2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
22 #include <linux/sunrpc/clnt.h>
23 #include <linux/sunrpc/xprt.h>
26 #define RPCDBG_FACILITY RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID 0xf00baa
28 static int rpc_task_id
;
32 * RPC slabs and memory pools
34 #define RPC_BUFFER_MAXSIZE (2048)
35 #define RPC_BUFFER_POOLSIZE (8)
36 #define RPC_TASK_POOLSIZE (8)
37 static kmem_cache_t
*rpc_task_slabp __read_mostly
;
38 static kmem_cache_t
*rpc_buffer_slabp __read_mostly
;
39 static mempool_t
*rpc_task_mempool __read_mostly
;
40 static mempool_t
*rpc_buffer_mempool __read_mostly
;
42 static void __rpc_default_timer(struct rpc_task
*task
);
43 static void rpciod_killall(void);
44 static void rpc_free(struct rpc_task
*task
);
46 static void rpc_async_schedule(void *);
49 * RPC tasks that create another task (e.g. for contacting the portmapper)
50 * will wait on this queue for their child's completion
52 static RPC_WAITQ(childq
, "childq");
55 * RPC tasks sit here while waiting for conditions to improve.
57 static RPC_WAITQ(delay_queue
, "delayq");
60 * All RPC tasks are linked into this list
62 static LIST_HEAD(all_tasks
);
65 * rpciod-related stuff
67 static DECLARE_MUTEX(rpciod_sema
);
68 static unsigned int rpciod_users
;
69 static struct workqueue_struct
*rpciod_workqueue
;
72 * Spinlock for other critical sections of code.
74 static DEFINE_SPINLOCK(rpc_sched_lock
);
77 * Disable the timer for a given RPC task. Should be called with
78 * queue->lock and bh_disabled in order to avoid races within
82 __rpc_disable_timer(struct rpc_task
*task
)
84 dprintk("RPC: %4d disabling timer\n", task
->tk_pid
);
85 task
->tk_timeout_fn
= NULL
;
90 * Run a timeout function.
91 * We use the callback in order to allow __rpc_wake_up_task()
92 * and friends to disable the timer synchronously on SMP systems
93 * without calling del_timer_sync(). The latter could cause a
94 * deadlock if called while we're holding spinlocks...
96 static void rpc_run_timer(struct rpc_task
*task
)
98 void (*callback
)(struct rpc_task
*);
100 callback
= task
->tk_timeout_fn
;
101 task
->tk_timeout_fn
= NULL
;
102 if (callback
&& RPC_IS_QUEUED(task
)) {
103 dprintk("RPC: %4d running timer\n", task
->tk_pid
);
106 smp_mb__before_clear_bit();
107 clear_bit(RPC_TASK_HAS_TIMER
, &task
->tk_runstate
);
108 smp_mb__after_clear_bit();
112 * Set up a timer for the current task.
115 __rpc_add_timer(struct rpc_task
*task
, rpc_action timer
)
117 if (!task
->tk_timeout
)
120 dprintk("RPC: %4d setting alarm for %lu ms\n",
121 task
->tk_pid
, task
->tk_timeout
* 1000 / HZ
);
124 task
->tk_timeout_fn
= timer
;
126 task
->tk_timeout_fn
= __rpc_default_timer
;
127 set_bit(RPC_TASK_HAS_TIMER
, &task
->tk_runstate
);
128 mod_timer(&task
->tk_timer
, jiffies
+ task
->tk_timeout
);
132 * Delete any timer for the current task. Because we use del_timer_sync(),
133 * this function should never be called while holding queue->lock.
136 rpc_delete_timer(struct rpc_task
*task
)
138 if (RPC_IS_QUEUED(task
))
140 if (test_and_clear_bit(RPC_TASK_HAS_TIMER
, &task
->tk_runstate
)) {
141 del_singleshot_timer_sync(&task
->tk_timer
);
142 dprintk("RPC: %4d deleting timer\n", task
->tk_pid
);
147 * Add new request to a priority queue.
