4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9 * Released under terms in GPL version 2. See COPYING.
13 #include <linux/types.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <asm/ioctls.h>
30 #include <linux/sunrpc/types.h>
31 #include <linux/sunrpc/cache.h>
32 #include <linux/sunrpc/stats.h>
34 #define RPCDBG_FACILITY RPCDBG_CACHE
36 static void cache_defer_req(struct cache_req
*req
, struct cache_head
*item
);
37 static void cache_revisit_request(struct cache_head
*item
);
39 void cache_init(struct cache_head
*h
)
41 time_t now
= get_seconds();
44 atomic_set(&h
->refcnt
, 1);
45 h
->expiry_time
= now
+ CACHE_NEW_EXPIRY
;
46 h
->last_refresh
= now
;
50 static int cache_make_upcall(struct cache_detail
*detail
, struct cache_head
*h
);
52 * This is the generic cache management routine for all
53 * the authentication caches.
54 * It checks the currency of a cache item and will (later)
55 * initiate an upcall to fill it if needed.
58 * Returns 0 if the cache_head can be used, or cache_puts it and returns
59 * -EAGAIN if upcall is pending,
60 * -ENOENT if cache entry was negative
62 int cache_check(struct cache_detail
*detail
,
63 struct cache_head
*h
, struct cache_req
*rqstp
)
66 long refresh_age
, age
;
68 /* First decide return status as best we can */
69 if (!test_bit(CACHE_VALID
, &h
->flags
) ||
70 h
->expiry_time
< get_seconds())
72 else if (detail
->flush_time
> h
->last_refresh
)
76 if (test_bit(CACHE_NEGATIVE
, &h
->flags
))
81 /* now see if we want to start an upcall */
82 refresh_age
= (h
->expiry_time
- h
->last_refresh
);
83 age
= get_seconds() - h
->last_refresh
;
88 } else if (rv
== -EAGAIN
|| age
> refresh_age
/2) {
89 dprintk("Want update, refage=%ld, age=%ld\n", refresh_age
, age
);
90 if (!test_and_set_bit(CACHE_PENDING
, &h
->flags
)) {
91 switch (cache_make_upcall(detail
, h
)) {
93 clear_bit(CACHE_PENDING
, &h
->flags
);
95 set_bit(CACHE_NEGATIVE
, &h
->flags
);
96 cache_fresh(detail
, h
, get_seconds()+CACHE_NEW_EXPIRY
);
102 clear_bit(CACHE_PENDING
, &h
->flags
);
103 cache_revisit_request(h
);
110 cache_defer_req(rqstp
, h
);
113 detail
->cache_put(h
, detail
);
117 static void queue_loose(struct cache_detail
*detail
, struct cache_head
*ch
);
119 void cache_fresh(struct cache_detail
*detail
,
120 struct cache_head
*head
, time_t expiry
)
123 head
->expiry_time
= expiry
;
124 head
->last_refresh
= get_seconds();
125 if (!test_and_set_bit(CACHE_VALID
, &head
->flags
))
126 cache_revisit_request(head
);
127 if (test_and_clear_bit(CACHE_PENDING
, &head
->flags
))
128 queue_loose(detail
, head
);
132 * caches need to be periodically cleaned.
133 * For this we maintain a list of cache_detail and
134 * a current pointer into that list and into the table
137 * Each time clean_cache is called it finds the next non-empty entry
138 * in the current table and walks the list in that entry
139 * looking for entries that can be removed.
141 * An entry gets removed if:
142 * - The expiry is before current time
143 * - The last_refresh time is before the flush_time for that cache
145 * later we might drop old entries with non-NEVER expiry if that table
146 * is getting 'full' for some definition of 'full'
148 * The question of "how often to scan a table" is an interesting one
149 * and is answered in part by the use of the "nextcheck" field in the
151 * When a scan of a table begins, the nextcheck field is set to a time
152 * that is well into the future.
153 * While scanning, if an expiry time is found that is earlier than the
154 * current nextcheck time, nextcheck is set to that expiry time.
155 * If the flush_time is ever set to a time earlier than the nextcheck
156 * time, the nextcheck time is then set to that flush_time.
