Merge branch 'for-linus' of git://git.o-hand.com/linux-rpurdie-leds
[pv_ops_mirror.git] / net / mac80211 / rx.c
blob535407d07fa40890a4731648f85157a00fb39dc8
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/kernel.h>
13 #include <linux/skbuff.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/rcupdate.h>
17 #include <net/mac80211.h>
18 #include <net/ieee80211_radiotap.h>
20 #include "ieee80211_i.h"
21 #include "ieee80211_led.h"
22 #include "wep.h"
23 #include "wpa.h"
24 #include "tkip.h"
25 #include "wme.h"
27 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
28 struct tid_ampdu_rx *tid_agg_rx,
29 struct sk_buff *skb, u16 mpdu_seq_num,
30 int bar_req);
32 * monitor mode reception
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb,
39 int rtap_len)
41 skb_pull(skb, rtap_len);
43 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
44 if (likely(skb->len > FCS_LEN))
45 skb_trim(skb, skb->len - FCS_LEN);
46 else {
47 /* driver bug */
48 WARN_ON(1);
49 dev_kfree_skb(skb);
50 skb = NULL;
54 return skb;
57 static inline int should_drop_frame(struct ieee80211_rx_status *status,
58 struct sk_buff *skb,
59 int present_fcs_len,
60 int radiotap_len)
62 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
64 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
65 return 1;
66 if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len))
67 return 1;
68 if (((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
69 cpu_to_le16(IEEE80211_FTYPE_CTL)) &&
70 ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
71 cpu_to_le16(IEEE80211_STYPE_PSPOLL)) &&
72 ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
73 cpu_to_le16(IEEE80211_STYPE_BACK_REQ)))
74 return 1;
75 return 0;
79 * This function copies a received frame to all monitor interfaces and
80 * returns a cleaned-up SKB that no longer includes the FCS nor the
81 * radiotap header the driver might have added.
83 static struct sk_buff *
84 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
85 struct ieee80211_rx_status *status)
87 struct ieee80211_sub_if_data *sdata;
88 struct ieee80211_rate *rate;
89 int needed_headroom = 0;
90 struct ieee80211_radiotap_header *rthdr;
91 __le64 *rttsft = NULL;
92 struct ieee80211_rtap_fixed_data {
93 u8 flags;
94 u8 rate;
95 __le16 chan_freq;
96 __le16 chan_flags;
97 u8 antsignal;
98 u8 padding_for_rxflags;
99 __le16 rx_flags;
100 } __attribute__ ((packed)) *rtfixed;
101 struct sk_buff *skb, *skb2;
102 struct net_device *prev_dev = NULL;
103 int present_fcs_len = 0;
104 int rtap_len = 0;
107 * First, we may need to make a copy of the skb because
108 * (1) we need to modify it for radiotap (if not present), and
109 * (2) the other RX handlers will modify the skb we got.
111 * We don't need to, of course, if we aren't going to return
112 * the SKB because it has a bad FCS/PLCP checksum.
114 if (status->flag & RX_FLAG_RADIOTAP)
115 rtap_len = ieee80211_get_radiotap_len(origskb->data);
116 else
117 /* room for radiotap header, always present fields and TSFT */
118 needed_headroom = sizeof(*rthdr) + sizeof(*rtfixed) + 8;
120 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
121 present_fcs_len = FCS_LEN;
123 if (!local->monitors) {
124 if (should_drop_frame(status, origskb, present_fcs_len,
125 rtap_len)) {
126 dev_kfree_skb(origskb);
127 return NULL;
130 return remove_monitor_info(local, origskb, rtap_len);
133 if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) {
134 /* only need to expand headroom if necessary */
135 skb = origskb;
136 origskb = NULL;
139 * This shouldn't trigger often because most devices have an
140 * RX header they pull before we get here, and that should
141 * be big enough for our radiotap information. We should
142 * probably export the length to drivers so that we can have
143 * them allocate enough headroom to start with.
145 if (skb_headroom(skb) < needed_headroom &&
146 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
147 dev_kfree_skb(skb);
148 return NULL;
150 } else {
152 * Need to make a copy and possibly remove radiotap header
153 * and FCS from the original.
155 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
157 origskb = remove_monitor_info(local, origskb, rtap_len);
159 if (!skb)
160 return origskb;
163 /* if necessary, prepend radiotap information */
164 if (!(status->flag & RX_FLAG_RADIOTAP)) {
165 rtfixed = (void *) skb_push(skb, sizeof(*rtfixed));
166 rtap_len = sizeof(*rthdr) + sizeof(*rtfixed);
167 if (status->flag & RX_FLAG_TSFT) {
168 rttsft = (void *) skb_push(skb, sizeof(*rttsft));
169 rtap_len += 8;
171 rthdr = (void *) skb_push(skb, sizeof(*rthdr));
172 memset(rthdr, 0, sizeof(*rthdr));
173 memset(rtfixed, 0, sizeof(*rtfixed));
174 rthdr->it_present =
175 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
176 (1 << IEEE80211_RADIOTAP_RATE) |
177 (1 << IEEE80211_RADIOTAP_CHANNEL) |
178 (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL) |
179 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
180 rtfixed->flags = 0;
181 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
182 rtfixed->flags |= IEEE80211_RADIOTAP_F_FCS;
184 if (rttsft) {
185 *rttsft = cpu_to_le64(status->mactime);
186 rthdr->it_present |=
187 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
190 /* FIXME: when radiotap gets a 'bad PLCP' flag use it here */
191 rtfixed->rx_flags = 0;
192 if (status->flag &
193 (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
194 rtfixed->rx_flags |=
195 cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS);
197 rate = ieee80211_get_rate(local, status->phymode,
198 status->rate);
199 if (rate)
200 rtfixed->rate = rate->rate / 5;
202 rtfixed->chan_freq = cpu_to_le16(status->freq);
204 if (status->phymode == MODE_IEEE80211A)
205 rtfixed->chan_flags =
206 cpu_to_le16(IEEE80211_CHAN_OFDM |
207 IEEE80211_CHAN_5GHZ);
208 else
209 rtfixed->chan_flags =
210 cpu_to_le16(IEEE80211_CHAN_DYN |
211 IEEE80211_CHAN_2GHZ);
213 rtfixed->antsignal = status->ssi;
214 rthdr->it_len = cpu_to_le16(rtap_len);
217 skb_reset_mac_header(skb);
218 skb->ip_summed = CHECKSUM_UNNECESSARY;
219 skb->pkt_type = PACKET_OTHERHOST;
220 skb->protocol = htons(ETH_P_802_2);
222 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
223 if (!netif_running(sdata->dev))
224 continue;
226 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR)
227 continue;
229 if (prev_dev) {
230 skb2 = skb_clone(skb, GFP_ATOMIC);
231 if (skb2) {
232 skb2->dev = prev_dev;
233 netif_rx(skb2);
237 prev_dev = sdata->dev;
238 sdata->dev->stats.rx_packets++;
239 sdata->dev->stats.rx_bytes += skb->len;
242 if (prev_dev) {
243 skb->dev = prev_dev;
244 netif_rx(skb);
245 } else
246 dev_kfree_skb(skb);
248 return origskb;
252 /* pre-rx handlers
254 * these don't have dev/sdata fields in the rx data
255 * The sta value should also not be used because it may
256 * be NULL even though a STA (in IBSS mode) will be added.
