2 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2006 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
23 #include <linux/pagemap.h>
24 #include <linux/pagevec.h>
25 #include <linux/sched.h>
26 #include <linux/swap.h>
27 #include <linux/uio.h>
28 #include <linux/writeback.h>
31 #include <asm/uaccess.h>
43 * ntfs_file_open - called when an inode is about to be opened
44 * @vi: inode to be opened
45 * @filp: file structure describing the inode
47 * Limit file size to the page cache limit on architectures where unsigned long
48 * is 32-bits. This is the most we can do for now without overflowing the page
49 * cache page index. Doing it this way means we don't run into problems because
50 * of existing too large files. It would be better to allow the user to read
51 * the beginning of the file but I doubt very much anyone is going to hit this
52 * check on a 32-bit architecture, so there is no point in adding the extra
53 * complexity required to support this.
55 * On 64-bit architectures, the check is hopefully optimized away by the
58 * After the check passes, just call generic_file_open() to do its work.
60 static int ntfs_file_open(struct inode
*vi
, struct file
*filp
)
62 if (sizeof(unsigned long) < 8) {
63 if (i_size_read(vi
) > MAX_LFS_FILESIZE
)
66 return generic_file_open(vi
, filp
);
72 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
73 * @ni: ntfs inode of the attribute to extend
74 * @new_init_size: requested new initialized size in bytes
75 * @cached_page: store any allocated but unused page here
76 * @lru_pvec: lru-buffering pagevec of the caller
78 * Extend the initialized size of an attribute described by the ntfs inode @ni
79 * to @new_init_size bytes. This involves zeroing any non-sparse space between
80 * the old initialized size and @new_init_size both in the page cache and on
81 * disk (if relevant complete pages are already uptodate in the page cache then
82 * these are simply marked dirty).
84 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
85 * in the resident attribute case, it is tied to the initialized size and, in
86 * the non-resident attribute case, it may not fall below the initialized size.
88 * Note that if the attribute is resident, we do not need to touch the page
89 * cache at all. This is because if the page cache page is not uptodate we
90 * bring it uptodate later, when doing the write to the mft record since we
91 * then already have the page mapped. And if the page is uptodate, the
92 * non-initialized region will already have been zeroed when the page was
93 * brought uptodate and the region may in fact already have been overwritten
94 * with new data via mmap() based writes, so we cannot just zero it. And since
95 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
96 * is unspecified, we choose not to do zeroing and thus we do not need to touch
97 * the page at all. For a more detailed explanation see ntfs_truncate() in
100 * @cached_page and @lru_pvec are just optimizations for dealing with multiple
103 * Return 0 on success and -errno on error. In the case that an error is
104 * encountered it is possible that the initialized size will already have been
105 * incremented some way towards @new_init_size but it is guaranteed that if
106 * this is the case, the necessary zeroing will also have happened and that all
107 * metadata is self-consistent.
109 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
110 * held by the caller.
112 static int ntfs_attr_extend_initialized(ntfs_inode
*ni
, const s64 new_init_size
,
113 struct page
**cached_page
, struct pagevec
*lru_pvec
)
117 pgoff_t index
, end_index
;
119 struct inode
*vi
= VFS_I(ni
);
121 MFT_RECORD
*m
= NULL
;
123 ntfs_attr_search_ctx
*ctx
= NULL
;
124 struct address_space
*mapping
;
125 struct page
*page
= NULL
;
130 read_lock_irqsave(&ni
->size_lock
, flags
);
131 old_init_size
= ni
->initialized_size
;
132 old_i_size
= i_size_read(vi
);
133 BUG_ON(new_init_size
> ni
->allocated_size
);
134 read_unlock_irqrestore(&ni
->size_lock
, flags
);
135 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
136 "old_initialized_size 0x%llx, "
137 "new_initialized_size 0x%llx, i_size 0x%llx.",
138 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
139 (unsigned long long)old_init_size
,
140 (unsigned long long)new_init_size
, old_i_size
);
144 base_ni
= ni
->ext
.base_ntfs_ino
;
145 /* Use goto to reduce indentation and we need the label below anyway. */
146 if (NInoNonResident(ni
))
147 goto do_non_resident_extend
;
148 BUG_ON(old_init_size
!= old_i_size
);
149 m
= map_mft_record(base_ni
);
155 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
156 if (unlikely(!ctx
)) {
160 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
161 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
169 BUG_ON(a
->non_resident
);
170 /* The total length of the attribute value. */
171 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
172 BUG_ON(old_i_size
!= (loff_t
)attr_len
);
174 * Do the zeroing in the mft record and update the attribute size in
177 kattr
= (u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
);
178 memset(kattr
+ attr_len
, 0, new_init_size
- attr_len
);
179 a
->data
.resident
.value_length
= cpu_to_le32((u32
)new_init_size
);
180 /* Finally, update the sizes in the vfs and ntfs inodes. */
181 write_lock_irqsave(&ni
->size_lock
, flags
);
182 i_size_write(vi
, new_init_size
);
183 ni
->initialized_size
= new_init_size
;
184 write_unlock_irqrestore(&ni
->size_lock
, flags
);
186 do_non_resident_extend
:
188 * If the new initialized size @new_init_size exceeds the current file
189 * size (vfs inode->i_size), we need to extend the file size to the
190 * new initialized size.
192 if (new_init_size
> old_i_size
) {
193 m
= map_mft_record(base_ni
);
199 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
200 if (unlikely(!ctx
)) {
204 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
205 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
213 BUG_ON(!a
->non_resident
);
214 BUG_ON(old_i_size
!= (loff_t
)
215 sle64_to_cpu(a
->data
.non_resident
.data_size
));
216 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_init_size
);
217 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
218 mark_mft_record_dirty(ctx
->ntfs_ino
);
219 /* Update the file size in the vfs inode. */
220 i_size_write(vi
, new_init_size
);
221 ntfs_attr_put_search_ctx(ctx
);
223 unmap_mft_record(base_ni
);
226 mapping
= vi
->i_mapping
;
227 index
= old_init_size
>> PAGE_CACHE_SHIFT
;
228 end_index
= (new_init_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
231 * Read the page. If the page is not present, this will zero
232 * the uninitialized regions for us.
234 page
= read_mapping_page(mapping
, index
, NULL
);
239 if (unlikely(PageError(page
))) {
240 page_cache_release(page
);
245 * Update the initialized size in the ntfs inode. This is
246 * enough to make ntfs_writepage() work.
248 write_lock_irqsave(&ni
->size_lock
, flags
);
249 ni
->initialized_size
= (s64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
250 if (ni
->initialized_size
> new_init_size
)
251 ni
->initialized_size
= new_init_size
;
252 write_unlock_irqrestore(&ni
->size_lock
, flags
);
253 /* Set the page dirty so it gets written out. */
254 set_page_dirty(page
);
255 page_cache_release(page
);
257 * Play nice with the vm and the rest of the system. This is
258 * very much needed as we can potentially be modifying the
259 * initialised size from a very small value to a really huge
261 * f = open(somefile, O_TRUNC);
262 * truncate(f, 10GiB);
265 * And this would mean we would be marking dirty hundreds of
266 * thousands of pages or as in the above example more than
267 * two and a half million pages!
269 * TODO: For sparse pages could optimize this workload by using
270 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
271 * would be set in readpage for sparse pages and here we would
272 * not need to mark dirty any pages which have this bit set.
273 * The only caveat is that we have to clear the bit everywhere
274 * where we allocate any clusters that lie in the page or that
277 * TODO: An even greater optimization would be for us to only
278 * call readpage() on pages which are not in sparse regions as
279 * determined from the runlist. This would greatly reduce the
280 * number of pages we read and make dirty in the case of sparse
283 balance_dirty_pages_ratelimited(mapping
);
285 } while (++index
< end_index
);
286 read_lock_irqsave(&ni
->size_lock
, flags
);
287 BUG_ON(ni
->initialized_size
!= new_init_size
);
288 read_unlock_irqrestore(&ni
->size_lock
, flags
);
289 /* Now bring in sync the initialized_size in the mft record. */
290 m
= map_mft_record(base_ni
);
296 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
297 if (unlikely(!ctx
)) {
301 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
302 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
310 BUG_ON(!a
->non_resident
);
311 a
->data
.non_resident
.initialized_size
= cpu_to_sle64(new_init_size
);
313 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
314 mark_mft_record_dirty(ctx
->ntfs_ino
);
316 ntfs_attr_put_search_ctx(ctx
);
318 unmap_mft_record(base_ni
);
319 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
320 (unsigned long long)new_init_size
, i_size_read(vi
));
323 write_lock_irqsave(&ni
->size_lock
, flags
);
324 ni
->initialized_size
= old_init_size
;
325 write_unlock_irqrestore(&ni
->size_lock
, flags
);
328 ntfs_attr_put_search_ctx(ctx
);
330 unmap_mft_record(base_ni
);
331 ntfs_debug("Failed. Returning error code %i.", err
);
336 * ntfs_fault_in_pages_readable -
338 * Fault a number of userspace pages into pagetables.
