1 /*********************************************************************
5 * Description: Tiny Transport Protocol (TTP) implementation
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun Aug 31 20:14:31 1997
9 * Modified at: Wed Jan 5 11:31:27 2000
10 * Modified by: Dag Brattli <dagb@cs.uit.no>
12 * Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
13 * All Rights Reserved.
14 * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License as
18 * published by the Free Software Foundation; either version 2 of
19 * the License, or (at your option) any later version.
21 * Neither Dag Brattli nor University of Tromsø admit liability nor
22 * provide warranty for any of this software. This material is
23 * provided "AS-IS" and at no charge.
25 ********************************************************************/
27 #include <linux/config.h>
28 #include <linux/skbuff.h>
29 #include <linux/init.h>
30 #include <linux/seq_file.h>
32 #include <asm/byteorder.h>
33 #include <asm/unaligned.h>
35 #include <net/irda/irda.h>
36 #include <net/irda/irlap.h>
37 #include <net/irda/irlmp.h>
38 #include <net/irda/parameters.h>
39 #include <net/irda/irttp.h>
41 static struct irttp_cb
*irttp
= NULL
;
43 static void __irttp_close_tsap(struct tsap_cb
*self
);
45 static int irttp_data_indication(void *instance
, void *sap
,
47 static int irttp_udata_indication(void *instance
, void *sap
,
49 static void irttp_disconnect_indication(void *instance
, void *sap
,
50 LM_REASON reason
, struct sk_buff
*);
51 static void irttp_connect_indication(void *instance
, void *sap
,
52 struct qos_info
*qos
, __u32 max_sdu_size
,
53 __u8 header_size
, struct sk_buff
*skb
);
54 static void irttp_connect_confirm(void *instance
, void *sap
,
55 struct qos_info
*qos
, __u32 max_sdu_size
,
56 __u8 header_size
, struct sk_buff
*skb
);
57 static void irttp_run_tx_queue(struct tsap_cb
*self
);
58 static void irttp_run_rx_queue(struct tsap_cb
*self
);
60 static void irttp_flush_queues(struct tsap_cb
*self
);
61 static void irttp_fragment_skb(struct tsap_cb
*self
, struct sk_buff
*skb
);
62 static struct sk_buff
*irttp_reassemble_skb(struct tsap_cb
*self
);
63 static void irttp_todo_expired(unsigned long data
);
64 static int irttp_param_max_sdu_size(void *instance
, irda_param_t
*param
,
67 static void irttp_flow_indication(void *instance
, void *sap
, LOCAL_FLOW flow
);
68 static void irttp_status_indication(void *instance
,
69 LINK_STATUS link
, LOCK_STATUS lock
);
71 /* Information for parsing parameters in IrTTP */
72 static pi_minor_info_t pi_minor_call_table
[] = {
73 { NULL
, 0 }, /* 0x00 */
74 { irttp_param_max_sdu_size
, PV_INTEGER
| PV_BIG_ENDIAN
} /* 0x01 */
76 static pi_major_info_t pi_major_call_table
[] = {{ pi_minor_call_table
, 2 }};
77 static pi_param_info_t param_info
= { pi_major_call_table
, 1, 0x0f, 4 };
79 /************************ GLOBAL PROCEDURES ************************/
82 * Function irttp_init (void)
84 * Initialize the IrTTP layer. Called by module initialization code
87 int __init
irttp_init(void)
89 /* Initialize the irttp structure. */
91 irttp
= kmalloc(sizeof(struct irttp_cb
), GFP_KERNEL
);
95 memset(irttp
, 0, sizeof(struct irttp_cb
));
97 irttp
->magic
= TTP_MAGIC
;
99 irttp
->tsaps
= hashbin_new(HB_LOCK
);
101 IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
110 * Function irttp_cleanup (void)
112 * Called by module destruction/cleanup code
115 void __exit
irttp_cleanup(void)
117 /* Check for main structure */
118 IRDA_ASSERT(irttp
!= NULL
, return;);
119 IRDA_ASSERT(irttp
->magic
== TTP_MAGIC
, return;);
122 * Delete hashbin and close all TSAP instances in it
124 hashbin_delete(irttp
->tsaps
, (FREE_FUNC
) __irttp_close_tsap
);
128 /* De-allocate main structure */
134 /*************************** SUBROUTINES ***************************/
137 * Function irttp_start_todo_timer (self, timeout)
141 * Made it more effient and unsensitive to race conditions - Jean II
143 static inline void irttp_start_todo_timer(struct tsap_cb
*self
, int timeout
)
145 /* Set new value for timer */
146 mod_timer(&self
->todo_timer
, jiffies
+ timeout
);
150 * Function irttp_todo_expired (data)
152 * Todo timer has expired!
154 * One of the restriction of the timer is that it is run only on the timer
155 * interrupt which run every 10ms. This mean that even if you set the timer
156 * with a delay of 0, it may take up to 10ms before it's run.
157 * So, to minimise latency and keep cache fresh, we try to avoid using
158 * it as much as possible.
159 * Note : we can't use tasklets, because they can't be asynchronously
160 * killed (need user context), and we can't guarantee that here...
163 static void irttp_todo_expired(unsigned long data
)
165 struct tsap_cb
*self
= (struct tsap_cb
*) data
;
167 /* Check that we still exist */
168 if (!self
|| self
->magic
!= TTP_TSAP_MAGIC
)
171 IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__
, self
);
173 /* Try to make some progress, especially on Tx side - Jean II */
174 irttp_run_rx_queue(self
);
175 irttp_run_tx_queue(self
);
177 /* Check if time for disconnect */
178 if (test_bit(0, &self
->disconnect_pend
)) {
179 /* Check if it's possible to disconnect yet */
180 if (skb_queue_empty(&self
->tx_queue
)) {
181 /* Make sure disconnect is not pending anymore */
182 clear_bit(0, &self
->disconnect_pend
); /* FALSE */
184 /* Note : self->disconnect_skb may be NULL */
185 irttp_disconnect_request(self
, self
->disconnect_skb
,
187 self
->disconnect_skb
= NULL
;
189 /* Try again later */
190 irttp_start_todo_timer(self
, HZ
/10);
192 /* No reason to try and close now */
197 /* Check if it's closing time */
198 if (self
->close_pend
)
200 irttp_close_tsap(self
);
204 * Function irttp_flush_queues (self)
206 * Flushes (removes all frames) in transitt-buffer (tx_list)
208 void irttp_flush_queues(struct tsap_cb
*self
)
212 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
214 IRDA_ASSERT(self
!= NULL
, return;);
215 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
217 /* Deallocate frames waiting to be sent */
218 while ((skb
= skb_dequeue(&self
->tx_queue
)) != NULL
)
221 /* Deallocate received frames */
222 while ((skb
= skb_dequeue(&self
->rx_queue
)) != NULL
)
225 /* Deallocate received fragments */
226 while ((skb
= skb_dequeue(&self
->rx_fragments
)) != NULL
)
231 * Function irttp_reassemble (self)
233 * Makes a new (continuous) skb of all the fragments in the fragment
237 static struct sk_buff
*irttp_reassemble_skb(struct tsap_cb
*self
)
239 struct sk_buff
*skb
, *frag
;
240 int n
= 0; /* Fragment index */
242 IRDA_ASSERT(self
!= NULL
, return NULL
;);
243 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return NULL
;);
245 IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __FUNCTION__
,
248 skb
= dev_alloc_skb(TTP_HEADER
+ self
->rx_sdu_size
);
253 * Need to reserve space for TTP header in case this skb needs to
254 * be requeued in case delivery failes
256 skb_reserve(skb
, TTP_HEADER
);
257 skb_put(skb
, self
->rx_sdu_size
);
260 * Copy all fragments to a new buffer
262 while ((frag
= skb_dequeue(&self
->rx_fragments
)) != NULL
) {
263 memcpy(skb
->data
+n
, frag
->data
, frag
->len
);
270 "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
271 __FUNCTION__
, n
, self
->rx_sdu_size
, self
->rx_max_sdu_size
);
272 /* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
273 * by summing the size of all fragments, so we should always
274 * have n == self->rx_sdu_size, except in cases where we
275 * droped the last fragment (when self->rx_sdu_size exceed
276 * self->rx_max_sdu_size), where n < self->rx_sdu_size.