158 * A table is then only scanned if the current time is at least
159 * the nextcheck time.
163 static LIST_HEAD(cache_list
);
164 static DEFINE_SPINLOCK(cache_list_lock
);
165 static struct cache_detail
*current_detail
;
166 static int current_index
;
168 static struct file_operations cache_file_operations
;
169 static struct file_operations content_file_operations
;
170 static struct file_operations cache_flush_operations
;
172 static void do_cache_clean(void *data
);
173 static DECLARE_WORK(cache_cleaner
, do_cache_clean
, NULL
);
175 void cache_register(struct cache_detail
*cd
)
177 cd
->proc_ent
= proc_mkdir(cd
->name
, proc_net_rpc
);
179 struct proc_dir_entry
*p
;
180 cd
->proc_ent
->owner
= cd
->owner
;
181 cd
->channel_ent
= cd
->content_ent
= NULL
;
183 p
= create_proc_entry("flush", S_IFREG
|S_IRUSR
|S_IWUSR
,
187 p
->proc_fops
= &cache_flush_operations
;
188 p
->owner
= cd
->owner
;
192 if (cd
->cache_request
|| cd
->cache_parse
) {
193 p
= create_proc_entry("channel", S_IFREG
|S_IRUSR
|S_IWUSR
,
197 p
->proc_fops
= &cache_file_operations
;
198 p
->owner
= cd
->owner
;
202 if (cd
->cache_show
) {
203 p
= create_proc_entry("content", S_IFREG
|S_IRUSR
|S_IWUSR
,
207 p
->proc_fops
= &content_file_operations
;
208 p
->owner
= cd
->owner
;
213 rwlock_init(&cd
->hash_lock
);
214 INIT_LIST_HEAD(&cd
->queue
);
215 spin_lock(&cache_list_lock
);
218 atomic_set(&cd
->readers
, 0);
221 list_add(&cd
->others
, &cache_list
);
222 spin_unlock(&cache_list_lock
);
224 /* start the cleaning process */
225 schedule_work(&cache_cleaner
);
228 int cache_unregister(struct cache_detail
*cd
)
231 spin_lock(&cache_list_lock
);
232 write_lock(&cd
->hash_lock
);
233 if (cd
->entries
|| atomic_read(&cd
->inuse
)) {
234 write_unlock(&cd
->hash_lock
);
235 spin_unlock(&cache_list_lock
);
238 if (current_detail
== cd
)
239 current_detail
= NULL
;
240 list_del_init(&cd
->others
);
241 write_unlock(&cd
->hash_lock
);
242 spin_unlock(&cache_list_lock
);
245 remove_proc_entry("flush", cd
->proc_ent
);
247 remove_proc_entry("channel", cd
->proc_ent
);
249 remove_proc_entry("content", cd
->proc_ent
);
252 remove_proc_entry(cd
->name
, proc_net_rpc
);
254 if (list_empty(&cache_list
)) {
255 /* module must be being unloaded so its safe to kill the worker */
256 cancel_delayed_work(&cache_cleaner
);
257 flush_scheduled_work();
262 /* clean cache tries to find something to clean
264 * It returns 1 if it cleaned something,
265 * 0 if it didn't find anything this time
266 * -1 if it fell off the end of the list.
