5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map and udf_read_inode
23 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
24 * block boundaries (which is not actually allowed)
25 * 12/20/98 added support for strategy 4096
26 * 03/07/99 rewrote udf_block_map (again)
27 * New funcs, inode_bmap, udf_next_aext
28 * 04/19/99 Support for writing device EA's for major/minor #
33 #include <linux/smp_lock.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
43 MODULE_AUTHOR("Ben Fennema");
44 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
45 MODULE_LICENSE("GPL");
47 #define EXTENT_MERGE_SIZE 5
49 static mode_t
udf_convert_permissions(struct fileEntry
*);
50 static int udf_update_inode(struct inode
*, int);
51 static void udf_fill_inode(struct inode
*, struct buffer_head
*);
52 static int udf_alloc_i_data(struct inode
*inode
, size_t size
);
53 static struct buffer_head
*inode_getblk(struct inode
*, sector_t
, int *,
55 static int8_t udf_insert_aext(struct inode
*, struct extent_position
,
56 kernel_lb_addr
, uint32_t);
57 static void udf_split_extents(struct inode
*, int *, int, int,
58 kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
59 static void udf_prealloc_extents(struct inode
*, int, int,
60 kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
61 static void udf_merge_extents(struct inode
*,
62 kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
63 static void udf_update_extents(struct inode
*,
64 kernel_long_ad
[EXTENT_MERGE_SIZE
], int, int,
65 struct extent_position
*);
66 static int udf_get_block(struct inode
*, sector_t
, struct buffer_head
*, int);
72 * Clean-up before the specified inode is destroyed.
75 * This routine is called when the kernel destroys an inode structure
76 * ie. when iput() finds i_count == 0.
79 * July 1, 1997 - Andrew E. Mileski
80 * Written, tested, and released.
82 * Called at the last iput() if i_nlink is zero.
84 void udf_delete_inode(struct inode
*inode
)
86 truncate_inode_pages(&inode
->i_data
, 0);
88 if (is_bad_inode(inode
))
95 udf_update_inode(inode
, IS_SYNC(inode
));
96 udf_free_inode(inode
);
106 * If we are going to release inode from memory, we discard preallocation and
107 * truncate last inode extent to proper length. We could use drop_inode() but
108 * it's called under inode_lock and thus we cannot mark inode dirty there. We
109 * use clear_inode() but we have to make sure to write inode as it's not written
112 void udf_clear_inode(struct inode
*inode
)
114 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
)) {
116 /* Discard preallocation for directories, symlinks, etc. */
117 udf_discard_prealloc(inode
);
118 udf_truncate_tail_extent(inode
);
120 write_inode_now(inode
, 1);
122 kfree(UDF_I_DATA(inode
));
123 UDF_I_DATA(inode
) = NULL
;
126 static int udf_writepage(struct page
*page
, struct writeback_control
*wbc
)
128 return block_write_full_page(page
, udf_get_block
, wbc
);
131 static int udf_readpage(struct file
*file
, struct page
*page
)
133 return block_read_full_page(page
, udf_get_block
);
136 static int udf_prepare_write(struct file
*file
, struct page
*page
,
137 unsigned from
, unsigned to
)
139 return block_prepare_write(page
, from
, to
, udf_get_block
);
142 static sector_t
udf_bmap(struct address_space
*mapping
, sector_t block
)
144 return generic_block_bmap(mapping
, block
, udf_get_block
);
147 const struct address_space_operations udf_aops
= {
148 .readpage
= udf_readpage
,
149 .writepage
= udf_writepage
,
150 .sync_page
= block_sync_page
,
151 .prepare_write
= udf_prepare_write
,
152 .commit_write
= generic_commit_write
,
156 void udf_expand_file_adinicb(struct inode
*inode
, int newsize
, int *err
)
160 struct writeback_control udf_wbc
= {
161 .sync_mode
= WB_SYNC_NONE
,
165 /* from now on we have normal address_space methods */
166 inode
->i_data
.a_ops
= &udf_aops
;
168 if (!UDF_I_LENALLOC(inode
)) {
169 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
170 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_SHORT
;
172 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_LONG
;
173 mark_inode_dirty(inode
);
177 page
= grab_cache_page(inode
->i_mapping
, 0);
178 BUG_ON(!PageLocked(page
));
180 if (!PageUptodate(page
)) {
182 memset(kaddr
+ UDF_I_LENALLOC(inode
), 0x00,
183 PAGE_CACHE_SIZE
- UDF_I_LENALLOC(inode
));
184 memcpy(kaddr
, UDF_I_DATA(inode
) + UDF_I_LENEATTR(inode
),
185 UDF_I_LENALLOC(inode
));
186 flush_dcache_page(page
);
187 SetPageUptodate(page
);
190 memset(UDF_I_DATA(inode
) + UDF_I_LENEATTR(inode
), 0x00,
191 UDF_I_LENALLOC(inode
));
192 UDF_I_LENALLOC(inode
) = 0;
193 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
194 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_SHORT
;
196 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_LONG
;
198 inode
->i_data
.a_ops
->writepage(page
, &udf_wbc
);
199 page_cache_release(page
);
201 mark_inode_dirty(inode
);
204 struct buffer_head
*udf_expand_dir_adinicb(struct inode
*inode
, int *block
,
208 struct buffer_head
*dbh
= NULL
;
212 struct extent_position epos
;
214 struct udf_fileident_bh sfibh
, dfibh
;
215 loff_t f_pos
= udf_ext0_offset(inode
) >> 2;
216 int size
= (udf_ext0_offset(inode
) + inode
->i_size
) >> 2;
217 struct fileIdentDesc cfi
, *sfi
, *dfi
;
219 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
220 alloctype
= ICBTAG_FLAG_AD_SHORT
;
222 alloctype
= ICBTAG_FLAG_AD_LONG
;
224 if (!inode
->i_size
) {
225 UDF_I_ALLOCTYPE(inode
) = alloctype
;
226 mark_inode_dirty(inode
);
230 /* alloc block, and copy data to it */
231 *block
= udf_new_block(inode
->i_sb
, inode
,
232 UDF_I_LOCATION(inode
).partitionReferenceNum
,
233 UDF_I_LOCATION(inode
).logicalBlockNum
, err
);
236 newblock
= udf_get_pblock(inode
->i_sb
, *block
,
237 UDF_I_LOCATION(inode
).partitionReferenceNum
, 0);
240 dbh
= udf_tgetblk(inode
->i_sb
, newblock
);
244 memset(dbh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
245 set_buffer_uptodate(dbh
);
247 mark_buffer_dirty_inode(dbh
, inode
);
249 sfibh
.soffset
= sfibh
.eoffset
= (f_pos
& ((inode
->i_sb
->s_blocksize
- 1) >> 2)) << 2;
250 sfibh
.sbh
= sfibh
.ebh
= NULL
;
251 dfibh
.soffset
= dfibh
.eoffset
= 0;
252 dfibh
.sbh
= dfibh
.ebh
= dbh
;
253 while ((f_pos
< size
)) {
254 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_IN_ICB
;
255 sfi
= udf_fileident_read(inode
, &f_pos
, &sfibh
, &cfi
, NULL
, NULL
, NULL
, NULL
);
260 UDF_I_ALLOCTYPE(inode
) = alloctype
;
261 sfi
->descTag
.tagLocation
= cpu_to_le32(*block
);
262 dfibh
.soffset
= dfibh
.eoffset
;
263 dfibh
.eoffset
+= (sfibh
.eoffset
- sfibh
.soffset
);
264 dfi
= (struct fileIdentDesc
*)(dbh
->b_data
+ dfibh
.soffset
);
265 if (udf_write_fi(inode
, sfi
, dfi
, &dfibh
, sfi
->impUse
,
266 sfi
->fileIdent
+ le16_to_cpu(sfi
->lengthOfImpUse
))) {
267 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_IN_ICB
;
272 mark_buffer_dirty_inode(dbh
, inode
);
274 memset(UDF_I_DATA(inode
) + UDF_I_LENEATTR(inode
), 0, UDF_I_LENALLOC(inode
));
275 UDF_I_LENALLOC(inode
) = 0;
276 eloc
.logicalBlockNum
= *block
;
277 eloc
.partitionReferenceNum
= UDF_I_LOCATION(inode
).partitionReferenceNum
;
278 elen
= inode
->i_size
;
279 UDF_I_LENEXTENTS(inode
) = elen
;
281 epos
.block
= UDF_I_LOCATION(inode
);
282 epos
.offset
= udf_file_entry_alloc_offset(inode
);
