4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
37 * FIXME: remove all knowledge of the buffer layer from the core VM
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
44 generic_file_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
45 loff_t offset
, unsigned long nr_segs
);
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 * ->i_alloc_sem (various)
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
89 * ->anon_vma.lock (vma_adjust)
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 * ->dcache_lock (proc_pid_lookup)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
115 void __remove_from_page_cache(struct page
*page
)
117 struct address_space
*mapping
= page
->mapping
;
119 radix_tree_delete(&mapping
->page_tree
, page
->index
);
120 page
->mapping
= NULL
;
122 __dec_zone_page_state(page
, NR_FILE_PAGES
);
123 BUG_ON(page_mapped(page
));
126 void remove_from_page_cache(struct page
*page
)
128 struct address_space
*mapping
= page
->mapping
;
130 BUG_ON(!PageLocked(page
));
132 write_lock_irq(&mapping
->tree_lock
);
133 __remove_from_page_cache(page
);
134 write_unlock_irq(&mapping
->tree_lock
);
137 static int sync_page(void *word
)
139 struct address_space
*mapping
;
142 page
= container_of((unsigned long *)word
, struct page
, flags
);
145 * page_mapping() is being called without PG_locked held.
146 * Some knowledge of the state and use of the page is used to
147 * reduce the requirements down to a memory barrier.
148 * The danger here is of a stale page_mapping() return value
149 * indicating a struct address_space different from the one it's
150 * associated with when it is associated with one.
151 * After smp_mb(), it's either the correct page_mapping() for
152 * the page, or an old page_mapping() and the page's own
153 * page_mapping() has gone NULL.
154 * The ->sync_page() address_space operation must tolerate
155 * page_mapping() going NULL. By an amazing coincidence,
156 * this comes about because none of the users of the page
157 * in the ->sync_page() methods make essential use of the
158 * page_mapping(), merely passing the page down to the backing
159 * device's unplug functions when it's non-NULL, which in turn
160 * ignore it for all cases but swap, where only page_private(page) is
161 * of interest. When page_mapping() does go NULL, the entire
162 * call stack gracefully ignores the page and returns.
166 mapping
= page_mapping(page
);
167 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
168 mapping
->a_ops
->sync_page(page
);
174 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
175 * @mapping: address space structure to write
176 * @start: offset in bytes where the range starts
177 * @end: offset in bytes where the range ends (inclusive)
178 * @sync_mode: enable synchronous operation
180 * Start writeback against all of a mapping's dirty pages that lie
181 * within the byte offsets <start, end> inclusive.
183 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
184 * opposed to a regular memory cleansing writeback. The difference between
185 * these two operations is that if a dirty page/buffer is encountered, it must
186 * be waited upon, and not just skipped over.
188 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
189 loff_t end
, int sync_mode
)
192 struct writeback_control wbc
= {
193 .sync_mode
= sync_mode
,
194 .nr_to_write
= mapping
->nrpages
* 2,
195 .range_start
= start
,
199 if (!mapping_cap_writeback_dirty(mapping
))
202 ret
= do_writepages(mapping
, &wbc
);
206 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
209 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
212 int filemap_fdatawrite(struct address_space
*mapping
)
214 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
216 EXPORT_SYMBOL(filemap_fdatawrite
);
218 static int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
221 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
225 * filemap_flush - mostly a non-blocking flush
226 * @mapping: target address_space
228 * This is a mostly non-blocking flush. Not suitable for data-integrity
229 * purposes - I/O may not be started against all dirty pages.
231 int filemap_flush(struct address_space
*mapping
)
233 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
235 EXPORT_SYMBOL(filemap_flush
);
238 * wait_on_page_writeback_range - wait for writeback to complete
239 * @mapping: target address_space
240 * @start: beginning page index
241 * @end: ending page index
243 * Wait for writeback to complete against pages indexed by start->end
246 int wait_on_page_writeback_range(struct address_space
*mapping
,
247 pgoff_t start
, pgoff_t end
)
257 pagevec_init(&pvec
, 0);
259 while ((index
<= end
) &&
260 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
261 PAGECACHE_TAG_WRITEBACK
,
262 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
265 for (i
= 0; i
< nr_pages
; i
++) {
266 struct page
*page
= pvec
.pages
[i
];
268 /* until radix tree lookup accepts end_index */
269 if (page
->index
> end
)
272 wait_on_page_writeback(page
);
276 pagevec_release(&pvec
);
280 /* Check for outstanding write errors */
281 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
283 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
290 * sync_page_range - write and wait on all pages in the passed range
291 * @inode: target inode
292 * @mapping: target address_space
293 * @pos: beginning offset in pages to write
294 * @count: number of bytes to write
296 * Write and wait upon all the pages in the passed range. This is a "data
297 * integrity" operation. It waits upon in-flight writeout before starting and
298 * waiting upon new writeout. If there was an IO error, return it.