268 static int cache_clean(void)
271 struct list_head
*next
;
273 spin_lock(&cache_list_lock
);
275 /* find a suitable table if we don't already have one */
276 while (current_detail
== NULL
||
277 current_index
>= current_detail
->hash_size
) {
279 next
= current_detail
->others
.next
;
281 next
= cache_list
.next
;
282 if (next
== &cache_list
) {
283 current_detail
= NULL
;
284 spin_unlock(&cache_list_lock
);
287 current_detail
= list_entry(next
, struct cache_detail
, others
);
288 if (current_detail
->nextcheck
> get_seconds())
289 current_index
= current_detail
->hash_size
;
292 current_detail
->nextcheck
= get_seconds()+30*60;
296 /* find a non-empty bucket in the table */
297 while (current_detail
&&
298 current_index
< current_detail
->hash_size
&&
299 current_detail
->hash_table
[current_index
] == NULL
)
302 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
304 if (current_detail
&& current_index
< current_detail
->hash_size
) {
305 struct cache_head
*ch
, **cp
;
306 struct cache_detail
*d
;
308 write_lock(¤t_detail
->hash_lock
);
310 /* Ok, now to clean this strand */
312 cp
= & current_detail
->hash_table
[current_index
];
314 for (; ch
; cp
= & ch
->next
, ch
= *cp
) {
315 if (current_detail
->nextcheck
> ch
->expiry_time
)
316 current_detail
->nextcheck
= ch
->expiry_time
+1;
317 if (ch
->expiry_time
>= get_seconds()
318 && ch
->last_refresh
>= current_detail
->flush_time
321 if (test_and_clear_bit(CACHE_PENDING
, &ch
->flags
))
322 queue_loose(current_detail
, ch
);
324 if (atomic_read(&ch
->refcnt
) == 1)
330 current_detail
->entries
--;
333 write_unlock(¤t_detail
->hash_lock
);
337 spin_unlock(&cache_list_lock
);
341 spin_unlock(&cache_list_lock
);
347 * We want to regularly clean the cache, so we need to schedule some work ...
349 static void do_cache_clean(void *data
)
352 if (cache_clean() == -1)
355 if (list_empty(&cache_list
))
359 schedule_delayed_work(&cache_cleaner
, delay
);
364 * Clean all caches promptly. This just calls cache_clean
365 * repeatedly until we are sure that every cache has had a chance to
368 void cache_flush(void)
370 while (cache_clean() != -1)
372 while (cache_clean() != -1)
376 void cache_purge(struct cache_detail
*detail
)
378 detail
->flush_time
= LONG_MAX
;
379 detail
->nextcheck
= get_seconds();
381 detail
->flush_time
= 1;
387 * Deferral and Revisiting of Requests.
389 * If a cache lookup finds a pending entry, we
390 * need to defer the request and revisit it later.
391 * All deferred requests are stored in a hash table,
392 * indexed by "struct cache_head *".
393 * As it may be wasteful to store a whole request
394 * structure, we allow the request to provide a
395 * deferred form, which must contain a
396 * 'struct cache_deferred_req'
397 * This cache_deferred_req contains a method to allow
398 * it to be revisited when cache info is available
401 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
402 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
404 #define DFR_MAX 300 /* ??? */
406 static DEFINE_SPINLOCK(cache_defer_lock
);
407 static LIST_HEAD(cache_defer_list
);
408 static struct list_head cache_defer_hash
[DFR_HASHSIZE
];
409 static int cache_defer_cnt
;
411 static void cache_defer_req(struct cache_req
*req
, struct cache_head
*item
)
413 struct cache_deferred_req
*dreq
;
414 int hash
= DFR_HASH(item
);
416 dreq
= req
->defer(req
);
421 dreq
->recv_time
= get_seconds();
423 spin_lock(&cache_defer_lock
);
425 list_add(&dreq
->recent
, &cache_defer_list
);
427 if (cache_defer_hash
[hash
].next
== NULL
)
428 INIT_LIST_HEAD(&cache_defer_hash
[hash
]);
429 list_add(&dreq
->hash
, &cache_defer_hash
[hash
]);
431 /* it is in, now maybe clean up */
433 if (++cache_defer_cnt
> DFR_MAX
) {
434 /* too much in the cache, randomly drop
438 dreq
= list_entry(cache_defer_list