283 udf_add_aext(inode
, &epos
, eloc
, elen
, 0);
287 mark_inode_dirty(inode
);
291 static int udf_get_block(struct inode
*inode
, sector_t block
,
292 struct buffer_head
*bh_result
, int create
)
295 struct buffer_head
*bh
;
299 phys
= udf_block_map(inode
, block
);
301 map_bh(bh_result
, inode
->i_sb
, phys
);
314 if (block
== UDF_I_NEXT_ALLOC_BLOCK(inode
) + 1) {
315 UDF_I_NEXT_ALLOC_BLOCK(inode
)++;
316 UDF_I_NEXT_ALLOC_GOAL(inode
)++;
321 bh
= inode_getblk(inode
, block
, &err
, &phys
, &new);
328 set_buffer_new(bh_result
);
329 map_bh(bh_result
, inode
->i_sb
, phys
);
336 udf_warning(inode
->i_sb
, "udf_get_block", "block < 0");
340 static struct buffer_head
*udf_getblk(struct inode
*inode
, long block
,
341 int create
, int *err
)
343 struct buffer_head
*bh
;
344 struct buffer_head dummy
;
347 dummy
.b_blocknr
= -1000;
348 *err
= udf_get_block(inode
, block
, &dummy
, create
);
349 if (!*err
&& buffer_mapped(&dummy
)) {
350 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
351 if (buffer_new(&dummy
)) {
353 memset(bh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
354 set_buffer_uptodate(bh
);
356 mark_buffer_dirty_inode(bh
, inode
);
364 /* Extend the file by 'blocks' blocks, return the number of extents added */
365 int udf_extend_file(struct inode
*inode
, struct extent_position
*last_pos
,
366 kernel_long_ad
* last_ext
, sector_t blocks
)
369 int count
= 0, fake
= !(last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
);
370 struct super_block
*sb
= inode
->i_sb
;
371 kernel_lb_addr prealloc_loc
= {};
372 int prealloc_len
= 0;
374 /* The previous extent is fake and we should not extend by anything
375 * - there's nothing to do... */
379 /* Round the last extent up to a multiple of block size */
380 if (last_ext
->extLength
& (sb
->s_blocksize
- 1)) {
381 last_ext
->extLength
=
382 (last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) |
383 (((last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
384 sb
->s_blocksize
- 1) & ~(sb
->s_blocksize
- 1));
385 UDF_I_LENEXTENTS(inode
) =
386 (UDF_I_LENEXTENTS(inode
) + sb
->s_blocksize
- 1) &
387 ~(sb
->s_blocksize
- 1);
390 /* Last extent are just preallocated blocks? */
391 if ((last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) == EXT_NOT_RECORDED_ALLOCATED
) {
392 /* Save the extent so that we can reattach it to the end */
393 prealloc_loc
= last_ext
->extLocation
;
394 prealloc_len
= last_ext
->extLength
;
395 /* Mark the extent as a hole */
396 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
397 (last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
);
398 last_ext
->extLocation
.logicalBlockNum
= 0;
399 last_ext
->extLocation
.partitionReferenceNum
= 0;
402 /* Can we merge with the previous extent? */
403 if ((last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) == EXT_NOT_RECORDED_NOT_ALLOCATED
) {
404 add
= ((1 << 30) - sb
->s_blocksize
- (last_ext
->extLength
&
405 UDF_EXTENT_LENGTH_MASK
)) >> sb
->s_blocksize_bits
;
409 last_ext
->extLength
+= add
<< sb
->s_blocksize_bits
;
413 udf_add_aext(inode
, last_pos
, last_ext
->extLocation
,
414 last_ext
->extLength
, 1);
417 udf_write_aext(inode
, last_pos
, last_ext
->extLocation
, last_ext
->extLength
, 1);
420 /* Managed to do everything necessary? */
424 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
425 last_ext
->extLocation
.logicalBlockNum
= 0;
426 last_ext
->extLocation
.partitionReferenceNum
= 0;
427 add
= (1 << (30-sb
->s_blocksize_bits
)) - 1;
428 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
| (add
<< sb
->s_blocksize_bits
);
430 /* Create enough extents to cover the whole hole */
431 while (blocks
> add
) {
433 if (udf_add_aext(inode
, last_pos
, last_ext
->extLocation
,
434 last_ext
->extLength
, 1) == -1)
439 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
440 (blocks
<< sb
->s_blocksize_bits
);
441 if (udf_add_aext(inode
, last_pos
, last_ext
->extLocation
,
442 last_ext
->extLength
, 1) == -1)
448 /* Do we have some preallocated blocks saved? */
450 if (udf_add_aext(inode
, last_pos
, prealloc_loc
, prealloc_len
, 1) == -1)
452 last_ext
->extLocation
= prealloc_loc
;
453 last_ext
->extLength
= prealloc_len
;
457 /* last_pos should point to the last written extent... */
458 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_SHORT
)
459 last_pos
->offset
-= sizeof(short_ad
);
460 else if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_LONG
)
461 last_pos
->offset
-= sizeof(long_ad
);
468 static struct buffer_head
*inode_getblk(struct inode
*inode
, sector_t block
,
469 int *err
, long *phys
, int *new)
471 static sector_t last_block
;
472 struct buffer_head
*result
= NULL
;
473 kernel_long_ad laarr
[EXTENT_MERGE_SIZE
];
474 struct extent_position prev_epos
, cur_epos
, next_epos
;
475 int count
= 0, startnum
= 0, endnum
= 0;
476 uint32_t elen
= 0, tmpelen
;
477 kernel_lb_addr eloc
, tmpeloc
;
479 loff_t lbcount
= 0, b_off
= 0;
480 uint32_t newblocknum
, newblock
;
483 int goal
= 0, pgoal
= UDF_I_LOCATION(inode
).logicalBlockNum
;
486 prev_epos
.offset
= udf_file_entry_alloc_offset(inode
);
487 prev_epos
.block
= UDF_I_LOCATION(inode
);
489 cur_epos
= next_epos
= prev_epos
;
490 b_off
= (loff_t
)block
<< inode
->i_sb
->s_blocksize_bits
;
492 /* find the extent which contains the block we are looking for.
493 alternate between laarr[0] and laarr[1] for locations of the
494 current extent, and the previous extent */
496 if (prev_epos
.bh
!= cur_epos
.bh
) {
497 brelse(prev_epos
.bh
);
499 prev_epos
.bh
= cur_epos
.bh
;
501 if (cur_epos
.bh
!= next_epos
.bh
) {
503 get_bh(next_epos
.bh
);
504 cur_epos
.bh
= next_epos
.bh
;
509 prev_epos
.block
= cur_epos
.block
;
510 cur_epos
.block
= next_epos
.block
;
512 prev_epos
.offset
= cur_epos
.offset
;
513 cur_epos
.offset
= next_epos
.offset
;
515 if ((etype
= udf_next_aext(inode
, &next_epos
, &eloc
, &elen
, 1)) == -1)
520 laarr
[c
].extLength
= (etype
<< 30) | elen
;
521 laarr
[c
].extLocation
= eloc
;
523 if (etype
!= (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))
524 pgoal
= eloc
.logicalBlockNum
+
525 ((elen
+ inode
->i_sb
->s_blocksize
- 1) >>
526 inode
->i_sb
->s_blocksize_bits
);
529 } while (lbcount
+ elen
<= b_off
);
532 offset
= b_off
>> inode
->i_sb
->s_blocksize_bits
;
534 * Move prev_epos and cur_epos into indirect extent if we are at
537 udf_next_aext(inode
, &prev_epos
, &tmpeloc
, &tmpelen
, 0);
538 udf_next_aext(inode
, &cur_epos
, &tmpeloc
, &tmpelen
, 0);
540 /* if the extent is allocated and recorded, return the block
541 if the extent is not a multiple of the blocksize, round up */
543 if (etype
== (EXT_RECORDED_ALLOCATED
>> 30)) {
544 if (elen
& (inode
->i_sb
->s_blocksize
- 1)) {
545 elen
= EXT_RECORDED_ALLOCATED
|
546 ((elen
+ inode
->i_sb
->s_blocksize
- 1) &
547 ~(inode
->i_sb
->s_blocksize
- 1));
548 etype
= udf_write_aext(inode
, &cur_epos
, eloc
, elen
, 1);
550 brelse(prev_epos
.bh
);
552 brelse(next_epos
.bh
);
553 newblock
= udf_get_lb_pblock(inode
->i_sb
, eloc
, offset
);
559 /* Are we beyond EOF? */
568 /* Create a fake extent when there's not one */
569 memset(&laarr
[0].extLocation
, 0x00, sizeof(kernel_lb_addr
));
570 laarr
[0].extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
;
571 /* Will udf_extend_file() create real extent from a fake one? */