300 * We need to re-take i_mutex during the generic_osync_inode list walk because
301 * it is otherwise livelockable.
303 int sync_page_range(struct inode
*inode
, struct address_space
*mapping
,
304 loff_t pos
, loff_t count
)
306 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
307 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
310 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
312 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
314 mutex_lock(&inode
->i_mutex
);
315 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
316 mutex_unlock(&inode
->i_mutex
);
319 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
322 EXPORT_SYMBOL(sync_page_range
);
325 * sync_page_range_nolock
326 * @inode: target inode
327 * @mapping: target address_space
328 * @pos: beginning offset in pages to write
329 * @count: number of bytes to write
331 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
332 * as it forces O_SYNC writers to different parts of the same file
333 * to be serialised right until io completion.
335 int sync_page_range_nolock(struct inode
*inode
, struct address_space
*mapping
,
336 loff_t pos
, loff_t count
)
338 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
339 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
342 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
344 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
346 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
348 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
351 EXPORT_SYMBOL(sync_page_range_nolock
);
354 * filemap_fdatawait - wait for all under-writeback pages to complete
355 * @mapping: address space structure to wait for
357 * Walk the list of under-writeback pages of the given address space
358 * and wait for all of them.
360 int filemap_fdatawait(struct address_space
*mapping
)
362 loff_t i_size
= i_size_read(mapping
->host
);
367 return wait_on_page_writeback_range(mapping
, 0,
368 (i_size
- 1) >> PAGE_CACHE_SHIFT
);
370 EXPORT_SYMBOL(filemap_fdatawait
);
372 int filemap_write_and_wait(struct address_space
*mapping
)
376 if (mapping
->nrpages
) {
377 err
= filemap_fdatawrite(mapping
);
379 * Even if the above returned error, the pages may be
380 * written partially (e.g. -ENOSPC), so we wait for it.
381 * But the -EIO is special case, it may indicate the worst
382 * thing (e.g. bug) happened, so we avoid waiting for it.
385 int err2
= filemap_fdatawait(mapping
);
392 EXPORT_SYMBOL(filemap_write_and_wait
);
395 * filemap_write_and_wait_range - write out & wait on a file range
396 * @mapping: the address_space for the pages
397 * @lstart: offset in bytes where the range starts
398 * @lend: offset in bytes where the range ends (inclusive)
400 * Write out and wait upon file offsets lstart->lend, inclusive.
402 * Note that `lend' is inclusive (describes the last byte to be written) so
403 * that this function can be used to write to the very end-of-file (end = -1).
405 int filemap_write_and_wait_range(struct address_space
*mapping
,
406 loff_t lstart
, loff_t lend
)
410 if (mapping
->nrpages
) {
411 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
413 /* See comment of filemap_write_and_wait() */
415 int err2
= wait_on_page_writeback_range(mapping
,
416 lstart
>> PAGE_CACHE_SHIFT
,
417 lend
>> PAGE_CACHE_SHIFT
);
426 * add_to_page_cache - add newly allocated pagecache pages
428 * @mapping: the page's address_space
429 * @offset: page index
430 * @gfp_mask: page allocation mode
432 * This function is used to add newly allocated pagecache pages;
433 * the page is new, so we can just run SetPageLocked() against it.
434 * The other page state flags were set by rmqueue().
436 * This function does not add the page to the LRU. The caller must do that.
