load to actually move to equalise the imbalance */
2494 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2495 (avg_load
- this_load
) * this->__cpu_power
)
2499 * if *imbalance is less than the average load per runnable task
2500 * there is no gaurantee that any tasks will be moved so we'll have
2501 * a think about bumping its value to force at least one task to be
2504 if (*imbalance
< busiest_load_per_task
) {
2505 unsigned long tmp
, pwr_now
, pwr_move
;
2509 pwr_move
= pwr_now
= 0;
2511 if (this_nr_running
) {
2512 this_load_per_task
/= this_nr_running
;
2513 if (busiest_load_per_task
> this_load_per_task
)
2516 this_load_per_task
= SCHED_LOAD_SCALE
;
2518 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2519 busiest_load_per_task
* imbn
) {
2520 *imbalance
= busiest_load_per_task
;
2525 * OK, we don't have enough imbalance to justify moving tasks,
2526 * however we may be able to increase total CPU power used by
2530 pwr_now
+= busiest
->__cpu_power
*
2531 min(busiest_load_per_task
, max_load
);
2532 pwr_now
+= this->__cpu_power
*
2533 min(this_load_per_task
, this_load
);
2534 pwr_now
/= SCHED_LOAD_SCALE
;
2536 /* Amount of load we'd subtract */
2537 tmp
= sg_div_cpu_power(busiest
,
2538 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2540 pwr_move
+= busiest
->__cpu_power
*
2541 min(busiest_load_per_task
, max_load
- tmp
);
2543 /* Amount of load we'd add */
2544 if (max_load
* busiest
->__cpu_power
<
2545 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2546 tmp
= sg_div_cpu_power(this,
2547 max_load
* busiest
->__cpu_power
);
2549 tmp
= sg_div_cpu_power(this,
2550 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2551 pwr_move
+= this->__cpu_power
*
2552 min(this_load_per_task
, this_load
+ tmp
);
2553 pwr_move
/= SCHED_LOAD_SCALE
;
2555 /* Move if we gain throughput */
2556 if (pwr_move
> pwr_now
)
2557 *imbalance
= busiest_load_per_task
;
2563 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2564 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2567 if (this == group_leader
&& group_leader
!= group_min
) {
2568 *imbalance
= min_load_per_task
;
2578 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2581 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2582 unsigned long imbalance
, cpumask_t
*cpus
)
2584 struct rq
*busiest
= NULL
, *rq
;
2585 unsigned long max_load
= 0;
2588 for_each_cpu_mask(i
, group
->cpumask
) {
2591 if (!cpu_isset(i
, *cpus
))
2595 wl
= weighted_cpuload(i
);
2597 if (rq
->nr_running
== 1 && wl
> imbalance
)
2600 if (wl
> max_load
) {
2610 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2611 * so long as it is large enough.
2613 #define MAX_PINNED_INTERVAL 512
2616 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2617 * tasks if there is an imbalance.
2619 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2620 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2623 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2624 struct sched_group
*group
;
2625 unsigned long imbalance
;
2627 cpumask_t cpus
= CPU_MASK_ALL
;
2628 unsigned long flags
;
2631 * When power savings policy is enabled for the parent domain, idle
2632 * sibling can pick up load irrespective of busy siblings. In this case,
2633 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2634 * portraying it as CPU_NOT_IDLE.
2636 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2637 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2640 schedstat_inc(sd
, lb_cnt
[idle
]);
2643 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2650 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2654 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2656 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2660 BUG_ON(busiest
== this_rq
);
2662 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2665 if (busiest
->nr_running
> 1) {
2667 * Attempt to move tasks. If find_busiest_group has found
2668 * an imbalance but busiest->nr_running <= 1, the group is
2669 * still unbalanced. ld_moved simply stays zero, so it is
2670 * correctly treated as an imbalance.
2672 local_irq_save(flags
);
2673 double_rq_lock(this_rq
, busiest
);
2674 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2675 imbalance
, sd
, idle
, &all_pinned
);
2676 double_rq_unlock(this_rq
, busiest
);
2677 local_irq_restore(flags
);
2680 * some other cpu did the load balance for us.
2682 if (ld_moved
&& this_cpu
!= smp_processor_id())
2683 resched_cpu(this_cpu
);
2685 /* All tasks on this runqueue were pinned by CPU affinity */
2686 if (unlikely(all_pinned
)) {
2687 cpu_clear(cpu_of(busiest
), cpus
);
2688 if (!cpus_empty(cpus
))
2695 schedstat_inc(sd
, lb_failed
[idle
]);
2696 sd
->nr_balance_failed
++;
2698 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2700 spin_lock_irqsave(&busiest
->lock
, flags
);
2702 /* don't kick the migration_thread, if the curr
2703 * task on busiest cpu can't be moved to this_cpu
2705 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2706 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2708 goto out_one_pinned
;
2711 if (!busiest
->active_balance
) {
2712 busiest
->active_balance
= 1;
2713 busiest
->push_cpu
= this_cpu
;
2716 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2718 wake_up_process(busiest
->migration_thread
);
2721 * We've kicked active balancing, reset the failure
2724 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2727 sd
->nr_balance_failed
= 0;
2729 if (likely(!active_balance
)) {
2730 /* We were unbalanced, so reset the balancing interval */
2731 sd
->balance_interval
= sd
->min_interval
;
2734 * If we've begun active balancing, start to back off. This
2735 * case may not be covered by the all_pinned logic if there
2736 * is only 1 task on the busy runqueue (because we don't call
2739 if (sd
->balance_interval
< sd
->max_interval
)
2740 sd
->balance_interval
*= 2;
2743 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2744 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2749 schedstat_inc(sd
, lb_balanced
[idle
]);
2751 sd
->nr_balance_failed
= 0;
2754 /* tune up the balancing interval */
2755 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2756 (sd
->balance_interval
< sd
->max_interval
))
2757 sd
->balance_interval
*= 2;
2759 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2760 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2766 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2767 * tasks if there is an imbalance.
2769 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2770 * this_rq is locked.
2773 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2775 struct sched_group
*group
;
2776 struct rq
*busiest
= NULL
;
2777 unsigned long imbalance
;
2781 cpumask_t cpus
= CPU_MASK_ALL
;
2784 * When power savings policy is enabled for the parent domain, idle
2785 * sibling can pick up load irrespective of busy siblings. In this case,
2786 * let the state of idle sibling percolate up as IDLE, instead of
2787 * portraying it as CPU_NOT_IDLE.
2789 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2790 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2793 schedstat_inc(sd
, lb_cnt
[CPU_NEWLY_IDLE
]);
2795 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2796 &sd_idle
, &cpus
, NULL
);
2798 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2802 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2805 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2809 BUG_ON(busiest
== this_rq
);
2811 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2814 if (busiest
->nr_running
> 1) {
2815 /* Attempt to move tasks */
2816 double_lock_balance(this_rq
, busiest
);
2817 /* this_rq->clock is already updated */
2818 update_rq_clock(busiest
);
2819 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2820 imbalance
, sd
, CPU_NEWLY_IDLE
,
2822 spin_unlock(&busiest
->lock
);
2824 if (unlikely(all_pinned
)) {
2825 cpu_clear(cpu_of(busiest
), cpus
);
2826 if (!cpus_empty(cpus
))
2832 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2833 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2834 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2837 sd
->nr_balance_failed
= 0;
2842 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2843 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2844 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2846 sd
->nr_balance_failed
= 0;
2852 * idle_balance is called by schedule() if this_cpu is about to become
2853 * idle. Attempts to pull tasks from other CPUs.
2855 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2857 struct sched_domain
*sd
;
2858 int pulled_task
= -1;
2859 unsigned long next_balance
= jiffies
+ HZ
;
2861 for_each_domain(this_cpu
, sd
) {
2862 unsigned long interval
;
2864 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2867 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2868 /* If we've pulled tasks over stop searching: */
2869 pulled_task
= load_balance_newidle(this_cpu
,
2872 interval
= msecs_to_jiffies(sd
->balance_interval
);
2873 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2874 next_balance
= sd
->last_balance
+ interval
;
2878 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
2880 * We are going idle. next_balance may be set based on
2881 * a busy processor. So reset next_balance.
2883 this_rq
->next_balance
= next_balance
;
2888 * active_load_balance is run by migration threads. It pushes running tasks
2889 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2890 * running on each physical CPU where possible, and avoids physical /
2891 * logical imbalances.
2893 * Called with busiest_rq locked.
2895 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
2897 int target_cpu
= busiest_rq
->push_cpu
;
2898 struct sched_domain
*sd
;
2899 struct rq
*target_rq
;
2901 /* Is there any task to move? */
2902 if (busiest_rq
->nr_running
<= 1)
2905 target_rq
= cpu_rq(target_cpu
);
2908 * This condition is "impossible", if it occurs
2909 * we need to fix it. Originally reported by
2910 * Bjorn Helgaas on a 128-cpu setup.
2912 BUG_ON(busiest_rq
== target_rq
);
2914 /* move a task from busiest_rq to target_rq */
2915 double_lock_balance(busiest_rq
, target_rq
);
2916 update_rq_clock(busiest_rq
);
2917 update_rq_clock(target_rq
);
2919 /* Search for an sd spanning us and the target CPU. */
2920 for_each_domain(target_cpu
, sd
) {
2921 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2922 cpu_isset(busiest_cpu
, sd
->span
))
2927 schedstat_inc(sd
, alb_cnt
);
2929 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
2931 schedstat_inc(sd
, alb_pushed
);
2933 schedstat_inc(sd
, alb_failed
);
2935 spin_unlock(&target_rq
->lock
);
2940 atomic_t load_balancer
;
2942 } nohz ____cacheline_aligned
= {
2943 .load_balancer
= ATOMIC_INIT(-1),
2944 .cpu_mask
= CPU_MASK_NONE
,
2948 * This routine will try to nominate the ilb (idle load balancing)
2949 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2950 * load balancing on behalf of all those cpus. If all the cpus in the system
2951 * go into this tickless mode, then there will be no ilb owner (as there is
2952 * no need for one) and all the cpus will sleep till the next wakeup event
2955 * For the ilb owner, tick is not stopped. And this tick will be used
2956 * for idle load balancing. ilb owner will still be part of
2959 * While stopping the tick, this cpu will become the ilb owner if there
2960 * is no other owner. And will be the owner till that cpu becomes busy
2961 * or if all cpus in the system stop their ticks at which point
2962 * there is no need for ilb owner.
2964 * When the ilb owner becomes busy, it nominates another owner, during the
2965 * next busy scheduler_tick()
2967 int select_nohz_load_balancer(int stop_tick
)
2969 int cpu
= smp_processor_id();
2972 cpu_set(cpu
, nohz
.cpu_mask
);
2973 cpu_rq(cpu
)->in_nohz_recently
= 1;
2976 * If we are going offline and still the leader, give up!
2978 if (cpu_is_offline(cpu
) &&
2979 atomic_read(&nohz
.load_balancer
) == cpu
) {
2980 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
2985 /* time for ilb owner also to sleep */
2986 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
2987 if (atomic_read(&nohz
.load_balancer
) == cpu
)
2988 atomic_set(&nohz
.load_balancer
, -1);
2992 if (atomic_read(&nohz
.load_balancer
) == -1) {
2993 /* make me the ilb owner */
2994 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
2996 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
2999 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3002 cpu_clear(cpu
, nohz
.cpu_mask
);
3004 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3005 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3012 static DEFINE_SPINLOCK(balancing
);
3015 * It checks each scheduling domain to see if it is due to be balanced,
3016 * and initiates a balancing operation if so.
3018 * Balancing parameters are set up in arch_init_sched_domains.
3020 static inline void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3023 struct rq
*rq
= cpu_rq(cpu
);
3024 unsigned long interval
;
3025 struct sched_domain
*sd
;
3026 /* Earliest time when we have to do rebalance again */
3027 unsigned long next_balance
= jiffies
+ 60*HZ
;
3028 int update_next_balance
= 0;
3030 for_each_domain(cpu
, sd
) {
3031 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3034 interval
= sd
->balance_interval
;
3035 if (idle
!= CPU_IDLE
)
3036 interval
*= sd
->busy_factor
;
3038 /* scale ms to jiffies */
3039 interval
= msecs_to_jiffies(interval
);
3040 if (unlikely(!interval
))
3042 if (interval
> HZ
*NR_CPUS
/10)
3043 interval
= HZ
*NR_CPUS
/10;
3046 if (sd
->flags
& SD_SERIALIZE
) {
3047 if (!spin_trylock(&balancing
))
3051 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3052 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3054 * We've pulled tasks over so either we're no
3055 * longer idle, or one of our SMT siblings is
3058 idle
= CPU_NOT_IDLE
;
3060 sd
->last_balance
= jiffies
;
3062 if (sd
->flags
& SD_SERIALIZE
)
3063 spin_unlock(&balancing
);
3065 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3066 next_balance
= sd
->last_balance
+ interval
;
3067 update_next_balance
= 1;
3071 * Stop the load balance at this level. There is another
3072 * CPU in our sched group which is doing load balancing more
3080 * next_balance will be updated only when there is a need.