149 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
154 INIT_LIST_HEAD(&task
->u
.tk_wait
.links
);
155 q
= &queue
->tasks
[task
->tk_priority
];
156 if (unlikely(task
->tk_priority
> queue
->maxpriority
))
157 q
= &queue
->tasks
[queue
->maxpriority
];
158 list_for_each_entry(t
, q
, u
.tk_wait
.list
) {
159 if (t
->tk_cookie
== task
->tk_cookie
) {
160 list_add_tail(&task
->u
.tk_wait
.list
, &t
->u
.tk_wait
.links
);
164 list_add_tail(&task
->u
.tk_wait
.list
, q
);
168 * Add new request to wait queue.
170 * Swapper tasks always get inserted at the head of the queue.
171 * This should avoid many nasty memory deadlocks and hopefully
172 * improve overall performance.
173 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
175 static void __rpc_add_wait_queue(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
177 BUG_ON (RPC_IS_QUEUED(task
));
179 if (RPC_IS_PRIORITY(queue
))
180 __rpc_add_wait_queue_priority(queue
, task
);
181 else if (RPC_IS_SWAPPER(task
))
182 list_add(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
184 list_add_tail(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
185 task
->u
.tk_wait
.rpc_waitq
= queue
;
186 rpc_set_queued(task
);
188 dprintk("RPC: %4d added to queue %p \"%s\"\n",
189 task
->tk_pid
, queue
, rpc_qname(queue
));
193 * Remove request from a priority queue.
195 static void __rpc_remove_wait_queue_priority(struct rpc_task
*task
)
199 if (!list_empty(&task
->u
.tk_wait
.links
)) {
200 t
= list_entry(task
->u
.tk_wait
.links
.next
, struct rpc_task
, u
.tk_wait
.list
);
201 list_move(&t
->u
.tk_wait
.list
, &task
->u
.tk_wait
.list
);
202 list_splice_init(&task
->u
.tk_wait
.links
, &t
->u
.tk_wait
.links
);
204 list_del(&task
->u
.tk_wait
.list
);
208 * Remove request from queue.
209 * Note: must be called with spin lock held.
211 static void __rpc_remove_wait_queue(struct rpc_task
*task
)
213 struct rpc_wait_queue
*queue
;
214 queue
= task
->u
.tk_wait
.rpc_waitq
;
216 if (RPC_IS_PRIORITY(queue
))
217 __rpc_remove_wait_queue_priority(task
);
219 list_del(&task
->u
.tk_wait
.list
);
220 dprintk("RPC: %4d removed from queue %p \"%s\"\n",
221 task
->tk_pid
, queue
, rpc_qname(queue
));
224 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue
*queue
, int priority
)
226 queue
->priority
= priority
;
227 queue
->count
= 1 << (priority
* 2);
230 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue
*queue
, unsigned long cookie
)
232 queue
->cookie
= cookie
;
233 queue
->nr
= RPC_BATCH_COUNT
;
236 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue
*queue
)
238 rpc_set_waitqueue_priority(queue
, queue
->maxpriority
);
239 rpc_set_waitqueue_cookie(queue
, 0);
242 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
, int maxprio
)
246 spin_lock_init(&queue
->lock
);
247 for (i
= 0; i
< ARRAY_SIZE(queue
->tasks
); i
++)
248 INIT_LIST_HEAD(&queue
->tasks
[i
]);
249 queue
->maxpriority
= maxprio
;
250 rpc_reset_waitqueue_priority(queue
);
256 void rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
258 __rpc_init_priority_wait_queue(queue
, qname
, RPC_PRIORITY_HIGH
);
261 void rpc_init_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
263 __rpc_init_priority_wait_queue(queue
, qname
, 0);
265 EXPORT_SYMBOL(rpc_init_wait_queue
);
268 * Make an RPC task runnable.