259 static ieee80211_txrx_result
260 ieee80211_rx_h_parse_qos(struct ieee80211_txrx_data *rx)
262 u8 *data = rx->skb->data;
263 int tid;
265 /* does the frame have a qos control field? */
266 if (WLAN_FC_IS_QOS_DATA(rx->fc)) {
267 u8 *qc = data + ieee80211_get_hdrlen(rx->fc) - QOS_CONTROL_LEN;
268 /* frame has qos control */
269 tid = qc[0] & QOS_CONTROL_TID_MASK;
270 if (qc[0] & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
271 rx->flags |= IEEE80211_TXRXD_RX_AMSDU;
272 else
273 rx->flags &= ~IEEE80211_TXRXD_RX_AMSDU;
274 } else {
275 if (unlikely((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)) {
276 /* Separate TID for management frames */
277 tid = NUM_RX_DATA_QUEUES - 1;
278 } else {
279 /* no qos control present */
280 tid = 0; /* 802.1d - Best Effort */
284 I802_DEBUG_INC(rx->local->wme_rx_queue[tid]);
285 /* only a debug counter, sta might not be assigned properly yet */
286 if (rx->sta)
287 I802_DEBUG_INC(rx->sta->wme_rx_queue[tid]);
289 rx->u.rx.queue = tid;
290 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
291 * For now, set skb->priority to 0 for other cases. */
292 rx->skb->priority = (tid > 7) ? 0 : tid;
294 return TXRX_CONTINUE;
298 static u32 ieee80211_rx_load_stats(struct ieee80211_local *local,
299 struct sk_buff *skb,
300 struct ieee80211_rx_status *status)
302 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
303 u32 load = 0, hdrtime;
304 struct ieee80211_rate *rate;
305 struct ieee80211_hw_mode *mode = local->hw.conf.mode;
306 int i;
308 /* Estimate total channel use caused by this frame */
310 if (unlikely(mode->num_rates < 0))
311 return TXRX_CONTINUE;
313 rate = &mode->rates[0];
314 for (i = 0; i < mode->num_rates; i++) {
315 if (mode->rates[i].val == status->rate) {
316 rate = &mode->rates[i];
317 break;
321 /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
322 * 1 usec = 1/8 * (1080 / 10) = 13.5 */
324 if (mode->mode == MODE_IEEE80211A ||
325 (mode->mode == MODE_IEEE80211G &&
326 rate->flags & IEEE80211_RATE_ERP))
327 hdrtime = CHAN_UTIL_HDR_SHORT;
328 else
329 hdrtime = CHAN_UTIL_HDR_LONG;
331 load = hdrtime;
332 if (!is_multicast_ether_addr(hdr->addr1))
333 load += hdrtime;
335 load += skb->len * rate->rate_inv;
337 /* Divide channel_use by 8 to avoid wrapping around the counter */
338 load >>= CHAN_UTIL_SHIFT;
340 return load;
343 #ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
344 static ieee80211_txrx_result
345 ieee80211_rx_h_verify_ip_alignment(struct ieee80211_txrx_data *rx)
347 int hdrlen;
349 if (!WLAN_FC_DATA_PRESENT(rx->fc))
350 return TXRX_CONTINUE;
353 * Drivers are required to align the payload data in a way that
354 * guarantees that the contained IP header is aligned to a four-
355 * byte boundary. In the case of regular frames, this simply means
356 * aligning the payload to a four-byte boundary (because either
357 * the IP header is directly contained, or IV/RFC1042 headers that
358 * have a length divisible by four are in front of it.
360 * With A-MSDU frames, however, the payload data address must
361 * yield two modulo four because there are 14-byte 802.3 headers
362 * within the A-MSDU frames that push the IP header further back
363 * to a multiple of four again. Thankfully, the specs were sane
364 * enough this time around to require padding each A-MSDU subframe
365 * to a length that is a multiple of four.
367 * Padding like atheros hardware adds which is inbetween the 802.11
368 * header and the payload is not supported, the driver is required
369 * to move the 802.11 header further back in that case.
371 hdrlen = ieee80211_get_hdrlen(rx->fc);
372 if (rx->flags & IEEE80211_TXRXD_RX_AMSDU)
373 hdrlen += ETH_HLEN;
374 WARN_ON_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3);
376 return TXRX_CONTINUE;
378 #endif
380 ieee80211_rx_handler ieee80211_rx_pre_handlers[] =
382 ieee80211_rx_h_parse_qos,
383 #ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
384 ieee80211_rx_h_verify_ip_alignment,
385 #endif
386 NULL
389 /* rx handlers */
391 static ieee80211_txrx_result
392 ieee80211_rx_h_if_stats(struct ieee80211_txrx_data *rx)
394 if (rx->sta)
395 rx->sta->channel_use_raw += rx->u.rx.load;
396 rx->sdata->channel_use_raw += rx->u.rx.load;
397 return TXRX_CONTINUE;
400 static ieee80211_txrx_result
401 ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx)
403 struct ieee80211_local *local = rx->local;
404 struct sk_buff *skb = rx->skb;
406 if (unlikely(local->sta_hw_scanning))
407 return ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status);
409 if (unlikely(local->sta_sw_scanning)) {
410 /* drop all the other packets during a software scan anyway */
411 if (ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status)
412 != TXRX_QUEUED)
413 dev_kfree_skb(skb);
414 return TXRX_QUEUED;
417 if (unlikely(rx->flags & IEEE80211_TXRXD_RXIN_SCAN)) {
418 /* scanning finished during invoking of handlers */
419 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
420 return TXRX_DROP;
423 return TXRX_CONTINUE;
426 static ieee80211_txrx_result
427 ieee80211_rx_h_check(struct ieee80211_txrx_data *rx)
429 struct ieee80211_hdr *hdr;
430 hdr = (struct ieee80211_hdr *) rx->skb->data;
432 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
433 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
434 if (unlikely(rx->fc & IEEE80211_FCTL_RETRY &&
435 rx->sta->last_seq_ctrl[rx->u.rx.queue] ==
436 hdr->seq_ctrl)) {
437 if (rx->flags & IEEE80211_TXRXD_RXRA_MATCH) {
438 rx->local->dot11FrameDuplicateCount++;
439 rx->sta->num_duplicates++;
441 return TXRX_DROP;
442 } else
443 rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl;
446 if (unlikely(rx->skb->len < 16)) {
447 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
448 return TXRX_DROP;
451 /* Drop disallowed frame classes based on STA auth/assoc state;
452 * IEEE 802.11, Chap 5.5.
454 * 80211.o does filtering only based on association state, i.e., it
455 * drops Class 3 frames from not associated stations. hostapd sends
456 * deauth/disassoc frames when needed. In addition, hostapd is
457 * responsible for filtering on both auth and assoc states.
459 if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA ||
460 ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL &&
461 (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) &&
462 rx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
463 (!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) {
464 if ((!(rx->fc & IEEE80211_FCTL_FROMDS) &&
465 !(rx->fc & IEEE80211_FCTL_TODS) &&
466 (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
467 || !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
468 /* Drop IBSS frames and frames for other hosts
469 * silently. */
470 return TXRX_DROP;
473 return TXRX_DROP;
476 return TXRX_CONTINUE;
480 static ieee80211_txrx_result
481 ieee80211_rx_h_decrypt(struct ieee80211_txrx_data *rx)
483 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
484 int keyidx;
485 int hdrlen;
486 ieee80211_txrx_result result = TXRX_DROP;
487 struct ieee80211_key *stakey = NULL;
490 * Key selection 101
492 * There are three types of keys:
493 * - GTK (group keys)
494 * - PTK (pairwise keys)
495 * - STK (station-to-station pairwise keys)
497 * When selecting a key, we have to distinguish between multicast
498 * (including broadcast) and unicast frames, the latter can only
499 * use PTKs and STKs while the former always use GTKs. Unless, of
500 * course, actual WEP keys ("pre-RSNA") are used, then unicast
501 * frames can also use key indizes like GTKs. Hence, if we don't
502 * have a PTK/STK we check the key index for a WEP key.
504 * Note that in a regular BSS, multicast frames are sent by the
505 * AP only, associated stations unicast the frame to the AP first
506 * which then multicasts it on their behalf.
508 * There is also a slight problem in IBSS mode: GTKs are negotiated
509 * with each station, that is something we don't currently handle.
510 * The spec seems to expect that one negotiates the same key with
511 * every station but there's no such requirement; VLANs could be
512 * possible.
515 if (!(rx->fc & IEEE80211_FCTL_PROTECTED))
516 return TXRX_CONTINUE;
519 * No point in finding a key and decrypting if the frame is neither
520 * addressed to us nor a multicast frame.
522 if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
523 return TXRX_CONTINUE;
525 if (rx->sta)
526 stakey = rcu_dereference(rx->sta->key);
528 if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
529 rx->key = stakey;
530 } else {
532 * The device doesn't give us the IV so we won't be
533 * able to look up the key. That's ok though, we
534 * don't need to decrypt the frame, we just won't
535 * be able to keep statistics accurate.
536 * Except for key threshold notifications, should
537 * we somehow allow the driver to tell us which key
538 * the hardware used if this flag is set?