572 startnum
= (offset
> 0);
574 /* Create extents for the hole between EOF and offset */
575 ret
= udf_extend_file(inode
, &prev_epos
, laarr
, offset
);
577 brelse(prev_epos
.bh
);
579 brelse(next_epos
.bh
);
580 /* We don't really know the error here so we just make
588 /* We are not covered by a preallocated extent? */
589 if ((laarr
[0].extLength
& UDF_EXTENT_FLAG_MASK
) != EXT_NOT_RECORDED_ALLOCATED
) {
590 /* Is there any real extent? - otherwise we overwrite
594 laarr
[c
].extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
595 inode
->i_sb
->s_blocksize
;
596 memset(&laarr
[c
].extLocation
, 0x00, sizeof(kernel_lb_addr
));
603 endnum
= startnum
= ((count
> 2) ? 2 : count
);
605 /* if the current extent is in position 0, swap it with the previous */
606 if (!c
&& count
!= 1) {
613 /* if the current block is located in an extent, read the next extent */
614 if ((etype
= udf_next_aext(inode
, &next_epos
, &eloc
, &elen
, 0)) != -1) {
615 laarr
[c
+ 1].extLength
= (etype
<< 30) | elen
;
616 laarr
[c
+ 1].extLocation
= eloc
;
625 /* if the current extent is not recorded but allocated, get the
626 * block in the extent corresponding to the requested block */
627 if ((laarr
[c
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
628 newblocknum
= laarr
[c
].extLocation
.logicalBlockNum
+ offset
;
629 } else { /* otherwise, allocate a new block */
630 if (UDF_I_NEXT_ALLOC_BLOCK(inode
) == block
)
631 goal
= UDF_I_NEXT_ALLOC_GOAL(inode
);
635 goal
= UDF_I_LOCATION(inode
).logicalBlockNum
+ 1;
638 if (!(newblocknum
= udf_new_block(inode
->i_sb
, inode
,
639 UDF_I_LOCATION(inode
).partitionReferenceNum
,
641 brelse(prev_epos
.bh
);
645 UDF_I_LENEXTENTS(inode
) += inode
->i_sb
->s_blocksize
;
648 /* if the extent the requsted block is located in contains multiple blocks,
649 * split the extent into at most three extents. blocks prior to requested
650 * block, requested block, and blocks after requested block */
651 udf_split_extents(inode
, &c
, offset
, newblocknum
, laarr
, &endnum
);
653 #ifdef UDF_PREALLOCATE
654 /* preallocate blocks */
655 udf_prealloc_extents(inode
, c
, lastblock
, laarr
, &endnum
);
658 /* merge any continuous blocks in laarr */
659 udf_merge_extents(inode
, laarr
, &endnum
);
661 /* write back the new extents, inserting new extents if the new number
662 * of extents is greater than the old number, and deleting extents if
663 * the new number of extents is less than the old number */
664 udf_update_extents(inode
, laarr
, startnum
, endnum
, &prev_epos
);
666 brelse(prev_epos
.bh
);
668 if (!(newblock
= udf_get_pblock(inode
->i_sb
, newblocknum
,
669 UDF_I_LOCATION(inode
).partitionReferenceNum
, 0))) {
675 UDF_I_NEXT_ALLOC_BLOCK(inode
) = block
;
676 UDF_I_NEXT_ALLOC_GOAL(inode
) = newblocknum
;
677 inode
->i_ctime
= current_fs_time(inode
->i_sb
);
680 udf_sync_inode(inode
);
682 mark_inode_dirty(inode
);
687 static void udf_split_extents(struct inode
*inode
, int *c
, int offset
,
689 kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
692 if ((laarr
[*c
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30) ||
693 (laarr
[*c
].extLength
>> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) {
695 int blen
= ((laarr
[curr
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
696 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
;
697 int8_t etype
= (laarr
[curr
].extLength
>> 30);
701 } else if (!offset
|| blen
== offset
+ 1) {
702 laarr
[curr
+ 2] = laarr
[curr
+ 1];
703 laarr
[curr
+ 1] = laarr
[curr
];
705 laarr
[curr
+ 3] = laarr
[curr
+ 1];
706 laarr
[curr
+ 2] = laarr
[curr
+ 1] = laarr
[curr
];
710 if (etype
== (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
711 udf_free_blocks(inode
->i_sb
, inode
, laarr
[curr
].extLocation
, 0, offset
);
712 laarr
[curr
].extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
713 (offset
<< inode
->i_sb
->s_blocksize_bits
);
714 laarr
[curr
].extLocation
.logicalBlockNum
= 0;
715 laarr
[curr
].extLocation
.partitionReferenceNum
= 0;
717 laarr
[curr
].extLength
= (etype
<< 30) |
718 (offset
<< inode
->i_sb
->s_blocksize_bits
);
725 laarr
[curr
].extLocation
.logicalBlockNum
= newblocknum
;
726 if (etype
== (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))
727 laarr
[curr
].extLocation
.partitionReferenceNum
=
728 UDF_I_LOCATION(inode
).partitionReferenceNum
;
729 laarr
[curr
].extLength
= EXT_RECORDED_ALLOCATED
|
730 inode
->i_sb
->s_blocksize
;
733 if (blen
!= offset
+ 1) {
734 if (etype
== (EXT_NOT_RECORDED_ALLOCATED
>> 30))
735 laarr
[curr
].extLocation
.logicalBlockNum
+= (offset
+ 1);
736 laarr
[curr
].extLength
= (etype
<< 30) |
737 ((blen
- (offset
+ 1)) << inode
->i_sb
->s_blocksize_bits
);
744 static void udf_prealloc_extents(struct inode
*inode
, int c
, int lastblock
,
745 kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
748 int start
, length
= 0, currlength
= 0, i
;
750 if (*endnum
>= (c
+ 1)) {
756 if ((laarr
[c
+ 1].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
758 length
= currlength
= (((laarr
[c
+ 1].extLength
& UDF_EXTENT_LENGTH_MASK
) +
759 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
);
765 for (i
= start
+ 1; i
<= *endnum
; i
++) {
768 length
+= UDF_DEFAULT_PREALLOC_BLOCKS
;
769 } else if ((laarr
[i
].extLength
>> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) {
770 length
+= (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
771 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
);
778 int next
= laarr
[start
].extLocation
.logicalBlockNum
+
779 (((laarr
[start
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
780 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
);
781 int numalloc
= udf_prealloc_blocks(inode
->i_sb
, inode
,
782 laarr
[start
].extLocation
.partitionReferenceNum
,
783 next
, (UDF_DEFAULT_PREALLOC_BLOCKS
> length
? length
:
784 UDF_DEFAULT_PREALLOC_BLOCKS
) - currlength
);
786 if (start
== (c
+ 1)) {
787 laarr
[start
].extLength
+=
788 (numalloc
<< inode
->i_sb
->s_blocksize_bits
);
790 memmove(&laarr
[c
+ 2], &laarr
[c
+ 1],
791 sizeof(long_ad
) * (*endnum
- (c
+ 1)));
793 laarr
[c
+ 1].extLocation
.logicalBlockNum
= next
;
794 laarr
[c
+ 1].extLocation
.partitionReferenceNum
=
795 laarr
[c
].extLocation
.partitionReferenceNum
;
796 laarr
[c
+ 1].extLength
= EXT_NOT_RECORDED_ALLOCATED
|
797 (numalloc
<< inode
->i_sb
->s_blocksize_bits
);
801 for (i
= start
+ 1; numalloc
&& i
< *endnum
; i
++) {
802 int elen
= ((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
803 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
;
805 if (elen
> numalloc
) {
806 laarr
[i
].extLength
-=
807 (numalloc
<< inode
->i_sb
->s_blocksize_bits
);
811 if (*endnum
> (i
+ 1))
812 memmove(&laarr
[i
], &laarr
[i
+ 1],
813 sizeof(long_ad
) * (*endnum
- (i
+ 1)));
818 UDF_I_LENEXTENTS(inode
) += numalloc
<< inode
->i_sb
->s_blocksize_bits
;
823 static void udf_merge_extents(struct inode
*inode
,
824 kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
829 for (i
= 0; i
< (*endnum
- 1); i
++) {
830 if ((laarr
[i
].extLength
>> 30) == (laarr
[i
+ 1].extLength
>> 30)) {
831 if (((laarr
[i
].extLength
>> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) ||
832 ((laarr
[i
+ 1].extLocation
.logicalBlockNum
- laarr
[i
].extLocation
.logicalBlockNum
) ==
833 (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