270 * Note: If the task is ASYNC, this must be called with
271 * the spinlock held to protect the wait queue operation.
273 static void rpc_make_runnable(struct rpc_task
*task
)
277 BUG_ON(task
->tk_timeout_fn
);
278 do_ret
= rpc_test_and_set_running(task
);
279 rpc_clear_queued(task
);
282 if (RPC_IS_ASYNC(task
)) {
285 INIT_WORK(&task
->u
.tk_work
, rpc_async_schedule
, (void *)task
);
286 status
= queue_work(task
->tk_workqueue
, &task
->u
.tk_work
);
288 printk(KERN_WARNING
"RPC: failed to add task to queue: error: %d!\n", status
);
289 task
->tk_status
= status
;
293 wake_up_bit(&task
->tk_runstate
, RPC_TASK_QUEUED
);
297 * Place a newly initialized task on the workqueue.
300 rpc_schedule_run(struct rpc_task
*task
)
302 /* Don't run a child twice! */
303 if (RPC_IS_ACTIVATED(task
))
306 rpc_make_runnable(task
);
310 * Prepare for sleeping on a wait queue.
311 * By always appending tasks to the list we ensure FIFO behavior.
312 * NB: An RPC task will only receive interrupt-driven events as long
313 * as it's on a wait queue.
315 static void __rpc_sleep_on(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
316 rpc_action action
, rpc_action timer
)
318 dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task
->tk_pid
,
319 rpc_qname(q
), jiffies
);
321 if (!RPC_IS_ASYNC(task
) && !RPC_IS_ACTIVATED(task
)) {
322 printk(KERN_ERR
"RPC: Inactive synchronous task put to sleep!\n");
326 /* Mark the task as being activated if so needed */
327 if (!RPC_IS_ACTIVATED(task
))
330 __rpc_add_wait_queue(q
, task
);
332 BUG_ON(task
->tk_callback
!= NULL
);
333 task
->tk_callback
= action
;
334 __rpc_add_timer(task
, timer
);
337 void rpc_sleep_on(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
338 rpc_action action
, rpc_action timer
)
341 * Protect the queue operations.
343 spin_lock_bh(&q
->lock
);
344 __rpc_sleep_on(q
, task
, action
, timer
);
345 spin_unlock_bh(&q
->lock
);
349 * __rpc_do_wake_up_task - wake up a single rpc_task
350 * @task: task to be woken up
352 * Caller must hold queue->lock, and have cleared the task queued flag.
354 static void __rpc_do_wake_up_task(struct rpc_task
*task
)
356 dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task
->tk_pid
, jiffies
);
359 BUG_ON(task
->tk_magic
!= RPC_TASK_MAGIC_ID
);
361 /* Has the task been executed yet? If not, we cannot wake it up! */
362 if (!RPC_IS_ACTIVATED(task
)) {
363 printk(KERN_ERR
"RPC: Inactive task (%p) being woken up!\n", task
);
367 __rpc_disable_timer(task
);
368 __rpc_remove_wait_queue(task
);
370 rpc_make_runnable(task
);
372 dprintk("RPC: __rpc_wake_up_task done\n");
376 * Wake up the specified task
378 static void __rpc_wake_up_task(struct rpc_task
*task
)
380 if (rpc_start_wakeup(task
)) {
381 if (RPC_IS_QUEUED(task
))
382 __rpc_do_wake_up_task(task
);
383 rpc_finish_wakeup(task
);
388 * Default timeout handler if none specified by user
391 __rpc_default_timer(struct rpc_task
*task
)
393 dprintk("RPC: %d timeout (default timer)\n", task
->tk_pid
);
394 task
->tk_status
= -ETIMEDOUT
;
395 rpc_wake_up_task(task
);
399 * Wake up the specified task
401 void rpc_wake_up_task(struct rpc_task
*task
)
403 if (rpc_start_wakeup(task
)) {
404 if (RPC_IS_QUEUED(task
)) {
405 struct rpc_wait_queue
*queue
= task
->u
.tk_wait
.rpc_waitq
;
407 spin_lock_bh(&queue
->lock
);
408 __rpc_do_wake_up_task(task
);
409 spin_unlock_bh(&queue
->lock
);
411 rpc_finish_wakeup(task
);
416 * Wake up the next task on a priority queue.