3081 * When the cpu is attached to null domain for ex, it will not be
3084 if (likely(update_next_balance
))
3085 rq
->next_balance
= next_balance
;
3089 * run_rebalance_domains is triggered when needed from the scheduler tick.
3090 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3091 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3093 static void run_rebalance_domains(struct softirq_action
*h
)
3095 int this_cpu
= smp_processor_id();
3096 struct rq
*this_rq
= cpu_rq(this_cpu
);
3097 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3098 CPU_IDLE
: CPU_NOT_IDLE
;
3100 rebalance_domains(this_cpu
, idle
);
3104 * If this cpu is the owner for idle load balancing, then do the
3105 * balancing on behalf of the other idle cpus whose ticks are
3108 if (this_rq
->idle_at_tick
&&
3109 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3110 cpumask_t cpus
= nohz
.cpu_mask
;
3114 cpu_clear(this_cpu
, cpus
);
3115 for_each_cpu_mask(balance_cpu
, cpus
) {
3117 * If this cpu gets work to do, stop the load balancing
3118 * work being done for other cpus. Next load
3119 * balancing owner will pick it up.
3124 rebalance_domains(balance_cpu
, CPU_IDLE
);
3126 rq
= cpu_rq(balance_cpu
);
3127 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3128 this_rq
->next_balance
= rq
->next_balance
;
3135 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3137 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3138 * idle load balancing owner or decide to stop the periodic load balancing,
3139 * if the whole system is idle.
3141 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3145 * If we were in the nohz mode recently and busy at the current
3146 * scheduler tick, then check if we need to nominate new idle
3149 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3150 rq
->in_nohz_recently
= 0;
3152 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3153 cpu_clear(cpu
, nohz
.cpu_mask
);
3154 atomic_set(&nohz
.load_balancer
, -1);
3157 if (atomic_read(&nohz
.load_balancer
) == -1) {
3159 * simple selection for now: Nominate the
3160 * first cpu in the nohz list to be the next
3163 * TBD: Traverse the sched domains and nominate
3164 * the nearest cpu in the nohz.cpu_mask.
3166 int ilb
= first_cpu(nohz
.cpu_mask
);
3174 * If this cpu is idle and doing idle load balancing for all the
3175 * cpus with ticks stopped, is it time for that to stop?
3177 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3178 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3184 * If this cpu is idle and the idle load balancing is done by
3185 * someone else, then no need raise the SCHED_SOFTIRQ
3187 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3188 cpu_isset(cpu
, nohz
.cpu_mask
))
3191 if (time_after_eq(jiffies
, rq
->next_balance
))
3192 raise_softirq(SCHED_SOFTIRQ
);
3195 #else /* CONFIG_SMP */
3198 * on UP we do not need to balance between CPUs:
3200 static inline void idle_balance(int cpu
, struct rq
*rq
)
3204 /* Avoid "used but not defined" warning on UP */
3205 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3206 unsigned long max_nr_move
, unsigned long max_load_move
,
3207 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3208 int *all_pinned
, unsigned long *load_moved
,
3209 int *this_best_prio
, struct rq_iterator
*iterator
)
3218 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3220 EXPORT_PER_CPU_SYMBOL(kstat
);
3223 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3224 * that have not yet been banked in case the task is currently running.
3226 unsigned long long task_sched_runtime(struct task_struct
*p
)
3228 unsigned long flags
;
3232 rq
= task_rq_lock(p
, &flags
);
3233 ns
= p
->se
.sum_exec_runtime
;
3234 if (rq
->curr
== p
) {
3235 update_rq_clock(rq
);
3236 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3237 if ((s64
)delta_exec
> 0)
3240 task_rq_unlock(rq
, &flags
);
3246 * Account user cpu time to a process.
3247 * @p: the process that the cpu time gets accounted to
3248 * @hardirq_offset: the offset to subtract from hardirq_count()
3249 * @cputime: the cpu time spent in user space since the last update
3251 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3253 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3256 p
->utime
= cputime_add(p
->utime
, cputime
);
3258 /* Add user time to cpustat. */
3259 tmp
= cputime_to_cputime64(cputime
);
3260 if (TASK_NICE(p
) > 0)
3261 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3263 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3267 * Account system cpu time to a process.
3268 * @p: the process that the cpu time gets accounted to
3269 * @hardirq_offset: the offset to subtract from hardirq_count()
3270 * @cputime: the cpu time spent in kernel space since the last update
3272 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3275 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3276 struct rq
*rq
= this_rq();
3279 p
->stime
= cputime_add(p
->stime
, cputime
);
3281 /* Add system time to cpustat. */
3282 tmp
= cputime_to_cputime64(cputime
);
3283 if (hardirq_count() - hardirq_offset
)
3284 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3285 else if (softirq_count())
3286 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3287 else if (p
!= rq
->idle
)
3288 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3289 else if (atomic_read(&rq
->nr_iowait
) > 0)
3290 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3292 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3293 /* Account for system time used */
3294 acct_update_integrals(p
);
3298 * Account for involuntary wait time.
3299 * @p: the process from which the cpu time has been stolen
3300 * @steal: the cpu time spent in involuntary wait
3302 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3304 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3305 cputime64_t tmp
= cputime_to_cputime64(steal
);
3306 struct rq
*rq
= this_rq();
3308 if (p
== rq
->idle
) {
3309 p
->stime
= cputime_add(p
->stime
, steal
);
3310 if (atomic_read(&rq
->nr_iowait
) > 0)
3311 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3313 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3315 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3319 * This function gets called by the timer code, with HZ frequency.
3320 * We call it with interrupts disabled.
3322 * It also gets called by the fork code, when changing the parent's
3325 void scheduler_tick(void)
3327 int cpu
= smp_processor_id();
3328 struct rq
*rq
= cpu_rq(cpu
);
3329 struct task_struct
*curr
= rq
->curr
;
3330 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3332 spin_lock(&rq
->lock
);
3333 __update_rq_clock(rq
);
3335 * Let rq->clock advance by at least TICK_NSEC:
3337 if (unlikely(rq
->clock
< next_tick
))
3338 rq
->clock
= next_tick
;
3339 rq
->tick_timestamp
= rq
->clock
;
3340 update_cpu_load(rq
);
3341 if (curr
!= rq
->idle
) /* FIXME: needed? */
3342 curr
->sched_class
->task_tick(rq
, curr
);
3343 spin_unlock(&rq
->lock
);
3346 rq
->idle_at_tick
= idle_cpu(cpu
);
3347 trigger_load_balance(rq
, cpu
);
3351 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3353 void fastcall
add_preempt_count(int val
)
3358 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3360 preempt_count() += val
;
3362 * Spinlock count overflowing soon?
3364 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3367 EXPORT_SYMBOL(add_preempt_count
);
3369 void fastcall
sub_preempt_count(int val
)
3374 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3377 * Is the spinlock portion underflowing?
3379 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3380 !(preempt_count() & PREEMPT_MASK
)))
3383 preempt_count() -= val
;
3385 EXPORT_SYMBOL(sub_preempt_count
);
3390 * Print scheduling while atomic bug:
3392 static noinline
void __schedule_bug(struct task_struct
*prev
)
3394 printk(KERN_ERR
"BUG: scheduling while atomic: %s/0x%08x/%d\n",
3395 prev
->comm
, preempt_count(), prev
->pid
);
3396 debug_show_held_locks(prev
);
3397 if (irqs_disabled())
3398 print_irqtrace_events(prev
);
3403 * Various schedule()-time debugging checks and statistics:
3405 static inline void schedule_debug(struct task_struct
*prev
)
3408 * Test if we are atomic. Since do_exit() needs to call into
3409 * schedule() atomically, we ignore that path for now.
3410 * Otherwise, whine if we are scheduling when we should not be.
3412 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3413 __schedule_bug(prev
);
3415 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3417 schedstat_inc(this_rq(), sched_cnt
);
3418 #ifdef CONFIG_SCHEDSTATS
3419 if (unlikely(prev
->lock_depth
>= 0)) {
3420 schedstat_inc(this_rq(), bkl_cnt
);
3421 schedstat_inc(prev
, sched_info
.bkl_cnt
);
3427 * Pick up the highest-prio task:
3429 static inline struct task_struct
*
3430 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3432 struct sched_class
*class;
3433 struct task_struct
*p
;
3436 * Optimization: we know that if all tasks are in
3437 * the fair class we can call that function directly:
3439 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3440 p
= fair_sched_class
.pick_next_task(rq
);
3445 class = sched_class_highest
;
3447 p
= class->pick_next_task(rq
);
3451 * Will never be NULL as the idle class always
3452 * returns a non-NULL p:
3454 class = class->next
;
3459 * schedule() is the main scheduler function.
3461 asmlinkage
void __sched
schedule(void)
3463 struct task_struct
*prev
, *next
;
3470 cpu
= smp_processor_id();
3474 switch_count
= &prev
->nivcsw
;
3476 release_kernel_lock(prev
);
3477 need_resched_nonpreemptible
:
3479 schedule_debug(prev
);
3481 spin_lock_irq(&rq
->lock
);
3482 clear_tsk_need_resched(prev
);
3483 __update_rq_clock(rq
);
3485 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3486 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3487 unlikely(signal_pending(prev
)))) {
3488 prev
->state
= TASK_RUNNING
;
3490 deactivate_task(rq
, prev
, 1);
3492 switch_count
= &prev
->nvcsw
;
3495 if (unlikely(!rq
->nr_running
))
3496 idle_balance(cpu
, rq
);
3498 prev
->sched_class
->put_prev_task(rq
, prev
);
3499 next
= pick_next_task(rq
, prev
);
3501 sched_info_switch(prev
, next
);
3503 if (likely(prev
!= next
)) {
3508 context_switch(rq
, prev
, next
); /* unlocks the rq */
3510 spin_unlock_irq(&rq
->lock
);
3512 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3513 cpu
= smp_processor_id();
3515 goto need_resched_nonpreemptible
;
3517 preempt_enable_no_resched();
3518 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3521 EXPORT_SYMBOL(schedule
);
3523 #ifdef CONFIG_PREEMPT
3525 * this is the entry point to schedule() from in-kernel preemption
3526 * off of preempt_enable. Kernel preemptions off return from interrupt
3527 * occur there and call schedule directly.
3529 asmlinkage
void __sched
preempt_schedule(void)
3531 struct thread_info
*ti
= current_thread_info();
3532 #ifdef CONFIG_PREEMPT_BKL
3533 struct task_struct
*task
= current
;
3534 int saved_lock_depth
;
3537 * If there is a non-zero preempt_count or interrupts are disabled,
3538 * we do not want to preempt the current task. Just return..
3540 if (likely(ti
->preempt_count
|| irqs_disabled()))
3544 add_preempt_count(PREEMPT_ACTIVE
);
3546 * We keep the big kernel semaphore locked, but we
3547 * clear ->lock_depth so that schedule() doesnt
3548 * auto-release the semaphore:
3550 #ifdef CONFIG_PREEMPT_BKL
3551 saved_lock_depth
= task
->lock_depth
;
3552 task
->lock_depth
= -1;
3555 #ifdef CONFIG_PREEMPT_BKL
3556 task
->lock_depth
= saved_lock_depth
;
3558 sub_preempt_count(PREEMPT_ACTIVE
);
3560 /* we could miss a preemption opportunity between schedule and now */
3562 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3565 EXPORT_SYMBOL(preempt_schedule
);
3568 * this is the entry point to schedule() from kernel preemption
3569 * off of irq context.
3570 * Note, that this is called and return with irqs disabled. This will
3571 * protect us against recursive calling from irq.
3573 asmlinkage
void __sched
preempt_schedule_irq(void)
3575 struct thread_info
*ti
= current_thread_info();
3576 #ifdef CONFIG_PREEMPT_BKL
3577 struct task_struct
*task
= current
;
3578 int saved_lock_depth
;
3580 /* Catch callers which need to be fixed */
3581 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3584 add_preempt_count(PREEMPT_ACTIVE
);
3586 * We keep the big kernel semaphore locked, but we
3587 * clear ->lock_depth so that schedule() doesnt
3588 * auto-release the semaphore:
3590 #ifdef CONFIG_PREEMPT_BKL
3591 saved_lock_depth
= task
->lock_depth
;
3592 task
->lock_depth
= -1;
3596 local_irq_disable();
3597 #ifdef CONFIG_PREEMPT_BKL
3598 task
->lock_depth
= saved_lock_depth
;
3600 sub_preempt_count(PREEMPT_ACTIVE
);
3602 /* we could miss a preemption opportunity between schedule and now */
3604 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3608 #endif /* CONFIG_PREEMPT */
3610 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3613 return try_to_wake_up(curr
->private, mode
, sync
);
3615 EXPORT_SYMBOL(default_wake_function
);
3618 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3619 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3620 * number) then we wake all the non-exclusive tasks and one exclusive task.