278 IRDA_ASSERT(n
<= self
->rx_sdu_size
, n
= self
->rx_sdu_size
;);
280 /* Set the new length */
283 self
->rx_sdu_size
= 0;
289 * Function irttp_fragment_skb (skb)
291 * Fragments a frame and queues all the fragments for transmission
294 static inline void irttp_fragment_skb(struct tsap_cb
*self
,
297 struct sk_buff
*frag
;
300 IRDA_DEBUG(2, "%s()\n", __FUNCTION__
);
302 IRDA_ASSERT(self
!= NULL
, return;);
303 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
304 IRDA_ASSERT(skb
!= NULL
, return;);
307 * Split frame into a number of segments
309 while (skb
->len
> self
->max_seg_size
) {
310 IRDA_DEBUG(2, "%s(), fragmenting ...\n", __FUNCTION__
);
312 /* Make new segment */
313 frag
= dev_alloc_skb(self
->max_seg_size
+self
->max_header_size
);
317 skb_reserve(frag
, self
->max_header_size
);
319 /* Copy data from the original skb into this fragment. */
320 memcpy(skb_put(frag
, self
->max_seg_size
), skb
->data
,
323 /* Insert TTP header, with the more bit set */
324 frame
= skb_push(frag
, TTP_HEADER
);
327 /* Hide the copied data from the original skb */
328 skb_pull(skb
, self
->max_seg_size
);
331 skb_queue_tail(&self
->tx_queue
, frag
);
333 /* Queue what is left of the original skb */
334 IRDA_DEBUG(2, "%s(), queuing last segment\n", __FUNCTION__
);
336 frame
= skb_push(skb
, TTP_HEADER
);
337 frame
[0] = 0x00; /* Clear more bit */
340 skb_queue_tail(&self
->tx_queue
, skb
);
344 * Function irttp_param_max_sdu_size (self, param)
346 * Handle the MaxSduSize parameter in the connect frames, this function
347 * will be called both when this parameter needs to be inserted into, and
348 * extracted from the connect frames
350 static int irttp_param_max_sdu_size(void *instance
, irda_param_t
*param
,
353 struct tsap_cb
*self
;
355 self
= (struct tsap_cb
*) instance
;
357 IRDA_ASSERT(self
!= NULL
, return -1;);
358 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
361 param
->pv
.i
= self
->tx_max_sdu_size
;
363 self
->tx_max_sdu_size
= param
->pv
.i
;
365 IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __FUNCTION__
, param
->pv
.i
);
370 /*************************** CLIENT CALLS ***************************/
371 /************************** LMP CALLBACKS **************************/
372 /* Everything is happily mixed up. Waiting for next clean up - Jean II */
375 * Function irttp_open_tsap (stsap, notify)
377 * Create TSAP connection endpoint,
379 struct tsap_cb
*irttp_open_tsap(__u8 stsap_sel
, int credit
, notify_t
*notify
)
381 struct tsap_cb
*self
;
382 struct lsap_cb
*lsap
;
385 IRDA_ASSERT(irttp
!= NULL
, return NULL
;);
386 IRDA_ASSERT(irttp
->magic
== TTP_MAGIC
, return NULL
;);
388 /* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
389 * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
391 if((stsap_sel
!= LSAP_ANY
) &&
392 ((stsap_sel
< 0x01) || (stsap_sel
>= 0x70))) {
393 IRDA_DEBUG(0, "%s(), invalid tsap!\n", __FUNCTION__
);
397 self
= kmalloc(sizeof(struct tsap_cb
), GFP_ATOMIC
);
399 IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __FUNCTION__
);
402 memset(self
, 0, sizeof(struct tsap_cb
));
403 spin_lock_init(&self
->lock
);
405 /* Initialise todo timer */
406 init_timer(&self
->todo_timer
);
407 self
->todo_timer
.data
= (unsigned long) self
;
408 self
->todo_timer
.function
= &irttp_todo_expired
;
410 /* Initialize callbacks for IrLMP to use */
411 irda_notify_init(&ttp_notify
);
412 ttp_notify
.connect_confirm
= irttp_connect_confirm
;
413 ttp_notify
.connect_indication
= irttp_connect_indication
;
414 ttp_notify
.disconnect_indication
= irttp_disconnect_indication
;
415 ttp_notify
.data_indication
= irttp_data_indication
;
416 ttp_notify
.udata_indication
= irttp_udata_indication
;
417 ttp_notify
.flow_indication
= irttp_flow_indication
;
418 if(notify
->status_indication
!= NULL
)
419 ttp_notify
.status_indication
= irttp_status_indication
;
420 ttp_notify
.instance
= self
;
421 strncpy(ttp_notify
.name
, notify
->name
, NOTIFY_MAX_NAME
);
423 self
->magic
= TTP_TSAP_MAGIC
;
424 self
->connected
= FALSE
;
426 skb_queue_head_init(&self
->rx_queue
);
427 skb_queue_head_init(&self
->tx_queue
);
428 skb_queue_head_init(&self
->rx_fragments
);
430 * Create LSAP at IrLMP layer
432 lsap
= irlmp_open_lsap(stsap_sel
, &ttp_notify
, 0);
434 IRDA_WARNING("%s: unable to allocate LSAP!!\n", __FUNCTION__
);
439 * If user specified LSAP_ANY as source TSAP selector, then IrLMP
440 * will replace it with whatever source selector which is free, so
441 * the stsap_sel we have might not be valid anymore
443 self
->stsap_sel
= lsap
->slsap_sel
;
444 IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __FUNCTION__
, self
->stsap_sel
);
446 self
->notify
= *notify
;
449 hashbin_insert(irttp
->tsaps
, (irda_queue_t
*) self
, (long) self
, NULL
);
451 if (credit
> TTP_RX_MAX_CREDIT
)
452 self
->initial_credit
= TTP_RX_MAX_CREDIT
;
454 self
->initial_credit
= credit
;
458 EXPORT_SYMBOL(irttp_open_tsap
);
461 * Function irttp_close (handle)
463 * Remove an instance of a TSAP. This function should only deal with the
464 * deallocation of the TSAP, and resetting of the TSAPs values;
467 static void __irttp_close_tsap(struct tsap_cb
*self
)
469 /* First make sure we're connected. */
470 IRDA_ASSERT(self
!= NULL
, return;);
471 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
473 irttp_flush_queues(self
);
475 del_timer(&self
->todo_timer
);
477 /* This one won't be cleaned up if we are disconnect_pend + close_pend
478 * and we receive a disconnect_indication */
479 if (self
->disconnect_skb
)
480 dev_kfree_skb(self
->disconnect_skb
);
482 self
->connected
= FALSE