438 int add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
439 pgoff_t offset
, gfp_t gfp_mask
)
441 int error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
444 write_lock_irq(&mapping
->tree_lock
);
445 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
447 page_cache_get(page
);
449 page
->mapping
= mapping
;
450 page
->index
= offset
;
452 __inc_zone_page_state(page
, NR_FILE_PAGES
);
454 write_unlock_irq(&mapping
->tree_lock
);
455 radix_tree_preload_end();
459 EXPORT_SYMBOL(add_to_page_cache
);
461 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
462 pgoff_t offset
, gfp_t gfp_mask
)
464 int ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
471 struct page
*__page_cache_alloc(gfp_t gfp
)
473 if (cpuset_do_page_mem_spread()) {
474 int n
= cpuset_mem_spread_node();
475 return alloc_pages_node(n
, gfp
, 0);
477 return alloc_pages(gfp
, 0);
479 EXPORT_SYMBOL(__page_cache_alloc
);
482 static int __sleep_on_page_lock(void *word
)
489 * In order to wait for pages to become available there must be
490 * waitqueues associated with pages. By using a hash table of
491 * waitqueues where the bucket discipline is to maintain all
492 * waiters on the same queue and wake all when any of the pages
493 * become available, and for the woken contexts to check to be
494 * sure the appropriate page became available, this saves space
495 * at a cost of "thundering herd" phenomena during rare hash
498 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
500 const struct zone
*zone
= page_zone(page
);
502 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
505 static inline void wake_up_page(struct page
*page
, int bit
)
507 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
510 void fastcall
wait_on_page_bit(struct page
*page
, int bit_nr
)
512 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
514 if (test_bit(bit_nr
, &page
->flags
))
515 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
516 TASK_UNINTERRUPTIBLE
);
518 EXPORT_SYMBOL(wait_on_page_bit
);
521 * unlock_page - unlock a locked page
524 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
525 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
526 * mechananism between PageLocked pages and PageWriteback pages is shared.
527 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
529 * The first mb is necessary to safely close the critical section opened by the
530 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
531 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
532 * parallel wait_on_page_locked()).
534 void fastcall
unlock_page(struct page
*page
)
536 smp_mb__before_clear_bit();
537 if (!TestClearPageLocked(page
))
539 smp_mb__after_clear_bit();
540 wake_up_page(page
, PG_locked
);
542 EXPORT_SYMBOL(unlock_page
);
545 * end_page_writeback - end writeback against a page
548 void end_page_writeback(struct page
*page
)
550 if (!TestClearPageReclaim(page
) || rotate_reclaimable_page(page
)) {
551 if (!test_clear_page_writeback(page
))
554 smp_mb__after_clear_bit();
555 wake_up_page(page
, PG_writeback
);
557 EXPORT_SYMBOL(end_page_writeback
);
560 * __lock_page - get a lock on the page, assuming we need to sleep to get it
561 * @page: the page to lock
563 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
564 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
565 * chances are that on the second loop, the block layer's plug list is empty,
566 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
568 void fastcall
__lock_page(struct page
*page
)
570 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
572 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
573 TASK_UNINTERRUPTIBLE
);
575 EXPORT_SYMBOL(__lock_page
);
578 * Variant of lock_page that does not require the caller to hold a reference
579 * on the page's mapping.
581 void fastcall
__lock_page_nosync(struct page
*page
)
583 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
584 __wait_on_bit_lock(page_waitqueue(page
), &wait
, __sleep_on_page_lock
,
585 TASK_UNINTERRUPTIBLE
);
589 * find_get_page - find and get a page reference
590 * @mapping: the address_space to search
591 * @offset: the page index
593 * Is there a pagecache struct page at the given (mapping, offset) tuple?
594 * If yes, increment its refcount and return it; if no, return NULL.
596 struct page
* find_get_page(struct address_space
*mapping
, pgoff_t offset
)
600 read_lock_irq(&mapping
->tree_lock
);
601 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
603 page_cache_get(page
);
604 read_unlock_irq(&mapping
->tree_lock
);
607 EXPORT_SYMBOL(find_get_page
);
610 * find_lock_page - locate, pin and lock a pagecache page
611 * @mapping: the address_space to search
612 * @offset: the page index
614 * Locates the desired pagecache page, locks it, increments its reference
615 * count and returns its address.
617 * Returns zero if the page was not present. find_lock_page() may sleep.