3622 * There are circumstances in which we can try to wake a task which has already
3623 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3624 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3626 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3627 int nr_exclusive
, int sync
, void *key
)
3629 wait_queue_t
*curr
, *next
;
3631 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3632 unsigned flags
= curr
->flags
;
3634 if (curr
->func(curr
, mode
, sync
, key
) &&
3635 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3641 * __wake_up - wake up threads blocked on a waitqueue.
3643 * @mode: which threads
3644 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3645 * @key: is directly passed to the wakeup function
3647 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3648 int nr_exclusive
, void *key
)
3650 unsigned long flags
;
3652 spin_lock_irqsave(&q
->lock
, flags
);
3653 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3654 spin_unlock_irqrestore(&q
->lock
, flags
);
3656 EXPORT_SYMBOL(__wake_up
);
3659 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3661 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3663 __wake_up_common(q
, mode
, 1, 0, NULL
);
3667 * __wake_up_sync - wake up threads blocked on a waitqueue.
3669 * @mode: which threads
3670 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3672 * The sync wakeup differs that the waker knows that it will schedule
3673 * away soon, so while the target thread will be woken up, it will not
3674 * be migrated to another CPU - ie. the two threads are 'synchronized'
3675 * with each other. This can prevent needless bouncing between CPUs.
3677 * On UP it can prevent extra preemption.
3680 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3682 unsigned long flags
;
3688 if (unlikely(!nr_exclusive
))
3691 spin_lock_irqsave(&q
->lock
, flags
);
3692 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3693 spin_unlock_irqrestore(&q
->lock
, flags
);
3695 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3697 void fastcall
complete(struct completion
*x
)
3699 unsigned long flags
;
3701 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3703 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3705 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3707 EXPORT_SYMBOL(complete
);
3709 void fastcall
complete_all(struct completion
*x
)
3711 unsigned long flags
;
3713 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3714 x
->done
+= UINT_MAX
/2;
3715 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3717 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3719 EXPORT_SYMBOL(complete_all
);
3721 void fastcall __sched
wait_for_completion(struct completion
*x
)
3725 spin_lock_irq(&x
->wait
.lock
);
3727 DECLARE_WAITQUEUE(wait
, current
);
3729 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3730 __add_wait_queue_tail(&x
->wait
, &wait
);
3732 __set_current_state(TASK_UNINTERRUPTIBLE
);
3733 spin_unlock_irq(&x
->wait
.lock
);
3735 spin_lock_irq(&x
->wait
.lock
);
3737 __remove_wait_queue(&x
->wait
, &wait
);
3740 spin_unlock_irq(&x
->wait
.lock
);
3742 EXPORT_SYMBOL(wait_for_completion
);
3744 unsigned long fastcall __sched
3745 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3749 spin_lock_irq(&x
->wait
.lock
);
3751 DECLARE_WAITQUEUE(wait
, current
);
3753 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3754 __add_wait_queue_tail(&x
->wait
, &wait
);
3756 __set_current_state(TASK_UNINTERRUPTIBLE
);
3757 spin_unlock_irq(&x
->wait
.lock
);
3758 timeout
= schedule_timeout(timeout
);
3759 spin_lock_irq(&x
->wait
.lock
);
3761 __remove_wait_queue(&x
->wait
, &wait
);
3765 __remove_wait_queue(&x
->wait
, &wait
);
3769 spin_unlock_irq(&x
->wait
.lock
);
3772 EXPORT_SYMBOL(wait_for_completion_timeout
);
3774 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3780 spin_lock_irq(&x
->wait
.lock
);
3782 DECLARE_WAITQUEUE(wait
, current
);
3784 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3785 __add_wait_queue_tail(&x
->wait
, &wait
);
3787 if (signal_pending(current
)) {
3789 __remove_wait_queue(&x
->wait
, &wait
);
3792 __set_current_state(TASK_INTERRUPTIBLE
);
3793 spin_unlock_irq(&x
->wait
.lock
);
3795 spin_lock_irq(&x
->wait
.lock
);
3797 __remove_wait_queue(&x
->wait
, &wait
);
3801 spin_unlock_irq(&x
->wait
.lock
);
3805 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3807 unsigned long fastcall __sched
3808 wait_for_completion_interruptible_timeout(struct completion
*x
,
3809 unsigned long timeout
)
3813 spin_lock_irq(&x
->wait
.lock
);
3815 DECLARE_WAITQUEUE(wait
, current
);
3817 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3818 __add_wait_queue_tail(&x
->wait
, &wait
);
3820 if (signal_pending(current
)) {
3821 timeout
= -ERESTARTSYS
;
3822 __remove_wait_queue(&x
->wait
, &wait
);
3825 __set_current_state(TASK_INTERRUPTIBLE
);
3826 spin_unlock_irq(&x
->wait
.lock
);
3827 timeout
= schedule_timeout(timeout
);
3828 spin_lock_irq(&x
->wait
.lock
);
3830 __remove_wait_queue(&x
->wait
, &wait
);
3834 __remove_wait_queue(&x
->wait
, &wait
);
3838 spin_unlock_irq(&x
->wait
.lock
);
3841 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3844 sleep_on_head(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3846 spin_lock_irqsave(&q
->lock
, *flags
);
3847 __add_wait_queue(q
, wait
);
3848 spin_unlock(&q
->lock
);
3852 sleep_on_tail(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3854 spin_lock_irq(&q
->lock
);
3855 __remove_wait_queue(q
, wait
);
3856 spin_unlock_irqrestore(&q
->lock
, *flags
);
3859 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3861 unsigned long flags
;
3864 init_waitqueue_entry(&wait
, current
);
3866 current
->state
= TASK_INTERRUPTIBLE
;
3868 sleep_on_head(q
, &wait
, &flags
);
3870 sleep_on_tail(q
, &wait
, &flags
);
3872 EXPORT_SYMBOL(interruptible_sleep_on
);
3875 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3877 unsigned long flags
;
3880 init_waitqueue_entry(&wait
, current
);
3882 current
->state
= TASK_INTERRUPTIBLE
;
3884 sleep_on_head(q
, &wait
, &flags
);
3885 timeout
= schedule_timeout(timeout
);
3886 sleep_on_tail(q
, &wait
, &flags
);
3890 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3892 void __sched
sleep_on(wait_queue_head_t
*q
)
3894 unsigned long flags
;
3897 init_waitqueue_entry(&wait
, current
);
3899 current
->state
= TASK_UNINTERRUPTIBLE
;
3901 sleep_on_head(q
, &wait
, &flags
);
3903 sleep_on_tail(q
, &wait
, &flags
);
3905 EXPORT_SYMBOL(sleep_on
);
3907 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3909 unsigned long flags
;
3912 init_waitqueue_entry(&wait
, current
);
3914 current
->state
= TASK_UNINTERRUPTIBLE
;
3916 sleep_on_head(q
, &wait
, &flags
);
3917 timeout
= schedule_timeout(timeout
);
3918 sleep_on_tail(q
, &wait
, &flags
);
3922 EXPORT_SYMBOL(sleep_on_timeout
);
3924 #ifdef CONFIG_RT_MUTEXES
3927 * rt_mutex_setprio - set the current priority of a task
3929 * @prio: prio value (kernel-internal form)
3931 * This function changes the 'effective' priority of a task. It does
3932 * not touch ->normal_prio like __setscheduler().
3934 * Used by the rt_mutex code to implement priority inheritance logic.
3936 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3938 unsigned long flags
;
3939 int oldprio
, on_rq
, running
;
3942 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
3944 rq
= task_rq_lock(p
, &flags
);
3945 update_rq_clock(rq
);
3948 on_rq
= p
->se
.on_rq
;
3949 running
= task_running(rq
, p
);
3951 dequeue_task(rq
, p
, 0);
3953 p
->sched_class
->put_prev_task(rq
, p
);
3957 p
->sched_class
= &rt_sched_class
;
3959 p
->sched_class
= &fair_sched_class
;
3965 p
->sched_class
->set_curr_task(rq
);
3966 enqueue_task(rq
, p
, 0);
3968 * Reschedule if we are currently running on this runqueue and
3969 * our priority decreased, or if we are not currently running on
3970 * this runqueue and our priority is higher than the current's
3973 if (p
->prio
> oldprio
)
3974 resched_task(rq
->curr
);
3976 check_preempt_curr(rq
, p
);
3979 task_rq_unlock(rq
, &flags
);
3984 void set_user_nice(struct task_struct
*p
, long nice
)
3986 int old_prio
, delta
, on_rq
;
3987 unsigned long flags
;
3990 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3993 * We have to be careful, if called from sys_setpriority(),
3994 * the task might be in the middle of scheduling on another CPU.
3996 rq
= task_rq_lock(p
, &flags
);
3997 update_rq_clock(rq
);
3999 * The RT priorities are set via sched_setscheduler(), but we still
4000 * allow the 'normal' nice value to be set - but as expected
4001 * it wont have any effect on scheduling until the task is
4002 * SCHED_FIFO/SCHED_RR:
4004 if (task_has_rt_policy(p
)) {
4005 p
->static_prio
= NICE_TO_PRIO(nice
);
4008 on_rq
= p
->se
.on_rq
;
4010 dequeue_task(rq
, p
, 0);
4014 p
->static_prio
= NICE_TO_PRIO(nice
);
4017 p
->prio
= effective_prio(p
);
4018 delta
= p
->prio
- old_prio
;
4021 enqueue_task(rq
, p
, 0);
4024 * If the task increased its priority or is running and
4025 * lowered its priority, then reschedule its CPU:
4027 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4028 resched_task(rq
->curr
);
4031 task_rq_unlock(rq
, &flags
);
4033 EXPORT_SYMBOL(set_user_nice
);
4036 * can_nice - check if a task can reduce its nice value
4040 int can_nice(const struct task_struct
*p
, const int nice
)
4042 /* convert nice value [19,-20] to rlimit style value [1,40] */
4043 int nice_rlim
= 20 - nice
;
4045 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4046 capable(CAP_SYS_NICE
));
4049 #ifdef __ARCH_WANT_SYS_NICE
4052 * sys_nice - change the priority of the current process.
4053 * @increment: priority increment
4055 * sys_setpriority is a more generic, but much slower function that
4056 * does similar things.
4058 asmlinkage
long sys_nice(int increment
)
4063 * Setpriority might change our priority at the same moment.
4064 * We don't have to worry. Conceptually one call occurs first
4065 * and we have a single winner.
4067 if (increment
< -40)
4072 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4078 if (increment
< 0 && !can_nice(current
, nice
))
4081 retval
= security_task_setnice(current
, nice
);
4085 set_user_nice(current
, nice
);
4092 * task_prio - return the priority value of a given task.
4093 * @p: the task in question.
4095 * This is the priority value as seen by users in /proc.
4096 * RT tasks are offset by -200. Normal tasks are centered
4097 * around 0, value goes from -16 to +15.
4099 int task_prio(const struct task_struct
*p
)
4101 return p
->prio
- MAX_RT_PRIO
;
4105 * task_nice - return the nice value of a given task.
4106 * @p: the task in question.
4108 int task_nice(const struct task_struct
*p
)
4110 return TASK_NICE(p
);
4112 EXPORT_SYMBOL_GPL(task_nice
);
4115 * idle_cpu - is a given cpu idle currently?
4116 * @cpu: the processor in question.
4118 int idle_cpu(int cpu
)
4120 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4124 * idle_task - return the idle task for a given cpu.
4125 * @cpu: the processor in question.
4127 struct task_struct
*idle_task(int cpu
)
4129 return cpu_rq(cpu
)->idle
;
4133 * find_process_by_pid - find a process with a matching PID value.
4134 * @pid: the pid in question.
4136 static inline struct task_struct
*find_process_by_pid(pid_t pid
)
4138 return pid
? find_task_by_pid(pid
) : current
;
4141 /* Actually do priority change: must hold rq lock. */
4143 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4145 BUG_ON(p
->se
.on_rq
);
4148 switch (p
->policy
) {
4152 p
->sched_class
= &fair_sched_class
;
4156 p
->sched_class
= &rt_sched_class
;
4160 p
->rt_priority
= prio
;
4161 p
->normal_prio
= normal_prio(p
);
4162 /* we are holding p->pi_lock already */
4163 p
->prio
= rt_mutex_getprio(p
);
4168 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4169 * @p: the task in question.