;
483 self
->magic
= ~TTP_TSAP_MAGIC
;
489 * Function irttp_close (self)
491 * Remove TSAP from list of all TSAPs and then deallocate all resources
492 * associated with this TSAP
494 * Note : because we *free* the tsap structure, it is the responsibility
495 * of the caller to make sure we are called only once and to deal with
496 * possible race conditions. - Jean II
498 int irttp_close_tsap(struct tsap_cb
*self
)
500 struct tsap_cb
*tsap
;
502 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
504 IRDA_ASSERT(self
!= NULL
, return -1;);
505 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
507 /* Make sure tsap has been disconnected */
508 if (self
->connected
) {
509 /* Check if disconnect is not pending */
510 if (!test_bit(0, &self
->disconnect_pend
)) {
511 IRDA_WARNING("%s: TSAP still connected!\n",
513 irttp_disconnect_request(self
, NULL
, P_NORMAL
);
515 self
->close_pend
= TRUE
;
516 irttp_start_todo_timer(self
, HZ
/10);
518 return 0; /* Will be back! */
521 tsap
= hashbin_remove(irttp
->tsaps
, (long) self
, NULL
);
523 IRDA_ASSERT(tsap
== self
, return -1;);
525 /* Close corresponding LSAP */
527 irlmp_close_lsap(self
->lsap
);
531 __irttp_close_tsap(self
);
535 EXPORT_SYMBOL(irttp_close_tsap
);
538 * Function irttp_udata_request (self, skb)
540 * Send unreliable data on this TSAP
543 int irttp_udata_request(struct tsap_cb
*self
, struct sk_buff
*skb
)
545 IRDA_ASSERT(self
!= NULL
, return -1;);
546 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
547 IRDA_ASSERT(skb
!= NULL
, return -1;);
549 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
551 /* Check that nothing bad happens */
552 if ((skb
->len
== 0) || (!self
->connected
)) {
553 IRDA_DEBUG(1, "%s(), No data, or not connected\n",
558 if (skb
->len
> self
->max_seg_size
) {
559 IRDA_DEBUG(1, "%s(), UData is to large for IrLAP!\n",
564 irlmp_udata_request(self
->lsap
, skb
);
565 self
->stats
.tx_packets
++;
573 EXPORT_SYMBOL(irttp_udata_request
);
577 * Function irttp_data_request (handle, skb)
579 * Queue frame for transmission. If SAR is enabled, fragement the frame
580 * and queue the fragments for transmission
582 int irttp_data_request(struct tsap_cb
*self
, struct sk_buff
*skb
)
587 IRDA_ASSERT(self
!= NULL
, return -1;);
588 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
589 IRDA_ASSERT(skb
!= NULL
, return -1;);
591 IRDA_DEBUG(2, "%s() : queue len = %d\n", __FUNCTION__
,
592 skb_queue_len(&self
->tx_queue
));
594 /* Check that nothing bad happens */
595 if ((skb
->len
== 0) || (!self
->connected
)) {
596 IRDA_WARNING("%s: No data, or not connected\n", __FUNCTION__
);
602 * Check if SAR is disabled, and the frame is larger than what fits
603 * inside an IrLAP frame
605 if ((self
->tx_max_sdu_size
== 0) && (skb
->len
> self
->max_seg_size
)) {
606 IRDA_ERROR("%s: SAR disabled, and data is to large for IrLAP!\n",
613 * Check if SAR is enabled, and the frame is larger than the
616 if ((self
->tx_max_sdu_size
!= 0) &&
617 (self
->tx_max_sdu_size
!= TTP_SAR_UNBOUND
) &&
618 (skb
->len
> self
->tx_max_sdu_size
))
620 IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
626 * Check if transmit queue is full
628 if (skb_queue_len(&self
->tx_queue
) >= TTP_TX_MAX_QUEUE
) {
630 * Give it a chance to empty itself
632 irttp_run_tx_queue(self
);
634 /* Drop packet. This error code should trigger the caller
635 * to resend the data in the client code - Jean II */
640 /* Queue frame, or queue frame segments */
641 if ((self
->tx_max_sdu_size
== 0) || (skb
->len
< self
->max_seg_size
)) {
643 IRDA_ASSERT(skb_headroom(skb
) >= TTP_HEADER
, return -1;);
644 frame
= skb_push(skb
, TTP_HEADER
);
645 frame
[0] = 0x00; /* Clear more bit */
647 skb_queue_tail(&self
->tx_queue
, skb
);
650 * Fragment the frame, this function will also queue the
651 * fragments, we don't care about the fact the transmit
652 * queue may be overfilled by all the segments for a little
655 irttp_fragment_skb(self
, skb
);
658 /* Check if we can accept more data from client */
659 if ((!self
->tx_sdu_busy
) &&
660 (skb_queue_len(&self
->tx_queue
) > TTP_TX_HIGH_THRESHOLD
)) {
661 /* Tx queue filling up, so stop client. */
662 if (self
->notify
.flow_indication
) {
663 self
->notify
.flow_indication(self
->notify
.instance
,
666 /* self->tx_sdu_busy is the state of the client.
667 * Update state after notifying client to avoid
668 * race condition with irttp_flow_indication().
669 * If the queue empty itself after our test but before
670 * we set the flag, we will fix ourselves below in
671 * irttp_run_tx_queue().
673 self
->tx_sdu_busy
= TRUE
;
676 /* Try to make some progress */
677 irttp_run_tx_queue(self
);
685 EXPORT_SYMBOL(irttp_data_request
);
688 * Function irttp_run_tx_queue (self)
690 * Transmit packets queued for transmission (if possible)
693 static void irttp_run_tx_queue(struct tsap_cb
*self
)
699 IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
701 self
->send_credit
, skb_queue_len(&self
->tx_queue
));
703 /* Get exclusive access to the tx queue, otherwise don't touch it */
704 if (irda_lock(&self
->tx_queue_lock
) == FALSE
)
707 /* Try to send out frames as long as we have credits
708 * and as long as LAP is not full. If LAP is full, it will
709 * poll us through irttp_flow_indication() - Jean II */
710 while ((self
->send_credit
> 0) &&
711 (!irlmp_lap_tx_queue_full(self
->lsap
)) &&
712 (skb
= skb_dequeue(&self
->tx_queue
)))
715 * Since we can transmit and receive frames concurrently,
716 * the code below is a critical region and we must assure that
717 * nobody messes with the credits while we update them.