340 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
341 * with more than two userspace pages as well as handling the single page case
344 * If you find this difficult to understand, then think of the while loop being
345 * the following code, except that we do without the integer variable ret:
348 * ret = __get_user(c, uaddr);
349 * uaddr += PAGE_SIZE;
350 * } while (!ret && uaddr < end);
352 * Note, the final __get_user() may well run out-of-bounds of the user buffer,
353 * but _not_ out-of-bounds of the page the user buffer belongs to, and since
354 * this is only a read and not a write, and since it is still in the same page,
355 * it should not matter and this makes the code much simpler.
357 static inline void ntfs_fault_in_pages_readable(const char __user
*uaddr
,
360 const char __user
*end
;
363 /* Set @end to the first byte outside the last page we care about. */
364 end
= (const char __user
*)PAGE_ALIGN((ptrdiff_t __user
)uaddr
+ bytes
);
366 while (!__get_user(c
, uaddr
) && (uaddr
+= PAGE_SIZE
, uaddr
< end
))
371 * ntfs_fault_in_pages_readable_iovec -
373 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
375 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec
*iov
,
376 size_t iov_ofs
, int bytes
)
379 const char __user
*buf
;
382 buf
= iov
->iov_base
+ iov_ofs
;
383 len
= iov
->iov_len
- iov_ofs
;
386 ntfs_fault_in_pages_readable(buf
, len
);
394 * __ntfs_grab_cache_pages - obtain a number of locked pages
395 * @mapping: address space mapping from which to obtain page cache pages
396 * @index: starting index in @mapping at which to begin obtaining pages
397 * @nr_pages: number of page cache pages to obtain
398 * @pages: array of pages in which to return the obtained page cache pages
399 * @cached_page: allocated but as yet unused page
400 * @lru_pvec: lru-buffering pagevec of caller
402 * Obtain @nr_pages locked page cache pages from the mapping @maping and
403 * starting at index @index.
405 * If a page is newly created, increment its refcount and add it to the
406 * caller's lru-buffering pagevec @lru_pvec.
408 * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages
409 * are obtained at once instead of just one page and that 0 is returned on
410 * success and -errno on error.
412 * Note, the page locks are obtained in ascending page index order.
414 static inline int __ntfs_grab_cache_pages(struct address_space
*mapping
,
415 pgoff_t index
, const unsigned nr_pages
, struct page
**pages
,
416 struct page
**cached_page
, struct pagevec
*lru_pvec
)
423 pages
[nr
] = find_lock_page(mapping
, index
);
426 *cached_page
= page_cache_alloc(mapping
);
427 if (unlikely(!*cached_page
)) {
432 err
= add_to_page_cache(*cached_page
, mapping
, index
,
439 pages
[nr
] = *cached_page
;
440 page_cache_get(*cached_page
);
441 if (unlikely(!pagevec_add(lru_pvec
, *cached_page
)))
442 __pagevec_lru_add(lru_pvec
);
447 } while (nr
< nr_pages
);
452 unlock_page(pages
[--nr
]);
453 page_cache_release(pages
[nr
]);
458 static inline int ntfs_submit_bh_for_read(struct buffer_head
*bh
)
462 bh
->b_end_io
= end_buffer_read_sync
;
463 return submit_bh(READ
, bh
);
467 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
468 * @pages: array of destination pages
469 * @nr_pages: number of pages in @pages
470 * @pos: byte position in file at which the write begins
471 * @bytes: number of bytes to be written
473 * This is called for non-resident attributes from ntfs_file_buffered_write()
474 * with i_mutex held on the inode (@pages[0]->mapping->host). There are
475 * @nr_pages pages in @pages which are locked but not kmap()ped. The source
476 * data has not yet been copied into the @pages.
478 * Need to fill any holes with actual clusters, allocate buffers if necessary,
479 * ensure all the buffers are mapped, and bring uptodate any buffers that are
480 * only partially being written to.
482 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
483 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
484 * the same cluster and that they are the entirety of that cluster, and that
485 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
487 * i_size is not to be modified yet.
489 * Return 0 on success or -errno on error.
491 static int ntfs_prepare_pages_for_non_resident_write(struct page
**pages
,
492 unsigned nr_pages
, s64 pos
, size_t bytes
)
494 VCN vcn
, highest_vcn
= 0, cpos
, cend
, bh_cpos
, bh_cend
;
496 s64 bh_pos
, vcn_len
, end
, initialized_size
;
500 ntfs_inode
*ni
, *base_ni
= NULL
;
502 runlist_element
*rl
, *rl2
;
503 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
= wait
;
504 ntfs_attr_search_ctx
*ctx
= NULL
;
505 MFT_RECORD
*m
= NULL
;
506 ATTR_RECORD
*a
= NULL
;
508 u32 attr_rec_len
= 0;
509 unsigned blocksize
, u
;
511 bool rl_write_locked
, was_hole
, is_retry
;
512 unsigned char blocksize_bits
;
515 u8 mft_attr_mapped
:1;
518 } status
= { 0, 0, 0, 0 };
523 vi
= pages
[0]->mapping
->host
;
526 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
527 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
528 vi
->i_ino
, ni
->type
, pages
[0]->index
, nr_pages
,
529 (long long)pos
, bytes
);
530 blocksize
= vol
->sb
->s_blocksize
;
531 blocksize_bits
= vol
->sb
->s_blocksize_bits
;
534 struct page
*page
= pages
[u
];
536 * create_empty_buffers() will create uptodate/dirty buffers if
537 * the page is uptodate/dirty.
539 if (!page_has_buffers(page
)) {
540 create_empty_buffers(page
, blocksize
, 0);
541 if (unlikely(!page_has_buffers(page
)))
544 } while (++u
< nr_pages
);
545 rl_write_locked
= false;
552 cpos
= pos
>> vol
->cluster_size_bits
;
554 cend
= (end
+ vol
->cluster_size
- 1) >> vol
->cluster_size_bits
;
556 * Loop over each page and for each page over each buffer. Use goto to
557 * reduce indentation.
562 bh_pos
= (s64
)page
->index
<< PAGE_CACHE_SHIFT
;
563 bh
= head
= page_buffers(page
);
569 /* Clear buffer_new on all buffers to reinitialise state. */
571 clear_buffer_new(bh
);
572 bh_end
= bh_pos
+ blocksize
;
573 bh_cpos
= bh_pos
>> vol
->cluster_size_bits
;
574 bh_cofs
= bh_pos
& vol
->cluster_size_mask
;
575 if (buffer_mapped(bh
)) {
577 * The buffer is already mapped. If it is uptodate,
580 if (buffer_uptodate(bh
))
583 * The buffer is not uptodate. If the page is uptodate
584 * set the buffer uptodate and otherwise ignore it.
586 if (PageUptodate(page
)) {
587 set_buffer_uptodate(bh
);
591 * Neither the page nor the buffer are uptodate. If
592 * the buffer is only partially being written to, we
593 * need to read it in before the write, i.e. now.
595 if ((bh_pos
< pos
&& bh_end
> pos
) ||
596 (bh_pos
< end
&& bh_end
> end
)) {
598 * If the buffer is fully or partially within
599 * the initialized size, do an actual read.
600 * Otherwise, simply zero the buffer.
602 read_lock_irqsave(&ni
->size_lock
, flags
);
603 initialized_size
= ni
->initialized_size
;
604 read_unlock_irqrestore(&ni
->size_lock
, flags
);
605 if (bh_pos
< initialized_size
) {
606 ntfs_submit_bh_for_read(bh
);
609 u8
*kaddr
= kmap_atomic(page
, KM_USER0
);
610 memset(kaddr
+ bh_offset(bh
), 0,
612 kunmap_atomic(kaddr
, KM_USER0
);
613 flush_dcache_page(page
);
614 set_buffer_uptodate(bh
);
619 /* Unmapped buffer. Need to map it. */
620 bh
->b_bdev
= vol
->sb
->s_bdev
;
622 * If the current buffer is in the same clusters as the map
623 * cache, there is no need to check the runlist again. The
624 * map cache is made up of @vcn, which is the first cached file
625 * cluster, @vcn_len which is the number of cached file
626 * clusters, @lcn is the device cluster corresponding to @vcn,
627 * and @lcn_block is the block number corresponding to @lcn.