4170 * @policy: new policy.
4171 * @param: structure containing the new RT priority.
4173 * NOTE that the task may be already dead.
4175 int sched_setscheduler(struct task_struct
*p
, int policy
,
4176 struct sched_param
*param
)
4178 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4179 unsigned long flags
;
4182 /* may grab non-irq protected spin_locks */
4183 BUG_ON(in_interrupt());
4185 /* double check policy once rq lock held */
4187 policy
= oldpolicy
= p
->policy
;
4188 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4189 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4190 policy
!= SCHED_IDLE
)
4193 * Valid priorities for SCHED_FIFO and SCHED_RR are
4194 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4195 * SCHED_BATCH and SCHED_IDLE is 0.
4197 if (param
->sched_priority
< 0 ||
4198 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4199 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4201 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4205 * Allow unprivileged RT tasks to decrease priority:
4207 if (!capable(CAP_SYS_NICE
)) {
4208 if (rt_policy(policy
)) {
4209 unsigned long rlim_rtprio
;
4211 if (!lock_task_sighand(p
, &flags
))
4213 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4214 unlock_task_sighand(p
, &flags
);
4216 /* can't set/change the rt policy */
4217 if (policy
!= p
->policy
&& !rlim_rtprio
)
4220 /* can't increase priority */
4221 if (param
->sched_priority
> p
->rt_priority
&&
4222 param
->sched_priority
> rlim_rtprio
)
4226 * Like positive nice levels, dont allow tasks to
4227 * move out of SCHED_IDLE either:
4229 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4232 /* can't change other user's priorities */
4233 if ((current
->euid
!= p
->euid
) &&
4234 (current
->euid
!= p
->uid
))
4238 retval
= security_task_setscheduler(p
, policy
, param
);
4242 * make sure no PI-waiters arrive (or leave) while we are
4243 * changing the priority of the task:
4245 spin_lock_irqsave(&p
->pi_lock
, flags
);
4247 * To be able to change p->policy safely, the apropriate
4248 * runqueue lock must be held.
4250 rq
= __task_rq_lock(p
);
4251 /* recheck policy now with rq lock held */
4252 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4253 policy
= oldpolicy
= -1;
4254 __task_rq_unlock(rq
);
4255 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4258 update_rq_clock(rq
);
4259 on_rq
= p
->se
.on_rq
;
4260 running
= task_running(rq
, p
);
4262 deactivate_task(rq
, p
, 0);
4264 p
->sched_class
->put_prev_task(rq
, p
);
4268 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4272 p
->sched_class
->set_curr_task(rq
);
4273 activate_task(rq
, p
, 0);
4275 * Reschedule if we are currently running on this runqueue and
4276 * our priority decreased, or if we are not currently running on
4277 * this runqueue and our priority is higher than the current's
4280 if (p
->prio
> oldprio
)
4281 resched_task(rq
->curr
);
4283 check_preempt_curr(rq
, p
);
4286 __task_rq_unlock(rq
);
4287 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4289 rt_mutex_adjust_pi(p
);
4293 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4296 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4298 struct sched_param lparam
;
4299 struct task_struct
*p
;
4302 if (!param
|| pid
< 0)
4304 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4309 p
= find_process_by_pid(pid
);
4311 retval
= sched_setscheduler(p
, policy
, &lparam
);
4318 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4319 * @pid: the pid in question.
4320 * @policy: new policy.
4321 * @param: structure containing the new RT priority.
4323 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
4324 struct sched_param __user
*param
)
4326 /* negative values for policy are not valid */
4330 return do_sched_setscheduler(pid
, policy
, param
);
4334 * sys_sched_setparam - set/change the RT priority of a thread
4335 * @pid: the pid in question.
4336 * @param: structure containing the new RT priority.
4338 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4340 return do_sched_setscheduler(pid
, -1, param
);
4344 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4345 * @pid: the pid in question.
4347 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4349 struct task_struct
*p
;
4350 int retval
= -EINVAL
;
4356 read_lock(&tasklist_lock
);
4357 p
= find_process_by_pid(pid
);
4359 retval
= security_task_getscheduler(p
);
4363 read_unlock(&tasklist_lock
);
4370 * sys_sched_getscheduler - get the RT priority of a thread
4371 * @pid: the pid in question.
4372 * @param: structure containing the RT priority.
4374 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4376 struct sched_param lp
;
4377 struct task_struct
*p
;
4378 int retval
= -EINVAL
;
4380 if (!param
|| pid
< 0)
4383 read_lock(&tasklist_lock
);
4384 p
= find_process_by_pid(pid
);
4389 retval
= security_task_getscheduler(p
);
4393 lp
.sched_priority
= p
->rt_priority
;
4394 read_unlock(&tasklist_lock
);
4397 * This one might sleep, we cannot do it with a spinlock held ...
4399 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4405 read_unlock(&tasklist_lock
);
4409 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4411 cpumask_t cpus_allowed
;
4412 struct task_struct
*p
;
4415 mutex_lock(&sched_hotcpu_mutex
);
4416 read_lock(&tasklist_lock
);
4418 p
= find_process_by_pid(pid
);
4420 read_unlock(&tasklist_lock
);
4421 mutex_unlock(&sched_hotcpu_mutex
);
4426 * It is not safe to call set_cpus_allowed with the
4427 * tasklist_lock held. We will bump the task_struct's
4428 * usage count and then drop tasklist_lock.
4431 read_unlock(&tasklist_lock
);
4434 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4435 !capable(CAP_SYS_NICE
))
4438 retval
= security_task_setscheduler(p
, 0, NULL
);
4442 cpus_allowed
= cpuset_cpus_allowed(p
);
4443 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4444 retval
= set_cpus_allowed(p
, new_mask
);
4448 mutex_unlock(&sched_hotcpu_mutex
);
4452 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4453 cpumask_t
*new_mask
)
4455 if (len
< sizeof(cpumask_t
)) {
4456 memset(new_mask
, 0, sizeof(cpumask_t
));
4457 } else if (len
> sizeof(cpumask_t
)) {
4458 len
= sizeof(cpumask_t
);
4460 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4464 * sys_sched_setaffinity - set the cpu affinity of a process
4465 * @pid: pid of the process
4466 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4467 * @user_mask_ptr: user-space pointer to the new cpu mask
4469 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4470 unsigned long __user
*user_mask_ptr
)
4475 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4479 return sched_setaffinity(pid
, new_mask
);
4483 * Represents all cpu's present in the system
4484 * In systems capable of hotplug, this map could dynamically grow
4485 * as new cpu's are detected in the system via any platform specific
4486 * method, such as ACPI for e.g.
4489 cpumask_t cpu_present_map __read_mostly
;
4490 EXPORT_SYMBOL(cpu_present_map
);
4493 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4494 EXPORT_SYMBOL(cpu_online_map
);
4496 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4497 EXPORT_SYMBOL(cpu_possible_map
);
4500 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4502 struct task_struct
*p
;
4505 mutex_lock(&sched_hotcpu_mutex
);
4506 read_lock(&tasklist_lock
);
4509 p
= find_process_by_pid(pid
);
4513 retval
= security_task_getscheduler(p
);
4517 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4520 read_unlock(&tasklist_lock
);
4521 mutex_unlock(&sched_hotcpu_mutex
);
4527 * sys_sched_getaffinity - get the cpu affinity of a process
4528 * @pid: pid of the process
4529 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4530 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4532 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4533 unsigned long __user
*user_mask_ptr
)
4538 if (len
< sizeof(cpumask_t
))
4541 ret
= sched_getaffinity(pid
, &mask
);
4545 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4548 return sizeof(cpumask_t
);
4552 * sys_sched_yield - yield the current processor to other threads.
4554 * This function yields the current CPU to other tasks. If there are no
4555 * other threads running on this CPU then this function will return.
4557 asmlinkage
long sys_sched_yield(void)
4559 struct rq
*rq
= this_rq_lock();
4561 schedstat_inc(rq
, yld_cnt
);
4562 current
->sched_class
->yield_task(rq
);
4565 * Since we are going to call schedule() anyway, there's
4566 * no need to preempt or enable interrupts:
4568 __release(rq
->lock
);
4569 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4570 _raw_spin_unlock(&rq
->lock
);
4571 preempt_enable_no_resched();
4578 static void __cond_resched(void)
4580 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4581 __might_sleep(__FILE__
, __LINE__
);
4584 * The BKS might be reacquired before we have dropped
4585 * PREEMPT_ACTIVE, which could trigger a second
4586 * cond_resched() call.
4589 add_preempt_count(PREEMPT_ACTIVE
);
4591 sub_preempt_count(PREEMPT_ACTIVE
);
4592 } while (need_resched());
4595 int __sched
cond_resched(void)
4597 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4598 system_state
== SYSTEM_RUNNING
) {
4604 EXPORT_SYMBOL(cond_resched
);
4607 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4608 * call schedule, and on return reacquire the lock.
4610 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4611 * operations here to prevent schedule() from being called twice (once via
4612 * spin_unlock(), once by hand).
4614 int cond_resched_lock(spinlock_t
*lock
)
4618 if (need_lockbreak(lock
)) {
4624 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4625 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4626 _raw_spin_unlock(lock
);
4627 preempt_enable_no_resched();
4634 EXPORT_SYMBOL(cond_resched_lock
);
4636 int __sched
cond_resched_softirq(void)
4638 BUG_ON(!in_softirq());
4640 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4648 EXPORT_SYMBOL(cond_resched_softirq
);
4651 * yield - yield the current processor to other threads.
4653 * This is a shortcut for kernel-space yielding - it marks the
4654 * thread runnable and calls sys_sched_yield().
4656 void __sched
yield(void)
4658 set_current_state(TASK_RUNNING
);
4661 EXPORT_SYMBOL(yield
);
4664 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4665 * that process accounting knows that this is a task in IO wait state.
4667 * But don't do that if it is a deliberate, throttling IO wait (this task
4668 * has set its backing_dev_info: the queue against which it should throttle)
4670 void __sched
io_schedule(void)
4672 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4674 delayacct_blkio_start();
4675 atomic_inc(&rq
->nr_iowait
);
4677 atomic_dec(&rq
->nr_iowait
);
4678 delayacct_blkio_end();
4680 EXPORT_SYMBOL(io_schedule
);
4682 long __sched
io_schedule_timeout(long timeout
)
4684 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4687 delayacct_blkio_start();
4688 atomic_inc(&rq
->nr_iowait
);
4689 ret
= schedule_timeout(timeout
);
4690 atomic_dec(&rq
->nr_iowait
);
4691 delayacct_blkio_end();
4696 * sys_sched_get_priority_max - return maximum RT priority.
4697 * @policy: scheduling class.
4699 * this syscall returns the maximum rt_priority that can be used
4700 * by a given scheduling class.
4702 asmlinkage
long sys_sched_get_priority_max(int policy
)
4709 ret
= MAX_USER_RT_PRIO
-1;
4721 * sys_sched_get_priority_min - return minimum RT priority.
4722 * @policy: scheduling class.
4724 * this syscall returns the minimum rt_priority that can be used
4725 * by a given scheduling class.
4727 asmlinkage
long sys_sched_get_priority_min(int policy
)
4745 * sys_sched_rr_get_interval - return the default timeslice of a process.
4746 * @pid: pid of the process.
4747 * @interval: userspace pointer to the timeslice value.
4749 * this syscall writes the default timeslice value of a given process
4750 * into the user-space timespec buffer. A value of '0' means infinity.
4753 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4755 struct task_struct
*p
;
4756 int retval
= -EINVAL
;
4763 read_lock(&tasklist_lock
);
4764 p
= find_process_by_pid(pid
);
4768 retval
= security_task_getscheduler(p
);
4772 jiffies_to_timespec(p
->policy
== SCHED_FIFO
?