.next
,
439 struct cache_deferred_req
,
442 dreq
= list_entry(cache_defer_list
.prev
,
443 struct cache_deferred_req
,
445 list_del(&dreq
->recent
);
446 list_del(&dreq
->hash
);
449 spin_unlock(&cache_defer_lock
);
452 /* there was one too many */
453 dreq
->revisit(dreq
, 1);
455 if (test_bit(CACHE_VALID
, &item
->flags
)) {
456 /* must have just been validated... */
457 cache_revisit_request(item
);
461 static void cache_revisit_request(struct cache_head
*item
)
463 struct cache_deferred_req
*dreq
;
464 struct list_head pending
;
466 struct list_head
*lp
;
467 int hash
= DFR_HASH(item
);
469 INIT_LIST_HEAD(&pending
);
470 spin_lock(&cache_defer_lock
);
472 lp
= cache_defer_hash
[hash
].next
;
474 while (lp
!= &cache_defer_hash
[hash
]) {
475 dreq
= list_entry(lp
, struct cache_deferred_req
, hash
);
477 if (dreq
->item
== item
) {
478 list_del(&dreq
->hash
);
479 list_move(&dreq
->recent
, &pending
);
484 spin_unlock(&cache_defer_lock
);
486 while (!list_empty(&pending
)) {
487 dreq
= list_entry(pending
.next
, struct cache_deferred_req
, recent
);
488 list_del_init(&dreq
->recent
);
489 dreq
->revisit(dreq
, 0);
493 void cache_clean_deferred(void *owner
)
495 struct cache_deferred_req
*dreq
, *tmp
;
496 struct list_head pending
;
499 INIT_LIST_HEAD(&pending
);
500 spin_lock(&cache_defer_lock
);
502 list_for_each_entry_safe(dreq
, tmp
, &cache_defer_list
, recent
) {
503 if (dreq
->owner
== owner
) {
504 list_del(&dreq
->hash
);
505 list_move(&dreq
->recent
, &pending
);
509 spin_unlock(&cache_defer_lock
);
511 while (!list_empty(&pending
)) {
512 dreq
= list_entry(pending
.next
, struct cache_deferred_req
, recent
);
513 list_del_init(&dreq
->recent
);
514 dreq
->revisit(dreq
, 1);
519 * communicate with user-space
521 * We have a magic /proc file - /proc/sunrpc/cache
522 * On read, you get a full request, or block
523 * On write, an update request is processed
524 * Poll works if anything to read, and always allows write
526 * Implemented by linked list of requests. Each open file has
527 * a ->private that also exists in this list. New request are added
528 * to the end and may wakeup and preceding readers.
529 * New readers are added to the head. If, on read, an item is found with
530 * CACHE_UPCALLING clear, we free it from the list.
534 static DEFINE_SPINLOCK(queue_lock
);
535 static DECLARE_MUTEX(queue_io_sem
);
538 struct list_head list
;
539 int reader
; /* if 0, then request */
541 struct cache_request
{
542 struct cache_queue q
;
543 struct cache_head
*item
;
548 struct cache_reader
{
549 struct cache_queue q
;
550 int offset
; /* if non-0, we have a refcnt on next request */
554 cache_read(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*ppos
)
556 struct cache_reader
*rp
= filp
->private_data
;
557 struct cache_request
*rq
;
558 struct cache_detail
*cd
= PDE(filp
->f_dentry
->d_inode
)->data
;
564 down(&queue_io_sem
); /* protect against multiple concurrent
565 * readers on this file */
567 spin_lock(&queue_lock
);
568 /* need to find next request */
569 while (rp
->q
.list
.next
!= &cd
->queue
&&
570 list_entry(rp
->q
.list
.next
, struct cache_queue
, list
)
572 struct list_head
*next
= rp
->q
.list
.next
;
573 list_move(&rp
->q
.list
, next
);
575 if (rp
->q
.list
.next
== &cd
->queue
) {
576 spin_unlock(&queue_lock
);
582 rq
= container_of(rp
->q
.list
.next
, struct cache_request
, q
.list
);
583 if (rq
->q
.reader
) BUG();
586 spin_unlock(&queue_lock
);
588 if (rp
->offset
== 0 && !test_bit(CACHE_PENDING
, &rq
->item
->flags
)) {
590 spin_lock(&queue_lock
);
591 list_move(&rp
->q
.list
, &rq
->q
.list
);
592 spin_unlock(&queue_lock
);
594 if (rp
->offset
+ count
> rq
->len
)
595 count
= rq
->len
- rp
->offset
;
597 if (copy_to_user(buf
, rq
->buf
+ rp
->offset
, count
))
600 if (rp