629 cdelta
= bh_cpos
- vcn
;
630 if (likely(!cdelta
|| (cdelta
> 0 && cdelta
< vcn_len
))) {
633 bh
->b_blocknr
= lcn_block
+
634 (cdelta
<< (vol
->cluster_size_bits
-
636 (bh_cofs
>> blocksize_bits
);
637 set_buffer_mapped(bh
);
639 * If the page is uptodate so is the buffer. If the
640 * buffer is fully outside the write, we ignore it if
641 * it was already allocated and we mark it dirty so it
642 * gets written out if we allocated it. On the other
643 * hand, if we allocated the buffer but we are not
644 * marking it dirty we set buffer_new so we can do
647 if (PageUptodate(page
)) {
648 if (!buffer_uptodate(bh
))
649 set_buffer_uptodate(bh
);
650 if (unlikely(was_hole
)) {
651 /* We allocated the buffer. */
652 unmap_underlying_metadata(bh
->b_bdev
,
654 if (bh_end
<= pos
|| bh_pos
>= end
)
655 mark_buffer_dirty(bh
);
661 /* Page is _not_ uptodate. */
662 if (likely(!was_hole
)) {
664 * Buffer was already allocated. If it is not
665 * uptodate and is only partially being written
666 * to, we need to read it in before the write,
669 if (!buffer_uptodate(bh
) && bh_pos
< end
&&
674 * If the buffer is fully or partially
675 * within the initialized size, do an
676 * actual read. Otherwise, simply zero
679 read_lock_irqsave(&ni
->size_lock
,
681 initialized_size
= ni
->initialized_size
;
682 read_unlock_irqrestore(&ni
->size_lock
,
684 if (bh_pos
< initialized_size
) {
685 ntfs_submit_bh_for_read(bh
);
688 u8
*kaddr
= kmap_atomic(page
,
690 memset(kaddr
+ bh_offset(bh
),
692 kunmap_atomic(kaddr
, KM_USER0
);
693 flush_dcache_page(page
);
694 set_buffer_uptodate(bh
);
699 /* We allocated the buffer. */
700 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
702 * If the buffer is fully outside the write, zero it,
703 * set it uptodate, and mark it dirty so it gets
704 * written out. If it is partially being written to,
705 * zero region surrounding the write but leave it to
706 * commit write to do anything else. Finally, if the
707 * buffer is fully being overwritten, do nothing.
709 if (bh_end
<= pos
|| bh_pos
>= end
) {
710 if (!buffer_uptodate(bh
)) {
711 u8
*kaddr
= kmap_atomic(page
, KM_USER0
);
712 memset(kaddr
+ bh_offset(bh
), 0,
714 kunmap_atomic(kaddr
, KM_USER0
);
715 flush_dcache_page(page
);
716 set_buffer_uptodate(bh
);
718 mark_buffer_dirty(bh
);
722 if (!buffer_uptodate(bh
) &&
723 (bh_pos
< pos
|| bh_end
> end
)) {
727 kaddr
= kmap_atomic(page
, KM_USER0
);
729 pofs
= bh_pos
& ~PAGE_CACHE_MASK
;
730 memset(kaddr
+ pofs
, 0, pos
- bh_pos
);
733 pofs
= end
& ~PAGE_CACHE_MASK
;
734 memset(kaddr
+ pofs
, 0, bh_end
- end
);
736 kunmap_atomic(kaddr
, KM_USER0
);
737 flush_dcache_page(page
);
742 * Slow path: this is the first buffer in the cluster. If it
743 * is outside allocated size and is not uptodate, zero it and
746 read_lock_irqsave(&ni
->size_lock
, flags
);
747 initialized_size
= ni
->allocated_size
;
748 read_unlock_irqrestore(&ni
->size_lock
, flags
);
749 if (bh_pos
> initialized_size
) {
750 if (PageUptodate(page
)) {
751 if (!buffer_uptodate(bh
))
752 set_buffer_uptodate(bh
);
753 } else if (!buffer_uptodate(bh
)) {
754 u8
*kaddr
= kmap_atomic(page
, KM_USER0
);
755 memset(kaddr
+ bh_offset(bh
), 0, blocksize
);
756 kunmap_atomic(kaddr
, KM_USER0
);
757 flush_dcache_page(page
);
758 set_buffer_uptodate(bh
);
764 down_read(&ni
->runlist
.lock
);
768 if (likely(rl
!= NULL
)) {
769 /* Seek to element containing target cluster. */
770 while (rl
->length
&& rl
[1].vcn
<= bh_cpos
)
772 lcn
= ntfs_rl_vcn_to_lcn(rl
, bh_cpos
);
773 if (likely(lcn
>= 0)) {
775 * Successful remap, setup the map cache and
776 * use that to deal with the buffer.
780 vcn_len
= rl
[1].vcn
- vcn
;
781 lcn_block
= lcn
<< (vol
->cluster_size_bits
-
785 * If the number of remaining clusters touched
786 * by the write is smaller or equal to the
787 * number of cached clusters, unlock the
788 * runlist as the map cache will be used from
791 if (likely(vcn
+ vcn_len
>= cend
)) {
792 if (rl_write_locked
) {
793 up_write(&ni
->runlist
.lock
);
794 rl_write_locked
= false;
796 up_read(&ni
->runlist
.lock
);
799 goto map_buffer_cached
;
802 lcn
= LCN_RL_NOT_MAPPED
;
804 * If it is not a hole and not out of bounds, the runlist is
805 * probably unmapped so try to map it now.
807 if (unlikely(lcn
!= LCN_HOLE
&& lcn
!= LCN_ENOENT
)) {
808 if (likely(!is_retry
&& lcn
== LCN_RL_NOT_MAPPED
)) {
809 /* Attempt to map runlist. */
810 if (!rl_write_locked
) {
812 * We need the runlist locked for
813 * writing, so if it is locked for
814 * reading relock it now and retry in
815 * case it changed whilst we dropped
818 up_read(&ni
->runlist
.lock
);
819 down_write(&ni
->runlist
.lock
);
820 rl_write_locked
= true;
823 err
= ntfs_map_runlist_nolock(ni
, bh_cpos
,
830 * If @vcn is out of bounds, pretend @lcn is
831 * LCN_ENOENT. As long as the buffer is out
832 * of bounds this will work fine.
834 if (err
== -ENOENT
) {
837 goto rl_not_mapped_enoent
;
841 /* Failed to map the buffer, even after retrying. */
843 ntfs_error(vol
->sb
, "Failed to write to inode 0x%lx, "
844 "attribute type 0x%x, vcn 0x%llx, "
845 "vcn offset 0x%x, because its "
846 "location on disk could not be "
847 "determined%s (error code %i).",
848 ni
->mft_no
, ni
->type
,
849 (unsigned long long)bh_cpos
,
851 vol
->cluster_size_mask
,
852 is_retry
? " even after retrying" : "",
856 rl_not_mapped_enoent
:
858 * The buffer is in a hole or out of bounds. We need to fill
859 * the hole, unless the buffer is in a cluster which is not
860 * touched by the write, in which case we just leave the buffer
861 * unmapped. This can only happen when the cluster size is
862 * less than the page cache size.
864 if (unlikely(vol
->cluster_size
< PAGE_CACHE_SIZE
)) {
865 bh_cend
= (bh_end
+ vol
->cluster_size
- 1) >>
866 vol
->cluster_size_bits
;
867 if ((bh_cend
<= cpos
|| bh_cpos
>= cend
)) {
870 * If the buffer is uptodate we skip it. If it
871 * is not but the page is uptodate, we can set
872 * the buffer uptodate. If the page is not
873 * uptodate, we can clear the buffer and set it
874 * uptodate. Whether this is worthwhile is
875 * debatable and this could be removed.
877 if (PageUptodate(page
)) {
878 if (!buffer_uptodate(bh
))
879 set_buffer_uptodate(bh
);
880 } else if (!buffer_uptodate(bh
)) {
881 u8
*kaddr
= kmap_atomic(page
, KM_USER0
);
882 memset(kaddr
+ bh_offset(bh
), 0,
884 kunmap_atomic(kaddr
, KM_USER0
);
885 flush_dcache_page(page
);
886 set_buffer_uptodate(bh
);
892 * Out of bounds buffer is invalid if it was not really out of
895 BUG_ON(lcn
!= LCN_HOLE
);
897 * We need the runlist locked for writing, so if it is locked
898 * for reading relock it now and retry in case it changed
899 * whilst we dropped the lock.