719 spin_lock_irqsave(&self
->lock
, flags
);
721 n
= self
->avail_credit
;
722 self
->avail_credit
= 0;
724 /* Only room for 127 credits in frame */
726 self
->avail_credit
= n
-127;
729 self
->remote_credit
+= n
;
732 spin_unlock_irqrestore(&self
->lock
, flags
);
735 * More bit must be set by the data_request() or fragment()
738 skb
->data
[0] |= (n
& 0x7f);
740 /* Detach from socket.
741 * The current skb has a reference to the socket that sent
742 * it (skb->sk). When we pass it to IrLMP, the skb will be
743 * stored in in IrLAP (self->wx_list). When we are within
744 * IrLAP, we lose the notion of socket, so we should not
745 * have a reference to a socket. So, we drop it here.
747 * Why does it matter ?
748 * When the skb is freed (kfree_skb), if it is associated
749 * with a socket, it release buffer space on the socket
750 * (through sock_wfree() and sock_def_write_space()).
751 * If the socket no longer exist, we may crash. Hard.
752 * When we close a socket, we make sure that associated packets
753 * in IrTTP are freed. However, we have no way to cancel
754 * the packet that we have passed to IrLAP. So, if a packet
755 * remains in IrLAP (retry on the link or else) after we
756 * close the socket, we are dead !
758 if (skb
->sk
!= NULL
) {
759 /* IrSOCK application, IrOBEX, ... */
762 /* IrCOMM over IrTTP, IrLAN, ... */
764 /* Pass the skb to IrLMP - done */
765 irlmp_data_request(self
->lsap
, skb
);
766 self
->stats
.tx_packets
++;
769 /* Check if we can accept more frames from client.
770 * We don't want to wait until the todo timer to do that, and we
771 * can't use tasklets (grr...), so we are obliged to give control
772 * to client. That's ok, this test will be true not too often
773 * (max once per LAP window) and we are called from places
774 * where we can spend a bit of time doing stuff. - Jean II */
775 if ((self
->tx_sdu_busy
) &&
776 (skb_queue_len(&self
->tx_queue
) < TTP_TX_LOW_THRESHOLD
) &&
779 if (self
->notify
.flow_indication
)
780 self
->notify
.flow_indication(self
->notify
.instance
,
783 /* self->tx_sdu_busy is the state of the client.
784 * We don't really have a race here, but it's always safer
785 * to update our state after the client - Jean II */
786 self
->tx_sdu_busy
= FALSE
;
790 self
->tx_queue_lock
= 0;
794 * Function irttp_give_credit (self)
796 * Send a dataless flowdata TTP-PDU and give available credit to peer
799 static inline void irttp_give_credit(struct tsap_cb
*self
)
801 struct sk_buff
*tx_skb
= NULL
;
805 IRDA_ASSERT(self
!= NULL
, return;);
806 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
808 IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
810 self
->send_credit
, self
->avail_credit
, self
->remote_credit
);
812 /* Give credit to peer */
813 tx_skb
= dev_alloc_skb(64);
817 /* Reserve space for LMP, and LAP header */
818 skb_reserve(tx_skb
, self
->max_header_size
);
821 * Since we can transmit and receive frames concurrently,
822 * the code below is a critical region and we must assure that
823 * nobody messes with the credits while we update them.
825 spin_lock_irqsave(&self
->lock
, flags
);
827 n
= self
->avail_credit
;
828 self
->avail_credit
= 0;
830 /* Only space for 127 credits in frame */
832 self
->avail_credit
= n
- 127;
835 self
->remote_credit
+= n
;
837 spin_unlock_irqrestore(&self
->lock
, flags
);
840 tx_skb
->data
[0] = (__u8
) (n
& 0x7f);
842 irlmp_data_request(self
->lsap
, tx_skb
);
843 self
->stats
.tx_packets
++;
847 * Function irttp_udata_indication (instance, sap, skb)
849 * Received some unit-data (unreliable)
852 static int irttp_udata_indication(void *instance
, void *sap
,
855 struct tsap_cb
*self
;
858 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
860 self
= (struct tsap_cb
*) instance
;
862 IRDA_ASSERT(self
!= NULL
, return -1;);
863 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
864 IRDA_ASSERT(skb
!= NULL
, return -1;);
866 self
->stats
.rx_packets
++;
868 /* Just pass data to layer above */
869 if (self
->notify
.udata_indication
) {
870 err
= self
->notify
.udata_indication(self
->notify
.instance
,
872 /* Same comment as in irttp_do_data_indication() */
876 /* Either no handler, or handler returns an error */
883 * Function irttp_data_indication (instance, sap, skb)
885 * Receive segment from IrLMP.
888 static int irttp_data_indication(void *instance
, void *sap
,
891 struct tsap_cb
*self
;
895 self
= (struct tsap_cb
*) instance
;
897 n
= skb
->data
[0] & 0x7f; /* Extract the credits */
899 self
->stats
.rx_packets
++;
901 /* Deal with inbound credit
902 * Since we can transmit and receive frames concurrently,
903 * the code below is a critical region and we must assure that
904 * nobody messes with the credits while we update them.
906 spin_lock_irqsave(&self
->lock
, flags
);
907 self
->send_credit
+= n
;
909 self
->remote_credit
--;
910 spin_unlock_irqrestore(&self
->lock
, flags
);
913 * Data or dataless packet? Dataless frames contains only the
918 * We don't remove the TTP header, since we must preserve the
919 * more bit, so the defragment routing knows what to do
921 skb_queue_tail(&self
->rx_queue
, skb
);
923 /* Dataless flowdata TTP-PDU */
928 /* Push data to the higher layer.
929 * We do it synchronously because running the todo timer for each
930 * receive packet would be too much overhead and latency.
931 * By passing control to the higher layer, we run the risk that
932 * it may take time or grab a lock. Most often, the higher layer
933 * will only put packet in a queue.
934 * Anyway, packets are only dripping through the IrDA, so we can
935 * have time before the next packet.
936 * Further, we are run from NET_BH, so the worse that can happen is
937 * us missing the optimal time to send back the PF bit in LAP.
939 irttp_run_rx_queue(self
);
941 /* We now give credits to peer in irttp_run_rx_queue().
942 * We need to send credit *NOW*, otherwise we are going
943 * to miss the next Tx window. The todo timer may take
944 * a while before it's run... - Jean II */
947 * If the peer device has given us some credits and we didn't have
948 * anyone from before, then we need to shedule the tx queue.
949 * We need to do that because our Tx have stopped (so we may not
950 * get any LAP flow indication) and the user may be stopped as
953 if (self
->send_credit
== n
) {
954 /* Restart pushing stuff to LAP */
955 irttp_run_tx_queue(self
);
956 /* Note : we don't want to schedule the todo timer
957 * because it has horrible latency. No tasklets
958 * because the tasklet API is broken. - Jean II */
965 * Function irttp_status_indication (self, reason)
967 * Status_indication, just pass to the higher layer...