->offset
>= rq
->len
) {
602 spin_lock(&queue_lock
);
603 list_move(&rp
->q
.list
, &rq
->q
.list
);
604 spin_unlock(&queue_lock
);
609 if (rp
->offset
== 0) {
610 /* need to release rq */
611 spin_lock(&queue_lock
);
613 if (rq
->readers
== 0 &&
614 !test_bit(CACHE_PENDING
, &rq
->item
->flags
)) {
615 list_del(&rq
->q
.list
);
616 spin_unlock(&queue_lock
);
617 cd
->cache_put(rq
->item
, cd
);
621 spin_unlock(&queue_lock
);
626 return err
? err
: count
;
629 static char write_buf
[8192]; /* protected by queue_io_sem */
632 cache_write(struct file
*filp
, const char __user
*buf
, size_t count
,
636 struct cache_detail
*cd
= PDE(filp
->f_dentry
->d_inode
)->data
;
640 if (count
>= sizeof(write_buf
))
645 if (copy_from_user(write_buf
, buf
, count
)) {
649 write_buf
[count
] = '\0';
651 err
= cd
->cache_parse(cd
, write_buf
, count
);
656 return err
? err
: count
;
659 static DECLARE_WAIT_QUEUE_HEAD(queue_wait
);
662 cache_poll(struct file
*filp
, poll_table
*wait
)
665 struct cache_reader
*rp
= filp
->private_data
;
666 struct cache_queue
*cq
;
667 struct cache_detail
*cd
= PDE(filp
->f_dentry
->d_inode
)->data
;
669 poll_wait(filp
, &queue_wait
, wait
);
671 /* alway allow write */
672 mask
= POLL_OUT
| POLLWRNORM
;
677 spin_lock(&queue_lock
);
679 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
680 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
682 mask
|= POLLIN
| POLLRDNORM
;
685 spin_unlock(&queue_lock
);
690 cache_ioctl(struct inode
*ino
, struct file
*filp
,
691 unsigned int cmd
, unsigned long arg
)
694 struct cache_reader
*rp
= filp
->private_data
;
695 struct cache_queue
*cq
;
696 struct cache_detail
*cd
= PDE(ino
)->data
;
698 if (cmd
!= FIONREAD
|| !rp
)
701 spin_lock(&queue_lock
);
703 /* only find the length remaining in current request,
704 * or the length of the next request
706 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
707 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
709 struct cache_request
*cr
=
710 container_of(cq
, struct cache_request
, q
);
711 len
= cr
->len
- rp
->offset
;
714 spin_unlock(&queue_lock
);
716 return put_user(len
, (int __user
*)arg
);
720 cache_open(struct inode
*inode
, struct file
*filp
)
722 struct cache_reader
*rp
= NULL
;
724 nonseekable_open(inode
, filp
);
725 if (filp
->f_mode
& FMODE_READ
) {
726 struct cache_detail
*cd
= PDE(inode
)->data
;
728 rp
= kmalloc(sizeof(*rp
), GFP_KERNEL
);
733 atomic_inc(&cd
->readers
);
734 spin_lock(&queue_lock
);
735 list_add(&rp
->q
.list
, &cd
->queue
);
736 spin_unlock(&queue_lock
);
738 filp
->private_data
= rp
;
743 cache_release(struct inode
*inode
, struct file
*filp
)
745 struct cache_reader
*rp
= filp
->private_data
;
746 struct cache_detail
*cd
= PDE(inode
)->data
;
749 spin_lock(&queue_lock
);
751 struct cache_queue
*cq
;
752 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
753 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
755 container_of(cq
, struct cache_request
, q
)
761 list_del(&rp
->q
.list
);
762 spin_unlock(&queue_lock
);
764 filp
->private_data
= NULL
;
767 cd
->last_close
= get_seconds();
768 atomic_dec(&cd
->readers
);
775 static struct file_operations cache_file_operations
= {
776 .owner
= THIS_MODULE
,
779 .write
= cache_write
,
781 .ioctl
= cache_ioctl
, /* for FIONREAD */
783 .release
= cache_release
,
787 static void queue_loose(struct cache_detail
*detail
, struct cache_head
*ch
)
789 struct cache_queue
*cq
;
790 spin_lock(&queue_lock
);
791 list_for_each_entry(cq
, &detail
->queue
, list
)
793 struct cache_request
*cr
= container_of(cq
, struct cache_request
, q
);
796 if (cr
->readers
!= 0)
798 list_del(&cr
->q
.list
);
799 spin_unlock(&queue_lock
);
800 detail
->cache_put(cr
->item
, detail
);
805 spin_unlock(&queue_lock
);
809 * Support routines for text-based upcalls.