902 if (!rl_write_locked
) {
903 up_read(&ni
->runlist
.lock
);
904 down_write(&ni
->runlist
.lock
);
905 rl_write_locked
= true;
908 /* Find the previous last allocated cluster. */
909 BUG_ON(rl
->lcn
!= LCN_HOLE
);
912 while (--rl2
>= ni
->runlist
.rl
) {
914 lcn
= rl2
->lcn
+ rl2
->length
;
918 rl2
= ntfs_cluster_alloc(vol
, bh_cpos
, 1, lcn
, DATA_ZONE
,
922 ntfs_debug("Failed to allocate cluster, error code %i.",
927 rl
= ntfs_runlists_merge(ni
->runlist
.rl
, rl2
);
932 if (ntfs_cluster_free_from_rl(vol
, rl2
)) {
933 ntfs_error(vol
->sb
, "Failed to release "
934 "allocated cluster in error "
935 "code path. Run chkdsk to "
936 "recover the lost cluster.");
943 status
.runlist_merged
= 1;
944 ntfs_debug("Allocated cluster, lcn 0x%llx.",
945 (unsigned long long)lcn
);
946 /* Map and lock the mft record and get the attribute record. */
950 base_ni
= ni
->ext
.base_ntfs_ino
;
951 m
= map_mft_record(base_ni
);
956 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
957 if (unlikely(!ctx
)) {
959 unmap_mft_record(base_ni
);
962 status
.mft_attr_mapped
= 1;
963 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
964 CASE_SENSITIVE
, bh_cpos
, NULL
, 0, ctx
);
973 * Find the runlist element with which the attribute extent
974 * starts. Note, we cannot use the _attr_ version because we
975 * have mapped the mft record. That is ok because we know the
976 * runlist fragment must be mapped already to have ever gotten
977 * here, so we can just use the _rl_ version.
979 vcn
= sle64_to_cpu(a
->data
.non_resident
.lowest_vcn
);
980 rl2
= ntfs_rl_find_vcn_nolock(rl
, vcn
);
982 BUG_ON(!rl2
->length
);
983 BUG_ON(rl2
->lcn
< LCN_HOLE
);
984 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
986 * If @highest_vcn is zero, calculate the real highest_vcn
987 * (which can really be zero).
990 highest_vcn
= (sle64_to_cpu(
991 a
->data
.non_resident
.allocated_size
) >>
992 vol
->cluster_size_bits
) - 1;
994 * Determine the size of the mapping pairs array for the new
995 * extent, i.e. the old extent with the hole filled.
997 mp_size
= ntfs_get_size_for_mapping_pairs(vol
, rl2
, vcn
,
999 if (unlikely(mp_size
<= 0)) {
1000 if (!(err
= mp_size
))
1002 ntfs_debug("Failed to get size for mapping pairs "
1003 "array, error code %i.", err
);
1007 * Resize the attribute record to fit the new mapping pairs
1010 attr_rec_len
= le32_to_cpu(a
->length
);
1011 err
= ntfs_attr_record_resize(m
, a
, mp_size
+ le16_to_cpu(
1012 a
->data
.non_resident
.mapping_pairs_offset
));
1013 if (unlikely(err
)) {
1014 BUG_ON(err
!= -ENOSPC
);
1015 // TODO: Deal with this by using the current attribute
1016 // and fill it with as much of the mapping pairs
1017 // array as possible. Then loop over each attribute
1018 // extent rewriting the mapping pairs arrays as we go
1019 // along and if when we reach the end we have not
1020 // enough space, try to resize the last attribute
1021 // extent and if even that fails, add a new attribute
1023 // We could also try to resize at each step in the hope
1024 // that we will not need to rewrite every single extent.
1025 // Note, we may need to decompress some extents to fill
1026 // the runlist as we are walking the extents...
1027 ntfs_error(vol
->sb
, "Not enough space in the mft "
1028 "record for the extended attribute "
1029 "record. This case is not "
1030 "implemented yet.");
1034 status
.mp_rebuilt
= 1;
1036 * Generate the mapping pairs array directly into the attribute
1039 err
= ntfs_mapping_pairs_build(vol
, (u8
*)a
+ le16_to_cpu(
1040 a
->data
.non_resident
.mapping_pairs_offset
),
1041 mp_size
, rl2
, vcn
, highest_vcn
, NULL
);
1042 if (unlikely(err
)) {
1043 ntfs_error(vol
->sb
, "Cannot fill hole in inode 0x%lx, "
1044 "attribute type 0x%x, because building "
1045 "the mapping pairs failed with error "
1046 "code %i.", vi
->i_ino
,
1047 (unsigned)le32_to_cpu(ni
->type
), err
);
1051 /* Update the highest_vcn but only if it was not set. */
1052 if (unlikely(!a
->data
.non_resident
.highest_vcn
))
1053 a
->data
.non_resident
.highest_vcn
=
1054 cpu_to_sle64(highest_vcn
);
1056 * If the attribute is sparse/compressed, update the compressed
1057 * size in the ntfs_inode structure and the attribute record.
1059 if (likely(NInoSparse(ni
) || NInoCompressed(ni
))) {
1061 * If we are not in the first attribute extent, switch
1062 * to it, but first ensure the changes will make it to
1065 if (a
->data
.non_resident
.lowest_vcn
) {
1066 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1067 mark_mft_record_dirty(ctx
->ntfs_ino
);
1068 ntfs_attr_reinit_search_ctx(ctx
);
1069 err
= ntfs_attr_lookup(ni
->type
, ni
->name
,
1070 ni
->name_len
, CASE_SENSITIVE
,
1072 if (unlikely(err
)) {
1073 status
.attr_switched
= 1;
1076 /* @m is not used any more so do not set it. */
1079 write_lock_irqsave(&ni
->size_lock
, flags
);
1080 ni
->itype
.compressed
.size
+= vol
->cluster_size
;
1081 a
->data
.non_resident
.compressed_size
=
1082 cpu_to_sle64(ni
->itype
.compressed
.size
);
1083 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1085 /* Ensure the changes make it to disk. */
1086 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1087 mark_mft_record_dirty(ctx
->ntfs_ino
);
1088 ntfs_attr_put_search_ctx(ctx
);
1089 unmap_mft_record(base_ni
);
1090 /* Successfully filled the hole. */
1091 status
.runlist_merged
= 0;
1092 status
.mft_attr_mapped
= 0;
1093 status
.mp_rebuilt
= 0;
1094 /* Setup the map cache and use that to deal with the buffer. */
1098 lcn_block
= lcn
<< (vol
->cluster_size_bits
- blocksize_bits
);
1101 * If the number of remaining clusters in the @pages is smaller
1102 * or equal to the number of cached clusters, unlock the
1103 * runlist as the map cache will be used from now on.
1105 if (likely(vcn
+ vcn_len
>= cend
)) {
1106 up_write(&ni
->runlist
.lock
);
1107 rl_write_locked
= false;
1110 goto map_buffer_cached
;
1111 } while (bh_pos
+= blocksize
, (bh
= bh
->b_this_page
) != head
);
1112 /* If there are no errors, do the next page. */
1113 if (likely(!err
&& ++u
< nr_pages
))
1115 /* If there are no errors, release the runlist lock if we took it. */
1117 if (unlikely(rl_write_locked
)) {
1118 up_write(&ni
->runlist
.lock
);
1119 rl_write_locked
= false;
1120 } else if (unlikely(rl
))
1121 up_read(&ni
->runlist
.lock
);
1124 /* If we issued read requests, let them complete. */
1125 read_lock_irqsave(&ni
->size_lock
, flags
);
1126 initialized_size
= ni
->initialized_size
;
1127 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1128 while (wait_bh
> wait
) {
1131 if (likely(buffer_uptodate(bh
))) {
1133 bh_pos
= ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1136 * If the buffer overflows the initialized size, need
1137 * to zero the overflowing region.
1139 if (unlikely(bh_pos
+ blocksize
> initialized_size
)) {
1143 if (likely(bh_pos
< initialized_size
))
1144 ofs
= initialized_size
- bh_pos
;
1145 kaddr
= kmap_atomic(page
, KM_USER0
);
1146 memset(kaddr
+ bh_offset(bh
) + ofs
, 0,
1148 kunmap_atomic(kaddr
, KM_USER0
);
1149 flush_dcache_page(page
);
1151 } else /* if (unlikely(!buffer_uptodate(bh))) */
1155 /* Clear buffer_new on all buffers. */
1158 bh
= head
= page_buffers(pages
[u
]);
1161 clear_buffer_new(bh
);
1162 } while ((bh
= bh
->b_this_page
) != head
);
1163 } while (++u
< nr_pages
);
1164 ntfs_debug("Done.");
1167 if (status
.attr_switched
) {
1168 /* Get back to the attribute extent we modified. */
1169 ntfs_attr_reinit_search_ctx(ctx
);
1170 if (ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1171 CASE_SENSITIVE
, bh_cpos
, NULL
, 0, ctx
)) {
1172 ntfs_error(vol
->sb
, "Failed to find required "
1173 "attribute extent of attribute in "
1174 "error code path. Run chkdsk to "
1176 write_lock_irqsave(&ni
->size_lock
, flags
);
1177 ni
->itype
.compressed
.size
+= vol
->cluster_size
;
1178 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1179 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1180 mark_mft_record_dirty(ctx
->ntfs_ino
);
1182 * The only thing that is now wrong is the compressed
1183 * size of the base attribute extent which chkdsk
1184 * should be able to fix.