540 if ((rx->u.rx.status->flag & RX_FLAG_DECRYPTED) &&
541 (rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED))
542 return TXRX_CONTINUE;
544 hdrlen = ieee80211_get_hdrlen(rx->fc);
546 if (rx->skb->len < 8 + hdrlen)
547 return TXRX_DROP; /* TODO: count this? */
550 * no need to call ieee80211_wep_get_keyidx,
551 * it verifies a bunch of things we've done already
553 keyidx = rx->skb->data[hdrlen + 3] >> 6;
555 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
558 * RSNA-protected unicast frames should always be sent with
559 * pairwise or station-to-station keys, but for WEP we allow
560 * using a key index as well.
562 if (rx->key && rx->key->conf.alg != ALG_WEP &&
563 !is_multicast_ether_addr(hdr->addr1))
564 rx->key = NULL;
567 if (rx->key) {
568 rx->key->tx_rx_count++;
569 /* TODO: add threshold stuff again */
570 } else {
571 #ifdef CONFIG_MAC80211_DEBUG
572 if (net_ratelimit())
573 printk(KERN_DEBUG "%s: RX protected frame,"
574 " but have no key\n", rx->dev->name);
575 #endif /* CONFIG_MAC80211_DEBUG */
576 return TXRX_DROP;
579 /* Check for weak IVs if possible */
580 if (rx->sta && rx->key->conf.alg == ALG_WEP &&
581 ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) &&
582 (!(rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED) ||
583 !(rx->u.rx.status->flag & RX_FLAG_DECRYPTED)) &&
584 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
585 rx->sta->wep_weak_iv_count++;
587 switch (rx->key->conf.alg) {
588 case ALG_WEP:
589 result = ieee80211_crypto_wep_decrypt(rx);
590 break;
591 case ALG_TKIP:
592 result = ieee80211_crypto_tkip_decrypt(rx);
593 break;
594 case ALG_CCMP:
595 result = ieee80211_crypto_ccmp_decrypt(rx);
596 break;
599 /* either the frame has been decrypted or will be dropped */
600 rx->u.rx.status->flag |= RX_FLAG_DECRYPTED;
602 return result;
605 static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
607 struct ieee80211_sub_if_data *sdata;
608 DECLARE_MAC_BUF(mac);
610 sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
612 if (sdata->bss)
613 atomic_inc(&sdata->bss->num_sta_ps);
614 sta->flags |= WLAN_STA_PS;
615 sta->pspoll = 0;
616 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
617 printk(KERN_DEBUG "%s: STA %s aid %d enters power save mode\n",
618 dev->name, print_mac(mac, sta->addr), sta->aid);
619 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
622 static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
624 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
625 struct sk_buff *skb;
626 int sent = 0;
627 struct ieee80211_sub_if_data *sdata;
628 struct ieee80211_tx_packet_data *pkt_data;
629 DECLARE_MAC_BUF(mac);
631 sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
632 if (sdata->bss)
633 atomic_dec(&sdata->bss->num_sta_ps);
634 sta->flags &= ~(WLAN_STA_PS | WLAN_STA_TIM);
635 sta->pspoll = 0;
636 if (!skb_queue_empty(&sta->ps_tx_buf)) {
637 if (local->ops->set_tim)
638 local->ops->set_tim(local_to_hw(local), sta->aid, 0);
639 if (sdata->bss)
640 bss_tim_clear(local, sdata->bss, sta->aid);
642 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
643 printk(KERN_DEBUG "%s: STA %s aid %d exits power save mode\n",
644 dev->name, print_mac(mac, sta->addr), sta->aid);
645 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
646 /* Send all buffered frames to the station */
647 while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
648 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
649 sent++;
650 pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
651 dev_queue_xmit(skb);
653 while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
654 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
655 local->total_ps_buffered--;
656 sent++;
657 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
658 printk(KERN_DEBUG "%s: STA %s aid %d send PS frame "
659 "since STA not sleeping anymore\n", dev->name,
660 print_mac(mac, sta->addr), sta->aid);
661 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
662 pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
663 dev_queue_xmit(skb);
666 return sent;
669 static ieee80211_txrx_result
670 ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx)
672 struct sta_info *sta = rx->sta;
673 struct net_device *dev = rx->dev;
674 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
676 if (!sta)
677 return TXRX_CONTINUE;
679 /* Update last_rx only for IBSS packets which are for the current
680 * BSSID to avoid keeping the current IBSS network alive in cases where
681 * other STAs are using different BSSID. */
682 if (rx->sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
683 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
684 IEEE80211_IF_TYPE_IBSS);
685 if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
686 sta->last_rx = jiffies;
687 } else
688 if (!is_multicast_ether_addr(hdr->addr1) ||
689 rx->sdata->vif.type == IEEE80211_IF_TYPE_STA) {
690 /* Update last_rx only for unicast frames in order to prevent
691 * the Probe Request frames (the only broadcast frames from a
692 * STA in infrastructure mode) from keeping a connection alive.
694 sta->last_rx = jiffies;
697 if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
698 return TXRX_CONTINUE;
700 sta->rx_fragments++;
701 sta->rx_bytes += rx->skb->len;
702 sta->last_rssi = rx->u.rx.status->ssi;
703 sta->last_signal = rx->u.rx.status->signal;
704 sta->last_noise = rx->u.rx.status->noise;
706 if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) {
707 /* Change STA power saving mode only in the end of a frame
708 * exchange sequence */
709 if ((sta->flags & WLAN_STA_PS) && !(rx->fc & IEEE80211_FCTL_PM))
710 rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta);
711 else if (!(sta->flags & WLAN_STA_PS) &&
712 (rx->fc & IEEE80211_FCTL_PM))
713 ap_sta_ps_start(dev, sta);
716 /* Drop data::nullfunc frames silently, since they are used only to
717 * control station power saving mode. */
718 if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
719 (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) {
720 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
721 /* Update counter and free packet here to avoid counting this
722 * as a dropped packed. */
723 sta->rx_packets++;
724 dev_kfree_skb(rx->skb);
725 return TXRX_QUEUED;
728 return TXRX_CONTINUE;
729 } /* ieee80211_rx_h_sta_process */
731 static inline struct ieee80211_fragment_entry *
732 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
733 unsigned int frag, unsigned int seq, int rx_queue,
734 struct sk_buff **skb)
736 struct ieee80211_fragment_entry *entry;
737 int idx;
739 idx = sdata->fragment_next;
740 entry = &sdata->fragments[sdata->fragment_next++];
741 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
742 sdata->fragment_next = 0;
744 if (!skb_queue_empty(&entry->skb_list)) {
745 #ifdef CONFIG_MAC80211_DEBUG
746 struct ieee80211_hdr *hdr =
747 (struct ieee80211_hdr *) entry->skb_list.next->data;
748 DECLARE_MAC_BUF(mac);
749 DECLARE_MAC_BUF(mac2);
750 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
751 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
752 "addr1=%s addr2=%s\n",
753 sdata->dev->name, idx,
754 jiffies - entry->first_frag_time, entry->seq,
755 entry->last_frag, print_mac(mac, hdr->addr1),
756 print_mac(mac2, hdr->addr2));
757 #endif /* CONFIG_MAC80211_DEBUG */
758 __skb_queue_purge(&entry->skb_list);
761 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
762 *skb = NULL;
763 entry->first_frag_time = jiffies;
764 entry->seq = seq;
765 entry->rx_queue = rx_queue;
766 entry->last_frag = frag;
767 entry->ccmp = 0;
768 entry->extra_len = 0;
770 return entry;
773 static inline struct ieee80211_fragment_entry *
774 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
775 u16 fc, unsigned int frag, unsigned int seq,
776 int rx_queue, struct ieee80211_hdr *hdr)
778 struct ieee80211_fragment_entry *entry;
779 int i, idx;
781 idx = sdata->fragment_next;
782 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
783 struct ieee80211_hdr *f_hdr;
784 u16 f_fc;
786 idx--;
787 if (idx < 0)
788 idx = IEEE80211_FRAGMENT_MAX - 1;
790 entry = &sdata->fragments[idx];
791 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
792 entry->rx_queue != rx_queue ||
793 entry->last_frag + 1 != frag)
794 continue;
796 f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
797 f_fc = le16_to_cpu(f_hdr->frame_control);
799 if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
800 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
801 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
802 continue;
804 if (entry->first_frag_time + 2 * HZ < jiffies) {
805 __skb_queue_purge(&entry->skb_list);
806 continue;
808 return entry;
811 return NULL;
814 static ieee80211_txrx_result
815 ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx)
817 struct ieee80211_hdr *hdr;
818 u16 sc;
819 unsigned int frag, seq;
820 struct ieee80211_fragment_entry *entry;
821 struct sk_buff *skb;
822 DECLARE_MAC_BUF(mac);
824 hdr = (struct ieee80211_hdr *) rx->skb->data;
825 sc = le16_to_cpu(hdr->seq_ctrl);
826 frag = sc & IEEE80211_SCTL_FRAG;
828 if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
829 (rx->skb)->len < 24 ||
830 is_multicast_ether_addr(hdr->addr1))) {
831 /* not fragmented */
832 goto out;
834 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
836 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
838 if (frag == 0) {
839 /* This is the first fragment of a new frame. */
840 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
841 rx->u.rx.queue, &(rx->skb));
842 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
843 (rx->fc & IEEE80211_FCTL_PROTECTED)) {
844 /* Store CCMP PN so that we can verify that the next
845 * fragment has a sequential PN value. */
846 entry->ccmp = 1;
847 memcpy(entry->last_pn,
848 rx->key->u.ccmp.rx_pn[rx->u.rx.queue],
849 CCMP_PN_LEN);
851 return TXRX_QUEUED;
854 /* This is a fragment for a frame that should already be pending in
855 * fragment cache. Add this fragment to the end of the pending entry.