970 static void irttp_status_indication(void *instance
,
971 LINK_STATUS link
, LOCK_STATUS lock
)
973 struct tsap_cb
*self
;
975 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
977 self
= (struct tsap_cb
*) instance
;
979 IRDA_ASSERT(self
!= NULL
, return;);
980 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
982 /* Check if client has already closed the TSAP and gone away */
983 if (self
->close_pend
)
987 * Inform service user if he has requested it
989 if (self
->notify
.status_indication
!= NULL
)
990 self
->notify
.status_indication(self
->notify
.instance
,
993 IRDA_DEBUG(2, "%s(), no handler\n", __FUNCTION__
);
997 * Function irttp_flow_indication (self, reason)
999 * Flow_indication : IrLAP tells us to send more data.
1002 static void irttp_flow_indication(void *instance
, void *sap
, LOCAL_FLOW flow
)
1004 struct tsap_cb
*self
;
1006 self
= (struct tsap_cb
*) instance
;
1008 IRDA_ASSERT(self
!= NULL
, return;);
1009 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1011 IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__
, self
);
1013 /* We are "polled" directly from LAP, and the LAP want to fill
1014 * its Tx window. We want to do our best to send it data, so that
1015 * we maximise the window. On the other hand, we want to limit the
1016 * amount of work here so that LAP doesn't hang forever waiting
1017 * for packets. - Jean II */
1019 /* Try to send some packets. Currently, LAP calls us every time
1020 * there is one free slot, so we will send only one packet.
1021 * This allow the scheduler to do its round robin - Jean II */
1022 irttp_run_tx_queue(self
);
1024 /* Note regarding the interraction with higher layer.
1025 * irttp_run_tx_queue() may call the client when its queue
1026 * start to empty, via notify.flow_indication(). Initially.
1027 * I wanted this to happen in a tasklet, to avoid client
1028 * grabbing the CPU, but we can't use tasklets safely. And timer
1029 * is definitely too slow.
1030 * This will happen only once per LAP window, and usually at
1031 * the third packet (unless window is smaller). LAP is still
1032 * doing mtt and sending first packet so it's sort of OK
1033 * to do that. Jean II */
1035 /* If we need to send disconnect. try to do it now */
1036 if(self
->disconnect_pend
)
1037 irttp_start_todo_timer(self
, 0);
1041 * Function irttp_flow_request (self, command)
1043 * This function could be used by the upper layers to tell IrTTP to stop
1044 * delivering frames if the receive queues are starting to get full, or
1045 * to tell IrTTP to start delivering frames again.
1047 void irttp_flow_request(struct tsap_cb
*self
, LOCAL_FLOW flow
)
1049 IRDA_DEBUG(1, "%s()\n", __FUNCTION__
);
1051 IRDA_ASSERT(self
!= NULL
, return;);
1052 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1056 IRDA_DEBUG(1, "%s(), flow stop\n", __FUNCTION__
);
1057 self
->rx_sdu_busy
= TRUE
;
1060 IRDA_DEBUG(1, "%s(), flow start\n", __FUNCTION__
);
1061 self
->rx_sdu_busy
= FALSE
;
1063 /* Client say he can accept more data, try to free our
1064 * queues ASAP - Jean II */
1065 irttp_run_rx_queue(self
);
1069 IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __FUNCTION__
);
1072 EXPORT_SYMBOL(irttp_flow_request
);
1075 * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
1077 * Try to connect to remote destination TSAP selector
1080 int irttp_connect_request(struct tsap_cb
*self
, __u8 dtsap_sel
,
1081 __u32 saddr
, __u32 daddr
,
1082 struct qos_info
*qos
, __u32 max_sdu_size
,
1083 struct sk_buff
*userdata
)
1085 struct sk_buff
*tx_skb
;
1089 IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __FUNCTION__
, max_sdu_size
);
1091 IRDA_ASSERT(self
!= NULL
, return -EBADR
;);
1092 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -EBADR
;);
1094 if (self
->connected
) {
1096 dev_kfree_skb(userdata
);
1100 /* Any userdata supplied? */
1101 if (userdata
== NULL
) {
1102 tx_skb
= dev_alloc_skb(64);
1106 /* Reserve space for MUX_CONTROL and LAP header */
1107 skb_reserve(tx_skb
, TTP_MAX_HEADER
);
1111 * Check that the client has reserved enough space for
1114 IRDA_ASSERT(skb_headroom(userdata
) >= TTP_MAX_HEADER
,
1115 { dev_kfree_skb(userdata
); return -1; } );
1118 /* Initialize connection parameters */
1119 self
->connected
= FALSE
;
1120 self
->avail_credit
= 0;
1121 self
->rx_max_sdu_size
= max_sdu_size
;
1122 self
->rx_sdu_size
= 0;
1123 self
->rx_sdu_busy
= FALSE
;
1124 self
->dtsap_sel
= dtsap_sel
;
1126 n
= self
->initial_credit
;
1128 self
->remote_credit
= 0;
1129 self
->send_credit
= 0;
1132 * Give away max 127 credits for now
1135 self
->avail_credit
=n
-127;
1139 self
->remote_credit
= n
;
1142 if (max_sdu_size
> 0) {
1143 IRDA_ASSERT(skb_headroom(tx_skb
) >= (TTP_MAX_HEADER
+ TTP_SAR_HEADER
),
1144 { dev_kfree_skb(tx_skb
); return -1; } );
1146 /* Insert SAR parameters */
1147 frame
= skb_push(tx_skb
, TTP_HEADER
+TTP_SAR_HEADER
);
1149 frame
[0] = TTP_PARAMETERS
| n
;
1150 frame
[1] = 0x04; /* Length */
1151 frame
[2] = 0x01; /* MaxSduSize */
1152 frame
[3] = 0x02; /* Value length */
1154 put_unaligned(cpu_to_be16((__u16
) max_sdu_size
),
1155 (__u16
*)(frame
+4));
1157 /* Insert plain TTP header */
1158 frame
= skb_push(tx_skb
, TTP_HEADER
);
1160 /* Insert initial credit in frame */
1161 frame
[0] = n
& 0x7f;
1164 /* Connect with IrLMP. No QoS parameters for now */
1165 return irlmp_connect_request(self
->lsap
, dtsap_sel
, saddr
, daddr
, qos
,
1168 EXPORT_SYMBOL(irttp_connect_request
);
1171 * Function irttp_connect_confirm (handle, qos, skb)
1173 * Sevice user confirms TSAP connection with peer.
1176 static void irttp_connect_confirm(void *instance
, void *sap
,
1177 struct qos_info
*qos
, __u32 max_seg_size
,
1178 __u8 max_header_size
, struct sk_buff
*skb
)
1180 struct tsap_cb
*self
;
1186 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
1188 self
= (struct tsap_cb
*) instance
;
1190 IRDA_ASSERT(self
!= NULL
, return;);
1191 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1192 IRDA_ASSERT(skb
!= NULL
, return;);
1194 self
->max_seg_size
= max_seg_size
- TTP_HEADER
;
1195 self
->max_header_size
= max_header_size
+ TTP_HEADER
;
1198 * Check if we have got some QoS parameters back! This should be the
1199 * negotiated QoS for the link.