834 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
))) {
835 if (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
836 (laarr
[i
+ 1].extLength
& UDF_EXTENT_LENGTH_MASK
) +
837 inode
->i_sb
->s_blocksize
- 1) & ~UDF_EXTENT_LENGTH_MASK
) {
838 laarr
[i
+ 1].extLength
= (laarr
[i
+ 1].extLength
-
839 (laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
840 UDF_EXTENT_LENGTH_MASK
) & ~(inode
->i_sb
->s_blocksize
- 1);
841 laarr
[i
].extLength
= (laarr
[i
].extLength
& UDF_EXTENT_FLAG_MASK
) +
842 (UDF_EXTENT_LENGTH_MASK
+ 1) - inode
->i_sb
->s_blocksize
;
843 laarr
[i
+ 1].extLocation
.logicalBlockNum
=
844 laarr
[i
].extLocation
.logicalBlockNum
+
845 ((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) >>
846 inode
->i_sb
->s_blocksize_bits
);
848 laarr
[i
].extLength
= laarr
[i
+ 1].extLength
+
849 (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
850 inode
->i_sb
->s_blocksize
- 1) & ~(inode
->i_sb
->s_blocksize
- 1));
851 if (*endnum
> (i
+ 2))
852 memmove(&laarr
[i
+ 1], &laarr
[i
+ 2],
853 sizeof(long_ad
) * (*endnum
- (i
+ 2)));
858 } else if (((laarr
[i
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30)) &&
859 ((laarr
[i
+ 1].extLength
>> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))) {
860 udf_free_blocks(inode
->i_sb
, inode
, laarr
[i
].extLocation
, 0,
861 ((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
862 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
);
863 laarr
[i
].extLocation
.logicalBlockNum
= 0;
864 laarr
[i
].extLocation
.partitionReferenceNum
= 0;
866 if (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
867 (laarr
[i
+ 1].extLength
& UDF_EXTENT_LENGTH_MASK
) +
868 inode
->i_sb
->s_blocksize
- 1) & ~UDF_EXTENT_LENGTH_MASK
) {
869 laarr
[i
+ 1].extLength
= (laarr
[i
+ 1].extLength
-
870 (laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
871 UDF_EXTENT_LENGTH_MASK
) & ~(inode
->i_sb
->s_blocksize
- 1);
872 laarr
[i
].extLength
= (laarr
[i
].extLength
& UDF_EXTENT_FLAG_MASK
) +
873 (UDF_EXTENT_LENGTH_MASK
+ 1) - inode
->i_sb
->s_blocksize
;
875 laarr
[i
].extLength
= laarr
[i
+ 1].extLength
+
876 (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
877 inode
->i_sb
->s_blocksize
- 1) & ~(inode
->i_sb
->s_blocksize
- 1));
878 if (*endnum
> (i
+ 2))
879 memmove(&laarr
[i
+ 1], &laarr
[i
+ 2],
880 sizeof(long_ad
) * (*endnum
- (i
+ 2)));
884 } else if ((laarr
[i
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
885 udf_free_blocks(inode
->i_sb
, inode
, laarr
[i
].extLocation
, 0,
886 ((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
887 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
);
888 laarr
[i
].extLocation
.logicalBlockNum
= 0;
889 laarr
[i
].extLocation
.partitionReferenceNum
= 0;
890 laarr
[i
].extLength
= (laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) |
891 EXT_NOT_RECORDED_NOT_ALLOCATED
;
896 static void udf_update_extents(struct inode
*inode
,
897 kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
898 int startnum
, int endnum
,
899 struct extent_position
*epos
)
902 kernel_lb_addr tmploc
;
905 if (startnum
> endnum
) {
906 for (i
= 0; i
< (startnum
- endnum
); i
++)
907 udf_delete_aext(inode
, *epos
, laarr
[i
].extLocation
,
909 } else if (startnum
< endnum
) {
910 for (i
= 0; i
< (endnum
- startnum
); i
++) {
911 udf_insert_aext(inode
, *epos
, laarr
[i
].extLocation
,
913 udf_next_aext(inode
, epos
, &laarr
[i
].extLocation
,
914 &laarr
[i
].extLength
, 1);
919 for (i
= start
; i
< endnum
; i
++) {
920 udf_next_aext(inode
, epos
, &tmploc
, &tmplen
, 0);
921 udf_write_aext(inode
, epos
, laarr
[i
].extLocation
,
922 laarr
[i
].extLength
, 1);
926 struct buffer_head
*udf_bread(struct inode
*inode
, int block
,
927 int create
, int *err
)
929 struct buffer_head
*bh
= NULL
;
931 bh
= udf_getblk(inode
, block
, create
, err
);
935 if (buffer_uptodate(bh
))
938 ll_rw_block(READ
, 1, &bh
);
941 if (buffer_uptodate(bh
))
949 void udf_truncate(struct inode
*inode
)
954 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
955 S_ISLNK(inode
->i_mode
)))
957 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
961 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_IN_ICB
) {
962 if (inode
->i_sb
->s_blocksize
< (udf_file_entry_alloc_offset(inode
) +
964 udf_expand_file_adinicb(inode
, inode
->i_size
, &err
);
965 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_IN_ICB
) {
966 inode
->i_size
= UDF_I_LENALLOC(inode
);
970 udf_truncate_extents(inode
);
973 offset
= inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1);
974 memset(UDF_I_DATA(inode
) + UDF_I_LENEATTR(inode
) + offset
, 0x00,
975 inode
->i_sb
->s_blocksize
- offset
- udf_file_entry_alloc_offset(inode
));
976 UDF_I_LENALLOC(inode
) = inode
->i_size
;
979 block_truncate_page(inode
->i_mapping
, inode
->i_size
, udf_get_block
);
980 udf_truncate_extents(inode
);
983 inode
->i_mtime
= inode
->i_ctime
= current_fs_time(inode
->i_sb
);
985 udf_sync_inode(inode
);
987 mark_inode_dirty(inode
);
991 static void __udf_read_inode(struct inode
*inode
)
993 struct buffer_head
*bh
= NULL
;
994 struct fileEntry
*fe
;
998 * Set defaults, but the inode is still incomplete!
999 * Note: get_new_inode() sets the following on a new inode:
1002 * i_flags = sb->s_flags
1004 * clean_inode(): zero fills and sets
1009 bh
= udf_read_ptagged(inode
->i_sb
, UDF_I_LOCATION(inode
), 0, &ident
);
1011 printk(KERN_ERR
"udf: udf_read_inode(ino %ld) failed !bh\n",
1013 make_bad_inode(inode
);
1017 if (ident
!= TAG_IDENT_FE
&& ident
!= TAG_IDENT_EFE
&&
1018 ident
!= TAG_IDENT_USE
) {
1019 printk(KERN_ERR
"udf: udf_read_inode(ino %ld) failed ident=%d\n",
1020 inode
->i_ino
, ident
);
1022 make_bad_inode(inode
);
1026 fe
= (struct fileEntry
*)bh
->b_data
;
1028 if (le16_to_cpu(fe
->icbTag
.strategyType
) == 4096) {
1029 struct buffer_head
*ibh
= NULL
, *nbh
= NULL
;
1030 struct indirectEntry
*ie
;
1032 ibh
= udf_read_ptagged(inode
->i_sb
, UDF_I_LOCATION(inode
), 1, &ident
);
1033 if (ident
== TAG_IDENT_IE
) {
1036 ie
= (struct indirectEntry
*)ibh
->b_data
;
1038 loc
= lelb_to_cpu(ie
->indirectICB
.extLocation
);
1040 if (ie
->indirectICB
.extLength
&&
1041 (nbh
= udf_read_ptagged(inode
->i_sb
, loc
, 0, &ident
))) {
1042 if (ident
== TAG_IDENT_FE
||
1043 ident
== TAG_IDENT_EFE
) {
1044 memcpy(&UDF_I_LOCATION(inode
), &loc
,
1045 sizeof(kernel_lb_addr
));
1049 __udf_read_inode(inode
);
1062 } else if (le16_to_cpu(fe
->icbTag
.strategyType
) != 4) {
1063 printk(KERN_ERR
"udf: unsupported strategy type: %d\n",
1064 le16_to_cpu(fe
->icbTag
.strategyType
));
1066 make_bad_inode(inode
);
1069 udf_fill_inode(inode
, bh
);
1074 static void udf_fill_inode(struct inode
*inode
, struct buffer_head
*bh
)
1076 struct fileEntry
*fe
;
1077 struct extendedFileEntry
*efe
;
1082 fe
= (struct fileEntry
*)bh
->b_data
;
1083 efe
= (struct extendedFileEntry
*)bh
->b_data
;
1085 if (le16_to_cpu(fe
->icbTag
.strategyType
) == 4)
1086 UDF_I_STRAT4096(inode
) = 0;
1087 else /* if (le16_to_cpu(fe->icbTag.strategyType) == 4096) */
1088 UDF_I_STRAT4096(inode
) = 1;
1090 UDF_I_ALLOCTYPE(inode
) = le16_to_cpu(fe
->icbTag
.flags
) & ICBTAG_FLAG_AD_MASK
;
1091 UDF_I_UNIQUE(inode
) = 0;
1092 UDF_I_LENEATTR(inode
) = 0;
1093 UDF_I_LENEXTENTS(inode
) = 0;
1094 UDF_I_LENALLOC(inode
) = 0;