857 entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
858 rx->u.rx.queue, hdr);
859 if (!entry) {
860 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
861 return TXRX_DROP;
864 /* Verify that MPDUs within one MSDU have sequential PN values.
865 * (IEEE 802.11i, 8.3.3.4.5) */
866 if (entry->ccmp) {
867 int i;
868 u8 pn[CCMP_PN_LEN], *rpn;
869 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
870 return TXRX_DROP;
871 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
872 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
873 pn[i]++;
874 if (pn[i])
875 break;
877 rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue];
878 if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
879 if (net_ratelimit())
880 printk(KERN_DEBUG "%s: defrag: CCMP PN not "
881 "sequential A2=%s"
882 " PN=%02x%02x%02x%02x%02x%02x "
883 "(expected %02x%02x%02x%02x%02x%02x)\n",
884 rx->dev->name, print_mac(mac, hdr->addr2),
885 rpn[0], rpn[1], rpn[2], rpn[3], rpn[4],
886 rpn[5], pn[0], pn[1], pn[2], pn[3],
887 pn[4], pn[5]);
888 return TXRX_DROP;
890 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
893 skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
894 __skb_queue_tail(&entry->skb_list, rx->skb);
895 entry->last_frag = frag;
896 entry->extra_len += rx->skb->len;
897 if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
898 rx->skb = NULL;
899 return TXRX_QUEUED;
902 rx->skb = __skb_dequeue(&entry->skb_list);
903 if (skb_tailroom(rx->skb) < entry->extra_len) {
904 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
905 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
906 GFP_ATOMIC))) {
907 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
908 __skb_queue_purge(&entry->skb_list);
909 return TXRX_DROP;
912 while ((skb = __skb_dequeue(&entry->skb_list))) {
913 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
914 dev_kfree_skb(skb);
917 /* Complete frame has been reassembled - process it now */
918 rx->flags |= IEEE80211_TXRXD_FRAGMENTED;
920 out:
921 if (rx->sta)
922 rx->sta->rx_packets++;
923 if (is_multicast_ether_addr(hdr->addr1))
924 rx->local->dot11MulticastReceivedFrameCount++;
925 else
926 ieee80211_led_rx(rx->local);
927 return TXRX_CONTINUE;
930 static ieee80211_txrx_result
931 ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx)
933 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
934 struct sk_buff *skb;
935 int no_pending_pkts;
936 DECLARE_MAC_BUF(mac);
938 if (likely(!rx->sta ||
939 (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
940 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
941 !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)))
942 return TXRX_CONTINUE;
944 if ((sdata->vif.type != IEEE80211_IF_TYPE_AP) &&
945 (sdata->vif.type != IEEE80211_IF_TYPE_VLAN))
946 return TXRX_DROP;
948 skb = skb_dequeue(&rx->sta->tx_filtered);
949 if (!skb) {
950 skb = skb_dequeue(&rx->sta->ps_tx_buf);
951 if (skb)
952 rx->local->total_ps_buffered--;
954 no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
955 skb_queue_empty(&rx->sta->ps_tx_buf);
957 if (skb) {
958 struct ieee80211_hdr *hdr =
959 (struct ieee80211_hdr *) skb->data;
961 /* tell TX path to send one frame even though the STA may
962 * still remain is PS mode after this frame exchange */
963 rx->sta->pspoll = 1;
965 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
966 printk(KERN_DEBUG "STA %s aid %d: PS Poll (entries after %d)\n",
967 print_mac(mac, rx->sta->addr), rx->sta->aid,
968 skb_queue_len(&rx->sta->ps_tx_buf));
969 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
971 /* Use MoreData flag to indicate whether there are more
972 * buffered frames for this STA */
973 if (no_pending_pkts) {
974 hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
975 rx->sta->flags &= ~WLAN_STA_TIM;
976 } else
977 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
979 dev_queue_xmit(skb);
981 if (no_pending_pkts) {
982 if (rx->local->ops->set_tim)
983 rx->local->ops->set_tim(local_to_hw(rx->local),
984 rx->sta->aid, 0);
985 if (rx->sdata->bss)
986 bss_tim_clear(rx->local, rx->sdata->bss, rx->sta->aid);
988 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
989 } else if (!rx->u.rx.sent_ps_buffered) {
990 printk(KERN_DEBUG "%s: STA %s sent PS Poll even "
991 "though there is no buffered frames for it\n",
992 rx->dev->name, print_mac(mac, rx->sta->addr));
993 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
997 /* Free PS Poll skb here instead of returning TXRX_DROP that would
998 * count as an dropped frame. */
999 dev_kfree_skb(rx->skb);
1001 return TXRX_QUEUED;
1004 static ieee80211_txrx_result
1005 ieee80211_rx_h_remove_qos_control(struct ieee80211_txrx_data *rx)
1007 u16 fc = rx->fc;
1008 u8 *data = rx->skb->data;
1009 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) data;
1011 if (!WLAN_FC_IS_QOS_DATA(fc))
1012 return TXRX_CONTINUE;
1014 /* remove the qos control field, update frame type and meta-data */
1015 memmove(data + 2, data, ieee80211_get_hdrlen(fc) - 2);
1016 hdr = (struct ieee80211_hdr *) skb_pull(rx->skb, 2);
1017 /* change frame type to non QOS */
1018 rx->fc = fc &= ~IEEE80211_STYPE_QOS_DATA;
1019 hdr->frame_control = cpu_to_le16(fc);
1021 return TXRX_CONTINUE;
1024 static int
1025 ieee80211_802_1x_port_control(struct ieee80211_txrx_data *rx)
1027 if (unlikely(rx->sdata->ieee802_1x_pac &&
1028 (!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED)))) {
1029 #ifdef CONFIG_MAC80211_DEBUG
1030 printk(KERN_DEBUG "%s: dropped frame "
1031 "(unauthorized port)\n", rx->dev->name);
1032 #endif /* CONFIG_MAC80211_DEBUG */
1033 return -EACCES;
1036 return 0;
1039 static int
1040 ieee80211_drop_unencrypted(struct ieee80211_txrx_data *rx)
1043 * Pass through unencrypted frames if the hardware has
1044 * decrypted them already.