1202 IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
1203 qos
->baud_rate
.bits
);
1204 IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
1205 qos
->baud_rate
.value
);
1208 n
= skb
->data
[0] & 0x7f;
1210 IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __FUNCTION__
, n
);
1212 self
->send_credit
= n
;
1213 self
->tx_max_sdu_size
= 0;
1214 self
->connected
= TRUE
;
1216 parameters
= skb
->data
[0] & 0x80;
1218 IRDA_ASSERT(skb
->len
>= TTP_HEADER
, return;);
1219 skb_pull(skb
, TTP_HEADER
);
1222 plen
= skb
->data
[0];
1224 ret
= irda_param_extract_all(self
, skb
->data
+1,
1225 IRDA_MIN(skb
->len
-1, plen
),
1228 /* Any errors in the parameter list? */
1230 IRDA_WARNING("%s: error extracting parameters\n",
1234 /* Do not accept this connection attempt */
1237 /* Remove parameters */
1238 skb_pull(skb
, IRDA_MIN(skb
->len
, plen
+1));
1241 IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__
,
1242 self
->send_credit
, self
->avail_credit
, self
->remote_credit
);
1244 IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __FUNCTION__
,
1245 self
->tx_max_sdu_size
);
1247 if (self
->notify
.connect_confirm
) {
1248 self
->notify
.connect_confirm(self
->notify
.instance
, self
, qos
,
1249 self
->tx_max_sdu_size
,
1250 self
->max_header_size
, skb
);
1256 * Function irttp_connect_indication (handle, skb)
1258 * Some other device is connecting to this TSAP
1261 void irttp_connect_indication(void *instance
, void *sap
, struct qos_info
*qos
,
1262 __u32 max_seg_size
, __u8 max_header_size
,
1263 struct sk_buff
*skb
)
1265 struct tsap_cb
*self
;
1266 struct lsap_cb
*lsap
;
1272 self
= (struct tsap_cb
*) instance
;
1274 IRDA_ASSERT(self
!= NULL
, return;);
1275 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1276 IRDA_ASSERT(skb
!= NULL
, return;);
1278 lsap
= (struct lsap_cb
*) sap
;
1280 self
->max_seg_size
= max_seg_size
- TTP_HEADER
;
1281 self
->max_header_size
= max_header_size
+TTP_HEADER
;
1283 IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __FUNCTION__
, self
->stsap_sel
);
1285 /* Need to update dtsap_sel if its equal to LSAP_ANY */
1286 self
->dtsap_sel
= lsap
->dlsap_sel
;
1288 n
= skb
->data
[0] & 0x7f;
1290 self
->send_credit
= n
;
1291 self
->tx_max_sdu_size
= 0;
1293 parameters
= skb
->data
[0] & 0x80;
1295 IRDA_ASSERT(skb
->len
>= TTP_HEADER
, return;);
1296 skb_pull(skb
, TTP_HEADER
);
1299 plen
= skb
->data
[0];
1301 ret
= irda_param_extract_all(self
, skb
->data
+1,
1302 IRDA_MIN(skb
->len
-1, plen
),
1305 /* Any errors in the parameter list? */
1307 IRDA_WARNING("%s: error extracting parameters\n",
1311 /* Do not accept this connection attempt */
1315 /* Remove parameters */
1316 skb_pull(skb
, IRDA_MIN(skb
->len
, plen
+1));
1319 if (self
->notify
.connect_indication
) {
1320 self
->notify
.connect_indication(self
->notify
.instance
, self
,
1321 qos
, self
->tx_max_sdu_size
,
1322 self
->max_header_size
, skb
);
1328 * Function irttp_connect_response (handle, userdata)
1330 * Service user is accepting the connection, just pass it down to
1334 int irttp_connect_response(struct tsap_cb
*self
, __u32 max_sdu_size
,
1335 struct sk_buff
*userdata
)
1337 struct sk_buff
*tx_skb
;
1342 IRDA_ASSERT(self
!= NULL
, return -1;);
1343 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
1345 IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __FUNCTION__
,
1348 /* Any userdata supplied? */
1349 if (userdata
== NULL
) {
1350 tx_skb
= dev_alloc_skb(64);
1354 /* Reserve space for MUX_CONTROL and LAP header */
1355 skb_reserve(tx_skb
, TTP_MAX_HEADER
);
1359 * Check that the client has reserved enough space for
1362 IRDA_ASSERT(skb_headroom(userdata
) >= TTP_MAX_HEADER
,
1363 { dev_kfree_skb(userdata
); return -1; } );
1366 self
->avail_credit
= 0;
1367 self
->remote_credit
= 0;
1368 self
->rx_max_sdu_size
= max_sdu_size
;
1369 self
->rx_sdu_size
= 0;
1370 self
->rx_sdu_busy
= FALSE
;
1372 n
= self
->initial_credit
;
1374 /* Frame has only space for max 127 credits (7 bits) */
1376 self
->avail_credit
= n
- 127;
1380 self
->remote_credit
= n
;
1381 self
->connected
= TRUE
;
1384 if (max_sdu_size
> 0) {
1385 IRDA_ASSERT(skb_headroom(tx_skb
) >= (TTP_MAX_HEADER
+ TTP_SAR_HEADER
),
1386 { dev_kfree_skb(tx_skb
); return -1; } );
1388 /* Insert TTP header with SAR parameters */
1389 frame
= skb_push(tx_skb
, TTP_HEADER
+TTP_SAR_HEADER
);
1391 frame
[0] = TTP_PARAMETERS
| n
;
1392 frame
[1] = 0x04; /* Length */
1394 /* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */
1395 /* TTP_SAR_HEADER, ¶m_info) */
1397 frame
[2] = 0x01; /* MaxSduSize */
1398 frame
[3] = 0x02; /* Value length */
1400 put_unaligned(cpu_to_be16((__u16
) max_sdu_size
),
1401 (__u16
*)(frame
+4));
1403 /* Insert TTP header */
1404 frame
= skb_push(tx_skb
, TTP_HEADER
);
1406 frame
[0] = n
& 0x7f;
1409 ret
= irlmp_connect_response(self
->lsap
, tx_skb
);
1413 EXPORT_SYMBOL(irttp_connect_response
);
1416 * Function irttp_dup (self, instance)
1418 * Duplicate TSAP, can be used by servers to confirm a connection on a
1419 * new TSAP so it can keep listening on the old one.