4773 0 : static_prio_timeslice(p
->static_prio
), &t
);
4774 read_unlock(&tasklist_lock
);
4775 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4779 read_unlock(&tasklist_lock
);
4783 static const char stat_nam
[] = "RSDTtZX";
4785 static void show_task(struct task_struct
*p
)
4787 unsigned long free
= 0;
4790 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4791 printk("%-13.13s %c", p
->comm
,
4792 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4793 #if BITS_PER_LONG == 32
4794 if (state
== TASK_RUNNING
)
4795 printk(" running ");
4797 printk(" %08lx ", thread_saved_pc(p
));
4799 if (state
== TASK_RUNNING
)
4800 printk(" running task ");
4802 printk(" %016lx ", thread_saved_pc(p
));
4804 #ifdef CONFIG_DEBUG_STACK_USAGE
4806 unsigned long *n
= end_of_stack(p
);
4809 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4812 printk("%5lu %5d %6d\n", free
, p
->pid
, p
->parent
->pid
);
4814 if (state
!= TASK_RUNNING
)
4815 show_stack(p
, NULL
);
4818 void show_state_filter(unsigned long state_filter
)
4820 struct task_struct
*g
, *p
;
4822 #if BITS_PER_LONG == 32
4824 " task PC stack pid father\n");
4827 " task PC stack pid father\n");
4829 read_lock(&tasklist_lock
);
4830 do_each_thread(g
, p
) {
4832 * reset the NMI-timeout, listing all files on a slow
4833 * console might take alot of time:
4835 touch_nmi_watchdog();
4836 if (!state_filter
|| (p
->state
& state_filter
))
4838 } while_each_thread(g
, p
);
4840 touch_all_softlockup_watchdogs();
4842 #ifdef CONFIG_SCHED_DEBUG
4843 sysrq_sched_debug_show();
4845 read_unlock(&tasklist_lock
);
4847 * Only show locks if all tasks are dumped:
4849 if (state_filter
== -1)
4850 debug_show_all_locks();
4853 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4855 idle
->sched_class
= &idle_sched_class
;
4859 * init_idle - set up an idle thread for a given CPU
4860 * @idle: task in question
4861 * @cpu: cpu the idle task belongs to
4863 * NOTE: this function does not set the idle thread's NEED_RESCHED
4864 * flag, to make booting more robust.
4866 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4868 struct rq
*rq
= cpu_rq(cpu
);
4869 unsigned long flags
;
4872 idle
->se
.exec_start
= sched_clock();
4874 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4875 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4876 __set_task_cpu(idle
, cpu
);
4878 spin_lock_irqsave(&rq
->lock
, flags
);
4879 rq
->curr
= rq
->idle
= idle
;
4880 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4883 spin_unlock_irqrestore(&rq
->lock
, flags
);
4885 /* Set the preempt count _outside_ the spinlocks! */
4886 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4887 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4889 task_thread_info(idle
)->preempt_count
= 0;
4892 * The idle tasks have their own, simple scheduling class:
4894 idle
->sched_class
= &idle_sched_class
;
4898 * In a system that switches off the HZ timer nohz_cpu_mask
4899 * indicates which cpus entered this state. This is used
4900 * in the rcu update to wait only for active cpus. For system
4901 * which do not switch off the HZ timer nohz_cpu_mask should
4902 * always be CPU_MASK_NONE.
4904 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4908 * This is how migration works:
4910 * 1) we queue a struct migration_req structure in the source CPU's
4911 * runqueue and wake up that CPU's migration thread.
4912 * 2) we down() the locked semaphore => thread blocks.
4913 * 3) migration thread wakes up (implicitly it forces the migrated
4914 * thread off the CPU)
4915 * 4) it gets the migration request and checks whether the migrated
4916 * task is still in the wrong runqueue.
4917 * 5) if it's in the wrong runqueue then the migration thread removes
4918 * it and puts it into the right queue.
4919 * 6) migration thread up()s the semaphore.
4920 * 7) we wake up and the migration is done.
4924 * Change a given task's CPU affinity. Migrate the thread to a
4925 * proper CPU and schedule it away if the CPU it's executing on
4926 * is removed from the allowed bitmask.
4928 * NOTE: the caller must have a valid reference to the task, the
4929 * task must not exit() & deallocate itself prematurely. The
4930 * call is not atomic; no spinlocks may be held.
4932 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
4934 struct migration_req req
;
4935 unsigned long flags
;
4939 rq
= task_rq_lock(p
, &flags
);
4940 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4945 p
->cpus_allowed
= new_mask
;
4946 /* Can the task run on the task's current CPU? If so, we're done */
4947 if (cpu_isset(task_cpu(p
), new_mask
))
4950 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4951 /* Need help from migration thread: drop lock and wait. */
4952 task_rq_unlock(rq
, &flags
);
4953 wake_up_process(rq
->migration_thread
);
4954 wait_for_completion(&req
.done
);
4955 tlb_migrate_finish(p
->mm
);
4959 task_rq_unlock(rq
, &flags
);
4963 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4966 * Move (not current) task off this cpu, onto dest cpu. We're doing
4967 * this because either it can't run here any more (set_cpus_allowed()
4968 * away from this CPU, or CPU going down), or because we're
4969 * attempting to rebalance this task on exec (sched_exec).
4971 * So we race with normal scheduler movements, but that's OK, as long
4972 * as the task is no longer on this CPU.
4974 * Returns non-zero if task was successfully migrated.
4976 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4978 struct rq
*rq_dest
, *rq_src
;
4981 if (unlikely(cpu_is_offline(dest_cpu
)))
4984 rq_src
= cpu_rq(src_cpu
);
4985 rq_dest
= cpu_rq(dest_cpu
);
4987 double_rq_lock(rq_src
, rq_dest
);
4988 /* Already moved. */
4989 if (task_cpu(p
) != src_cpu
)
4991 /* Affinity changed (again). */
4992 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4995 on_rq
= p
->se
.on_rq
;
4997 deactivate_task(rq_src
, p
, 0);
4999 set_task_cpu(p
, dest_cpu
);
5001 activate_task(rq_dest
, p
, 0);
5002 check_preempt_curr(rq_dest
, p
);
5006 double_rq_unlock(rq_src
, rq_dest
);
5011 * migration_thread - this is a highprio system thread that performs
5012 * thread migration by bumping thread off CPU then 'pushing' onto
5015 static int migration_thread(void *data
)
5017 int cpu
= (long)data
;
5021 BUG_ON(rq
->migration_thread
!= current
);
5023 set_current_state(TASK_INTERRUPTIBLE
);
5024 while (!kthread_should_stop()) {
5025 struct migration_req
*req
;
5026 struct list_head
*head
;
5028 spin_lock_irq(&rq
->lock
);
5030 if (cpu_is_offline(cpu
)) {
5031 spin_unlock_irq(&rq
->lock
);
5035 if (rq
->active_balance
) {
5036 active_load_balance(rq
, cpu
);
5037 rq
->active_balance
= 0;
5040 head
= &rq
->migration_queue
;
5042 if (list_empty(head
)) {
5043 spin_unlock_irq(&rq
->lock
);
5045 set_current_state(TASK_INTERRUPTIBLE
);
5048 req
= list_entry(head
->next
, struct migration_req
, list
);
5049 list_del_init(head
->next
);
5051 spin_unlock(&rq
->lock
);
5052 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5055 complete(&req
->done
);
5057 __set_current_state(TASK_RUNNING
);
5061 /* Wait for kthread_stop */
5062 set_current_state(TASK_INTERRUPTIBLE
);
5063 while (!kthread_should_stop()) {
5065 set_current_state(TASK_INTERRUPTIBLE
);
5067 __set_current_state(TASK_RUNNING
);
5071 #ifdef CONFIG_HOTPLUG_CPU
5073 * Figure out where task on dead CPU should go, use force if neccessary.
5074 * NOTE: interrupts should be disabled by the caller
5076 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5078 unsigned long flags
;
5085 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5086 cpus_and(mask
, mask
, p
->cpus_allowed
);
5087 dest_cpu
= any_online_cpu(mask
);
5089 /* On any allowed CPU? */
5090 if (dest_cpu
== NR_CPUS
)
5091 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5093 /* No more Mr. Nice Guy. */
5094 if (dest_cpu
== NR_CPUS
) {
5095 rq
= task_rq_lock(p
, &flags
);
5096 cpus_setall(p
->cpus_allowed
);
5097 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5098 task_rq_unlock(rq
, &flags
);
5101 * Don't tell them about moving exiting tasks or
5102 * kernel threads (both mm NULL), since they never
5105 if (p
->mm
&& printk_ratelimit())
5106 printk(KERN_INFO
"process %d (%s) no "
5107 "longer affine to cpu%d\n",
5108 p
->pid
, p
->comm
, dead_cpu
);
5110 if (!__migrate_task(p
, dead_cpu
, dest_cpu
))
5115 * While a dead CPU has no uninterruptible tasks queued at this point,
5116 * it might still have a nonzero ->nr_uninterruptible counter, because
5117 * for performance reasons the counter is not stricly tracking tasks to
5118 * their home CPUs. So we just add the counter to another CPU's counter,
5119 * to keep the global sum constant after CPU-down:
5121 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5123 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5124 unsigned long flags
;
5126 local_irq_save(flags
);
5127 double_rq_lock(rq_src
, rq_dest
);
5128 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5129 rq_src
->nr_uninterruptible
= 0;
5130 double_rq_unlock(rq_src
, rq_dest
);
5131 local_irq_restore(flags
);
5134 /* Run through task list and migrate tasks from the dead cpu. */
5135 static void migrate_live_tasks(int src_cpu
)
5137 struct task_struct
*p
, *t
;
5139 write_lock_irq(&tasklist_lock
);
5141 do_each_thread(t
, p
) {
5145 if (task_cpu(p
) == src_cpu
)
5146 move_task_off_dead_cpu(src_cpu
, p
);
5147 } while_each_thread(t
, p
);
5149 write_unlock_irq(&tasklist_lock
);
5153 * Schedules idle task to be the next runnable task on current CPU.
5154 * It does so by boosting its priority to highest possible and adding it to
5155 * the _front_ of the runqueue. Used by CPU offline code.
5157 void sched_idle_next(void)
5159 int this_cpu
= smp_processor_id();
5160 struct rq
*rq
= cpu_rq(this_cpu
);
5161 struct task_struct
*p
= rq
->idle
;
5162 unsigned long flags
;
5164 /* cpu has to be offline */
5165 BUG_ON(cpu_online(this_cpu
));
5168 * Strictly not necessary since rest of the CPUs are stopped by now
5169 * and interrupts disabled on the current cpu.
5171 spin_lock_irqsave(&rq
->lock
, flags
);
5173 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5175 /* Add idle task to the _front_ of its priority queue: */
5176 activate_idle_task(p
, rq
);
5178 spin_unlock_irqrestore(&rq
->lock
, flags
);
5182 * Ensures that the idle task is using init_mm right before its cpu goes
5185 void idle_task_exit(void)
5187 struct mm_struct
*mm
= current
->active_mm
;
5189 BUG_ON(cpu_online(smp_processor_id()));
5192 switch_mm(mm
, &init_mm
, current
);
5196 /* called under rq->lock with disabled interrupts */
5197 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5199 struct rq
*rq
= cpu_rq(dead_cpu
);
5201 /* Must be exiting, otherwise would be on tasklist. */
5202 BUG_ON(p
->exit_state
!= EXIT_ZOMBIE
&& p
->exit_state
!= EXIT_DEAD
);
5204 /* Cannot have done final schedule yet: would have vanished. */
5205 BUG_ON(p
->state
== TASK_DEAD
);
5210 * Drop lock around migration; if someone else moves it,
5211 * that's OK. No task can be added to this CPU, so iteration is
5213 * NOTE: interrupts should be left disabled --dev@
5215 spin_unlock(&rq
->lock
);
5216 move_task_off_dead_cpu(dead_cpu
, p
);
5217 spin_lock(&rq
->lock
);
5222 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5223 static void migrate_dead_tasks(unsigned int dead_cpu
)
5225 struct rq
*rq
= cpu_rq(dead_cpu
);
5226 struct task_struct
*next
;
5229 if (!rq
->nr_running
)
5231 update_rq_clock(rq
);
5232 next
= pick_next_task(rq
, rq
->curr
);
5235 migrate_dead(dead_cpu
, next
);
5239 #endif /* CONFIG_HOTPLUG_CPU */
5241 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5243 static struct ctl_table sd_ctl_dir
[] = {
5245 .procname
= "sched_domain",
5251 static struct ctl_table sd_ctl_root
[] = {
5253 .ctl_name
= CTL_KERN
,
5254 .procname
= "kernel",
5256 .child
= sd_ctl_dir
,
5261 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5263 struct ctl_table
*entry
=
5264 kmalloc(n
* sizeof(struct ctl_table
), GFP_KERNEL
);
5267 memset(entry
, 0, n
* sizeof(struct ctl_table
));
5273 set_table_entry(struct ctl_table
*entry
,
5274 const char *procname
, void *data
, int maxlen
,
5275 mode_t mode
, proc_handler
*proc_handler
)
5277 entry
->procname
= procname
;
5279 entry
->maxlen
= maxlen
;
5281 entry
->proc_handler
= proc_handler
;
5284 static struct ctl_table
*
5285 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5287 struct ctl_table
*table
= sd_alloc_ctl_entry(14);
5289 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5290 sizeof(long), 0644, proc_doulongvec_minmax
);
5291 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5292 sizeof(long), 0644, proc_doulongvec_minmax
);
5293 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5294 sizeof(int), 0644, proc_dointvec_minmax
);
5295 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5296 sizeof(int), 0644, proc_dointvec_minmax
);
5297 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5298 sizeof(int), 0644, proc_dointvec_minmax
);
5299 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5300 sizeof(int), 0644, proc_dointvec_minmax
);
5301 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5302 sizeof(int), 0644, proc_dointvec_minmax
);
5303 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5304 sizeof(int), 0644, proc_dointvec_minmax
);
5305 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5306 sizeof(int), 0644, proc_dointvec_minmax
);
5307 set_table_entry(&table
[10], "cache_nice_tries",
5308 &sd
->cache_nice_tries
,
5309 sizeof(int), 0644, proc_dointvec_minmax
);
5310 set_table_entry(&table
[12], "flags", &sd
->flags
,
5311 sizeof(int), 0644, proc_dointvec_minmax
);
5316 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5318 struct ctl_table
*entry
, *table
;
5319 struct sched_domain
*sd
;
5320 int domain_num
= 0, i
;
5323 for_each_domain(cpu
, sd
)
5325 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5328 for_each_domain(cpu
, sd
) {
5329 snprintf(buf
, 32, "domain%d", i
);
5330 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5332 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5339 static struct ctl_table_header
*sd_sysctl_header
;
5340 static void init_sched_domain_sysctl(void)
5342 int i
, cpu_num
= num_online_cpus();
5343 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5346 sd_ctl_dir
[0].child
= entry
;
5348 for (i
= 0; i
< cpu_num
; i
++, entry
++) {
5349 snprintf(buf
, 32, "cpu%d", i
);
5350 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5352 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5354 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5357 static void init_sched_domain_sysctl(void)
5363 * migration_call - callback that gets triggered when a CPU is added.