1046 if (rx->u.rx.status->flag & RX_FLAG_DECRYPTED)
1047 return 0;
1049 /* Drop unencrypted frames if key is set. */
1050 if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
1051 (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
1052 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
1053 (rx->key || rx->sdata->drop_unencrypted))) {
1054 if (net_ratelimit())
1055 printk(KERN_DEBUG "%s: RX non-WEP frame, but expected "
1056 "encryption\n", rx->dev->name);
1057 return -EACCES;
1059 return 0;
1062 static int
1063 ieee80211_data_to_8023(struct ieee80211_txrx_data *rx)
1065 struct net_device *dev = rx->dev;
1066 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
1067 u16 fc, hdrlen, ethertype;
1068 u8 *payload;
1069 u8 dst[ETH_ALEN];
1070 u8 src[ETH_ALEN];
1071 struct sk_buff *skb = rx->skb;
1072 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1073 DECLARE_MAC_BUF(mac);
1074 DECLARE_MAC_BUF(mac2);
1075 DECLARE_MAC_BUF(mac3);
1076 DECLARE_MAC_BUF(mac4);
1078 fc = rx->fc;
1080 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1081 return -1;
1083 hdrlen = ieee80211_get_hdrlen(fc);
1085 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
1086 * header
1087 * IEEE 802.11 address fields:
1088 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
1089 * 0 0 DA SA BSSID n/a
1090 * 0 1 DA BSSID SA n/a
1091 * 1 0 BSSID SA DA n/a
1092 * 1 1 RA TA DA SA
1095 switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
1096 case IEEE80211_FCTL_TODS:
1097 /* BSSID SA DA */
1098 memcpy(dst, hdr->addr3, ETH_ALEN);
1099 memcpy(src, hdr->addr2, ETH_ALEN);
1101 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_AP &&
1102 sdata->vif.type != IEEE80211_IF_TYPE_VLAN)) {
1103 if (net_ratelimit())
1104 printk(KERN_DEBUG "%s: dropped ToDS frame "
1105 "(BSSID=%s SA=%s DA=%s)\n",
1106 dev->name,
1107 print_mac(mac, hdr->addr1),
1108 print_mac(mac2, hdr->addr2),
1109 print_mac(mac3, hdr->addr3));
1110 return -1;
1112 break;
1113 case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
1114 /* RA TA DA SA */
1115 memcpy(dst, hdr->addr3, ETH_ALEN);
1116 memcpy(src, hdr->addr4, ETH_ALEN);
1118 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_WDS)) {
1119 if (net_ratelimit())
1120 printk(KERN_DEBUG "%s: dropped FromDS&ToDS "
1121 "frame (RA=%s TA=%s DA=%s SA=%s)\n",
1122 rx->dev->name,
1123 print_mac(mac, hdr->addr1),
1124 print_mac(mac2, hdr->addr2),
1125 print_mac(mac3, hdr->addr3),
1126 print_mac(mac4, hdr->addr4));
1127 return -1;
1129 break;
1130 case IEEE80211_FCTL_FROMDS:
1131 /* DA BSSID SA */
1132 memcpy(dst, hdr->addr1, ETH_ALEN);
1133 memcpy(src, hdr->addr3, ETH_ALEN);
1135 if (sdata->vif.type != IEEE80211_IF_TYPE_STA ||
1136 (is_multicast_ether_addr(dst) &&
1137 !compare_ether_addr(src, dev->dev_addr)))
1138 return -1;
1139 break;
1140 case 0:
1141 /* DA SA BSSID */
1142 memcpy(dst, hdr->addr1, ETH_ALEN);
1143 memcpy(src, hdr->addr2, ETH_ALEN);
1145 if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
1146 if (net_ratelimit()) {
1147 printk(KERN_DEBUG "%s: dropped IBSS frame "
1148 "(DA=%s SA=%s BSSID=%s)\n",
1149 dev->name,
1150 print_mac(mac, hdr->addr1),
1151 print_mac(mac2, hdr->addr2),
1152 print_mac(mac3, hdr->addr3));
1154 return -1;
1156 break;
1159 if (unlikely(skb->len - hdrlen < 8)) {
1160 if (net_ratelimit()) {
1161 printk(KERN_DEBUG "%s: RX too short data frame "
1162 "payload\n", dev->name);
1164 return -1;
1167 payload = skb->data + hdrlen;
1168 ethertype = (payload[6] << 8) | payload[7];
1170 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1171 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1172 compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
1173 /* remove RFC1042 or Bridge-Tunnel encapsulation and
1174 * replace EtherType */
1175 skb_pull(skb, hdrlen + 6);
1176 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
1177 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
1178 } else {
1179 struct ethhdr *ehdr;
1180 __be16 len;
1182 skb_pull(skb, hdrlen);
1183 len = htons(skb->len);
1184 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
1185 memcpy(ehdr->h_dest, dst, ETH_ALEN);
1186 memcpy(ehdr->h_source, src, ETH_ALEN);
1187 ehdr->h_proto = len;
1189 return 0;
1193 * requires that rx->skb is a frame with ethernet header
1195 static bool ieee80211_frame_allowed(struct ieee80211_txrx_data *rx)
1197 static const u8 pae_group_addr[ETH_ALEN]
1198 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1199 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1202 * Allow EAPOL frames to us/the PAE group address regardless
1203 * of whether the frame was encrypted or not.
1205 if (ehdr->h_proto == htons(ETH_P_PAE) &&
1206 (compare_ether_addr(ehdr->h_dest, rx->dev->dev_addr) == 0 ||
1207 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1208 return true;
1210 if (ieee80211_802_1x_port_control(rx) ||
1211 ieee80211_drop_unencrypted(rx))
1212 return false;
1214 return true;
1218 * requires that rx->skb is a frame with ethernet header
1220 static void
1221 ieee80211_deliver_skb(struct ieee80211_txrx_data *rx)
1223 struct net_device *dev = rx->dev;
1224 struct ieee80211_local *local = rx->local;
1225 struct sk_buff *skb, *xmit_skb;
1226 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1227 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1228 struct sta_info *dsta;
1230 skb = rx->skb;
1231 xmit_skb = NULL;
1233 if (local->bridge_packets && (sdata->vif.type == IEEE80211_IF_TYPE_AP ||
1234 sdata->vif.type == IEEE80211_IF_TYPE_VLAN) &&
1235 (rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
1236 if (is_multicast_ether_addr(ehdr->h_dest)) {
1238 * send multicast frames both to higher layers in
1239 * local net stack and back to the wireless medium
1241 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1242 if (!xmit_skb && net_ratelimit())
1243 printk(KERN_DEBUG "%s: failed to clone "
1244 "multicast frame\n", dev->name);
1245 } else {
1246 dsta = sta_info_get(local, skb->data);
1247 if (dsta && dsta->dev == dev) {
1249 * The destination station is associated to
1250 * this AP (in this VLAN), so send the frame
1251 * directly to it and do not pass it to local
1252 * net stack.