810 * Fields are separated by spaces.
811 * Fields are either mangled to quote space tab newline slosh with slosh
812 * or a hexified with a leading \x
813 * Record is terminated with newline.
817 void qword_add(char **bpp
, int *lp
, char *str
)
825 while ((c
=*str
++) && len
)
833 *bp
++ = '0' + ((c
& 0300)>>6);
834 *bp
++ = '0' + ((c
& 0070)>>3);
835 *bp
++ = '0' + ((c
& 0007)>>0);
843 if (c
|| len
<1) len
= -1;
852 void qword_addhex(char **bpp
, int *lp
, char *buf
, int blen
)
863 while (blen
&& len
>= 2) {
864 unsigned char c
= *buf
++;
865 *bp
++ = '0' + ((c
&0xf0)>>4) + (c
>=0xa0)*('a'-'9'-1);
866 *bp
++ = '0' + (c
&0x0f) + ((c
&0x0f)>=0x0a)*('a'-'9'-1);
871 if (blen
|| len
<1) len
= -1;
880 static void warn_no_listener(struct cache_detail
*detail
)
882 if (detail
->last_warn
!= detail
->last_close
) {
883 detail
->last_warn
= detail
->last_close
;
884 if (detail
->warn_no_listener
)
885 detail
->warn_no_listener(detail
);
890 * register an upcall request to user-space.
891 * Each request is at most one page long.
893 static int cache_make_upcall(struct cache_detail
*detail
, struct cache_head
*h
)
897 struct cache_request
*crq
;
901 if (detail
->cache_request
== NULL
)
904 if (atomic_read(&detail
->readers
) == 0 &&
905 detail
->last_close
< get_seconds() - 30) {
906 warn_no_listener(detail
);
910 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
914 crq
= kmalloc(sizeof (*crq
), GFP_KERNEL
);
920 bp
= buf
; len
= PAGE_SIZE
;
922 detail
->cache_request(detail
, h
, &bp
, &len
);
930 crq
->item
= cache_get(h
);
932 crq
->len
= PAGE_SIZE
- len
;
934 spin_lock(&queue_lock
);
935 list_add_tail(&crq
->q
.list
, &detail
->queue
);
936 spin_unlock(&queue_lock
);
937 wake_up(&queue_wait
);
942 * parse a message from user-space and pass it
943 * to an appropriate cache
944 * Messages are, like requests, separated into fields by
945 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
948 * reply cachename expiry key ... content....
950 * key and content are both parsed by cache
953 #define isodigit(c) (isdigit(c) && c <= '7')
954 int qword_get(char **bpp
, char *dest
, int bufsize
)
956 /* return bytes copied, or -1 on error */
960 while (*bp
== ' ') bp
++;
962 if (bp
[0] == '\\' && bp
[1] == 'x') {
965 while (isxdigit(bp
[0]) && isxdigit(bp
[1]) && len
< bufsize
) {
966 int byte
= isdigit(*bp
) ? *bp
-'0' : toupper(*bp
)-'A'+10;
969 byte
|= isdigit(*bp
) ? *bp
-'0' : toupper(*bp
)-'A'+10;
975 /* text with \nnn octal quoting */
976 while (*bp
!= ' ' && *bp
!= '\n' && *bp
&& len
< bufsize
-1) {
978 isodigit(bp
[1]) && (bp
[1] <= '3') &&
981 int byte
= (*++bp
-'0');
983 byte
= (byte
<< 3) | (*bp
++ - '0');
984 byte
= (byte
<< 3) | (*bp
++ - '0');
994 if (*bp
!= ' ' && *bp
!= '\n' && *bp
!= '\0')
996 while (*bp
== ' ') bp
++;
1004 * support /proc/sunrpc/cache/$CACHENAME/content
1006 * We call ->cache_show passing NULL for the item to
1007 * get a header, then pass each real item in the cache
1011 struct cache_detail
*cd
;
1014 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
1017 unsigned hash
, entry
;
1018 struct cache_head
*ch
;