1190 status
.attr_switched
= 0;
1194 * If the runlist has been modified, need to restore it by punching a
1195 * hole into it and we then need to deallocate the on-disk cluster as
1196 * well. Note, we only modify the runlist if we are able to generate a
1197 * new mapping pairs array, i.e. only when the mapped attribute extent
1200 if (status
.runlist_merged
&& !status
.attr_switched
) {
1201 BUG_ON(!rl_write_locked
);
1202 /* Make the file cluster we allocated sparse in the runlist. */
1203 if (ntfs_rl_punch_nolock(vol
, &ni
->runlist
, bh_cpos
, 1)) {
1204 ntfs_error(vol
->sb
, "Failed to punch hole into "
1205 "attribute runlist in error code "
1206 "path. Run chkdsk to recover the "
1209 } else /* if (success) */ {
1210 status
.runlist_merged
= 0;
1212 * Deallocate the on-disk cluster we allocated but only
1213 * if we succeeded in punching its vcn out of the
1216 down_write(&vol
->lcnbmp_lock
);
1217 if (ntfs_bitmap_clear_bit(vol
->lcnbmp_ino
, lcn
)) {
1218 ntfs_error(vol
->sb
, "Failed to release "
1219 "allocated cluster in error "
1220 "code path. Run chkdsk to "
1221 "recover the lost cluster.");
1224 up_write(&vol
->lcnbmp_lock
);
1228 * Resize the attribute record to its old size and rebuild the mapping
1229 * pairs array. Note, we only can do this if the runlist has been
1230 * restored to its old state which also implies that the mapped
1231 * attribute extent is not switched.
1233 if (status
.mp_rebuilt
&& !status
.runlist_merged
) {
1234 if (ntfs_attr_record_resize(m
, a
, attr_rec_len
)) {
1235 ntfs_error(vol
->sb
, "Failed to restore attribute "
1236 "record in error code path. Run "
1237 "chkdsk to recover.");
1239 } else /* if (success) */ {
1240 if (ntfs_mapping_pairs_build(vol
, (u8
*)a
+
1241 le16_to_cpu(a
->data
.non_resident
.
1242 mapping_pairs_offset
), attr_rec_len
-
1243 le16_to_cpu(a
->data
.non_resident
.
1244 mapping_pairs_offset
), ni
->runlist
.rl
,
1245 vcn
, highest_vcn
, NULL
)) {
1246 ntfs_error(vol
->sb
, "Failed to restore "
1247 "mapping pairs array in error "
1248 "code path. Run chkdsk to "
1252 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1253 mark_mft_record_dirty(ctx
->ntfs_ino
);
1256 /* Release the mft record and the attribute. */
1257 if (status
.mft_attr_mapped
) {
1258 ntfs_attr_put_search_ctx(ctx
);
1259 unmap_mft_record(base_ni
);
1261 /* Release the runlist lock. */
1262 if (rl_write_locked
)
1263 up_write(&ni
->runlist
.lock
);
1265 up_read(&ni
->runlist
.lock
);
1267 * Zero out any newly allocated blocks to avoid exposing stale data.
1268 * If BH_New is set, we know that the block was newly allocated above
1269 * and that it has not been fully zeroed and marked dirty yet.
1273 end
= bh_cpos
<< vol
->cluster_size_bits
;
1276 bh
= head
= page_buffers(page
);
1278 if (u
== nr_pages
&&
1279 ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1280 bh_offset(bh
) >= end
)
1282 if (!buffer_new(bh
))
1284 clear_buffer_new(bh
);
1285 if (!buffer_uptodate(bh
)) {
1286 if (PageUptodate(page
))
1287 set_buffer_uptodate(bh
);
1289 u8
*kaddr
= kmap_atomic(page
, KM_USER0
);
1290 memset(kaddr
+ bh_offset(bh
), 0,
1292 kunmap_atomic(kaddr
, KM_USER0
);
1293 flush_dcache_page(page
);
1294 set_buffer_uptodate(bh
);
1297 mark_buffer_dirty(bh
);
1298 } while ((bh
= bh
->b_this_page
) != head
);
1299 } while (++u
<= nr_pages
);
1300 ntfs_error(vol
->sb
, "Failed. Returning error code %i.", err
);
1305 * Copy as much as we can into the pages and return the number of bytes which
1306 * were sucessfully copied. If a fault is encountered then clear the pages
1307 * out to (ofs + bytes) and return the number of bytes which were copied.
1309 static inline size_t ntfs_copy_from_user(struct page
**pages
,
1310 unsigned nr_pages
, unsigned ofs
, const char __user
*buf
,
1313 struct page
**last_page
= pages
+ nr_pages
;
1320 len
= PAGE_CACHE_SIZE
- ofs
;
1323 kaddr
= kmap_atomic(*pages
, KM_USER0
);
1324 left
= __copy_from_user_inatomic(kaddr
+ ofs
, buf
, len
);
1325 kunmap_atomic(kaddr
, KM_USER0
);
1326 if (unlikely(left
)) {
1327 /* Do it the slow way. */
1328 kaddr
= kmap(*pages
);
1329 left
= __copy_from_user(kaddr
+ ofs
, buf
, len
);
1340 } while (++pages
< last_page
);
1344 total
+= len
- left
;
1345 /* Zero the rest of the target like __copy_from_user(). */
1346 while (++pages
< last_page
) {
1350 len
= PAGE_CACHE_SIZE
;
1353 kaddr
= kmap_atomic(*pages
, KM_USER0
);
1354 memset(kaddr
, 0, len
);
1355 kunmap_atomic(kaddr
, KM_USER0
);
1360 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr
,
1361 const struct iovec
*iov
, size_t iov_ofs
, size_t bytes
)
1366 const char __user
*buf
= iov
->iov_base
+ iov_ofs
;
1370 len
= iov
->iov_len
- iov_ofs
;
1373 left
= __copy_from_user_inatomic(vaddr
, buf
, len
);
1377 if (unlikely(left
)) {
1389 static inline void ntfs_set_next_iovec(const struct iovec
**iovp
,
1390 size_t *iov_ofsp
, size_t bytes
)
1392 const struct iovec
*iov
= *iovp
;
1393 size_t iov_ofs
= *iov_ofsp
;
1398 len
= iov
->iov_len
- iov_ofs
;
1403 if (iov
->iov_len
== iov_ofs
) {
1409 *iov_ofsp
= iov_ofs
;
1413 * This has the same side-effects and return value as ntfs_copy_from_user().
1414 * The difference is that on a fault we need to memset the remainder of the
1415 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1416 * single-segment behaviour.
1418 * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both
1419 * when atomic and when not atomic. This is ok because
1420 * __ntfs_copy_from_user_iovec_inatomic() calls __copy_from_user_inatomic()
1421 * and it is ok to call this when non-atomic.
1422 * Infact, the only difference between __copy_from_user_inatomic() and
1423 * __copy_from_user() is that the latter calls might_sleep() and the former
1424 * should not zero the tail of the buffer on error. And on many
1425 * architectures __copy_from_user_inatomic() is just defined to
1426 * __copy_from_user() so it makes no difference at all on those architectures.
1428 static inline size_t ntfs_copy_from_user_iovec(struct page
**pages
,
1429 unsigned nr_pages
, unsigned ofs
, const struct iovec
**iov
,
1430 size_t *iov_ofs
, size_t bytes
)
1432 struct page
**last_page
= pages
+ nr_pages
;
1434 size_t copied
, len
, total
= 0;
1437 len
= PAGE_CACHE_SIZE
- ofs
;
1440 kaddr
= kmap_atomic(*pages
, KM_USER0
);
1441 copied
= __ntfs_copy_from_user_iovec_inatomic(kaddr
+ ofs
,
1442 *iov
, *iov_ofs
, len
);
1443 kunmap_atomic(kaddr
, KM_USER0
);
1444 if (unlikely(copied
!= len
)) {
1445 /* Do it the slow way. */
1446 kaddr
= kmap(*pages
);
1447 copied
= __ntfs_copy_from_user_iovec_inatomic(kaddr
+ ofs
,
1448 *iov
, *iov_ofs
, len
);
1450 * Zero the rest of the target like __copy_from_user().
1452 memset(kaddr
+ ofs
+ copied
, 0, len
- copied
);
1454 if (unlikely(copied
!= len
))
1461 ntfs_set_next_iovec(iov
, iov_ofs
, len
);
1463 } while (++pages
< last_page
);
1468 /* Zero the rest of the target like __copy_from_user(). */
1469 while (++pages
< last_page
) {
1473 len
= PAGE_CACHE_SIZE
;
1476 kaddr
= kmap_atomic(*pages
, KM_USER0
);
1477 memset(kaddr
, 0, len
);
1478 kunmap_atomic(kaddr
, KM_USER0
);
1483 static inline void ntfs_flush_dcache_pages(struct page
**pages
,
1488 * Warning: Do not do the decrement at the same time as the call to
1489 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1490 * decrement never happens so the loop never terminates.