1254 xmit_skb = skb;
1255 skb = NULL;
1257 if (dsta)
1258 sta_info_put(dsta);
1262 if (skb) {
1263 /* deliver to local stack */
1264 skb->protocol = eth_type_trans(skb, dev);
1265 memset(skb->cb, 0, sizeof(skb->cb));
1266 netif_rx(skb);
1269 if (xmit_skb) {
1270 /* send to wireless media */
1271 xmit_skb->protocol = htons(ETH_P_802_3);
1272 skb_reset_network_header(xmit_skb);
1273 skb_reset_mac_header(xmit_skb);
1274 dev_queue_xmit(xmit_skb);
1278 static ieee80211_txrx_result
1279 ieee80211_rx_h_amsdu(struct ieee80211_txrx_data *rx)
1281 struct net_device *dev = rx->dev;
1282 struct ieee80211_local *local = rx->local;
1283 u16 fc, ethertype;
1284 u8 *payload;
1285 struct sk_buff *skb = rx->skb, *frame = NULL;
1286 const struct ethhdr *eth;
1287 int remaining, err;
1288 u8 dst[ETH_ALEN];
1289 u8 src[ETH_ALEN];
1290 DECLARE_MAC_BUF(mac);
1292 fc = rx->fc;
1293 if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1294 return TXRX_CONTINUE;
1296 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1297 return TXRX_DROP;
1299 if (!(rx->flags & IEEE80211_TXRXD_RX_AMSDU))
1300 return TXRX_CONTINUE;
1302 err = ieee80211_data_to_8023(rx);
1303 if (unlikely(err))
1304 return TXRX_DROP;
1306 skb->dev = dev;
1308 dev->stats.rx_packets++;
1309 dev->stats.rx_bytes += skb->len;
1311 /* skip the wrapping header */
1312 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
1313 if (!eth)
1314 return TXRX_DROP;
1316 while (skb != frame) {
1317 u8 padding;
1318 __be16 len = eth->h_proto;
1319 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
1321 remaining = skb->len;
1322 memcpy(dst, eth->h_dest, ETH_ALEN);
1323 memcpy(src, eth->h_source, ETH_ALEN);
1325 padding = ((4 - subframe_len) & 0x3);
1326 /* the last MSDU has no padding */
1327 if (subframe_len > remaining) {
1328 printk(KERN_DEBUG "%s: wrong buffer size", dev->name);
1329 return TXRX_DROP;
1332 skb_pull(skb, sizeof(struct ethhdr));
1333 /* if last subframe reuse skb */
1334 if (remaining <= subframe_len + padding)
1335 frame = skb;
1336 else {
1337 frame = dev_alloc_skb(local->hw.extra_tx_headroom +
1338 subframe_len);
1340 if (frame == NULL)
1341 return TXRX_DROP;
1343 skb_reserve(frame, local->hw.extra_tx_headroom +
1344 sizeof(struct ethhdr));
1345 memcpy(skb_put(frame, ntohs(len)), skb->data,
1346 ntohs(len));
1348 eth = (struct ethhdr *) skb_pull(skb, ntohs(len) +
1349 padding);
1350 if (!eth) {
1351 printk(KERN_DEBUG "%s: wrong buffer size ",
1352 dev->name);
1353 dev_kfree_skb(frame);
1354 return TXRX_DROP;
1358 skb_reset_network_header(frame);
1359 frame->dev = dev;
1360 frame->priority = skb->priority;
1361 rx->skb = frame;
1363 payload = frame->data;
1364 ethertype = (payload[6] << 8) | payload[7];
1366 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1367 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1368 compare_ether_addr(payload,
1369 bridge_tunnel_header) == 0)) {
1370 /* remove RFC1042 or Bridge-Tunnel
1371 * encapsulation and replace EtherType */
1372 skb_pull(frame, 6);
1373 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1374 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1375 } else {
1376 memcpy(skb_push(frame, sizeof(__be16)),
1377 &len, sizeof(__be16));
1378 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1379 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1382 if (!ieee80211_frame_allowed(rx)) {
1383 if (skb == frame) /* last frame */
1384 return TXRX_DROP;
1385 dev_kfree_skb(frame);
1386 continue;
1389 ieee80211_deliver_skb(rx);
1392 return TXRX_QUEUED;
1395 static ieee80211_txrx_result
1396 ieee80211_rx_h_data(struct ieee80211_txrx_data *rx)
1398 struct net_device *dev = rx->dev;
1399 u16 fc;
1400 int err;
1402 fc = rx->fc;
1403 if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1404 return TXRX_CONTINUE;
1406 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1407 return TXRX_DROP;
1409 err = ieee80211_data_to_8023(rx);
1410 if (unlikely(err))
1411 return TXRX_DROP;
1413 if (!ieee80211_frame_allowed(rx))
1414 return TXRX_DROP;
1416 rx->skb->dev = dev;
1418 dev->stats.rx_packets++;
1419 dev->stats.rx_bytes += rx->skb->len;
1421 ieee80211_deliver_skb(rx);
1423 return TXRX_QUEUED;
1426 static ieee80211_txrx_result
1427 ieee80211_rx_h_ctrl(struct ieee80211_txrx_data *rx)
1429 struct ieee80211_local *local = rx->local;
1430 struct ieee80211_hw *hw = &local->hw;
1431 struct sk_buff *skb = rx->skb;
1432 struct ieee80211_bar *bar = (struct ieee80211_bar *) skb->data;
1433 struct tid_ampdu_rx *tid_agg_rx;
1434 u16 start_seq_num;
1435 u16 tid;
1437 if (likely((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL))
1438 return TXRX_CONTINUE;
1440 if ((rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BACK_REQ) {
1441 if (!rx->sta)
1442 return TXRX_CONTINUE;
1443 tid = le16_to_cpu(bar->control) >> 12;
1444 tid_agg_rx = &(rx->sta->ampdu_mlme.tid_rx[tid]);
1445 if (tid_agg_rx->state != HT_AGG_STATE_OPERATIONAL)
1446 return TXRX_CONTINUE;
1448 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
1450 /* reset session timer */
1451 if (tid_agg_rx->timeout) {
1452 unsigned long expires =
1453 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
1454 mod_timer(&tid_agg_rx->session_timer, expires);
1457 /* manage reordering buffer according to requested */
1458 /* sequence number */
1459 rcu_read_lock();
1460 ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, NULL,
1461 start_seq_num, 1);
1462 rcu_read_unlock();
1463 return TXRX_DROP;
1466 return TXRX_CONTINUE;
1469 static ieee80211_txrx_result
1470 ieee80211_rx_h_mgmt(struct ieee80211_txrx_data *rx)
1472 struct ieee80211_sub_if_data *sdata;
1474 if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
1475 return TXRX_DROP;
1477 sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
1478 if ((sdata->vif.type == IEEE80211_IF_TYPE_STA ||
1479 sdata->vif.type == IEEE80211_IF_TYPE_IBSS) &&
1480 !(sdata->flags & IEEE80211_SDATA_USERSPACE_MLME))
1481 ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status);
1482 else
1483 return TXRX_DROP;
1485 return TXRX_QUEUED;
1488 static inline ieee80211_txrx_result __ieee80211_invoke_rx_handlers(
1489 struct ieee80211_local *local,
1490 ieee80211_rx_handler *handlers,
1491 struct ieee80211_txrx_data *rx,
1492 struct sta_info *sta)
1494 ieee80211_rx_handler *handler;
1495 ieee80211_txrx_result res = TXRX_DROP;
1497 for (handler = handlers; *handler != NULL; handler++) {
1498 res = (*handler)(rx);
1500 switch (res) {
1501 case TXRX_CONTINUE:
1502 continue;
1503 case TXRX_DROP:
1504 I802_DEBUG_INC(local->rx_handlers_drop);
1505 if (sta)
1506 sta->rx_dropped++;
1507 break;
1508 case TXRX_QUEUED:
1509 I802_DEBUG_INC(local->rx_handlers_queued);
1510 break;
1512 break;
1515 if (res == TXRX_DROP)
1516 dev_kfree_skb(rx->skb);
1517 return res;
1520 static inline void ieee80211_invoke_rx_handlers(struct ieee80211_local *local,
1521 ieee80211_rx_handler *handlers,
1522 struct ieee80211_txrx_data *rx,
1523 struct sta_info *sta)
1525 if (__ieee80211_invoke_rx_handlers(local, handlers, rx, sta) ==
1526 TXRX_CONTINUE)
1527 dev_kfree_skb(rx->skb);
1530 static void ieee80211_rx_michael_mic_report(struct net_device *dev,
1531 struct ieee80211_hdr *hdr,
1532 struct sta_info *sta,
1533 struct ieee80211_txrx_data *rx)
1535 int keyidx, hdrlen;
1536 DECLARE_MAC_BUF(mac);
1537 DECLARE_MAC_BUF(mac2);
1539 hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb);
1540 if (rx->skb->len >= hdrlen + 4)
1541 keyidx = rx->skb->data[hdrlen + 3] >> 6;
1542 else
1543 keyidx = -1;
1545 if (net_ratelimit())
1546 printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC "
1547 "failure from %s to %s keyidx=%d\n",
1548 dev->name, print_mac(mac, hdr->addr2),
1549 print_mac(mac2, hdr->addr1), keyidx);
1551 if (!sta) {
1553 * Some hardware seem to generate incorrect Michael MIC
1554 * reports; ignore them to avoid triggering countermeasures.
1556 if (net_ratelimit())
1557 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1558 "error for unknown address %s\n",
1559 dev->name, print_mac(mac, hdr->addr2));
1560 goto ignore;
1563 if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) {
1564 if (net_ratelimit())
1565 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1566 "error for a frame with no PROTECTED flag (src "
1567 "%s)\n", dev->name, print_mac(mac, hdr->addr2));
1568 goto ignore;
1571 if (rx->sdata->vif.type == IEEE80211_IF_TYPE_AP && keyidx) {
1573 * APs with pairwise keys should never receive Michael MIC
1574 * errors for non-zero keyidx because these are reserved for
1575 * group keys and only the AP is sending real multicast
1576 * frames in the BSS.