1095 UDF_I_NEXT_ALLOC_BLOCK(inode
) = 0;
1096 UDF_I_NEXT_ALLOC_GOAL(inode
) = 0;
1097 if (le16_to_cpu(fe
->descTag
.tagIdent
) == TAG_IDENT_EFE
) {
1098 UDF_I_EFE(inode
) = 1;
1099 UDF_I_USE(inode
) = 0;
1100 if (udf_alloc_i_data(inode
, inode
->i_sb
->s_blocksize
- sizeof(struct extendedFileEntry
))) {
1101 make_bad_inode(inode
);
1104 memcpy(UDF_I_DATA(inode
), bh
->b_data
+ sizeof(struct extendedFileEntry
),
1105 inode
->i_sb
->s_blocksize
- sizeof(struct extendedFileEntry
));
1106 } else if (le16_to_cpu(fe
->descTag
.tagIdent
) == TAG_IDENT_FE
) {
1107 UDF_I_EFE(inode
) = 0;
1108 UDF_I_USE(inode
) = 0;
1109 if (udf_alloc_i_data(inode
, inode
->i_sb
->s_blocksize
- sizeof(struct fileEntry
))) {
1110 make_bad_inode(inode
);
1113 memcpy(UDF_I_DATA(inode
), bh
->b_data
+ sizeof(struct fileEntry
),
1114 inode
->i_sb
->s_blocksize
- sizeof(struct fileEntry
));
1115 } else if (le16_to_cpu(fe
->descTag
.tagIdent
) == TAG_IDENT_USE
) {
1116 UDF_I_EFE(inode
) = 0;
1117 UDF_I_USE(inode
) = 1;
1118 UDF_I_LENALLOC(inode
) =
1119 le32_to_cpu(((struct unallocSpaceEntry
*)bh
->b_data
)->lengthAllocDescs
);
1120 if (udf_alloc_i_data(inode
, inode
->i_sb
->s_blocksize
- sizeof(struct unallocSpaceEntry
))) {
1121 make_bad_inode(inode
);
1124 memcpy(UDF_I_DATA(inode
), bh
->b_data
+ sizeof(struct unallocSpaceEntry
),
1125 inode
->i_sb
->s_blocksize
- sizeof(struct unallocSpaceEntry
));
1129 inode
->i_uid
= le32_to_cpu(fe
->uid
);
1130 if (inode
->i_uid
== -1 || UDF_QUERY_FLAG(inode
->i_sb
,
1131 UDF_FLAG_UID_IGNORE
))
1132 inode
->i_uid
= UDF_SB(inode
->i_sb
)->s_uid
;
1134 inode
->i_gid
= le32_to_cpu(fe
->gid
);
1135 if (inode
->i_gid
== -1 || UDF_QUERY_FLAG(inode
->i_sb
,
1136 UDF_FLAG_GID_IGNORE
))
1137 inode
->i_gid
= UDF_SB(inode
->i_sb
)->s_gid
;
1139 inode
->i_nlink
= le16_to_cpu(fe
->fileLinkCount
);
1140 if (!inode
->i_nlink
)
1143 inode
->i_size
= le64_to_cpu(fe
->informationLength
);
1144 UDF_I_LENEXTENTS(inode
) = inode
->i_size
;
1146 inode
->i_mode
= udf_convert_permissions(fe
);
1147 inode
->i_mode
&= ~UDF_SB(inode
->i_sb
)->s_umask
;
1149 if (UDF_I_EFE(inode
) == 0) {
1150 inode
->i_blocks
= le64_to_cpu(fe
->logicalBlocksRecorded
) <<
1151 (inode
->i_sb
->s_blocksize_bits
- 9);
1153 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1154 lets_to_cpu(fe
->accessTime
))) {
1155 inode
->i_atime
.tv_sec
= convtime
;
1156 inode
->i_atime
.tv_nsec
= convtime_usec
* 1000;
1158 inode
->i_atime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1161 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1162 lets_to_cpu(fe
->modificationTime
))) {
1163 inode
->i_mtime
.tv_sec
= convtime
;
1164 inode
->i_mtime
.tv_nsec
= convtime_usec
* 1000;
1166 inode
->i_mtime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1169 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1170 lets_to_cpu(fe
->attrTime
))) {
1171 inode
->i_ctime
.tv_sec
= convtime
;
1172 inode
->i_ctime
.tv_nsec
= convtime_usec
* 1000;
1174 inode
->i_ctime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1177 UDF_I_UNIQUE(inode
) = le64_to_cpu(fe
->uniqueID
);
1178 UDF_I_LENEATTR(inode
) = le32_to_cpu(fe
->lengthExtendedAttr
);
1179 UDF_I_LENALLOC(inode
) = le32_to_cpu(fe
->lengthAllocDescs
);
1180 offset
= sizeof(struct fileEntry
) + UDF_I_LENEATTR(inode
);
1182 inode
->i_blocks
= le64_to_cpu(efe
->logicalBlocksRecorded
) <<
1183 (inode
->i_sb
->s_blocksize_bits
- 9);
1185 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1186 lets_to_cpu(efe
->accessTime
))) {
1187 inode
->i_atime
.tv_sec
= convtime
;
1188 inode
->i_atime
.tv_nsec
= convtime_usec
* 1000;
1190 inode
->i_atime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1193 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1194 lets_to_cpu(efe
->modificationTime
))) {
1195 inode
->i_mtime
.tv_sec
= convtime
;
1196 inode
->i_mtime
.tv_nsec
= convtime_usec
* 1000;
1198 inode
->i_mtime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1201 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1202 lets_to_cpu(efe
->createTime
))) {
1203 UDF_I_CRTIME(inode
).tv_sec
= convtime
;
1204 UDF_I_CRTIME(inode
).tv_nsec
= convtime_usec
* 1000;
1206 UDF_I_CRTIME(inode
) = UDF_SB_RECORDTIME(inode
->i_sb
);
1209 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1210 lets_to_cpu(efe
->attrTime
))) {
1211 inode
->i_ctime
.tv_sec
= convtime
;
1212 inode
->i_ctime
.tv_nsec
= convtime_usec
* 1000;
1214 inode
->i_ctime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1217 UDF_I_UNIQUE(inode
) = le64_to_cpu(efe
->uniqueID
);
1218 UDF_I_LENEATTR(inode
) = le32_to_cpu(efe
->lengthExtendedAttr
);
1219 UDF_I_LENALLOC(inode
) = le32_to_cpu(efe
->lengthAllocDescs
);
1220 offset
= sizeof(struct extendedFileEntry
) + UDF_I_LENEATTR(inode
);
1223 switch (fe
->icbTag
.fileType
) {
1224 case ICBTAG_FILE_TYPE_DIRECTORY
:
1225 inode
->i_op
= &udf_dir_inode_operations
;
1226 inode
->i_fop
= &udf_dir_operations
;
1227 inode
->i_mode
|= S_IFDIR
;
1230 case ICBTAG_FILE_TYPE_REALTIME
:
1231 case ICBTAG_FILE_TYPE_REGULAR
:
1232 case ICBTAG_FILE_TYPE_UNDEF
:
1233 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_IN_ICB
)
1234 inode
->i_data
.a_ops
= &udf_adinicb_aops
;
1236 inode
->i_data
.a_ops
= &udf_aops
;
1237 inode
->i_op
= &udf_file_inode_operations
;
1238 inode
->i_fop
= &udf_file_operations
;
1239 inode
->i_mode
|= S_IFREG
;
1241 case ICBTAG_FILE_TYPE_BLOCK
:
1242 inode
->i_mode
|= S_IFBLK
;
1244 case ICBTAG_FILE_TYPE_CHAR
:
1245 inode
->i_mode
|= S_IFCHR
;
1247 case ICBTAG_FILE_TYPE_FIFO
:
1248 init_special_inode(inode
, inode
->i_mode
| S_IFIFO
, 0);
1250 case ICBTAG_FILE_TYPE_SOCKET
:
1251 init_special_inode(inode
, inode
->i_mode
| S_IFSOCK
, 0);
1253 case ICBTAG_FILE_TYPE_SYMLINK
:
1254 inode
->i_data
.a_ops
= &udf_symlink_aops
;
1255 inode
->i_op
= &page_symlink_inode_operations
;
1256 inode
->i_mode
= S_IFLNK
| S_IRWXUGO
;
1259 printk(KERN_ERR
"udf: udf_fill_inode(ino %ld) failed unknown file type=%d\n",
1260 inode
->i_ino
, fe
->icbTag
.fileType
);
1261 make_bad_inode(inode
);
1264 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1265 struct deviceSpec
*dsea
= (struct deviceSpec
*)udf_get_extendedattr(inode
, 12, 1);
1267 init_special_inode(inode
, inode
->i_mode
,
1268 MKDEV(le32_to_cpu(dsea
->majorDeviceIdent
),
1269 le32_to_cpu(dsea
->minorDeviceIdent
)));
1270 /* Developer ID ??? */
1272 make_bad_inode(inode
);
1277 static int udf_alloc_i_data(struct inode
*inode
, size_t size
)
1279 UDF_I_DATA(inode
) = kmalloc(size
, GFP_KERNEL
);
1281 if (!UDF_I_DATA(inode
)) {
1282 printk(KERN_ERR
"udf:udf_alloc_i_data (ino %ld) no free memory\n",
1290 static mode_t
udf_convert_permissions(struct fileEntry
*fe
)
1293 uint32_t permissions
;
1296 permissions
= le32_to_cpu(fe
->permissions
);
1297 flags
= le16_to_cpu(fe
->icbTag
.flags
);
1299 mode
= (( permissions
) & S_IRWXO
) |
1300 (( permissions
>> 2 ) & S_IRWXG
) |
1301 (( permissions
>> 4 ) & S_IRWXU
) |
1302 (( flags
& ICBTAG_FLAG_SETUID
) ? S_ISUID
: 0) |
1303 (( flags
& ICBTAG_FLAG_SETGID
) ? S_ISGID
: 0) |
1304 (( flags
& ICBTAG_FLAG_STICKY
) ? S_ISVTX
: 0);
1313 * Write out the specified inode.
1316 * This routine is called whenever an inode is synced.
1317 * Currently this routine is just a placeholder.
1320 * July 1, 1997 - Andrew E. Mileski
1321 * Written, tested, and released.