1494 flush_dcache_page(pages
[nr_pages
]);
1495 } while (nr_pages
> 0);
1499 * ntfs_commit_pages_after_non_resident_write - commit the received data
1500 * @pages: array of destination pages
1501 * @nr_pages: number of pages in @pages
1502 * @pos: byte position in file at which the write begins
1503 * @bytes: number of bytes to be written
1505 * See description of ntfs_commit_pages_after_write(), below.
1507 static inline int ntfs_commit_pages_after_non_resident_write(
1508 struct page
**pages
, const unsigned nr_pages
,
1509 s64 pos
, size_t bytes
)
1511 s64 end
, initialized_size
;
1513 ntfs_inode
*ni
, *base_ni
;
1514 struct buffer_head
*bh
, *head
;
1515 ntfs_attr_search_ctx
*ctx
;
1518 unsigned long flags
;
1519 unsigned blocksize
, u
;
1522 vi
= pages
[0]->mapping
->host
;
1524 blocksize
= vi
->i_sb
->s_blocksize
;
1533 bh_pos
= (s64
)page
->index
<< PAGE_CACHE_SHIFT
;
1534 bh
= head
= page_buffers(page
);
1539 bh_end
= bh_pos
+ blocksize
;
1540 if (bh_end
<= pos
|| bh_pos
>= end
) {
1541 if (!buffer_uptodate(bh
))
1544 set_buffer_uptodate(bh
);
1545 mark_buffer_dirty(bh
);
1547 } while (bh_pos
+= blocksize
, (bh
= bh
->b_this_page
) != head
);
1549 * If all buffers are now uptodate but the page is not, set the
1552 if (!partial
&& !PageUptodate(page
))
1553 SetPageUptodate(page
);
1554 } while (++u
< nr_pages
);
1556 * Finally, if we do not need to update initialized_size or i_size we
1559 read_lock_irqsave(&ni
->size_lock
, flags
);
1560 initialized_size
= ni
->initialized_size
;
1561 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1562 if (end
<= initialized_size
) {
1563 ntfs_debug("Done.");
1567 * Update initialized_size/i_size as appropriate, both in the inode and
1573 base_ni
= ni
->ext
.base_ntfs_ino
;
1574 /* Map, pin, and lock the mft record. */
1575 m
= map_mft_record(base_ni
);
1582 BUG_ON(!NInoNonResident(ni
));
1583 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1584 if (unlikely(!ctx
)) {
1588 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1589 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1590 if (unlikely(err
)) {
1596 BUG_ON(!a
->non_resident
);
1597 write_lock_irqsave(&ni
->size_lock
, flags
);
1598 BUG_ON(end
> ni
->allocated_size
);
1599 ni
->initialized_size
= end
;
1600 a
->data
.non_resident
.initialized_size
= cpu_to_sle64(end
);
1601 if (end
> i_size_read(vi
)) {
1602 i_size_write(vi
, end
);
1603 a
->data
.non_resident
.data_size
=
1604 a
->data
.non_resident
.initialized_size
;
1606 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1607 /* Mark the mft record dirty, so it gets written back. */
1608 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1609 mark_mft_record_dirty(ctx
->ntfs_ino
);
1610 ntfs_attr_put_search_ctx(ctx
);
1611 unmap_mft_record(base_ni
);
1612 ntfs_debug("Done.");
1616 ntfs_attr_put_search_ctx(ctx
);
1618 unmap_mft_record(base_ni
);
1619 ntfs_error(vi
->i_sb
, "Failed to update initialized_size/i_size (error "
1622 NVolSetErrors(ni
->vol
);
1627 * ntfs_commit_pages_after_write - commit the received data
1628 * @pages: array of destination pages
1629 * @nr_pages: number of pages in @pages
1630 * @pos: byte position in file at which the write begins
1631 * @bytes: number of bytes to be written
1633 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1634 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
1635 * locked but not kmap()ped. The source data has already been copied into the
1636 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
1637 * the data was copied (for non-resident attributes only) and it returned
1640 * Need to set uptodate and mark dirty all buffers within the boundary of the
1641 * write. If all buffers in a page are uptodate we set the page uptodate, too.
1643 * Setting the buffers dirty ensures that they get written out later when
1644 * ntfs_writepage() is invoked by the VM.
1646 * Finally, we need to update i_size and initialized_size as appropriate both
1647 * in the inode and the mft record.
1649 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1650 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1651 * page are uptodate, and updates i_size if the end of io is beyond i_size. In
1652 * that case, it also marks the inode dirty.
1654 * If things have gone as outlined in
1655 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1656 * content modifications here for non-resident attributes. For resident
1657 * attributes we need to do the uptodate bringing here which we combine with
1658 * the copying into the mft record which means we save one atomic kmap.
1660 * Return 0 on success or -errno on error.
1662 static int ntfs_commit_pages_after_write(struct page
**pages
,
1663 const unsigned nr_pages
, s64 pos
, size_t bytes
)
1665 s64 end
, initialized_size
;
1668 ntfs_inode
*ni
, *base_ni
;
1670 ntfs_attr_search_ctx
*ctx
;
1673 char *kattr
, *kaddr
;
1674 unsigned long flags
;
1682 vi
= page
->mapping
->host
;
1684 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1685 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1686 vi
->i_ino
, ni
->type
, page
->index
, nr_pages
,
1687 (long long)pos
, bytes
);
1688 if (NInoNonResident(ni
))
1689 return ntfs_commit_pages_after_non_resident_write(pages
,
1690 nr_pages
, pos
, bytes
);
1691 BUG_ON(nr_pages
> 1);
1693 * Attribute is resident, implying it is not compressed, encrypted, or
1699 base_ni
= ni
->ext
.base_ntfs_ino
;
1700 BUG_ON(NInoNonResident(ni
));
1701 /* Map, pin, and lock the mft record. */
1702 m
= map_mft_record(base_ni
);
1709 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1710 if (unlikely(!ctx
)) {
1714 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1715 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1716 if (unlikely(err
)) {
1722 BUG_ON(a
->non_resident
);
1723 /* The total length of the attribute value. */
1724 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
1725 i_size
= i_size_read(vi
);
1726 BUG_ON(attr_len
!= i_size
);
1727 BUG_ON(pos
> attr_len
);
1729 BUG_ON(end
> le32_to_cpu(a
->length
) -
1730 le16_to_cpu(a
->data
.resident
.value_offset
));
1731 kattr
= (u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
);
1732 kaddr
= kmap_atomic(page
, KM_USER0
);
1733 /* Copy the received data from the page to the mft record. */
1734 memcpy(kattr
+ pos
, kaddr
+ pos
, bytes
);
1735 /* Update the attribute length if necessary. */
1736 if (end
> attr_len
) {
1738 a
->data
.resident
.value_length
= cpu_to_le32(attr_len
);
1741 * If the page is not uptodate, bring the out of bounds area(s)
1742 * uptodate by copying data from the mft record to the page.
1744 if (!PageUptodate(page
)) {
1746 memcpy(kaddr
, kattr
, pos
);
1748 memcpy(kaddr
+ end
, kattr
+ end
, attr_len
- end
);
1749 /* Zero the region outside the end of the attribute value. */
1750 memset(kaddr
+ attr_len
, 0, PAGE_CACHE_SIZE
- attr_len
);
1751 flush_dcache_page(page
);
1752 SetPageUptodate(page
);
1754 kunmap_atomic(kaddr
, KM_USER0
);
1755 /* Update initialized_size/i_size if necessary. */
1756 read_lock_irqsave(&ni
->size_lock
, flags
);
1757 initialized_size
= ni
->initialized_size
;
1758 BUG_ON(end
> ni
->allocated_size
);
1759 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1760 BUG_ON(initialized_size
!= i_size
);
1761 if (end
> initialized_size
) {
1762 unsigned long flags
;
1764 write_lock_irqsave(&ni
->size_lock
, flags
);
1765 ni
->initialized_size
= end
;
1766 i_size_write(vi
, end
);
1767 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1769 /* Mark the mft record dirty, so it gets written back. */
1770 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1771 mark_mft_record_dirty(ctx
->ntfs_ino
);
1772 ntfs_attr_put_search_ctx(ctx
);
1773 unmap_mft_record(base_ni
);
1774 ntfs_debug("Done.");
1777 if (err
== -ENOMEM
) {
1778 ntfs_warning(vi
->i_sb
, "Error allocating memory required to "
1779 "commit the write.");
1780 if (PageUptodate(page
)) {
1781 ntfs_warning(vi
->i_sb
, "Page is uptodate, setting "
1782 "dirty so the write will be retried "
1783 "later on by the VM.");
1785 * Put the page on mapping->dirty_pages, but leave its
1786 * buffers' dirty state as-is.