5364 * Here we can start up the necessary migration thread for the new CPU.
5366 static int __cpuinit
5367 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5369 struct task_struct
*p
;
5370 int cpu
= (long)hcpu
;
5371 unsigned long flags
;
5375 case CPU_LOCK_ACQUIRE
:
5376 mutex_lock(&sched_hotcpu_mutex
);
5379 case CPU_UP_PREPARE
:
5380 case CPU_UP_PREPARE_FROZEN
:
5381 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5384 kthread_bind(p
, cpu
);
5385 /* Must be high prio: stop_machine expects to yield to it. */
5386 rq
= task_rq_lock(p
, &flags
);
5387 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5388 task_rq_unlock(rq
, &flags
);
5389 cpu_rq(cpu
)->migration_thread
= p
;
5393 case CPU_ONLINE_FROZEN
:
5394 /* Strictly unneccessary, as first user will wake it. */
5395 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5398 #ifdef CONFIG_HOTPLUG_CPU
5399 case CPU_UP_CANCELED
:
5400 case CPU_UP_CANCELED_FROZEN
:
5401 if (!cpu_rq(cpu
)->migration_thread
)
5403 /* Unbind it from offline cpu so it can run. Fall thru. */
5404 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5405 any_online_cpu(cpu_online_map
));
5406 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5407 cpu_rq(cpu
)->migration_thread
= NULL
;
5411 case CPU_DEAD_FROZEN
:
5412 migrate_live_tasks(cpu
);
5414 kthread_stop(rq
->migration_thread
);
5415 rq
->migration_thread
= NULL
;
5416 /* Idle task back to normal (off runqueue, low prio) */
5417 rq
= task_rq_lock(rq
->idle
, &flags
);
5418 update_rq_clock(rq
);
5419 deactivate_task(rq
, rq
->idle
, 0);
5420 rq
->idle
->static_prio
= MAX_PRIO
;
5421 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5422 rq
->idle
->sched_class
= &idle_sched_class
;
5423 migrate_dead_tasks(cpu
);
5424 task_rq_unlock(rq
, &flags
);
5425 migrate_nr_uninterruptible(rq
);
5426 BUG_ON(rq
->nr_running
!= 0);
5428 /* No need to migrate the tasks: it was best-effort if
5429 * they didn't take sched_hotcpu_mutex. Just wake up
5430 * the requestors. */
5431 spin_lock_irq(&rq
->lock
);
5432 while (!list_empty(&rq
->migration_queue
)) {
5433 struct migration_req
*req
;
5435 req
= list_entry(rq
->migration_queue
.next
,
5436 struct migration_req
, list
);
5437 list_del_init(&req
->list
);
5438 complete(&req
->done
);
5440 spin_unlock_irq(&rq
->lock
);
5443 case CPU_LOCK_RELEASE
:
5444 mutex_unlock(&sched_hotcpu_mutex
);
5450 /* Register at highest priority so that task migration (migrate_all_tasks)
5451 * happens before everything else.
5453 static struct notifier_block __cpuinitdata migration_notifier
= {
5454 .notifier_call
= migration_call
,
5458 int __init
migration_init(void)
5460 void *cpu
= (void *)(long)smp_processor_id();
5463 /* Start one for the boot CPU: */
5464 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5465 BUG_ON(err
== NOTIFY_BAD
);
5466 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5467 register_cpu_notifier(&migration_notifier
);
5475 /* Number of possible processor ids */
5476 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5477 EXPORT_SYMBOL(nr_cpu_ids
);
5479 #undef SCHED_DOMAIN_DEBUG
5480 #ifdef SCHED_DOMAIN_DEBUG
5481 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5486 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5490 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5495 struct sched_group
*group
= sd
->groups
;
5496 cpumask_t groupmask
;
5498 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5499 cpus_clear(groupmask
);
5502 for (i
= 0; i
< level
+ 1; i
++)
5504 printk("domain %d: ", level
);
5506 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5507 printk("does not load-balance\n");
5509 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5514 printk("span %s\n", str
);
5516 if (!cpu_isset(cpu
, sd
->span
))
5517 printk(KERN_ERR
"ERROR: domain->span does not contain "
5519 if (!cpu_isset(cpu
, group
->cpumask
))
5520 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5524 for (i
= 0; i
< level
+ 2; i
++)
5530 printk(KERN_ERR
"ERROR: group is NULL\n");
5534 if (!group
->__cpu_power
) {
5536 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5540 if (!cpus_weight(group
->cpumask
)) {
5542 printk(KERN_ERR
"ERROR: empty group\n");
5545 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5547 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5550 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5552 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5555 group
= group
->next
;
5556 } while (group
!= sd
->groups
);
5559 if (!cpus_equal(sd
->span
, groupmask
))
5560 printk(KERN_ERR
"ERROR: groups don't span "
5568 if (!cpus_subset(groupmask
, sd
->span
))
5569 printk(KERN_ERR
"ERROR: parent span is not a superset "
5570 "of domain->span\n");
5575 # define sched_domain_debug(sd, cpu) do { } while (0)
5578 static int sd_degenerate(struct sched_domain
*sd
)
5580 if (cpus_weight(sd
->span
) == 1)
5583 /* Following flags need at least 2 groups */
5584 if (sd
->flags
& (SD_LOAD_BALANCE
|
5585 SD_BALANCE_NEWIDLE
|
5589 SD_SHARE_PKG_RESOURCES
)) {
5590 if (sd
->groups
!= sd
->groups
->next
)
5594 /* Following flags don't use groups */
5595 if (sd
->flags
& (SD_WAKE_IDLE
|
5604 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5606 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5608 if (sd_degenerate(parent
))
5611 if (!cpus_equal(sd
->span
, parent
->span
))
5614 /* Does parent contain flags not in child? */
5615 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5616 if (cflags
& SD_WAKE_AFFINE
)
5617 pflags
&= ~SD_WAKE_BALANCE
;
5618 /* Flags needing groups don't count if only 1 group in parent */
5619 if (parent
->groups
== parent
->groups
->next
) {
5620 pflags
&= ~(SD_LOAD_BALANCE
|
5621 SD_BALANCE_NEWIDLE
|
5625 SD_SHARE_PKG_RESOURCES
);
5627 if (~cflags
& pflags
)
5634 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5635 * hold the hotplug lock.
5637 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5639 struct rq
*rq
= cpu_rq(cpu
);
5640 struct sched_domain
*tmp
;
5642 /* Remove the sched domains which do not contribute to scheduling. */
5643 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5644 struct sched_domain
*parent
= tmp
->parent
;
5647 if (sd_parent_degenerate(tmp
, parent
)) {
5648 tmp
->parent
= parent
->parent
;
5650 parent
->parent
->child
= tmp
;
5654 if (sd
&& sd_degenerate(sd
)) {
5660 sched_domain_debug(sd
, cpu
);
5662 rcu_assign_pointer(rq
->sd
, sd
);
5665 /* cpus with isolated domains */
5666 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5668 /* Setup the mask of cpus configured for isolated domains */
5669 static int __init
isolated_cpu_setup(char *str
)
5671 int ints
[NR_CPUS
], i
;
5673 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5674 cpus_clear(cpu_isolated_map
);
5675 for (i
= 1; i
<= ints
[0]; i
++)
5676 if (ints
[i
] < NR_CPUS
)
5677 cpu_set(ints
[i
], cpu_isolated_map
);
5681 __setup ("isolcpus=", isolated_cpu_setup
);
5684 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5685 * to a function which identifies what group(along with sched group) a CPU
5686 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5687 * (due to the fact that we keep track of groups covered with a cpumask_t).
5689 * init_sched_build_groups will build a circular linked list of the groups
5690 * covered by the given span, and will set each group's ->cpumask correctly,
5691 * and ->cpu_power to 0.
5694 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5695 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5696 struct sched_group
**sg
))
5698 struct sched_group
*first
= NULL
, *last
= NULL
;
5699 cpumask_t covered
= CPU_MASK_NONE
;
5702 for_each_cpu_mask(i
, span
) {
5703 struct sched_group
*sg
;
5704 int group
= group_fn(i
, cpu_map
, &sg
);
5707 if (cpu_isset(i
, covered
))
5710 sg
->cpumask
= CPU_MASK_NONE
;
5711 sg
->__cpu_power
= 0;
5713 for_each_cpu_mask(j
, span
) {
5714 if (group_fn(j
, cpu_map
, NULL
) != group
)
5717 cpu_set(j
, covered
);
5718 cpu_set(j
, sg
->cpumask
);
5729 #define SD_NODES_PER_DOMAIN 16
5734 * find_next_best_node - find the next node to include in a sched_domain
5735 * @node: node whose sched_domain we're building
5736 * @used_nodes: nodes already in the sched_domain
5738 * Find the next node to include in a given scheduling domain. Simply
5739 * finds the closest node not already in the @used_nodes map.
5741 * Should use nodemask_t.
5743 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5745 int i
, n
, val
, min_val
, best_node
= 0;
5749 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5750 /* Start at @node */
5751 n
= (node
+ i
) % MAX_NUMNODES
;
5753 if (!nr_cpus_node(n
))
5756 /* Skip already used nodes */
5757 if (test_bit(n
, used_nodes
))
5760 /* Simple min distance search */
5761 val
= node_distance(node
, n
);
5763 if (val
< min_val
) {
5769 set_bit(best_node
, used_nodes
);
5774 * sched_domain_node_span - get a cpumask for a node's sched_domain
5775 * @node: node whose cpumask we're constructing
5776 * @size: number of nodes to include in this span
5778 * Given a node, construct a good cpumask for its sched_domain to span. It
5779 * should be one that prevents unnecessary balancing, but also spreads tasks
5782 static cpumask_t
sched_domain_node_span(int node
)
5784 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5785 cpumask_t span
, nodemask
;
5789 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5791 nodemask
= node_to_cpumask(node
);
5792 cpus_or(span
, span
, nodemask
);
5793 set_bit(node
, used_nodes
);
5795 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5796 int next_node
= find_next_best_node(node
, used_nodes
);
5798 nodemask
= node_to_cpumask(next_node
);
5799 cpus_or(span
, span
, nodemask
);
5806 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
5809 * SMT sched-domains:
5811 #ifdef CONFIG_SCHED_SMT
5812 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5813 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
5815 static int cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
,
5816 struct sched_group
**sg
)
5819 *sg
= &per_cpu(sched_group_cpus
, cpu
);
5825 * multi-core sched-domains:
5827 #ifdef CONFIG_SCHED_MC
5828 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
5829 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
5832 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5833 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5834 struct sched_group
**sg
)
5837 cpumask_t mask
= cpu_sibling_map
[cpu
];
5838 cpus_and(mask
, mask
, *cpu_map
);
5839 group
= first_cpu(mask
);
5841 *sg
= &per_cpu(sched_group_core
, group
);
5844 #elif defined(CONFIG_SCHED_MC)
5845 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5846 struct sched_group
**sg
)
5849 *sg
= &per_cpu(sched_group_core
, cpu
);
5854 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5855 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
5857 static int cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
,
5858 struct sched_group
**sg
)
5861 #ifdef CONFIG_SCHED_MC
5862 cpumask_t mask
= cpu_coregroup_map(cpu
);
5863 cpus_and(mask
, mask
, *cpu_map
);
5864 group
= first_cpu(mask
);
5865 #elif defined(CONFIG_SCHED_SMT)
5866 cpumask_t mask
= cpu_sibling_map
[cpu
];
5867 cpus_and(mask
, mask
, *cpu_map
);
5868 group
= first_cpu(mask
);
5873 *sg
= &per_cpu(sched_group_phys
, group
);
5879 * The init_sched_build_groups can't handle what we want to do with node
5880 * groups, so roll our own. Now each node has its own list of groups which
5881 * gets dynamically allocated.