418 static struct rpc_task
* __rpc_wake_up_next_priority(struct rpc_wait_queue
*queue
)
421 struct rpc_task
*task
;
424 * Service a batch of tasks from a single cookie.
426 q
= &queue
->tasks
[queue
->priority
];
427 if (!list_empty(q
)) {
428 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
429 if (queue
->cookie
== task
->tk_cookie
) {
432 list_move_tail(&task
->u
.tk_wait
.list
, q
);
435 * Check if we need to switch queues.
442 * Service the next queue.
445 if (q
== &queue
->tasks
[0])
446 q
= &queue
->tasks
[queue
->maxpriority
];
449 if (!list_empty(q
)) {
450 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
453 } while (q
!= &queue
->tasks
[queue
->priority
]);
455 rpc_reset_waitqueue_priority(queue
);
459 rpc_set_waitqueue_priority(queue
, (unsigned int)(q
- &queue
->tasks
[0]));
461 rpc_set_waitqueue_cookie(queue
, task
->tk_cookie
);
463 __rpc_wake_up_task(task
);
468 * Wake up the next task on the wait queue.
470 struct rpc_task
* rpc_wake_up_next(struct rpc_wait_queue
*queue
)
472 struct rpc_task
*task
= NULL
;
474 dprintk("RPC: wake_up_next(%p \"%s\")\n", queue
, rpc_qname(queue
));
475 spin_lock_bh(&queue
->lock
);
476 if (RPC_IS_PRIORITY(queue
))
477 task
= __rpc_wake_up_next_priority(queue
);
479 task_for_first(task
, &queue
->tasks
[0])
480 __rpc_wake_up_task(task
);
482 spin_unlock_bh(&queue
->lock
);
488 * rpc_wake_up - wake up all rpc_tasks
489 * @queue: rpc_wait_queue on which the tasks are sleeping
493 void rpc_wake_up(struct rpc_wait_queue
*queue
)
495 struct rpc_task
*task
;
497 struct list_head
*head
;
498 spin_lock_bh(&queue
->lock
);
499 head
= &queue
->tasks
[queue
->maxpriority
];
501 while (!list_empty(head
)) {
502 task
= list_entry(head
->next
, struct rpc_task
, u
.tk_wait
.list
);
503 __rpc_wake_up_task(task
);
505 if (head
== &queue
->tasks
[0])
509 spin_unlock_bh(&queue
->lock
);
513 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
514 * @queue: rpc_wait_queue on which the tasks are sleeping
515 * @status: status value to set
519 void rpc_wake_up_status(struct rpc_wait_queue
*queue
, int status
)
521 struct list_head
*head
;
522 struct rpc_task
*task
;
524 spin_lock_bh(&queue
->lock
);
525 head
= &queue
->tasks
[queue
->maxpriority
];
527 while (!list_empty(head
)) {
528 task
= list_entry(head
->next
, struct rpc_task
, u
.tk_wait
.list
);
529 task
->tk_status
= status
;
530 __rpc_wake_up_task(task
);
532 if (head
== &queue
->tasks
[0])
536 spin_unlock_bh(&queue
->lock
);
540 * Run a task at a later time
542 static void __rpc_atrun(struct rpc_task
*);
544 rpc_delay(struct rpc_task
*task
, unsigned long delay
)
546 task
->tk_timeout
= delay
;
547 rpc_sleep_on(&delay_queue
, task
, NULL
, __rpc_atrun
);
551 __rpc_atrun(struct rpc_task
*task
)
554 rpc_wake_up_task(task
);
558 * Helper that calls task->tk_exit if it exists and then returns
559 * true if we should exit __rpc_execute.