1788 __set_page_dirty_nobuffers(page
);
1791 ntfs_error(vi
->i_sb
, "Page is not uptodate. Written "
1792 "data has been lost.");
1794 ntfs_error(vi
->i_sb
, "Resident attribute commit write failed "
1795 "with error %i.", err
);
1796 NVolSetErrors(ni
->vol
);
1799 ntfs_attr_put_search_ctx(ctx
);
1801 unmap_mft_record(base_ni
);
1806 * ntfs_file_buffered_write -
1808 * Locking: The vfs is holding ->i_mutex on the inode.
1810 static ssize_t
ntfs_file_buffered_write(struct kiocb
*iocb
,
1811 const struct iovec
*iov
, unsigned long nr_segs
,
1812 loff_t pos
, loff_t
*ppos
, size_t count
)
1814 struct file
*file
= iocb
->ki_filp
;
1815 struct address_space
*mapping
= file
->f_mapping
;
1816 struct inode
*vi
= mapping
->host
;
1817 ntfs_inode
*ni
= NTFS_I(vi
);
1818 ntfs_volume
*vol
= ni
->vol
;
1819 struct page
*pages
[NTFS_MAX_PAGES_PER_CLUSTER
];
1820 struct page
*cached_page
= NULL
;
1821 char __user
*buf
= NULL
;
1825 unsigned long flags
;
1826 size_t bytes
, iov_ofs
= 0; /* Offset in the current iovec. */
1827 ssize_t status
, written
;
1830 struct pagevec lru_pvec
;
1832 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1833 "pos 0x%llx, count 0x%lx.",
1834 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
1835 (unsigned long long)pos
, (unsigned long)count
);
1836 if (unlikely(!count
))
1838 BUG_ON(NInoMstProtected(ni
));
1840 * If the attribute is not an index root and it is encrypted or
1841 * compressed, we cannot write to it yet. Note we need to check for
1842 * AT_INDEX_ALLOCATION since this is the type of both directory and
1845 if (ni
->type
!= AT_INDEX_ALLOCATION
) {
1846 /* If file is encrypted, deny access, just like NT4. */
1847 if (NInoEncrypted(ni
)) {
1849 * Reminder for later: Encrypted files are _always_
1850 * non-resident so that the content can always be
1853 ntfs_debug("Denying write access to encrypted file.");
1856 if (NInoCompressed(ni
)) {
1857 /* Only unnamed $DATA attribute can be compressed. */
1858 BUG_ON(ni
->type
!= AT_DATA
);
1859 BUG_ON(ni
->name_len
);
1861 * Reminder for later: If resident, the data is not
1862 * actually compressed. Only on the switch to non-
1863 * resident does compression kick in. This is in
1864 * contrast to encrypted files (see above).
1866 ntfs_error(vi
->i_sb
, "Writing to compressed files is "
1867 "not implemented yet. Sorry.");
1872 * If a previous ntfs_truncate() failed, repeat it and abort if it
1875 if (unlikely(NInoTruncateFailed(ni
))) {
1876 down_write(&vi
->i_alloc_sem
);
1877 err
= ntfs_truncate(vi
);
1878 up_write(&vi
->i_alloc_sem
);
1879 if (err
|| NInoTruncateFailed(ni
)) {
1882 ntfs_error(vol
->sb
, "Cannot perform write to inode "
1883 "0x%lx, attribute type 0x%x, because "
1884 "ntfs_truncate() failed (error code "
1886 (unsigned)le32_to_cpu(ni
->type
), err
);
1890 /* The first byte after the write. */
1893 * If the write goes beyond the allocated size, extend the allocation
1894 * to cover the whole of the write, rounded up to the nearest cluster.
1896 read_lock_irqsave(&ni
->size_lock
, flags
);
1897 ll
= ni
->allocated_size
;
1898 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1900 /* Extend the allocation without changing the data size. */
1901 ll
= ntfs_attr_extend_allocation(ni
, end
, -1, pos
);
1902 if (likely(ll
>= 0)) {
1904 /* If the extension was partial truncate the write. */
1906 ntfs_debug("Truncating write to inode 0x%lx, "
1907 "attribute type 0x%x, because "
1908 "the allocation was only "
1909 "partially extended.",
1910 vi
->i_ino
, (unsigned)
1911 le32_to_cpu(ni
->type
));
1917 read_lock_irqsave(&ni
->size_lock
, flags
);
1918 ll
= ni
->allocated_size
;
1919 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1920 /* Perform a partial write if possible or fail. */
1922 ntfs_debug("Truncating write to inode 0x%lx, "
1923 "attribute type 0x%x, because "
1924 "extending the allocation "
1925 "failed (error code %i).",
1926 vi
->i_ino
, (unsigned)
1927 le32_to_cpu(ni
->type
), err
);
1931 ntfs_error(vol
->sb
, "Cannot perform write to "
1932 "inode 0x%lx, attribute type "
1933 "0x%x, because extending the "
1934 "allocation failed (error "
1935 "code %i).", vi
->i_ino
,
1937 le32_to_cpu(ni
->type
), err
);
1942 pagevec_init(&lru_pvec
, 0);
1945 * If the write starts beyond the initialized size, extend it up to the
1946 * beginning of the write and initialize all non-sparse space between
1947 * the old initialized size and the new one. This automatically also
1948 * increments the vfs inode->i_size to keep it above or equal to the
1951 read_lock_irqsave(&ni
->size_lock
, flags
);
1952 ll
= ni
->initialized_size
;
1953 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1955 err
= ntfs_attr_extend_initialized(ni
, pos
, &cached_page
,
1958 ntfs_error(vol
->sb
, "Cannot perform write to inode "
1959 "0x%lx, attribute type 0x%x, because "
1960 "extending the initialized size "
1961 "failed (error code %i).", vi
->i_ino
,
1962 (unsigned)le32_to_cpu(ni
->type
), err
);
1968 * Determine the number of pages per cluster for non-resident
1972 if (vol
->cluster_size
> PAGE_CACHE_SIZE
&& NInoNonResident(ni
))
1973 nr_pages
= vol
->cluster_size
>> PAGE_CACHE_SHIFT
;
1974 /* Finally, perform the actual write. */
1976 if (likely(nr_segs
== 1))
1977 buf
= iov
->iov_base
;
1980 pgoff_t idx
, start_idx
;
1981 unsigned ofs
, do_pages
, u
;
1984 start_idx
= idx
= pos
>> PAGE_CACHE_SHIFT
;
1985 ofs
= pos
& ~PAGE_CACHE_MASK
;
1986 bytes
= PAGE_CACHE_SIZE
- ofs
;
1989 vcn
= pos
>> vol
->cluster_size_bits
;
1990 if (vcn
!= last_vcn
) {
1993 * Get the lcn of the vcn the write is in. If
1994 * it is a hole, need to lock down all pages in
1997 down_read(&ni
->runlist
.lock
);
1998 lcn
= ntfs_attr_vcn_to_lcn_nolock(ni
, pos
>>
1999 vol
->cluster_size_bits
, false);
2000 up_read(&ni
->runlist
.lock
);
2001 if (unlikely(lcn
< LCN_HOLE
)) {
2003 if (lcn
== LCN_ENOMEM
)
2006 ntfs_error(vol
->sb
, "Cannot "
2009 "attribute type 0x%x, "
2010 "because the attribute "
2012 vi
->i_ino
, (unsigned)
2013 le32_to_cpu(ni
->type
));
2016 if (lcn
== LCN_HOLE
) {
2017 start_idx
= (pos
& ~(s64
)
2018 vol
->cluster_size_mask
)
2019 >> PAGE_CACHE_SHIFT
;
2020 bytes
= vol
->cluster_size
- (pos
&
2021 vol
->cluster_size_mask
);
2022 do_pages
= nr_pages
;
2029 * Bring in the user page(s) that we will copy from _first_.
2030 * Otherwise there is a nasty deadlock on copying from the same
2031 * page(s) as we are writing to, without it/them being marked
2032 * up-to-date. Note, at present there is nothing to stop the
2033 * pages being swapped out between us bringing them into memory
2034 * and doing the actual copying.
2036 if (likely(nr_segs
== 1))
2037 ntfs_fault_in_pages_readable(buf
, bytes
);
2039 ntfs_fault_in_pages_readable_iovec(iov
, iov_ofs
, bytes
);
2040 /* Get and lock @do_pages starting at index @start_idx. */
2041 status
= __ntfs_grab_cache_pages(mapping
, start_idx
, do_pages
,
2042 pages
, &cached_page
, &lru_pvec
);
2043 if (unlikely(status
))
2046 * For non-resident attributes, we need to fill any holes with
2047 * actual clusters and ensure all bufferes are mapped. We also
2048 * need to bring uptodate any buffers that are only partially
2051 if (NInoNonResident(ni
)) {
2052 status
= ntfs_prepare_pages_for_non_resident_write(
2053 pages
, do_pages
, pos
, bytes
);
2054 if (unlikely(status
)) {
2058 unlock_page(pages
[--do_pages
]);
2059 page_cache_release(pages
[do_pages
]);
2062 * The write preparation may have instantiated
2063 * allocated space outside i_size. Trim this
2064 * off again. We can ignore any errors in this
2065 * case as we will just be waisting a bit of
2066 * allocated space, which is not a disaster.