1421 struct tsap_cb
*irttp_dup(struct tsap_cb
*orig
, void *instance
)
1423 struct tsap_cb
*new;
1424 unsigned long flags
;
1426 IRDA_DEBUG(1, "%s()\n", __FUNCTION__
);
1428 /* Protect our access to the old tsap instance */
1429 spin_lock_irqsave(&irttp
->tsaps
->hb_spinlock
, flags
);
1431 /* Find the old instance */
1432 if (!hashbin_find(irttp
->tsaps
, (long) orig
, NULL
)) {
1433 IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __FUNCTION__
);
1434 spin_unlock_irqrestore(&irttp
->tsaps
->hb_spinlock
, flags
);
1438 /* Allocate a new instance */
1439 new = kmalloc(sizeof(struct tsap_cb
), GFP_ATOMIC
);
1441 IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __FUNCTION__
);
1442 spin_unlock_irqrestore(&irttp
->tsaps
->hb_spinlock
, flags
);
1446 memcpy(new, orig
, sizeof(struct tsap_cb
));
1448 /* We don't need the old instance any more */
1449 spin_unlock_irqrestore(&irttp
->tsaps
->hb_spinlock
, flags
);
1451 /* Try to dup the LSAP (may fail if we were too slow) */
1452 new->lsap
= irlmp_dup(orig
->lsap
, new);
1454 IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__
);
1459 /* Not everything should be copied */
1460 new->notify
.instance
= instance
;
1461 init_timer(&new->todo_timer
);
1463 skb_queue_head_init(&new->rx_queue
);
1464 skb_queue_head_init(&new->tx_queue
);
1465 skb_queue_head_init(&new->rx_fragments
);
1467 /* This is locked */
1468 hashbin_insert(irttp
->tsaps
, (irda_queue_t
*) new, (long) new, NULL
);
1472 EXPORT_SYMBOL(irttp_dup
);
1475 * Function irttp_disconnect_request (self)
1477 * Close this connection please! If priority is high, the queued data
1478 * segments, if any, will be deallocated first
1481 int irttp_disconnect_request(struct tsap_cb
*self
, struct sk_buff
*userdata
,
1486 IRDA_ASSERT(self
!= NULL
, return -1;);
1487 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
1489 /* Already disconnected? */
1490 if (!self
->connected
) {
1491 IRDA_DEBUG(4, "%s(), already disconnected!\n", __FUNCTION__
);
1493 dev_kfree_skb(userdata
);
1497 /* Disconnect already pending ?
1498 * We need to use an atomic operation to prevent reentry. This
1499 * function may be called from various context, like user, timer
1500 * for following a disconnect_indication() (i.e. net_bh).
1502 if(test_and_set_bit(0, &self
->disconnect_pend
)) {
1503 IRDA_DEBUG(0, "%s(), disconnect already pending\n",
1506 dev_kfree_skb(userdata
);
1508 /* Try to make some progress */
1509 irttp_run_tx_queue(self
);
1514 * Check if there is still data segments in the transmit queue
1516 if (!skb_queue_empty(&self
->tx_queue
)) {
1517 if (priority
== P_HIGH
) {
1519 * No need to send the queued data, if we are
1520 * disconnecting right now since the data will
1521 * not have any usable connection to be sent on
1523 IRDA_DEBUG(1, "%s(): High priority!!()\n", __FUNCTION__
);
1524 irttp_flush_queues(self
);
1525 } else if (priority
== P_NORMAL
) {
1527 * Must delay disconnect until after all data segments
1528 * have been sent and the tx_queue is empty
1530 /* We'll reuse this one later for the disconnect */
1531 self
->disconnect_skb
= userdata
; /* May be NULL */
1533 irttp_run_tx_queue(self
);
1535 irttp_start_todo_timer(self
, HZ
/10);
1539 /* Note : we don't need to check if self->rx_queue is full and the
1540 * state of self->rx_sdu_busy because the disconnect response will
1541 * be sent at the LMP level (so even if the peer has its Tx queue
1542 * full of data). - Jean II */
1544 IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __FUNCTION__
);
1545 self
->connected
= FALSE
;
1548 struct sk_buff
*tx_skb
;
1549 tx_skb
= dev_alloc_skb(64);
1554 * Reserve space for MUX and LAP header
1556 skb_reserve(tx_skb
, TTP_MAX_HEADER
);
1560 ret
= irlmp_disconnect_request(self
->lsap
, userdata
);
1562 /* The disconnect is no longer pending */
1563 clear_bit(0, &self
->disconnect_pend
); /* FALSE */
1567 EXPORT_SYMBOL(irttp_disconnect_request
);
1570 * Function irttp_disconnect_indication (self, reason)
1572 * Disconnect indication, TSAP disconnected by peer?
1575 void irttp_disconnect_indication(void *instance
, void *sap
, LM_REASON reason
,
1576 struct sk_buff
*skb
)
1578 struct tsap_cb
*self
;
1580 IRDA_DEBUG(4, "%s()\n", __FUNCTION__
);
1582 self
= (struct tsap_cb
*) instance
;
1584 IRDA_ASSERT(self
!= NULL
, return;);
1585 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1587 /* Prevent higher layer to send more data */
1588 self
->connected
= FALSE
;
1590 /* Check if client has already tried to close the TSAP */
1591 if (self
->close_pend
) {
1592 /* In this case, the higher layer is probably gone. Don't
1593 * bother it and clean up the remains - Jean II */
1596 irttp_close_tsap(self
);
1600 /* If we are here, we assume that is the higher layer is still
1601 * waiting for the disconnect notification and able to process it,
1602 * even if he tried to disconnect. Otherwise, it would have already
1603 * attempted to close the tsap and self->close_pend would be TRUE.
1606 /* No need to notify the client if has already tried to disconnect */
1607 if(self
->notify
.disconnect_indication
)
1608 self
->notify
.disconnect_indication(self
->notify
.instance
, self
,
1616 * Function irttp_do_data_indication (self, skb)
1618 * Try to deliver reassembled skb to layer above, and requeue it if that
1619 * for some reason should fail. We mark rx sdu as busy to apply back
1620 * pressure is necessary.
1622 static void irttp_do_data_indication(struct tsap_cb
*self
, struct sk_buff
*skb
)
1626 /* Check if client has already closed the TSAP and gone away */
1627 if (self
->close_pend
) {
1632 err
= self
->notify
.data_indication(self
->notify
.instance
, self
, skb
);
1634 /* Usually the layer above will notify that it's input queue is
1635 * starting to get filled by using the flow request, but this may
1636 * be difficult, so it can instead just refuse to eat it and just
1637 * give an error back
1640 IRDA_DEBUG(0, "%s() requeueing skb!\n", __FUNCTION__
);
1642 /* Make sure we take a break */
1643 self
->rx_sdu_busy
= TRUE
;
1645 /* Need to push the header in again */
1646 skb_push(skb
, TTP_HEADER
);
1647 skb
->data
[0] = 0x00; /* Make sure MORE bit is cleared */
1649 /* Put skb back on queue */
1650 skb_queue_head(&self
->rx_queue
, skb
);
1655 * Function irttp_run_rx_queue (self)
1657 * Check if we have any frames to be transmitted, or if we have any
1658 * available credit to give away.
1660 void irttp_run_rx_queue(struct tsap_cb
*self
)
1662 struct sk_buff
*skb
;
1665 IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__
,
1666 self
->send_credit
, self
->avail_credit
, self
->remote_credit
);
1668 /* Get exclusive access to the rx queue, otherwise don't touch it */
1669 if (irda_lock(&self
->rx_queue_lock
) == FALSE
)
1673 * Reassemble all frames in receive queue and deliver them
1675 while (!self
->rx_sdu_busy
&& (skb
= skb_dequeue(&self
->rx_queue
))) {
1676 /* This bit will tell us if it's the last fragment or not */
1677 more
= skb
->data
[0] & 0x80;
1679 /* Remove TTP header */
1680 skb_pull(skb
, TTP_HEADER
);
1682 /* Add the length of the remaining data */
1683 self
->rx_sdu_size
+= skb
->len
;
1686 * If SAR is disabled, or user has requested no reassembly
1687 * of received fragments then we just deliver them
1688 * immediately. This can be requested by clients that
1689 * implements byte streams without any message boundaries
1691 if (self
->rx_max_sdu_size
== TTP_SAR_DISABLE
) {
1692 irttp_do_data_indication(self
, skb
);
1693 self
->rx_sdu_size
= 0;
1698 /* Check if this is a fragment, and not the last fragment */
1701 * Queue the fragment if we still are within the
1702 * limits of the maximum size of the rx_sdu
1704 if (self
->rx_sdu_size
<= self
->rx_max_sdu_size
) {
1705 IRDA_DEBUG(4, "%s(), queueing frag\n",
1707 skb_queue_tail(&self
->rx_fragments
, skb
);
1709 /* Free the part of the SDU that is too big */
1715 * This is the last fragment, so time to reassemble!