561 static inline int __rpc_do_exit(struct rpc_task
*task
)
563 if (task
->tk_exit
!= NULL
) {
567 /* If tk_action is non-null, we should restart the call */
568 if (task
->tk_action
!= NULL
) {
569 if (!RPC_ASSASSINATED(task
)) {
570 /* Release RPC slot and buffer memory */
575 printk(KERN_ERR
"RPC: dead task tried to walk away.\n");
581 static int rpc_wait_bit_interruptible(void *word
)
583 if (signal_pending(current
))
590 * This is the RPC `scheduler' (or rather, the finite state machine).
592 static int __rpc_execute(struct rpc_task
*task
)
596 dprintk("RPC: %4d rpc_execute flgs %x\n",
597 task
->tk_pid
, task
->tk_flags
);
599 BUG_ON(RPC_IS_QUEUED(task
));
603 * Garbage collection of pending timers...
605 rpc_delete_timer(task
);
608 * Execute any pending callback.
610 if (RPC_DO_CALLBACK(task
)) {
611 /* Define a callback save pointer */
612 void (*save_callback
)(struct rpc_task
*);
615 * If a callback exists, save it, reset it,
617 * The save is needed to stop from resetting
618 * another callback set within the callback handler
621 save_callback
=task
->tk_callback
;
622 task
->tk_callback
=NULL
;
629 * Perform the next FSM step.
630 * tk_action may be NULL when the task has been killed
633 if (!RPC_IS_QUEUED(task
)) {
634 if (task
->tk_action
!= NULL
) {
636 task
->tk_action(task
);
638 } else if (__rpc_do_exit(task
))
643 * Lockless check for whether task is sleeping or not.
645 if (!RPC_IS_QUEUED(task
))
647 rpc_clear_running(task
);
648 if (RPC_IS_ASYNC(task
)) {
649 /* Careful! we may have raced... */
650 if (RPC_IS_QUEUED(task
))
652 if (rpc_test_and_set_running(task
))
657 /* sync task: sleep here */
658 dprintk("RPC: %4d sync task going to sleep\n", task
->tk_pid
);
659 /* Note: Caller should be using rpc_clnt_sigmask() */
660 status
= out_of_line_wait_on_bit(&task
->tk_runstate
,
661 RPC_TASK_QUEUED
, rpc_wait_bit_interruptible
,
663 if (status
== -ERESTARTSYS
) {
665 * When a sync task receives a signal, it exits with
666 * -ERESTARTSYS. In order to catch any callbacks that
667 * clean up after sleeping on some queue, we don't
668 * break the loop here, but go around once more.
670 dprintk("RPC: %4d got signal\n", task
->tk_pid
);
671 task
->tk_flags
|= RPC_TASK_KILLED
;
672 rpc_exit(task
, -ERESTARTSYS
);
673 rpc_wake_up_task(task
);
675 rpc_set_running(task
);
676 dprintk("RPC: %4d sync task resuming\n", task
->tk_pid
);
679 dprintk("RPC: %4d exit() = %d\n", task
->tk_pid
, task
->tk_status
);
680 status
= task
->tk_status
;
682 /* Release all resources associated with the task */
683 rpc_release_task(task
);
688 * User-visible entry point to the scheduler.
690 * This may be called recursively if e.g. an async NFS task updates
691 * the attributes and finds that dirty pages must be flushed.
692 * NOTE: Upon exit of this function the task is guaranteed to be
693 * released. In particular note that tk_release() will have
694 * been called, so your task memory may have been freed.
697 rpc_execute(struct rpc_task
*task
)
699 BUG_ON(task
->tk_active
);
702 rpc_set_running(task
);
703 return __rpc_execute(task
);
706 static void rpc_async_schedule(void *arg
)
708 __rpc_execute((struct rpc_task
*)arg
);
712 * Allocate memory for RPC purposes.