1324 int udf_write_inode(struct inode
*inode
, int sync
)
1329 ret
= udf_update_inode(inode
, sync
);
1335 int udf_sync_inode(struct inode
*inode
)
1337 return udf_update_inode(inode
, 1);
1340 static int udf_update_inode(struct inode
*inode
, int do_sync
)
1342 struct buffer_head
*bh
= NULL
;
1343 struct fileEntry
*fe
;
1344 struct extendedFileEntry
*efe
;
1349 kernel_timestamp cpu_time
;
1352 bh
= udf_tread(inode
->i_sb
, udf_get_lb_pblock(inode
->i_sb
, UDF_I_LOCATION(inode
), 0));
1354 udf_debug("bread failure\n");
1358 memset(bh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
1360 fe
= (struct fileEntry
*)bh
->b_data
;
1361 efe
= (struct extendedFileEntry
*)bh
->b_data
;
1363 if (le16_to_cpu(fe
->descTag
.tagIdent
) == TAG_IDENT_USE
) {
1364 struct unallocSpaceEntry
*use
=
1365 (struct unallocSpaceEntry
*)bh
->b_data
;
1367 use
->lengthAllocDescs
= cpu_to_le32(UDF_I_LENALLOC(inode
));
1368 memcpy(bh
->b_data
+ sizeof(struct unallocSpaceEntry
), UDF_I_DATA(inode
),
1369 inode
->i_sb
->s_blocksize
- sizeof(struct unallocSpaceEntry
));
1370 crclen
= sizeof(struct unallocSpaceEntry
) + UDF_I_LENALLOC(inode
) - sizeof(tag
);
1371 use
->descTag
.tagLocation
= cpu_to_le32(UDF_I_LOCATION(inode
).logicalBlockNum
);
1372 use
->descTag
.descCRCLength
= cpu_to_le16(crclen
);
1373 use
->descTag
.descCRC
= cpu_to_le16(udf_crc((char *)use
+ sizeof(tag
), crclen
, 0));
1375 use
->descTag
.tagChecksum
= 0;
1376 for (i
= 0; i
< 16; i
++) {
1378 use
->descTag
.tagChecksum
+= ((uint8_t *)&(use
->descTag
))[i
];
1381 mark_buffer_dirty(bh
);
1386 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_UID_FORGET
))
1387 fe
->uid
= cpu_to_le32(-1);
1389 fe
->uid
= cpu_to_le32(inode
->i_uid
);
1391 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_GID_FORGET
))
1392 fe
->gid
= cpu_to_le32(-1);
1394 fe
->gid
= cpu_to_le32(inode
->i_gid
);
1396 udfperms
= ((inode
->i_mode
& S_IRWXO
) ) |
1397 ((inode
->i_mode
& S_IRWXG
) << 2) |
1398 ((inode
->i_mode
& S_IRWXU
) << 4);
1400 udfperms
|= (le32_to_cpu(fe
->permissions
) &
1401 (FE_PERM_O_DELETE
| FE_PERM_O_CHATTR
|
1402 FE_PERM_G_DELETE
| FE_PERM_G_CHATTR
|
1403 FE_PERM_U_DELETE
| FE_PERM_U_CHATTR
));
1404 fe
->permissions
= cpu_to_le32(udfperms
);
1406 if (S_ISDIR(inode
->i_mode
))
1407 fe
->fileLinkCount
= cpu_to_le16(inode
->i_nlink
- 1);
1409 fe
->fileLinkCount
= cpu_to_le16(inode
->i_nlink
);
1411 fe
->informationLength
= cpu_to_le64(inode
->i_size
);
1413 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1415 struct deviceSpec
*dsea
=
1416 (struct deviceSpec
*)udf_get_extendedattr(inode
, 12, 1);
1418 dsea
= (struct deviceSpec
*)
1419 udf_add_extendedattr(inode
,
1420 sizeof(struct deviceSpec
) +
1421 sizeof(regid
), 12, 0x3);
1422 dsea
->attrType
= cpu_to_le32(12);
1423 dsea
->attrSubtype
= 1;
1424 dsea
->attrLength
= cpu_to_le32(sizeof(struct deviceSpec
) +
1426 dsea
->impUseLength
= cpu_to_le32(sizeof(regid
));
1428 eid
= (regid
*)dsea
->impUse
;
1429 memset(eid
, 0, sizeof(regid
));
1430 strcpy(eid
->ident
, UDF_ID_DEVELOPER
);
1431 eid
->identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1432 eid
->identSuffix
[1] = UDF_OS_ID_LINUX
;
1433 dsea
->majorDeviceIdent
= cpu_to_le32(imajor(inode
));
1434 dsea
->minorDeviceIdent
= cpu_to_le32(iminor(inode
));
1437 if (UDF_I_EFE(inode
) == 0) {
1438 memcpy(bh
->b_data
+ sizeof(struct fileEntry
), UDF_I_DATA(inode
),
1439 inode
->i_sb
->s_blocksize
- sizeof(struct fileEntry
));
1440 fe
->logicalBlocksRecorded
= cpu_to_le64(
1441 (inode
->i_blocks
+ (1 << (inode
->i_sb
->s_blocksize_bits
- 9)) - 1) >>
1442 (inode
->i_sb
->s_blocksize_bits
- 9));
1444 if (udf_time_to_stamp(&cpu_time
, inode
->i_atime
))
1445 fe
->accessTime
= cpu_to_lets(cpu_time
);
1446 if (udf_time_to_stamp(&cpu_time
, inode
->i_mtime
))
1447 fe
->modificationTime
= cpu_to_lets(cpu_time
);
1448 if (udf_time_to_stamp(&cpu_time
, inode
->i_ctime
))
1449 fe
->attrTime
= cpu_to_lets(cpu_time
);
1450 memset(&(fe
->impIdent
), 0, sizeof(regid
));
1451 strcpy(fe
->impIdent
.ident
, UDF_ID_DEVELOPER
);
1452 fe
->impIdent
.identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1453 fe
->impIdent
.identSuffix
[1] = UDF_OS_ID_LINUX
;
1454 fe
->uniqueID
= cpu_to_le64(UDF_I_UNIQUE(inode
));
1455 fe
->lengthExtendedAttr
= cpu_to_le32(UDF_I_LENEATTR(inode
));
1456 fe
->lengthAllocDescs
= cpu_to_le32(UDF_I_LENALLOC(inode
));
1457 fe
->descTag
.tagIdent
= cpu_to_le16(TAG_IDENT_FE
);
1458 crclen
= sizeof(struct fileEntry
);
1460 memcpy(bh
->b_data
+ sizeof(struct extendedFileEntry
), UDF_I_DATA(inode
),
1461 inode
->i_sb
->s_blocksize
- sizeof(struct extendedFileEntry
));
1462 efe
->objectSize
= cpu_to_le64(inode
->i_size
);
1463 efe
->logicalBlocksRecorded
= cpu_to_le64(
1464 (inode
->i_blocks
+ (1 << (inode
->i_sb
->s_blocksize_bits
- 9)) - 1) >>
1465 (inode
->i_sb
->s_blocksize_bits
- 9));
1467 if (UDF_I_CRTIME(inode
).tv_sec
> inode
->i_atime
.tv_sec
||
1468 (UDF_I_CRTIME(inode
).tv_sec
== inode
->i_atime
.tv_sec
&&
1469 UDF_I_CRTIME(inode
).tv_nsec
> inode
->i_atime
.tv_nsec
)) {
1470 UDF_I_CRTIME(inode
) = inode
->i_atime
;
1472 if (UDF_I_CRTIME(inode
).tv_sec
> inode
->i_mtime
.tv_sec
||
1473 (UDF_I_CRTIME(inode
).tv_sec
== inode
->i_mtime
.tv_sec
&&
1474 UDF_I_CRTIME(inode
).tv_nsec
> inode
->i_mtime
.tv_nsec
)) {
1475 UDF_I_CRTIME(inode
) = inode
->i_mtime
;
1477 if (UDF_I_CRTIME(inode
).tv_sec
> inode
->i_ctime
.tv_sec
||
1478 (UDF_I_CRTIME(inode
).tv_sec
== inode
->i_ctime
.tv_sec
&&
1479 UDF_I_CRTIME(inode
).tv_nsec
> inode
->i_ctime
.tv_nsec
)) {
1480 UDF_I_CRTIME(inode
) = inode
->i_ctime
;
1483 if (udf_time_to_stamp(&cpu_time
, inode
->i_atime
))
1484 efe
->accessTime
= cpu_to_lets(cpu_time
);
1485 if (udf_time_to_stamp(&cpu_time
, inode
->i_mtime
))
1486 efe
->modificationTime
= cpu_to_lets(cpu_time
);
1487 if (udf_time_to_stamp(&cpu_time
, UDF_I_CRTIME(inode
)))
1488 efe
->createTime
= cpu_to_lets(cpu_time
);
1489 if (udf_time_to_stamp(&cpu_time
, inode
->i_ctime
))
1490 efe
->attrTime
= cpu_to_lets(cpu_time
);
1492 memset(&(efe
->impIdent
), 0, sizeof(regid
));
1493 strcpy(efe
->impIdent
.ident
, UDF_ID_DEVELOPER
);
1494 efe
->impIdent
.identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1495 efe
->impIdent
.identSuffix
[1] = UDF_OS_ID_LINUX
;
1496 efe
->uniqueID
= cpu_to_le64(UDF_I_UNIQUE(inode
));
1497 efe
->lengthExtendedAttr
= cpu_to_le32(UDF_I_LENEATTR(inode
));
1498 efe
->lengthAllocDescs
= cpu_to_le32(UDF_I_LENALLOC(inode
));
1499 efe
->descTag
.tagIdent
= cpu_to_le16(TAG_IDENT_EFE
);
1500 crclen
= sizeof(struct extendedFileEntry
);
1502 if (UDF_I_STRAT4096(inode
)) {
1503 fe
->icbTag
.strategyType
= cpu_to_le16(4096);
1504 fe
->icbTag
.strategyParameter