1019 struct cache_detail
*cd
= ((struct handle
*)m
->private)->cd
;
1022 read_lock(&cd
->hash_lock
);
1024 return SEQ_START_TOKEN
;
1026 entry
= n
& ((1LL<<32) - 1);
1028 for (ch
=cd
->hash_table
[hash
]; ch
; ch
=ch
->next
)
1031 n
&= ~((1LL<<32) - 1);
1035 } while(hash
< cd
->hash_size
&&
1036 cd
->hash_table
[hash
]==NULL
);
1037 if (hash
>= cd
->hash_size
)
1040 return cd
->hash_table
[hash
];
1043 static void *c_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1045 struct cache_head
*ch
= p
;
1046 int hash
= (*pos
>> 32);
1047 struct cache_detail
*cd
= ((struct handle
*)m
->private)->cd
;
1049 if (p
== SEQ_START_TOKEN
)
1051 else if (ch
->next
== NULL
) {
1058 *pos
&= ~((1LL<<32) - 1);
1059 while (hash
< cd
->hash_size
&&
1060 cd
->hash_table
[hash
] == NULL
) {
1064 if (hash
>= cd
->hash_size
)
1067 return cd
->hash_table
[hash
];
1070 static void c_stop(struct seq_file
*m
, void *p
)
1072 struct cache_detail
*cd
= ((struct handle
*)m
->private)->cd
;
1073 read_unlock(&cd
->hash_lock
);
1076 static int c_show(struct seq_file
*m
, void *p
)
1078 struct cache_head
*cp
= p
;
1079 struct cache_detail
*cd
= ((struct handle
*)m
->private)->cd
;
1081 if (p
== SEQ_START_TOKEN
)
1082 return cd
->cache_show(m
, cd
, NULL
);
1085 seq_printf(m
, "# expiry=%ld refcnt=%d\n",
1086 cp
->expiry_time
, atomic_read(&cp
->refcnt
));
1088 if (cache_check(cd
, cp
, NULL
))
1089 /* cache_check does a cache_put on failure */
1090 seq_printf(m
, "# ");
1094 return cd
->cache_show(m
, cd
, cp
);
1097 static struct seq_operations cache_content_op
= {
1104 static int content_open(struct inode
*inode
, struct file
*file
)
1108 struct cache_detail
*cd
= PDE(inode
)->data
;
1110 han
= kmalloc(sizeof(*han
), GFP_KERNEL
);
1116 res
= seq_open(file
, &cache_content_op
);
1120 ((struct seq_file
*)file
->private_data
)->private = han
;
1124 static int content_release(struct inode
*inode
, struct file
*file
)
1126 struct seq_file
*m
= (struct seq_file
*)file
->private_data
;
1127 struct handle
*han
= m
->private;
1130 return seq_release(inode
, file
);
1133 static struct file_operations content_file_operations
= {
1134 .open
= content_open
,
1136 .llseek
= seq_lseek
,
1137 .release
= content_release
,
1140 static ssize_t
read_flush(struct file
*file
, char __user
*buf
,
1141 size_t count
, loff_t
*ppos
)
1143 struct cache_detail
*cd
= PDE(file
->f_dentry
->d_inode
)->data
;
1145 unsigned long p
= *ppos
;
1148 sprintf(tbuf
, "%lu\n", cd
->flush_time
);
1153 if (len
> count
) len
= count
;
1154 if (copy_to_user(buf
, (void*)(tbuf
+p
), len
))
1161 static ssize_t
write_flush(struct file
* file
, const char __user
* buf
,
1162 size_t count
, loff_t
*ppos
)
1164 struct cache_detail
*cd
= PDE(file
->f_dentry
->d_inode
)->data
;
1168 if (*ppos
|| count
> sizeof(tbuf
)-1)
1170 if (copy_from_user(tbuf
, buf
, count
))
1173 flushtime
= simple_strtoul(tbuf
, &ep
, 0);
1174 if (*ep
&& *ep
!= '\n')
1177 cd
->flush_time
= flushtime
;
1178 cd
->nextcheck
= get_seconds();
1185 static struct file_operations cache_flush_operations
= {
1186 .open
= nonseekable_open
,
1188 .write
= write_flush
,