1578 if (net_ratelimit())
1579 printk(KERN_DEBUG "%s: ignored Michael MIC error for "
1580 "a frame with non-zero keyidx (%d)"
1581 " (src %s)\n", dev->name, keyidx,
1582 print_mac(mac, hdr->addr2));
1583 goto ignore;
1586 if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
1587 ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
1588 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) {
1589 if (net_ratelimit())
1590 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1591 "error for a frame that cannot be encrypted "
1592 "(fc=0x%04x) (src %s)\n",
1593 dev->name, rx->fc, print_mac(mac, hdr->addr2));
1594 goto ignore;
1597 mac80211_ev_michael_mic_failure(rx->dev, keyidx, hdr);
1598 ignore:
1599 dev_kfree_skb(rx->skb);
1600 rx->skb = NULL;
1603 ieee80211_rx_handler ieee80211_rx_handlers[] =
1605 ieee80211_rx_h_if_stats,
1606 ieee80211_rx_h_passive_scan,
1607 ieee80211_rx_h_check,
1608 ieee80211_rx_h_decrypt,
1609 ieee80211_rx_h_sta_process,
1610 ieee80211_rx_h_defragment,
1611 ieee80211_rx_h_ps_poll,
1612 ieee80211_rx_h_michael_mic_verify,
1613 /* this must be after decryption - so header is counted in MPDU mic
1614 * must be before pae and data, so QOS_DATA format frames
1615 * are not passed to user space by these functions
1617 ieee80211_rx_h_remove_qos_control,
1618 ieee80211_rx_h_amsdu,
1619 ieee80211_rx_h_data,
1620 ieee80211_rx_h_ctrl,
1621 ieee80211_rx_h_mgmt,
1622 NULL
1625 /* main receive path */
1627 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
1628 u8 *bssid, struct ieee80211_txrx_data *rx,
1629 struct ieee80211_hdr *hdr)
1631 int multicast = is_multicast_ether_addr(hdr->addr1);
1633 switch (sdata->vif.type) {
1634 case IEEE80211_IF_TYPE_STA:
1635 if (!bssid)
1636 return 0;
1637 if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1638 if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
1639 return 0;
1640 rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1641 } else if (!multicast &&
1642 compare_ether_addr(sdata->dev->dev_addr,
1643 hdr->addr1) != 0) {
1644 if (!(sdata->dev->flags & IFF_PROMISC))
1645 return 0;
1646 rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1648 break;
1649 case IEEE80211_IF_TYPE_IBSS:
1650 if (!bssid)
1651 return 0;
1652 if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1653 if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
1654 return 0;
1655 rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1656 } else if (!multicast &&
1657 compare_ether_addr(sdata->dev->dev_addr,
1658 hdr->addr1) != 0) {
1659 if (!(sdata->dev->flags & IFF_PROMISC))
1660 return 0;
1661 rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1662 } else if (!rx->sta)
1663 rx->sta = ieee80211_ibss_add_sta(sdata->dev, rx->skb,
1664 bssid, hdr->addr2);
1665 break;
1666 case IEEE80211_IF_TYPE_VLAN:
1667 case IEEE80211_IF_TYPE_AP:
1668 if (!bssid) {
1669 if (compare_ether_addr(sdata->dev->dev_addr,
1670 hdr->addr1))
1671 return 0;
1672 } else if (!ieee80211_bssid_match(bssid,
1673 sdata->dev->dev_addr)) {
1674 if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
1675 return 0;
1676 rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1678 if (sdata->dev == sdata->local->mdev &&
1679 !(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
1680 /* do not receive anything via
1681 * master device when not scanning */
1682 return 0;
1683 break;
1684 case IEEE80211_IF_TYPE_WDS:
1685 if (bssid ||
1686 (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)
1687 return 0;
1688 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
1689 return 0;
1690 break;
1691 case IEEE80211_IF_TYPE_MNTR:
1692 /* take everything */
1693 break;
1694 case IEEE80211_IF_TYPE_INVALID:
1695 /* should never get here */
1696 WARN_ON(1);
1697 break;
1700 return 1;
1704 * This is the actual Rx frames handler. as it blongs to Rx path it must
1705 * be called with rcu_read_lock protection.
1707 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
1708 struct sk_buff *skb,
1709 struct ieee80211_rx_status *status,
1710 u32 load)
1712 struct ieee80211_local *local = hw_to_local(hw);
1713 struct ieee80211_sub_if_data *sdata;
1714 struct sta_info *sta;
1715 struct ieee80211_hdr *hdr;
1716 struct ieee80211_txrx_data rx;
1717 u16 type;
1718 int prepares;
1719 struct ieee80211_sub_if_data *prev = NULL;
1720 struct sk_buff *skb_new;
1721 u8 *bssid;
1723 hdr = (struct ieee80211_hdr *) skb->data;
1724 memset(&rx, 0, sizeof(rx));
1725 rx.skb = skb;
1726 rx.local = local;
1728 rx.u.rx.status = status;
1729 rx.u.rx.load = load;
1730 rx.fc = le16_to_cpu(hdr->frame_control);
1731 type = rx.fc & IEEE80211_FCTL_FTYPE;
1733 if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT)
1734 local->dot11ReceivedFragmentCount++;
1736 sta = rx.sta = sta_info_get(local, hdr->addr2);
1737 if (sta) {
1738 rx.dev = rx.sta->dev;
1739 rx.sdata = IEEE80211_DEV_TO_SUB_IF(rx.dev);
1742 if ((status->flag & RX_FLAG_MMIC_ERROR)) {
1743 ieee80211_rx_michael_mic_report(local->mdev, hdr, sta, &rx);
1744 goto end;
1747 if (unlikely(local->sta_sw_scanning || local->sta_hw_scanning))
1748 rx.flags |= IEEE80211_TXRXD_RXIN_SCAN;
1750 if (__ieee80211_invoke_rx_handlers(local, local->rx_pre_handlers, &rx,
1751 sta) != TXRX_CONTINUE)
1752 goto end;
1753 skb = rx.skb;
1755 if (sta && !(sta->flags & (WLAN_STA_WDS | WLAN_STA_ASSOC_AP)) &&
1756 !atomic_read(&local->iff_promiscs) &&
1757 !is_multicast_ether_addr(hdr->addr1)) {
1758 rx.flags |= IEEE80211_TXRXD_RXRA_MATCH;
1759 ieee80211_invoke_rx_handlers(local, local->rx_handlers, &rx,
1760 rx.sta);
1761 sta_info_put(sta);
1762 return;
1765 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1766 if (!netif_running(sdata->dev))
1767 continue;
1769 if (sdata->vif.type == IEEE80211_IF_TYPE_MNTR)
1770 continue;
1772 bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
1773 rx.flags |= IEEE80211_TXRXD_RXRA_MATCH;
1774 prepares = prepare_for_handlers(sdata, bssid, &rx, hdr);
1775 /* prepare_for_handlers can change sta */
1776 sta = rx.sta;
1778 if (!prepares)
1779 continue;
1782 * frame is destined for this interface, but if it's not
1783 * also for the previous one we handle that after the
1784 * loop to avoid copying the SKB once too much
1787 if (!prev) {
1788 prev = sdata;
1789 continue;
1793 * frame was destined for the previous interface
1794 * so invoke RX handlers for it
1797 skb_new = skb_copy(skb, GFP_ATOMIC);
1798 if (!skb_new) {
1799 if (net_ratelimit())
1800 printk(KERN_DEBUG "%s: failed to copy "
1801 "multicast frame for %s",
1802 wiphy_name(local->hw.wiphy),
1803 prev->dev->name);
1804 continue;
1806 rx.fc = le16_to_cpu(hdr->frame_control);
1807 rx.skb = skb_new;
1808 rx.dev = prev->dev;
1809 rx.sdata = prev;
1810 ieee80211_invoke_rx_handlers(local, local->rx_handlers,
1811 &rx, sta);
1812 prev = sdata;
1814 if (prev) {
1815 rx.fc = le16_to_cpu(hdr->frame_control);
1816 rx.skb = skb;
1817 rx.dev = prev->dev;
1818 rx.sdata = prev;
1819 ieee80211_invoke_rx_handlers(local, local->rx_handlers,
1820 &rx, sta);
1821 } else
1822 dev_kfree_skb(skb);
1824 end:
1825 if (sta)
1826 sta_info_put(sta);
1829 #define SEQ_MODULO 0x1000
1830 #define SEQ_MASK 0xfff
1832 static inline int seq_less(u16 sq1, u16 sq2)
1834 return (((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1));
1837 static inline u16 seq_inc(u16 sq)
1839 return ((sq + 1) & SEQ_MASK);
1842 static inline u16 seq_sub(u16 sq1, u16 sq2)
1844 return ((sq1 - sq2) & SEQ_MASK);
1849 * As it function blongs to Rx path it must be called with
1850 * the proper rcu_read_lock protection for its flow.