= cpu_to_le16(1);
1505 fe
->icbTag
.numEntries
= cpu_to_le16(2);
1507 fe
->icbTag
.strategyType
= cpu_to_le16(4);
1508 fe
->icbTag
.numEntries
= cpu_to_le16(1);
1511 if (S_ISDIR(inode
->i_mode
))
1512 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_DIRECTORY
;
1513 else if (S_ISREG(inode
->i_mode
))
1514 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_REGULAR
;
1515 else if (S_ISLNK(inode
->i_mode
))
1516 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_SYMLINK
;
1517 else if (S_ISBLK(inode
->i_mode
))
1518 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_BLOCK
;
1519 else if (S_ISCHR(inode
->i_mode
))
1520 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_CHAR
;
1521 else if (S_ISFIFO(inode
->i_mode
))
1522 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_FIFO
;
1523 else if (S_ISSOCK(inode
->i_mode
))
1524 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_SOCKET
;
1526 icbflags
= UDF_I_ALLOCTYPE(inode
) |
1527 ((inode
->i_mode
& S_ISUID
) ? ICBTAG_FLAG_SETUID
: 0) |
1528 ((inode
->i_mode
& S_ISGID
) ? ICBTAG_FLAG_SETGID
: 0) |
1529 ((inode
->i_mode
& S_ISVTX
) ? ICBTAG_FLAG_STICKY
: 0) |
1530 (le16_to_cpu(fe
->icbTag
.flags
) &
1531 ~(ICBTAG_FLAG_AD_MASK
| ICBTAG_FLAG_SETUID
|
1532 ICBTAG_FLAG_SETGID
| ICBTAG_FLAG_STICKY
));
1534 fe
->icbTag
.flags
= cpu_to_le16(icbflags
);
1535 if (UDF_SB_UDFREV(inode
->i_sb
) >= 0x0200)
1536 fe
->descTag
.descVersion
= cpu_to_le16(3);
1538 fe
->descTag
.descVersion
= cpu_to_le16(2);
1539 fe
->descTag
.tagSerialNum
= cpu_to_le16(UDF_SB_SERIALNUM(inode
->i_sb
));
1540 fe
->descTag
.tagLocation
= cpu_to_le32(UDF_I_LOCATION(inode
).logicalBlockNum
);
1541 crclen
+= UDF_I_LENEATTR(inode
) + UDF_I_LENALLOC(inode
) - sizeof(tag
);
1542 fe
->descTag
.descCRCLength
= cpu_to_le16(crclen
);
1543 fe
->descTag
.descCRC
= cpu_to_le16(udf_crc((char *)fe
+ sizeof(tag
), crclen
, 0));
1545 fe
->descTag
.tagChecksum
= 0;
1546 for (i
= 0; i
< 16; i
++) {
1548 fe
->descTag
.tagChecksum
+= ((uint8_t *)&(fe
->descTag
))[i
];
1551 /* write the data blocks */
1552 mark_buffer_dirty(bh
);
1554 sync_dirty_buffer(bh
);
1555 if (buffer_req(bh
) && !buffer_uptodate(bh
)) {
1556 printk("IO error syncing udf inode [%s:%08lx]\n",
1557 inode
->i_sb
->s_id
, inode
->i_ino
);
1566 struct inode
*udf_iget(struct super_block
*sb
, kernel_lb_addr ino
)
1568 unsigned long block
= udf_get_lb_pblock(sb
, ino
, 0);
1569 struct inode
*inode
= iget_locked(sb
, block
);
1574 if (inode
->i_state
& I_NEW
) {
1575 memcpy(&UDF_I_LOCATION(inode
), &ino
, sizeof(kernel_lb_addr
));
1576 __udf_read_inode(inode
);
1577 unlock_new_inode(inode
);
1580 if (is_bad_inode(inode
))
1583 if (ino
.logicalBlockNum
>= UDF_SB_PARTLEN(sb
, ino
.partitionReferenceNum
)) {
1584 udf_debug("block=%d, partition=%d out of range\n",
1585 ino
.logicalBlockNum
, ino
.partitionReferenceNum
);
1586 make_bad_inode(inode
);
1597 int8_t udf_add_aext(struct inode
* inode
, struct extent_position
* epos
,
1598 kernel_lb_addr eloc
, uint32_t elen
, int inc
)
1601 short_ad
*sad
= NULL
;
1602 long_ad
*lad
= NULL
;
1603 struct allocExtDesc
*aed
;
1608 ptr
= UDF_I_DATA(inode
) + epos
->offset
- udf_file_entry_alloc_offset(inode
) + UDF_I_LENEATTR(inode
);
1610 ptr
= epos
->bh
->b_data
+ epos
->offset
;
1612 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_SHORT
)
1613 adsize
= sizeof(short_ad
);
1614 else if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_LONG
)
1615 adsize
= sizeof(long_ad
);
1619 if (epos
->offset
+ (2 * adsize
) > inode
->i_sb
->s_blocksize
) {
1621 struct buffer_head
*nbh
;
1623 kernel_lb_addr obloc
= epos
->block
;
1625 if (!(epos
->block
.logicalBlockNum
= udf_new_block(inode
->i_sb
, NULL
,
1626 obloc
.partitionReferenceNum
,
1627 obloc
.logicalBlockNum
, &err
))) {
1630 if (!(nbh
= udf_tgetblk(inode
->i_sb
, udf_get_lb_pblock(inode
->i_sb
,
1631 epos
->block
, 0)))) {
1635 memset(nbh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
1636 set_buffer_uptodate(nbh
);
1638 mark_buffer_dirty_inode(nbh
, inode
);
1640 aed
= (struct allocExtDesc
*)(nbh
->b_data
);
1641 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
))
1642 aed
->previousAllocExtLocation
= cpu_to_le32(obloc
.logicalBlockNum
);
1643 if (epos
->offset
+ adsize
> inode
->i_sb
->s_blocksize
) {
1644 loffset
= epos
->offset
;
1645 aed
->lengthAllocDescs
= cpu_to_le32(adsize
);
1646 sptr
= ptr
- adsize
;
1647 dptr
= nbh
->b_data
+ sizeof(struct allocExtDesc
);
1648 memcpy(dptr
, sptr
, adsize
);
1649 epos
->offset
= sizeof(struct allocExtDesc
) + adsize
;
1651 loffset
= epos
->offset
+ adsize
;
1652 aed
->lengthAllocDescs
= cpu_to_le32(0);
1654 epos
->offset
= sizeof(struct allocExtDesc
);
1657 aed
= (struct allocExtDesc
*)epos
->bh
->b_data
;
1658 aed
->lengthAllocDescs
=
1659 cpu_to_le32(le32_to_cpu(aed
->lengthAllocDescs
) + adsize
);
1661 UDF_I_LENALLOC(inode
) += adsize
;
1662 mark_inode_dirty(inode
);
1665 if (UDF_SB_UDFREV(inode
->i_sb
) >= 0x0200)
1666 udf_new_tag(nbh
->b_data
, TAG_IDENT_AED
, 3, 1,
1667 epos
->block
.logicalBlockNum
, sizeof(tag
));
1669 udf_new_tag(nbh
->b_data
, TAG_IDENT_AED
, 2, 1,
1670 epos
->block
.logicalBlockNum
, sizeof(tag
));
1671 switch (UDF_I_ALLOCTYPE(inode
)) {
1672 case ICBTAG_FLAG_AD_SHORT
:
1673 sad
= (short_ad
*)sptr
;
1674 sad
->extLength
= cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS
|
1675 inode
->i_sb
->s_blocksize
);
1676 sad
->extPosition
= cpu_to_le32(epos
->block
.logicalBlockNum
);
1678 case ICBTAG_FLAG_AD_LONG
:
1679 lad
= (long_ad
*)sptr
;
1680 lad
->extLength
= cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS
|
1681 inode
->i_sb
->s_blocksize
);
1682 lad
->extLocation
= cpu_to_lelb(epos
->block
);
1683 memset(lad
->impUse
, 0x00, sizeof(lad
->impUse
));
1687 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1688 UDF_SB_UDFREV(inode
->i_sb
) >= 0x0201)
1689 udf_update_tag(epos
->bh
->b_data
, loffset
);
1691 udf_update_tag(epos
->bh
->b_data
, sizeof(struct allocExtDesc
));
1692 mark_buffer_dirty_inode(epos
->bh
, inode
);
1695 mark_inode_dirty(inode
);
1700 etype
= udf_write_aext(inode
, epos
, eloc
, elen
, inc
);
1703 UDF_I_LENALLOC(inode
) += adsize
;
1704 mark_inode_dirty(inode
);
1706 aed
= (struct allocExtDesc
*)epos
->bh
->b_data
;
1707 aed
->lengthAllocDescs
=
1708 cpu_to_le32(le32_to_cpu(aed
->lengthAllocDescs
) + adsize
);
1709 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) || UDF_SB_UDFREV(inode
->i_sb
) >= 0x0201)
1710 udf_update_tag(epos
->bh
->b_data
, epos
->offset
+ (inc
? 0 : adsize
));
1712 udf_update_tag(epos
->bh
->b_data
, sizeof(struct allocExtDesc
));
1713 mark_buffer_dirty_inode(epos
->bh
, inode
);
1719 int8_t udf_write_aext(struct inode
* inode