714 * We try to ensure that some NFS reads and writes can always proceed
715 * by using a mempool when allocating 'small' buffers.
716 * In order to avoid memory starvation triggering more writebacks of
717 * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
720 rpc_malloc(struct rpc_task
*task
, size_t size
)
724 if (task
->tk_flags
& RPC_TASK_SWAPPER
)
729 if (size
> RPC_BUFFER_MAXSIZE
) {
730 task
->tk_buffer
= kmalloc(size
, gfp
);
732 task
->tk_bufsize
= size
;
734 task
->tk_buffer
= mempool_alloc(rpc_buffer_mempool
, gfp
);
736 task
->tk_bufsize
= RPC_BUFFER_MAXSIZE
;
738 return task
->tk_buffer
;
742 rpc_free(struct rpc_task
*task
)
744 if (task
->tk_buffer
) {
745 if (task
->tk_bufsize
== RPC_BUFFER_MAXSIZE
)
746 mempool_free(task
->tk_buffer
, rpc_buffer_mempool
);
748 kfree(task
->tk_buffer
);
749 task
->tk_buffer
= NULL
;
750 task
->tk_bufsize
= 0;
755 * Creation and deletion of RPC task structures
757 void rpc_init_task(struct rpc_task
*task
, struct rpc_clnt
*clnt
, rpc_action callback
, int flags
)
759 memset(task
, 0, sizeof(*task
));
760 init_timer(&task
->tk_timer
);
761 task
->tk_timer
.data
= (unsigned long) task
;
762 task
->tk_timer
.function
= (void (*)(unsigned long)) rpc_run_timer
;
763 task
->tk_client
= clnt
;
764 task
->tk_flags
= flags
;
765 task
->tk_exit
= callback
;
767 /* Initialize retry counters */
768 task
->tk_garb_retry
= 2;
769 task
->tk_cred_retry
= 2;
771 task
->tk_priority
= RPC_PRIORITY_NORMAL
;
772 task
->tk_cookie
= (unsigned long)current
;
774 /* Initialize workqueue for async tasks */
775 task
->tk_workqueue
= rpciod_workqueue
;
778 atomic_inc(&clnt
->cl_users
);
779 if (clnt
->cl_softrtry
)
780 task
->tk_flags
|= RPC_TASK_SOFT
;
782 task
->tk_flags
|= RPC_TASK_NOINTR
;
786 task
->tk_magic
= RPC_TASK_MAGIC_ID
;
787 task
->tk_pid
= rpc_task_id
++;
789 /* Add to global list of all tasks */
790 spin_lock(&rpc_sched_lock
);
791 list_add_tail(&task
->tk_task
, &all_tasks
);
792 spin_unlock(&rpc_sched_lock
);
794 dprintk("RPC: %4d new task procpid %d\n", task
->tk_pid
,
798 static struct rpc_task
*
801 return (struct rpc_task
*)mempool_alloc(rpc_task_mempool
, GFP_NOFS
);
805 rpc_default_free_task(struct rpc_task
*task
)
807 dprintk("RPC: %4d freeing task\n", task
->tk_pid
);
808 mempool_free(task
, rpc_task_mempool
);
812 * Create a new task for the specified client. We have to
813 * clean up after an allocation failure, as the client may
814 * have specified "oneshot".