1852 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
1853 struct tid_ampdu_rx *tid_agg_rx,
1854 struct sk_buff *skb, u16 mpdu_seq_num,
1855 int bar_req)
1857 struct ieee80211_local *local = hw_to_local(hw);
1858 struct ieee80211_rx_status status;
1859 u16 head_seq_num, buf_size;
1860 int index;
1861 u32 pkt_load;
1863 buf_size = tid_agg_rx->buf_size;
1864 head_seq_num = tid_agg_rx->head_seq_num;
1866 /* frame with out of date sequence number */
1867 if (seq_less(mpdu_seq_num, head_seq_num)) {
1868 dev_kfree_skb(skb);
1869 return 1;
1872 /* if frame sequence number exceeds our buffering window size or
1873 * block Ack Request arrived - release stored frames */
1874 if ((!seq_less(mpdu_seq_num, head_seq_num + buf_size)) || (bar_req)) {
1875 /* new head to the ordering buffer */
1876 if (bar_req)
1877 head_seq_num = mpdu_seq_num;
1878 else
1879 head_seq_num =
1880 seq_inc(seq_sub(mpdu_seq_num, buf_size));
1881 /* release stored frames up to new head to stack */
1882 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1883 index = seq_sub(tid_agg_rx->head_seq_num,
1884 tid_agg_rx->ssn)
1885 % tid_agg_rx->buf_size;
1887 if (tid_agg_rx->reorder_buf[index]) {
1888 /* release the reordered frames to stack */
1889 memcpy(&status,
1890 tid_agg_rx->reorder_buf[index]->cb,
1891 sizeof(status));
1892 pkt_load = ieee80211_rx_load_stats(local,
1893 tid_agg_rx->reorder_buf[index],
1894 &status);
1895 __ieee80211_rx_handle_packet(hw,
1896 tid_agg_rx->reorder_buf[index],
1897 &status, pkt_load);
1898 tid_agg_rx->stored_mpdu_num--;
1899 tid_agg_rx->reorder_buf[index] = NULL;
1901 tid_agg_rx->head_seq_num =
1902 seq_inc(tid_agg_rx->head_seq_num);
1904 if (bar_req)
1905 return 1;
1908 /* now the new frame is always in the range of the reordering */
1909 /* buffer window */
1910 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn)
1911 % tid_agg_rx->buf_size;
1912 /* check if we already stored this frame */
1913 if (tid_agg_rx->reorder_buf[index]) {
1914 dev_kfree_skb(skb);
1915 return 1;
1918 /* if arrived mpdu is in the right order and nothing else stored */
1919 /* release it immediately */
1920 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1921 tid_agg_rx->stored_mpdu_num == 0) {
1922 tid_agg_rx->head_seq_num =
1923 seq_inc(tid_agg_rx->head_seq_num);
1924 return 0;
1927 /* put the frame in the reordering buffer */
1928 tid_agg_rx->reorder_buf[index] = skb;
1929 tid_agg_rx->stored_mpdu_num++;
1930 /* release the buffer until next missing frame */
1931 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn)
1932 % tid_agg_rx->buf_size;
1933 while (tid_agg_rx->reorder_buf[index]) {
1934 /* release the reordered frame back to stack */
1935 memcpy(&status, tid_agg_rx->reorder_buf[index]->cb,
1936 sizeof(status));
1937 pkt_load = ieee80211_rx_load_stats(local,
1938 tid_agg_rx->reorder_buf[index],
1939 &status);
1940 __ieee80211_rx_handle_packet(hw, tid_agg_rx->reorder_buf[index],
1941 &status, pkt_load);
1942 tid_agg_rx->stored_mpdu_num--;
1943 tid_agg_rx->reorder_buf[index] = NULL;
1944 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
1945 index = seq_sub(tid_agg_rx->head_seq_num,
1946 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
1948 return 1;
1951 static u8 ieee80211_rx_reorder_ampdu(struct ieee80211_local *local,
1952 struct sk_buff *skb)
1954 struct ieee80211_hw *hw = &local->hw;
1955 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1956 struct sta_info *sta;
1957 struct tid_ampdu_rx *tid_agg_rx;
1958 u16 fc, sc;
1959 u16 mpdu_seq_num;
1960 u8 ret = 0, *qc;
1961 int tid;
1963 sta = sta_info_get(local, hdr->addr2);
1964 if (!sta)
1965 return ret;
1967 fc = le16_to_cpu(hdr->frame_control);
1969 /* filter the QoS data rx stream according to
1970 * STA/TID and check if this STA/TID is on aggregation */
1971 if (!WLAN_FC_IS_QOS_DATA(fc))
1972 goto end_reorder;
1974 qc = skb->data + ieee80211_get_hdrlen(fc) - QOS_CONTROL_LEN;
1975 tid = qc[0] & QOS_CONTROL_TID_MASK;
1976 tid_agg_rx = &(sta->ampdu_mlme.tid_rx[tid]);
1978 if (tid_agg_rx->state != HT_AGG_STATE_OPERATIONAL)
1979 goto end_reorder;
1981 /* null data frames are excluded */
1982 if (unlikely(fc & IEEE80211_STYPE_NULLFUNC))
1983 goto end_reorder;
1985 /* new un-ordered ampdu frame - process it */
1987 /* reset session timer */
1988 if (tid_agg_rx->timeout) {
1989 unsigned long expires =
1990 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
1991 mod_timer(&tid_agg_rx->session_timer, expires);
1994 /* if this mpdu is fragmented - terminate rx aggregation session */
1995 sc = le16_to_cpu(hdr->seq_ctrl);
1996 if (sc & IEEE80211_SCTL_FRAG) {
1997 ieee80211_sta_stop_rx_ba_session(sta->dev, sta->addr,
1998 tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP);
1999 ret = 1;
2000 goto end_reorder;
2003 /* according to mpdu sequence number deal with reordering buffer */
2004 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
2005 ret = ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb,
2006 mpdu_seq_num, 0);
2007 end_reorder:
2008 if (sta)
2009 sta_info_put(sta);
2010 return ret;
2014 * This is the receive path handler. It is called by a low level driver when an
2015 * 802.11 MPDU is received from the hardware.
2017 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
2018 struct ieee80211_rx_status *status)
2020 struct ieee80211_local *local = hw_to_local(hw);
2021 u32 pkt_load;
2024 * key references and virtual interfaces are protected using RCU
2025 * and this requires that we are in a read-side RCU section during
2026 * receive processing
2028 rcu_read_lock();
2031 * Frames with failed FCS/PLCP checksum are not returned,
2032 * all other frames are returned without radiotap header
2033 * if it was previously present.
2034 * Also, frames with less than 16 bytes are dropped.
2036 skb = ieee80211_rx_monitor(local, skb, status);
2037 if (!skb) {
2038 rcu_read_unlock();
2039 return;
2042 pkt_load = ieee80211_rx_load_stats(local, skb, status);
2043 local->channel_use_raw += pkt_load;
2045 if (!ieee80211_rx_reorder_ampdu(local, skb))
2046 __ieee80211_rx_handle_packet(hw, skb, status, pkt_load);
2048 rcu_read_unlock();
2050 EXPORT_SYMBOL(__ieee80211_rx);
2052 /* This is a version of the rx handler that can be called from hard irq
2053 * context. Post the skb on the queue and schedule the tasklet */
2054 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
2055 struct ieee80211_rx_status *status)
2057 struct ieee80211_local *local = hw_to_local(hw);
2059 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2061 skb->dev = local->mdev;
2062 /* copy status into skb->cb for use by tasklet */
2063 memcpy(skb->cb, status, sizeof(*status));
2064 skb->pkt_type = IEEE80211_RX_MSG;
2065 skb_queue_tail(&local->skb_queue, skb);
2066 tasklet_schedule(&local->tasklet);
2068 EXPORT_SYMBOL(ieee80211_rx_irqsafe);