, struct extent_position
* epos
,
1720 kernel_lb_addr eloc
, uint32_t elen
, int inc
)
1728 ptr
= UDF_I_DATA(inode
) + epos
->offset
- udf_file_entry_alloc_offset(inode
) + UDF_I_LENEATTR(inode
);
1730 ptr
= epos
->bh
->b_data
+ epos
->offset
;
1732 switch (UDF_I_ALLOCTYPE(inode
)) {
1733 case ICBTAG_FLAG_AD_SHORT
:
1734 sad
= (short_ad
*)ptr
;
1735 sad
->extLength
= cpu_to_le32(elen
);
1736 sad
->extPosition
= cpu_to_le32(eloc
.logicalBlockNum
);
1737 adsize
= sizeof(short_ad
);
1739 case ICBTAG_FLAG_AD_LONG
:
1740 lad
= (long_ad
*)ptr
;
1741 lad
->extLength
= cpu_to_le32(elen
);
1742 lad
->extLocation
= cpu_to_lelb(eloc
);
1743 memset(lad
->impUse
, 0x00, sizeof(lad
->impUse
));
1744 adsize
= sizeof(long_ad
);
1751 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1752 UDF_SB_UDFREV(inode
->i_sb
) >= 0x0201) {
1753 struct allocExtDesc
*aed
= (struct allocExtDesc
*)epos
->bh
->b_data
;
1754 udf_update_tag(epos
->bh
->b_data
,
1755 le32_to_cpu(aed
->lengthAllocDescs
) + sizeof(struct allocExtDesc
));
1757 mark_buffer_dirty_inode(epos
->bh
, inode
);
1759 mark_inode_dirty(inode
);
1763 epos
->offset
+= adsize
;
1765 return (elen
>> 30);
1768 int8_t udf_next_aext(struct inode
* inode
, struct extent_position
* epos
,
1769 kernel_lb_addr
* eloc
, uint32_t * elen
, int inc
)
1773 while ((etype
= udf_current_aext(inode
, epos
, eloc
, elen
, inc
)) ==
1774 (EXT_NEXT_EXTENT_ALLOCDECS
>> 30)) {
1775 epos
->block
= *eloc
;
1776 epos
->offset
= sizeof(struct allocExtDesc
);
1778 if (!(epos
->bh
= udf_tread(inode
->i_sb
, udf_get_lb_pblock(inode
->i_sb
, epos
->block
, 0)))) {
1779 udf_debug("reading block %d failed!\n",
1780 udf_get_lb_pblock(inode
->i_sb
, epos
->block
, 0));
1788 int8_t udf_current_aext(struct inode
* inode
, struct extent_position
* epos
,
1789 kernel_lb_addr
* eloc
, uint32_t * elen
, int inc
)
1800 epos
->offset
= udf_file_entry_alloc_offset(inode
);
1801 ptr
= UDF_I_DATA(inode
) + epos
->offset
- udf_file_entry_alloc_offset(inode
) + UDF_I_LENEATTR(inode
);
1802 alen
= udf_file_entry_alloc_offset(inode
) + UDF_I_LENALLOC(inode
);
1805 epos
->offset
= sizeof(struct allocExtDesc
);
1806 ptr
= epos
->bh
->b_data
+ epos
->offset
;
1807 alen
= sizeof(struct allocExtDesc
) +
1808 le32_to_cpu(((struct allocExtDesc
*)epos
->bh
->b_data
)->lengthAllocDescs
);
1811 switch (UDF_I_ALLOCTYPE(inode
)) {
1812 case ICBTAG_FLAG_AD_SHORT
:
1813 if (!(sad
= udf_get_fileshortad(ptr
, alen
, &epos
->offset
, inc
)))
1815 etype
= le32_to_cpu(sad
->extLength
) >> 30;
1816 eloc
->logicalBlockNum
= le32_to_cpu(sad
->extPosition
);
1817 eloc
->partitionReferenceNum
= UDF_I_LOCATION(inode
).partitionReferenceNum
;
1818 *elen
= le32_to_cpu(sad
->extLength
) & UDF_EXTENT_LENGTH_MASK
;
1820 case ICBTAG_FLAG_AD_LONG
:
1821 if (!(lad
= udf_get_filelongad(ptr
, alen
, &epos
->offset
, inc
)))
1823 etype
= le32_to_cpu(lad
->extLength
) >> 30;
1824 *eloc
= lelb_to_cpu(lad
->extLocation
);
1825 *elen
= le32_to_cpu(lad
->extLength
) & UDF_EXTENT_LENGTH_MASK
;
1828 udf_debug("alloc_type = %d unsupported\n", UDF_I_ALLOCTYPE(inode
));
1835 static int8_t udf_insert_aext(struct inode
*inode
, struct extent_position epos
,
1836 kernel_lb_addr neloc
, uint32_t nelen
)
1838 kernel_lb_addr oeloc
;
1845 while ((etype
= udf_next_aext(inode
, &epos
, &oeloc
, &oelen
, 0)) != -1) {
1846 udf_write_aext(inode
, &epos
, neloc
, nelen
, 1);
1848 nelen
= (etype
<< 30) | oelen
;
1850 udf_add_aext(inode
, &epos
, neloc
, nelen
, 1);
1853 return (nelen
>> 30);
1856 int8_t udf_delete_aext(struct inode
* inode
, struct extent_position epos
,
1857 kernel_lb_addr eloc
, uint32_t elen
)
1859 struct extent_position oepos
;
1862 struct allocExtDesc
*aed
;
1869 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_SHORT
)
1870 adsize
= sizeof(short_ad
);
1871 else if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_LONG
)
1872 adsize
= sizeof(long_ad
);
1877 if (udf_next_aext(inode
, &epos
, &eloc
, &elen
, 1) == -1)
1880 while ((etype
= udf_next_aext(inode
, &epos
, &eloc
, &elen
, 1)) != -1) {
1881 udf_write_aext(inode
, &oepos
, eloc
, (etype
<< 30) | elen
, 1);
1882 if (oepos
.bh
!= epos
.bh
) {
1883 oepos
.block
= epos
.block
;
1887 oepos
.offset
= epos
.offset
- adsize
;
1890 memset(&eloc
, 0x00, sizeof(kernel_lb_addr
));
1893 if (epos
.bh
!= oepos
.bh
) {
1894 udf_free_blocks(inode
->i_sb
, inode
, epos
.block
, 0, 1);
1895 udf_write_aext(inode
, &oepos
, eloc
, elen
, 1);
1896 udf_write_aext(inode
, &oepos
, eloc
, elen
, 1);
1898 UDF_I_LENALLOC(inode
) -= (adsize
* 2);
1899 mark_inode_dirty(inode
);
1901 aed
= (struct allocExtDesc
*)oepos
.bh
->b_data
;
1902 aed
->lengthAllocDescs
=
1903 cpu_to_le32(le32_to_cpu(aed
->lengthAllocDescs
) - (2 * adsize
));
1904 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1905 UDF_SB_UDFREV(inode
->i_sb
) >= 0x0201)
1906 udf_update_tag(oepos
.bh
->b_data
, oepos
.offset
- (2 * adsize
));
1908 udf_update_tag(oepos
.bh
->b_data
, sizeof(struct allocExtDesc
));
1909 mark_buffer_dirty_inode(oepos
.bh
, inode
);
1912 udf_write_aext(inode
, &oepos
, eloc
, elen
, 1);
1914 UDF_I_LENALLOC(inode
) -= adsize
;
1915 mark_inode_dirty(inode
);
1917 aed
= (struct allocExtDesc
*)oepos
.bh
->b_data
;
1918 aed
->lengthAllocDescs
=
1919 cpu_to_le32(le32_to_cpu(aed
->lengthAllocDescs
) - adsize
);
1920 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1921 UDF_SB_UDFREV(inode
->i_sb
) >= 0x0201)
1922 udf_update_tag(oepos
.bh
->b_data
, epos
.offset
- adsize
);
1924 udf_update_tag(oepos
.bh
->b_data
, sizeof(struct allocExtDesc
));
1925 mark_buffer_dirty_inode(oepos
.bh
, inode
);
1932 return (elen
>> 30);
1935 int8_t inode_bmap(struct inode
* inode
, sector_t block
,
1936 struct extent_position
* pos
, kernel_lb_addr
* eloc
,
1937 uint32_t * elen
, sector_t
* offset
)
1939 loff_t lbcount
= 0, bcount
=
1940 (loff_t
) block
<< inode
->i_sb
->s_blocksize_bits
;
1944 printk(KERN_ERR
"udf: inode_bmap: block < 0\n");
1949 pos
->block
= UDF_I_LOCATION(inode
);
1954 if ((etype
= udf_next_aext(inode
, pos
, eloc
, elen
, 1)) == -1) {
1955 *offset
= (bcount
- lbcount
) >> inode
->i_sb
->s_blocksize_bits
;
1956 UDF_I_LENEXTENTS(inode
) = lbcount
;
1960 } while (lbcount
<= bcount
);
1962 *offset
= (bcount
+ *elen
- lbcount
) >> inode
->i_sb
->s_blocksize_bits
;
1967 long udf_block_map(struct inode
*inode
, sector_t block
)
1969 kernel_lb_addr eloc
;
1972 struct extent_position epos
= {};
1977 if (inode_bmap(inode
, block
, &epos
, &eloc
, &elen
, &offset
) == (EXT_RECORDED_ALLOCATED
>> 30))
1978 ret
= udf_get_lb_pblock(inode
->i_sb
, eloc
, offset
);
1985 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_VARCONV
))
1986 return udf_fixed_to_variable(ret
);