5883 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5884 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5886 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5887 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
5889 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
5890 struct sched_group
**sg
)
5892 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
5895 cpus_and(nodemask
, nodemask
, *cpu_map
);
5896 group
= first_cpu(nodemask
);
5899 *sg
= &per_cpu(sched_group_allnodes
, group
);
5903 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
5905 struct sched_group
*sg
= group_head
;
5911 for_each_cpu_mask(j
, sg
->cpumask
) {
5912 struct sched_domain
*sd
;
5914 sd
= &per_cpu(phys_domains
, j
);
5915 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5917 * Only add "power" once for each
5923 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
5926 if (sg
!= group_head
)
5932 /* Free memory allocated for various sched_group structures */
5933 static void free_sched_groups(const cpumask_t
*cpu_map
)
5937 for_each_cpu_mask(cpu
, *cpu_map
) {
5938 struct sched_group
**sched_group_nodes
5939 = sched_group_nodes_bycpu
[cpu
];
5941 if (!sched_group_nodes
)
5944 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5945 cpumask_t nodemask
= node_to_cpumask(i
);
5946 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
5948 cpus_and(nodemask
, nodemask
, *cpu_map
);
5949 if (cpus_empty(nodemask
))
5959 if (oldsg
!= sched_group_nodes
[i
])
5962 kfree(sched_group_nodes
);
5963 sched_group_nodes_bycpu
[cpu
] = NULL
;
5967 static void free_sched_groups(const cpumask_t
*cpu_map
)
5973 * Initialize sched groups cpu_power.
5975 * cpu_power indicates the capacity of sched group, which is used while
5976 * distributing the load between different sched groups in a sched domain.
5977 * Typically cpu_power for all the groups in a sched domain will be same unless
5978 * there are asymmetries in the topology. If there are asymmetries, group
5979 * having more cpu_power will pickup more load compared to the group having
5982 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5983 * the maximum number of tasks a group can handle in the presence of other idle
5984 * or lightly loaded groups in the same sched domain.
5986 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
5988 struct sched_domain
*child
;
5989 struct sched_group
*group
;
5991 WARN_ON(!sd
|| !sd
->groups
);
5993 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
5998 sd
->groups
->__cpu_power
= 0;
6001 * For perf policy, if the groups in child domain share resources
6002 * (for example cores sharing some portions of the cache hierarchy
6003 * or SMT), then set this domain groups cpu_power such that each group
6004 * can handle only one task, when there are other idle groups in the
6005 * same sched domain.
6007 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6009 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6010 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6015 * add cpu_power of each child group to this groups cpu_power
6017 group
= child
->groups
;
6019 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6020 group
= group
->next
;
6021 } while (group
!= child
->groups
);
6025 * Build sched domains for a given set of cpus and attach the sched domains
6026 * to the individual cpus
6028 static int build_sched_domains(const cpumask_t
*cpu_map
)
6032 struct sched_group
**sched_group_nodes
= NULL
;
6033 int sd_allnodes
= 0;
6036 * Allocate the per-node list of sched groups
6038 sched_group_nodes
= kzalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
6040 if (!sched_group_nodes
) {
6041 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6044 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6048 * Set up domains for cpus specified by the cpu_map.
6050 for_each_cpu_mask(i
, *cpu_map
) {
6051 struct sched_domain
*sd
= NULL
, *p
;
6052 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6054 cpus_and(nodemask
, nodemask
, *cpu_map
);
6057 if (cpus_weight(*cpu_map
) >
6058 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6059 sd
= &per_cpu(allnodes_domains
, i
);
6060 *sd
= SD_ALLNODES_INIT
;
6061 sd
->span
= *cpu_map
;
6062 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6068 sd
= &per_cpu(node_domains
, i
);
6070 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6074 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6078 sd
= &per_cpu(phys_domains
, i
);
6080 sd
->span
= nodemask
;
6084 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6086 #ifdef CONFIG_SCHED_MC
6088 sd
= &per_cpu(core_domains
, i
);
6090 sd
->span
= cpu_coregroup_map(i
);
6091 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6094 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6097 #ifdef CONFIG_SCHED_SMT
6099 sd
= &per_cpu(cpu_domains
, i
);
6100 *sd
= SD_SIBLING_INIT
;
6101 sd
->span
= cpu_sibling_map
[i
];
6102 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6105 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6109 #ifdef CONFIG_SCHED_SMT
6110 /* Set up CPU (sibling) groups */
6111 for_each_cpu_mask(i
, *cpu_map
) {
6112 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
6113 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6114 if (i
!= first_cpu(this_sibling_map
))
6117 init_sched_build_groups(this_sibling_map
, cpu_map
,
6122 #ifdef CONFIG_SCHED_MC
6123 /* Set up multi-core groups */
6124 for_each_cpu_mask(i
, *cpu_map
) {
6125 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6126 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6127 if (i
!= first_cpu(this_core_map
))
6129 init_sched_build_groups(this_core_map
, cpu_map
,
6130 &cpu_to_core_group
);
6134 /* Set up physical groups */
6135 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6136 cpumask_t nodemask
= node_to_cpumask(i
);
6138 cpus_and(nodemask
, nodemask
, *cpu_map
);
6139 if (cpus_empty(nodemask
))
6142 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6146 /* Set up node groups */
6148 init_sched_build_groups(*cpu_map
, cpu_map
,
6149 &cpu_to_allnodes_group
);
6151 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6152 /* Set up node groups */
6153 struct sched_group
*sg
, *prev
;
6154 cpumask_t nodemask
= node_to_cpumask(i
);
6155 cpumask_t domainspan
;
6156 cpumask_t covered
= CPU_MASK_NONE
;
6159 cpus_and(nodemask
, nodemask
, *cpu_map
);
6160 if (cpus_empty(nodemask
)) {
6161 sched_group_nodes
[i
] = NULL
;
6165 domainspan
= sched_domain_node_span(i
);
6166 cpus_and(domainspan
, domainspan
, *cpu_map
);
6168 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6170 printk(KERN_WARNING
"Can not alloc domain group for "
6174 sched_group_nodes
[i
] = sg
;
6175 for_each_cpu_mask(j
, nodemask
) {
6176 struct sched_domain
*sd
;
6178 sd
= &per_cpu(node_domains
, j
);
6181 sg
->__cpu_power
= 0;
6182 sg
->cpumask
= nodemask
;
6184 cpus_or(covered
, covered
, nodemask
);
6187 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6188 cpumask_t tmp
, notcovered
;
6189 int n
= (i
+ j
) % MAX_NUMNODES
;
6191 cpus_complement(notcovered
, covered
);
6192 cpus_and(tmp
, notcovered
, *cpu_map
);
6193 cpus_and(tmp
, tmp
, domainspan
);
6194 if (cpus_empty(tmp
))
6197 nodemask
= node_to_cpumask(n
);
6198 cpus_and(tmp
, tmp
, nodemask
);
6199 if (cpus_empty(tmp
))
6202 sg
= kmalloc_node(sizeof(struct sched_group
),
6206 "Can not alloc domain group for node %d\n", j
);
6209 sg
->__cpu_power
= 0;
6211 sg
->next
= prev
->next
;
6212 cpus_or(covered
, covered
, tmp
);
6219 /* Calculate CPU power for physical packages and nodes */
6220 #ifdef CONFIG_SCHED_SMT
6221 for_each_cpu_mask(i
, *cpu_map
) {
6222 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6224 init_sched_groups_power(i
, sd
);
6227 #ifdef CONFIG_SCHED_MC
6228 for_each_cpu_mask(i
, *cpu_map
) {
6229 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6231 init_sched_groups_power(i
, sd
);
6235 for_each_cpu_mask(i
, *cpu_map
) {
6236 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6238 init_sched_groups_power(i
, sd
);
6242 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6243 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6246 struct sched_group
*sg
;
6248 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6249 init_numa_sched_groups_power(sg
);
6253 /* Attach the domains */
6254 for_each_cpu_mask(i
, *cpu_map
) {
6255 struct sched_domain
*sd
;
6256 #ifdef CONFIG_SCHED_SMT
6257 sd
= &per_cpu(cpu_domains
, i
);
6258 #elif defined(CONFIG_SCHED_MC)
6259 sd
= &per_cpu(core_domains
, i
);
6261 sd
= &per_cpu(phys_domains
, i
);
6263 cpu_attach_domain(sd
, i
);
6270 free_sched_groups(cpu_map
);
6275 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6277 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6279 cpumask_t cpu_default_map
;
6283 * Setup mask for cpus without special case scheduling requirements.
6284 * For now this just excludes isolated cpus, but could be used to
6285 * exclude other special cases in the future.
6287 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
6289 err
= build_sched_domains(&cpu_default_map
);
6294 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6296 free_sched_groups(cpu_map
);
6300 * Detach sched domains from a group of cpus specified in cpu_map
6301 * These cpus will now be attached to the NULL domain
6303 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6307 for_each_cpu_mask(i
, *cpu_map
)
6308 cpu_attach_domain(NULL
, i
);
6309 synchronize_sched();
6310 arch_destroy_sched_domains(cpu_map
);
6314 * Partition sched domains as specified by the cpumasks below.
6315 * This attaches all cpus from the cpumasks to the NULL domain,
6316 * waits for a RCU quiescent period, recalculates sched
6317 * domain information and then attaches them back to the
6318 * correct sched domains
6319 * Call with hotplug lock held
6321 int partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
6323 cpumask_t change_map
;
6326 cpus_and(*partition1
, *partition1
, cpu_online_map
);
6327 cpus_and(*partition2
, *partition2
, cpu_online_map
);
6328 cpus_or(change_map
, *partition1
, *partition2
);
6330 /* Detach sched domains from all of the affected cpus */
6331 detach_destroy_domains(&change_map
);
6332 if (!cpus_empty(*partition1
))
6333 err
= build_sched_domains(partition1
);
6334 if (!err
&& !cpus_empty(*partition2
))
6335 err
= build_sched_domains(partition2
);
6340 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6341 static int arch_reinit_sched_domains(void)
6345 mutex_lock(&sched_hotcpu_mutex
);
6346 detach_destroy_domains(&cpu_online_map
);
6347 err
= arch_init_sched_domains(&cpu_online_map
);
6348 mutex_unlock(&sched_hotcpu_mutex
);
6353 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6357 if (buf
[0] != '0' && buf
[0] != '1')
6361 sched_smt_power_savings
= (buf
[0] == '1');
6363 sched_mc_power_savings
= (buf
[0] == '1');
6365 ret
= arch_reinit_sched_domains();
6367 return ret
? ret
: count
;
6370 #ifdef CONFIG_SCHED_MC
6371 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6373 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6375 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6376 const char *buf
, size_t count
)
6378 return sched_power_savings_store(buf
, count
, 0);
6380 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6381 sched_mc_power_savings_store
);
6384 #ifdef CONFIG_SCHED_SMT
6385 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6387 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6389 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6390 const char *buf
, size_t count
)
6392 return sched_power_savings_store(buf
, count
, 1);
6394 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6395 sched_smt_power_savings_store
);
6398 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6402 #ifdef CONFIG_SCHED_SMT
6404 err
= sysfs_create_file(&cls
->kset
.kobj
,
6405 &attr_sched_smt_power_savings
.attr
);
6407 #ifdef CONFIG_SCHED_MC
6408 if (!err
&& mc_capable())
6409 err
= sysfs_create_file(&cls
->kset
.kobj
,
6410 &attr_sched_mc_power_savings
.attr
);
6417 * Force a reinitialization of the sched domains hierarchy. The domains
6418 * and groups cannot be updated in place without racing with the balancing
6419 * code, so we temporarily attach all running cpus to the NULL domain
6420 * which will prevent rebalancing while the sched domains are recalculated.