2068 i_size
= i_size_read(vi
);
2069 if (pos
+ bytes
> i_size
)
2070 vmtruncate(vi
, i_size
);
2074 u
= (pos
>> PAGE_CACHE_SHIFT
) - pages
[0]->index
;
2075 if (likely(nr_segs
== 1)) {
2076 copied
= ntfs_copy_from_user(pages
+ u
, do_pages
- u
,
2080 copied
= ntfs_copy_from_user_iovec(pages
+ u
,
2081 do_pages
- u
, ofs
, &iov
, &iov_ofs
,
2083 ntfs_flush_dcache_pages(pages
+ u
, do_pages
- u
);
2084 status
= ntfs_commit_pages_after_write(pages
, do_pages
, pos
,
2086 if (likely(!status
)) {
2090 if (unlikely(copied
!= bytes
))
2094 unlock_page(pages
[--do_pages
]);
2095 mark_page_accessed(pages
[do_pages
]);
2096 page_cache_release(pages
[do_pages
]);
2098 if (unlikely(status
))
2100 balance_dirty_pages_ratelimited(mapping
);
2106 page_cache_release(cached_page
);
2107 /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */
2108 if (likely(!status
)) {
2109 if (unlikely((file
->f_flags
& O_SYNC
) || IS_SYNC(vi
))) {
2110 if (!mapping
->a_ops
->writepage
|| !is_sync_kiocb(iocb
))
2111 status
= generic_osync_inode(vi
, mapping
,
2112 OSYNC_METADATA
|OSYNC_DATA
);
2115 pagevec_lru_add(&lru_pvec
);
2116 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
2117 written
? "written" : "status", (unsigned long)written
,
2119 return written
? written
: status
;
2123 * ntfs_file_aio_write_nolock -
2125 static ssize_t
ntfs_file_aio_write_nolock(struct kiocb
*iocb
,
2126 const struct iovec
*iov
, unsigned long nr_segs
, loff_t
*ppos
)
2128 struct file
*file
= iocb
->ki_filp
;
2129 struct address_space
*mapping
= file
->f_mapping
;
2130 struct inode
*inode
= mapping
->host
;
2132 size_t count
; /* after file limit checks */
2133 ssize_t written
, err
;
2136 err
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_READ
);
2140 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2141 /* We can write back this queue in page reclaim. */
2142 current
->backing_dev_info
= mapping
->backing_dev_info
;
2144 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2149 err
= remove_suid(file
->f_path
.dentry
);
2152 file_update_time(file
);
2153 written
= ntfs_file_buffered_write(iocb
, iov
, nr_segs
, pos
, ppos
,
2156 current
->backing_dev_info
= NULL
;
2157 return written
? written
: err
;
2161 * ntfs_file_aio_write -
2163 static ssize_t
ntfs_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2164 unsigned long nr_segs
, loff_t pos
)
2166 struct file
*file
= iocb
->ki_filp
;
2167 struct address_space
*mapping
= file
->f_mapping
;
2168 struct inode
*inode
= mapping
->host
;
2171 BUG_ON(iocb
->ki_pos
!= pos
);
2173 mutex_lock(&inode
->i_mutex
);
2174 ret
= ntfs_file_aio_write_nolock(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2175 mutex_unlock(&inode
->i_mutex
);
2176 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2177 int err
= sync_page_range(inode
, mapping
, pos
, ret
);
2185 * ntfs_file_writev -
2187 * Basically the same as generic_file_writev() except that it ends up calling
2188 * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock().
2190 static ssize_t
ntfs_file_writev(struct file
*file
, const struct iovec
*iov
,
2191 unsigned long nr_segs
, loff_t
*ppos
)
2193 struct address_space
*mapping
= file
->f_mapping
;
2194 struct inode
*inode
= mapping
->host
;
2198 mutex_lock(&inode
->i_mutex
);
2199 init_sync_kiocb(&kiocb
, file
);
2200 ret
= ntfs_file_aio_write_nolock(&kiocb
, iov
, nr_segs
, ppos
);
2201 if (ret
== -EIOCBQUEUED
)
2202 ret
= wait_on_sync_kiocb(&kiocb
);
2203 mutex_unlock(&inode
->i_mutex
);
2204 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2205 int err
= sync_page_range(inode
, mapping
, *ppos
- ret
, ret
);
2213 * ntfs_file_write - simple wrapper for ntfs_file_writev()
2215 static ssize_t
ntfs_file_write(struct file
*file
, const char __user
*buf
,
2216 size_t count
, loff_t
*ppos
)
2218 struct iovec local_iov
= { .iov_base
= (void __user
*)buf
,
2221 return ntfs_file_writev(file
, &local_iov
, 1, ppos
);
2225 * ntfs_file_fsync - sync a file to disk
2226 * @filp: file to be synced
2227 * @dentry: dentry describing the file to sync
2228 * @datasync: if non-zero only flush user data and not metadata
2230 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
2231 * system calls. This function is inspired by fs/buffer.c::file_fsync().
2233 * If @datasync is false, write the mft record and all associated extent mft
2234 * records as well as the $DATA attribute and then sync the block device.
2236 * If @datasync is true and the attribute is non-resident, we skip the writing
2237 * of the mft record and all associated extent mft records (this might still
2238 * happen due to the write_inode_now() call).
2240 * Also, if @datasync is true, we do not wait on the inode to be written out
2241 * but we always wait on the page cache pages to be written out.
2243 * Note: In the past @filp could be NULL so we ignore it as we don't need it
2246 * Locking: Caller must hold i_mutex on the inode.
2248 * TODO: We should probably also write all attribute/index inodes associated
2249 * with this inode but since we have no simple way of getting to them we ignore
2250 * this problem for now.
2252 static int ntfs_file_fsync(struct file
*filp
, struct dentry
*dentry
,
2255 struct inode
*vi
= dentry
->d_inode
;
2258 ntfs_debug("Entering for inode 0x%lx.", vi
->i_ino
);
2259 BUG_ON(S_ISDIR(vi
->i_mode
));
2260 if (!datasync
|| !NInoNonResident(NTFS_I(vi
)))
2261 ret
= ntfs_write_inode(vi
, 1);
2262 write_inode_now(vi
, !datasync
);
2264 * NOTE: If we were to use mapping->private_list (see ext2 and
2265 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2266 * sync_mapping_buffers(vi->i_mapping).
2268 err
= sync_blockdev(vi
->i_sb
->s_bdev
);
2269 if (unlikely(err
&& !ret
))
2272 ntfs_debug("Done.");
2274 ntfs_warning(vi
->i_sb
, "Failed to f%ssync inode 0x%lx. Error "
2275 "%u.", datasync
? "data" : "", vi
->i_ino
, -ret
);
2279 #endif /* NTFS_RW */
2281 const struct file_operations ntfs_file_ops
= {
2282 .llseek
= generic_file_llseek
, /* Seek inside file. */
2283 .read
= do_sync_read
, /* Read from file. */
2284 .aio_read
= generic_file_aio_read
, /* Async read from file. */
2286 .write
= ntfs_file_write
, /* Write to file. */
2287 .aio_write
= ntfs_file_aio_write
, /* Async write to file. */
2288 /*.release = ,*/ /* Last file is closed. See
2290 ext2_release_file() for
2291 how to use this to discard
2292 preallocated space for
2293 write opened files. */
2294 .fsync
= ntfs_file_fsync
, /* Sync a file to disk. */
2295 /*.aio_fsync = ,*/ /* Sync all outstanding async
2298 #endif /* NTFS_RW */
2299 /*.ioctl = ,*/ /* Perform function on the
2300 mounted filesystem. */
2301 .mmap
= generic_file_mmap
, /* Mmap file. */
2302 .open
= ntfs_file_open
, /* Open file. */
2303 .sendfile
= generic_file_sendfile
, /* Zero-copy data send with
2304 the data source being on
2305 the ntfs partition. We do
2306 not need to care about the
2307 data destination. */
2308 /*.sendpage = ,*/ /* Zero-copy data send with
2309 the data destination being
2310 on the ntfs partition. We
2311 do not need to care about
2315 const struct inode_operations ntfs_file_inode_ops
= {
2317 .truncate
= ntfs_truncate_vfs
,
2318 .setattr
= ntfs_setattr
,
2319 #endif /* NTFS_RW */
2322 const struct file_operations ntfs_empty_file_ops
= {};
2324 const struct inode_operations ntfs_empty_inode_ops
= {};