817 rpc_new_task(struct rpc_clnt
*clnt
, rpc_action callback
, int flags
)
819 struct rpc_task
*task
;
821 task
= rpc_alloc_task();
825 rpc_init_task(task
, clnt
, callback
, flags
);
827 /* Replace tk_release */
828 task
->tk_release
= rpc_default_free_task
;
830 dprintk("RPC: %4d allocated task\n", task
->tk_pid
);
831 task
->tk_flags
|= RPC_TASK_DYNAMIC
;
836 /* Check whether to release the client */
838 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
839 atomic_read(&clnt
->cl_users
), clnt
->cl_oneshot
);
840 atomic_inc(&clnt
->cl_users
); /* pretend we were used ... */
841 rpc_release_client(clnt
);
846 void rpc_release_task(struct rpc_task
*task
)
848 dprintk("RPC: %4d release task\n", task
->tk_pid
);
851 BUG_ON(task
->tk_magic
!= RPC_TASK_MAGIC_ID
);
854 /* Remove from global task list */
855 spin_lock(&rpc_sched_lock
);
856 list_del(&task
->tk_task
);
857 spin_unlock(&rpc_sched_lock
);
859 BUG_ON (RPC_IS_QUEUED(task
));
862 /* Synchronously delete any running timer */
863 rpc_delete_timer(task
);
865 /* Release resources */
868 if (task
->tk_msg
.rpc_cred
)
869 rpcauth_unbindcred(task
);
871 if (task
->tk_client
) {
872 rpc_release_client(task
->tk_client
);
873 task
->tk_client
= NULL
;
879 if (task
->tk_release
)
880 task
->tk_release(task
);
884 * rpc_find_parent - find the parent of a child task.
887 * Checks that the parent task is still sleeping on the
888 * queue 'childq'. If so returns a pointer to the parent.
889 * Upon failure returns NULL.
891 * Caller must hold childq.lock
893 static inline struct rpc_task
*rpc_find_parent(struct rpc_task
*child
)
895 struct rpc_task
*task
, *parent
;
896 struct list_head
*le
;
898 parent
= (struct rpc_task
*) child
->tk_calldata
;
899 task_for_each(task
, le
, &childq
.tasks
[0])
906 static void rpc_child_exit(struct rpc_task
*child
)
908 struct rpc_task
*parent
;
910 spin_lock_bh(&childq
.lock
);
911 if ((parent
= rpc_find_parent(child
)) != NULL
) {
912 parent
->tk_status
= child
->tk_status
;
913 __rpc_wake_up_task(parent
);
915 spin_unlock_bh(&childq
.lock
);
919 * Note: rpc_new_task releases the client after a failure.
922 rpc_new_child(struct rpc_clnt
*clnt
, struct rpc_task
*parent
)
924 struct rpc_task
*task
;
926 task
= rpc_new_task(clnt
, NULL
, RPC_TASK_ASYNC
| RPC_TASK_CHILD
);
929 task
->tk_exit
= rpc_child_exit
;
930 task
->tk_calldata
= parent
;
934 parent
->tk_status
= -ENOMEM
;
938 void rpc_run_child(struct rpc_task
*task
, struct rpc_task
*child
, rpc_action func
)
940 spin_lock_bh(&childq
.lock
);
941 /* N.B. Is it possible for the child to have already finished? */
942 __rpc_sleep_on(&childq
, task
, func
, NULL
);
943 rpc_schedule_run(child
);
944 spin_unlock_bh(&childq
.lock
);
948 * Kill all tasks for the given client.
949 * XXX: kill their descendants as well?
951 void rpc_killall_tasks(struct rpc_clnt
*clnt
)
953 struct rpc_task
*rovr
;
954 struct list_head
*le
;
956 dprintk("RPC: killing all tasks for client %p\n", clnt
);
959 * Spin lock all_tasks to prevent changes...
961 spin_lock(&rpc_sched_lock
);
962 alltask_for_each(rovr
, le
, &all_tasks
) {
963 if (! RPC_IS_ACTIVATED(rovr
))
965 if (!clnt
|| rovr
->tk_client
== clnt
) {
966 rovr
->tk_flags
|= RPC_TASK_KILLED
;
967 rpc_exit(rovr
, -EIO
);
968 rpc_wake_up_task(rovr
);
971 spin_unlock(&rpc_sched_lock
);
974 static DECLARE_MUTEX_LOCKED(rpciod_running
);
976 static void rpciod_killall(void)
980 while (!list_empty(&all_tasks
)) {
981 clear_thread_flag(TIF_SIGPENDING
);
982 rpc_killall_tasks(NULL
);
983 flush_workqueue(rpciod_workqueue
);
984 if (!list_empty(&all_tasks
)) {
985 dprintk("rpciod_killall: waiting for tasks to exit\n");
990 spin_lock_irqsave(¤t
->sighand
->siglock
, flags
);
992 spin_unlock_irqrestore(¤t
->sighand
->siglock
, flags
);
996 * Start up the rpciod process if it's not already running.