6422 static int update_sched_domains(struct notifier_block
*nfb
,
6423 unsigned long action
, void *hcpu
)
6426 case CPU_UP_PREPARE
:
6427 case CPU_UP_PREPARE_FROZEN
:
6428 case CPU_DOWN_PREPARE
:
6429 case CPU_DOWN_PREPARE_FROZEN
:
6430 detach_destroy_domains(&cpu_online_map
);
6433 case CPU_UP_CANCELED
:
6434 case CPU_UP_CANCELED_FROZEN
:
6435 case CPU_DOWN_FAILED
:
6436 case CPU_DOWN_FAILED_FROZEN
:
6438 case CPU_ONLINE_FROZEN
:
6440 case CPU_DEAD_FROZEN
:
6442 * Fall through and re-initialise the domains.
6449 /* The hotplug lock is already held by cpu_up/cpu_down */
6450 arch_init_sched_domains(&cpu_online_map
);
6455 void __init
sched_init_smp(void)
6457 cpumask_t non_isolated_cpus
;
6459 mutex_lock(&sched_hotcpu_mutex
);
6460 arch_init_sched_domains(&cpu_online_map
);
6461 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6462 if (cpus_empty(non_isolated_cpus
))
6463 cpu_set(smp_processor_id(), non_isolated_cpus
);
6464 mutex_unlock(&sched_hotcpu_mutex
);
6465 /* XXX: Theoretical race here - CPU may be hotplugged now */
6466 hotcpu_notifier(update_sched_domains
, 0);
6468 init_sched_domain_sysctl();
6470 /* Move init over to a non-isolated CPU */
6471 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6475 void __init
sched_init_smp(void)
6478 #endif /* CONFIG_SMP */
6480 int in_sched_functions(unsigned long addr
)
6482 /* Linker adds these: start and end of __sched functions */
6483 extern char __sched_text_start
[], __sched_text_end
[];
6485 return in_lock_functions(addr
) ||
6486 (addr
>= (unsigned long)__sched_text_start
6487 && addr
< (unsigned long)__sched_text_end
);
6490 static inline void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6492 cfs_rq
->tasks_timeline
= RB_ROOT
;
6493 #ifdef CONFIG_FAIR_GROUP_SCHED
6496 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
6499 void __init
sched_init(void)
6501 int highest_cpu
= 0;
6505 * Link up the scheduling class hierarchy:
6507 rt_sched_class
.next
= &fair_sched_class
;
6508 fair_sched_class
.next
= &idle_sched_class
;
6509 idle_sched_class
.next
= NULL
;
6511 for_each_possible_cpu(i
) {
6512 struct rt_prio_array
*array
;
6516 spin_lock_init(&rq
->lock
);
6517 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6520 init_cfs_rq(&rq
->cfs
, rq
);
6521 #ifdef CONFIG_FAIR_GROUP_SCHED
6522 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6524 struct cfs_rq
*cfs_rq
= &per_cpu(init_cfs_rq
, i
);
6525 struct sched_entity
*se
=
6526 &per_cpu(init_sched_entity
, i
);
6528 init_cfs_rq_p
[i
] = cfs_rq
;
6529 init_cfs_rq(cfs_rq
, rq
);
6530 cfs_rq
->tg
= &init_task_grp
;
6531 list_add(&cfs_rq
->leaf_cfs_rq_list
,
6532 &rq
->leaf_cfs_rq_list
);
6534 init_sched_entity_p
[i
] = se
;
6535 se
->cfs_rq
= &rq
->cfs
;
6537 se
->load
.weight
= init_task_grp_load
;
6538 se
->load
.inv_weight
=
6539 div64_64(1ULL<<32, init_task_grp_load
);
6542 init_task_grp
.shares
= init_task_grp_load
;
6545 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6546 rq
->cpu_load
[j
] = 0;
6549 rq
->active_balance
= 0;
6550 rq
->next_balance
= jiffies
;
6553 rq
->migration_thread
= NULL
;
6554 INIT_LIST_HEAD(&rq
->migration_queue
);
6556 atomic_set(&rq
->nr_iowait
, 0);
6558 array
= &rq
->rt
.active
;
6559 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6560 INIT_LIST_HEAD(array
->queue
+ j
);
6561 __clear_bit(j
, array
->bitmap
);
6564 /* delimiter for bitsearch: */
6565 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6568 set_load_weight(&init_task
);
6570 #ifdef CONFIG_PREEMPT_NOTIFIERS
6571 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6575 nr_cpu_ids
= highest_cpu
+ 1;
6576 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6579 #ifdef CONFIG_RT_MUTEXES
6580 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6584 * The boot idle thread does lazy MMU switching as well:
6586 atomic_inc(&init_mm
.mm_count
);
6587 enter_lazy_tlb(&init_mm
, current
);
6590 * Make us the idle thread. Technically, schedule() should not be
6591 * called from this thread, however somewhere below it might be,
6592 * but because we are the idle thread, we just pick up running again
6593 * when this runqueue becomes "idle".
6595 init_idle(current
, smp_processor_id());
6597 * During early bootup we pretend to be a normal task:
6599 current
->sched_class
= &fair_sched_class
;
6602 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6603 void __might_sleep(char *file
, int line
)
6606 static unsigned long prev_jiffy
; /* ratelimiting */
6608 if ((in_atomic() || irqs_disabled()) &&
6609 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6610 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6612 prev_jiffy
= jiffies
;
6613 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6614 " context at %s:%d\n", file
, line
);
6615 printk("in_atomic():%d, irqs_disabled():%d\n",
6616 in_atomic(), irqs_disabled());
6617 debug_show_held_locks(current
);
6618 if (irqs_disabled())
6619 print_irqtrace_events(current
);
6624 EXPORT_SYMBOL(__might_sleep
);
6627 #ifdef CONFIG_MAGIC_SYSRQ
6628 void normalize_rt_tasks(void)
6630 struct task_struct
*g
, *p
;
6631 unsigned long flags
;
6635 read_lock_irq(&tasklist_lock
);
6636 do_each_thread(g
, p
) {
6637 p
->se
.exec_start
= 0;
6638 #ifdef CONFIG_SCHEDSTATS
6639 p
->se
.wait_start
= 0;
6640 p
->se
.sleep_start
= 0;
6641 p
->se
.block_start
= 0;
6643 task_rq(p
)->clock
= 0;
6647 * Renice negative nice level userspace
6650 if (TASK_NICE(p
) < 0 && p
->mm
)
6651 set_user_nice(p
, 0);
6655 spin_lock_irqsave(&p
->pi_lock
, flags
);
6656 rq
= __task_rq_lock(p
);
6659 * Do not touch the migration thread:
6661 if (p
== rq
->migration_thread
)
6665 update_rq_clock(rq
);
6666 on_rq
= p
->se
.on_rq
;
6668 deactivate_task(rq
, p
, 0);
6669 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6671 activate_task(rq
, p
, 0);
6672 resched_task(rq
->curr
);
6677 __task_rq_unlock(rq
);
6678 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6679 } while_each_thread(g
, p
);
6681 read_unlock_irq(&tasklist_lock
);
6684 #endif /* CONFIG_MAGIC_SYSRQ */
6688 * These functions are only useful for the IA64 MCA handling.
6690 * They can only be called when the whole system has been
6691 * stopped - every CPU needs to be quiescent, and no scheduling
6692 * activity can take place. Using them for anything else would
6693 * be a serious bug, and as a result, they aren't even visible
6694 * under any other configuration.
6698 * curr_task - return the current task for a given cpu.
6699 * @cpu: the processor in question.
6701 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6703 struct task_struct
*curr_task(int cpu
)
6705 return cpu_curr(cpu
);
6709 * set_curr_task - set the current task for a given cpu.
6710 * @cpu: the processor in question.
6711 * @p: the task pointer to set.
6713 * Description: This function must only be used when non-maskable interrupts
6714 * are serviced on a separate stack. It allows the architecture to switch the
6715 * notion of the current task on a cpu in a non-blocking manner. This function
6716 * must be called with all CPU's synchronized, and interrupts disabled, the
6717 * and caller must save the original value of the current task (see
6718 * curr_task() above) and restore that value before reenabling interrupts and
6719 * re-starting the system.
6721 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6723 void set_curr_task(int cpu
, struct task_struct
*p
)
6730 #ifdef CONFIG_FAIR_GROUP_SCHED
6732 /* allocate runqueue etc for a new task group */
6733 struct task_grp
*sched_create_group(void)
6735 struct task_grp
*tg
;
6736 struct cfs_rq
*cfs_rq
;
6737 struct sched_entity
*se
;
6741 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
6743 return ERR_PTR(-ENOMEM
);
6745 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
6748 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
6752 for_each_possible_cpu(i
) {
6755 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
), GFP_KERNEL
,
6760 se
= kmalloc_node(sizeof(struct sched_entity
), GFP_KERNEL
,
6765 memset(cfs_rq
, 0, sizeof(struct cfs_rq
));
6766 memset(se
, 0, sizeof(struct sched_entity
));
6768 tg
->cfs_rq
[i
] = cfs_rq
;
6769 init_cfs_rq(cfs_rq
, rq
);
6773 se
->cfs_rq
= &rq
->cfs
;
6775 se
->load
.weight
= NICE_0_LOAD
;
6776 se
->load
.inv_weight
= div64_64(1ULL<<32, NICE_0_LOAD
);
6780 for_each_possible_cpu(i
) {
6782 cfs_rq
= tg
->cfs_rq
[i
];
6783 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
6786 tg
->shares
= NICE_0_LOAD
;
6791 for_each_possible_cpu(i
) {
6792 if (tg
->cfs_rq
&& tg
->cfs_rq
[i
])
6793 kfree(tg
->cfs_rq
[i
]);
6794 if (tg
->se
&& tg
->se
[i
])
6804 return ERR_PTR(-ENOMEM
);
6807 /* rcu callback to free various structures associated with a task group */
6808 static void free_sched_group(struct rcu_head
*rhp
)
6810 struct cfs_rq
*cfs_rq
= container_of(rhp
, struct cfs_rq
, rcu
);
6811 struct task_grp
*tg
= cfs_rq
->tg
;
6812 struct sched_entity
*se
;
6815 /* now it should be safe to free those cfs_rqs */
6816 for_each_possible_cpu(i
) {
6817 cfs_rq
= tg
->cfs_rq
[i
];
6829 /* Destroy runqueue etc associated with a task group */
6830 void sched_destroy_group(struct task_grp
*tg
)
6832 struct cfs_rq
*cfs_rq
;
6835 for_each_possible_cpu(i
) {
6836 cfs_rq
= tg
->cfs_rq
[i
];
6837 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
6840 cfs_rq
= tg
->cfs_rq
[0];
6842 /* wait for possible concurrent references to cfs_rqs complete */
6843 call_rcu(&cfs_rq
->rcu
, free_sched_group
);
6846 /* change task's runqueue when it moves between groups.
6847 * The caller of this function should have put the task in its new group
6848 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6849 * reflect its new group.
6851 void sched_move_task(struct task_struct
*tsk
)
6854 unsigned long flags
;
6857 rq
= task_rq_lock(tsk
, &flags
);
6859 if (tsk
->sched_class
!= &fair_sched_class
)
6862 update_rq_clock(rq
);
6864 running
= task_running(rq
, tsk
);
6865 on_rq
= tsk
->se
.on_rq
;
6868 dequeue_task(rq
, tsk
, 0);
6869 if (unlikely(running
))
6870 tsk
->sched_class
->put_prev_task(rq
, tsk
);
6873 set_task_cfs_rq(tsk
);
6876 if (unlikely(running
))
6877 tsk
->sched_class
->set_curr_task(rq
);
6878 enqueue_task(rq
, tsk
, 0);
6882 task_rq_unlock(rq
, &flags
);
6885 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
6887 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
6888 struct rq
*rq
= cfs_rq
->rq
;
6891 spin_lock_irq(&rq
->lock
);
6895 dequeue_entity(cfs_rq
, se
, 0);
6897 se
->load
.weight
= shares
;
6898 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
6901 enqueue_entity(cfs_rq
, se
, 0);
6903 spin_unlock_irq(&rq
->lock
);
6906 int sched_group_set_shares(struct task_grp
*tg
, unsigned long shares
)
6910 if (tg
->shares
== shares
)
6913 /* return -EINVAL if the new value is not sane */
6915 tg
->shares
= shares
;
6916 for_each_possible_cpu(i
)
6917 set_se_shares(tg
->se
[i
], shares
);
6922 #endif /* CONFIG_FAIR_GROUP_SCHED */