1717 if ((self
->rx_sdu_size
<= self
->rx_max_sdu_size
) ||
1718 (self
->rx_max_sdu_size
== TTP_SAR_UNBOUND
))
1721 * A little optimizing. Only queue the fragment if
1722 * there are other fragments. Since if this is the
1723 * last and only fragment, there is no need to
1726 if (!skb_queue_empty(&self
->rx_fragments
)) {
1727 skb_queue_tail(&self
->rx_fragments
,
1730 skb
= irttp_reassemble_skb(self
);
1733 /* Now we can deliver the reassembled skb */
1734 irttp_do_data_indication(self
, skb
);
1736 IRDA_DEBUG(1, "%s(), Truncated frame\n", __FUNCTION__
);
1738 /* Free the part of the SDU that is too big */
1741 /* Deliver only the valid but truncated part of SDU */
1742 skb
= irttp_reassemble_skb(self
);
1744 irttp_do_data_indication(self
, skb
);
1746 self
->rx_sdu_size
= 0;
1750 * It's not trivial to keep track of how many credits are available
1751 * by incrementing at each packet, because delivery may fail
1752 * (irttp_do_data_indication() may requeue the frame) and because
1753 * we need to take care of fragmentation.
1754 * We want the other side to send up to initial_credit packets.
1755 * We have some frames in our queues, and we have already allowed it
1756 * to send remote_credit.
1757 * No need to spinlock, write is atomic and self correcting...
1760 self
->avail_credit
= (self
->initial_credit
-
1761 (self
->remote_credit
+
1762 skb_queue_len(&self
->rx_queue
) +
1763 skb_queue_len(&self
->rx_fragments
)));
1765 /* Do we have too much credits to send to peer ? */
1766 if ((self
->remote_credit
<= TTP_RX_MIN_CREDIT
) &&
1767 (self
->avail_credit
> 0)) {
1768 /* Send explicit credit frame */
1769 irttp_give_credit(self
);
1770 /* Note : do *NOT* check if tx_queue is non-empty, that
1771 * will produce deadlocks. I repeat : send a credit frame
1772 * even if we have something to send in our Tx queue.
1773 * If we have credits, it means that our Tx queue is blocked.
1775 * Let's suppose the peer can't keep up with our Tx. He will
1776 * flow control us by not sending us any credits, and we
1777 * will stop Tx and start accumulating credits here.
1778 * Up to the point where the peer will stop its Tx queue,
1779 * for lack of credits.
1780 * Let's assume the peer application is single threaded.
1781 * It will block on Tx and never consume any Rx buffer.
1782 * Deadlock. Guaranteed. - Jean II
1787 self
->rx_queue_lock
= 0;
1790 #ifdef CONFIG_PROC_FS
1791 struct irttp_iter_state
{
1795 static void *irttp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1797 struct irttp_iter_state
*iter
= seq
->private;
1798 struct tsap_cb
*self
;
1800 /* Protect our access to the tsap list */
1801 spin_lock_irq(&irttp
->tsaps
->hb_spinlock
);
1804 for (self
= (struct tsap_cb
*) hashbin_get_first(irttp
->tsaps
);
1806 self
= (struct tsap_cb
*) hashbin_get_next(irttp
->tsaps
)) {
1807 if (iter
->id
== *pos
)
1815 static void *irttp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1817 struct irttp_iter_state
*iter
= seq
->private;
1821 return (void *) hashbin_get_next(irttp
->tsaps
);
1824 static void irttp_seq_stop(struct seq_file
*seq
, void *v
)
1826 spin_unlock_irq(&irttp
->tsaps
->hb_spinlock
);
1829 static int irttp_seq_show(struct seq_file
*seq
, void *v
)
1831 const struct irttp_iter_state
*iter
= seq
->private;
1832 const struct tsap_cb
*self
= v
;
1834 seq_printf(seq
, "TSAP %d, ", iter
->id
);
1835 seq_printf(seq
, "stsap_sel: %02x, ",
1837 seq_printf(seq
, "dtsap_sel: %02x\n",
1839 seq_printf(seq
, " connected: %s, ",
1840 self
->connected
? "TRUE":"FALSE");
1841 seq_printf(seq
, "avail credit: %d, ",
1842 self
->avail_credit
);
1843 seq_printf(seq
, "remote credit: %d, ",
1844 self
->remote_credit
);
1845 seq_printf(seq
, "send credit: %d\n",
1847 seq_printf(seq
, " tx packets: %ld, ",
1848 self
->stats
.tx_packets
);
1849 seq_printf(seq
, "rx packets: %ld, ",
1850 self
->stats
.rx_packets
);
1851 seq_printf(seq
, "tx_queue len: %d ",
1852 skb_queue_len(&self
->tx_queue
));
1853 seq_printf(seq
, "rx_queue len: %d\n",
1854 skb_queue_len(&self
->rx_queue
));
1855 seq_printf(seq
, " tx_sdu_busy: %s, ",
1856 self
->tx_sdu_busy
? "TRUE":"FALSE");
1857 seq_printf(seq
, "rx_sdu_busy: %s\n",
1858 self
->rx_sdu_busy
? "TRUE":"FALSE");
1859 seq_printf(seq
, " max_seg_size: %d, ",
1860 self
->max_seg_size
);
1861 seq_printf(seq
, "tx_max_sdu_size: %d, ",
1862 self
->tx_max_sdu_size
);
1863 seq_printf(seq
, "rx_max_sdu_size: %d\n",
1864 self
->rx_max_sdu_size
);
1866 seq_printf(seq
, " Used by (%s)\n\n",
1871 static struct seq_operations irttp_seq_ops
= {
1872 .start
= irttp_seq_start
,
1873 .next
= irttp_seq_next
,
1874 .stop
= irttp_seq_stop
,
1875 .show
= irttp_seq_show
,
1878 static int irttp_seq_open(struct inode
*inode
, struct file
*file
)
1880 struct seq_file
*seq
;
1882 struct irttp_iter_state
*s
;
1884 IRDA_ASSERT(irttp
!= NULL
, return -EINVAL
;);
1886 s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
1890 rc
= seq_open(file
, &irttp_seq_ops
);
1894 seq
= file
->private_data
;
1896 memset(s
, 0, sizeof(*s
));
1904 struct file_operations irttp_seq_fops
= {
1905 .owner
= THIS_MODULE
,
1906 .open
= irttp_seq_open
,
1908 .llseek
= seq_lseek
,
1909 .release
= seq_release_private
,
1912 #endif /* PROC_FS */