1001 struct workqueue_struct
*wq
;
1005 dprintk("rpciod_up: users %d\n", rpciod_users
);
1007 if (rpciod_workqueue
)
1010 * If there's no pid, we should be the first user.
1012 if (rpciod_users
> 1)
1013 printk(KERN_WARNING
"rpciod_up: no workqueue, %d users??\n", rpciod_users
);
1015 * Create the rpciod thread and wait for it to start.
1018 wq
= create_workqueue("rpciod");
1020 printk(KERN_WARNING
"rpciod_up: create workqueue failed, error=%d\n", error
);
1024 rpciod_workqueue
= wq
;
1035 dprintk("rpciod_down sema %d\n", rpciod_users
);
1040 printk(KERN_WARNING
"rpciod_down: no users??\n");
1042 if (!rpciod_workqueue
) {
1043 dprintk("rpciod_down: Nothing to do!\n");
1048 destroy_workqueue(rpciod_workqueue
);
1049 rpciod_workqueue
= NULL
;
1055 void rpc_show_tasks(void)
1057 struct list_head
*le
;
1060 spin_lock(&rpc_sched_lock
);
1061 if (list_empty(&all_tasks
)) {
1062 spin_unlock(&rpc_sched_lock
);
1065 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1066 "-rpcwait -action- --exit--\n");
1067 alltask_for_each(t
, le
, &all_tasks
) {
1068 const char *rpc_waitq
= "none";
1070 if (RPC_IS_QUEUED(t
))
1071 rpc_waitq
= rpc_qname(t
->u
.tk_wait
.rpc_waitq
);
1073 printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1075 (t
->tk_msg
.rpc_proc
? t
->tk_msg
.rpc_proc
->p_proc
: -1),
1076 t
->tk_flags
, t
->tk_status
,
1078 (t
->tk_client
? t
->tk_client
->cl_prog
: 0),
1079 t
->tk_rqstp
, t
->tk_timeout
,
1081 t
->tk_action
, t
->tk_exit
);
1083 spin_unlock(&rpc_sched_lock
);
1088 rpc_destroy_mempool(void)
1090 if (rpc_buffer_mempool
)
1091 mempool_destroy(rpc_buffer_mempool
);
1092 if (rpc_task_mempool
)
1093 mempool_destroy(rpc_task_mempool
);
1094 if (rpc_task_slabp
&& kmem_cache_destroy(rpc_task_slabp
))
1095 printk(KERN_INFO
"rpc_task: not all structures were freed\n");
1096 if (rpc_buffer_slabp
&& kmem_cache_destroy(rpc_buffer_slabp
))
1097 printk(KERN_INFO
"rpc_buffers: not all structures were freed\n");
1101 rpc_init_mempool(void)
1103 rpc_task_slabp
= kmem_cache_create("rpc_tasks",
1104 sizeof(struct rpc_task
),
1105 0, SLAB_HWCACHE_ALIGN
,
1107 if (!rpc_task_slabp
)
1109 rpc_buffer_slabp
= kmem_cache_create("rpc_buffers",
1111 0, SLAB_HWCACHE_ALIGN
,
1113 if (!rpc_buffer_slabp
)
1115 rpc_task_mempool
= mempool_create(RPC_TASK_POOLSIZE
,
1119 if (!rpc_task_mempool
)
1121 rpc_buffer_mempool
= mempool_create(RPC_BUFFER_POOLSIZE
,
1125 if (!rpc_buffer_mempool
)
1129 rpc_destroy_mempool();