619 struct page
*find_lock_page(struct address_space
*mapping
,
625 read_lock_irq(&mapping
->tree_lock
);
626 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
628 page_cache_get(page
);
629 if (TestSetPageLocked(page
)) {
630 read_unlock_irq(&mapping
->tree_lock
);
633 /* Has the page been truncated while we slept? */
634 if (unlikely(page
->mapping
!= mapping
)) {
636 page_cache_release(page
);
639 VM_BUG_ON(page
->index
!= offset
);
643 read_unlock_irq(&mapping
->tree_lock
);
647 EXPORT_SYMBOL(find_lock_page
);
650 * find_or_create_page - locate or add a pagecache page
651 * @mapping: the page's address_space
652 * @index: the page's index into the mapping
653 * @gfp_mask: page allocation mode
655 * Locates a page in the pagecache. If the page is not present, a new page
656 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
657 * LRU list. The returned page is locked and has its reference count
660 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
663 * find_or_create_page() returns the desired page's address, or zero on
666 struct page
*find_or_create_page(struct address_space
*mapping
,
667 pgoff_t index
, gfp_t gfp_mask
)
669 struct page
*page
, *cached_page
= NULL
;
672 page
= find_lock_page(mapping
, index
);
676 __page_cache_alloc(gfp_mask
);
680 err
= add_to_page_cache_lru(cached_page
, mapping
,
685 } else if (err
== -EEXIST
)
689 page_cache_release(cached_page
);
692 EXPORT_SYMBOL(find_or_create_page
);
695 * find_get_pages - gang pagecache lookup
696 * @mapping: The address_space to search
697 * @start: The starting page index
698 * @nr_pages: The maximum number of pages
699 * @pages: Where the resulting pages are placed
701 * find_get_pages() will search for and return a group of up to
702 * @nr_pages pages in the mapping. The pages are placed at @pages.
703 * find_get_pages() takes a reference against the returned pages.
705 * The search returns a group of mapping-contiguous pages with ascending
706 * indexes. There may be holes in the indices due to not-present pages.
708 * find_get_pages() returns the number of pages which were found.
710 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
711 unsigned int nr_pages
, struct page
**pages
)
716 read_lock_irq(&mapping
->tree_lock
);
717 ret
= radix_tree_gang_lookup(&mapping
->page_tree
,
718 (void **)pages
, start
, nr_pages
);
719 for (i
= 0; i
< ret
; i
++)
720 page_cache_get(pages
[i
]);
721 read_unlock_irq(&mapping
->tree_lock
);
726 * find_get_pages_contig - gang contiguous pagecache lookup
727 * @mapping: The address_space to search
728 * @index: The starting page index
729 * @nr_pages: The maximum number of pages
730 * @pages: Where the resulting pages are placed
732 * find_get_pages_contig() works exactly like find_get_pages(), except
733 * that the returned number of pages are guaranteed to be contiguous.
735 * find_get_pages_contig() returns the number of pages which were found.
737 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
738 unsigned int nr_pages
, struct page
**pages
)
743 read_lock_irq(&mapping
->tree_lock
);
744 ret
= radix_tree_gang_lookup(&mapping
->page_tree
,
745 (void **)pages
, index
, nr_pages
);
746 for (i
= 0; i
< ret
; i
++) {
747 if (pages
[i
]->mapping
== NULL
|| pages
[i
]->index
!= index
)
750 page_cache_get(pages
[i
]);
753 read_unlock_irq(&mapping
->tree_lock
);
756 EXPORT_SYMBOL(find_get_pages_contig
);
759 * find_get_pages_tag - find and return pages that match @tag
760 * @mapping: the address_space to search
761 * @index: the starting page index
762 * @tag: the tag index
763 * @nr_pages: the maximum number of pages
764 * @pages: where the resulting pages are placed
766 * Like find_get_pages, except we only return pages which are tagged with
767 * @tag. We update @index to index the next page for the traversal.
769 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
770 int tag
, unsigned int nr_pages
, struct page
**pages
)
775 read_lock_irq(&mapping
->tree_lock
);
776 ret
= radix_tree_gang_lookup_tag(&mapping
->page_tree
,
777 (void **)pages
, *index
, nr_pages
, tag
);
778 for (i
= 0; i
< ret
; i
++)
779 page_cache_get(pages
[i
]);
781 *index
= pages
[ret
- 1]->index
+ 1;
782 read_unlock_irq(&mapping
->tree_lock
);
785 EXPORT_SYMBOL(find_get_pages_tag
);
788 * grab_cache_page_nowait - returns locked page at given index in given cache
789 * @mapping: target address_space
790 * @index: the page index
792 * Same as grab_cache_page(), but do not wait if the page is unavailable.
793 * This is intended for speculative data generators, where the data can
794 * be regenerated if the page couldn't be grabbed. This routine should
795 * be safe to call while holding the lock for another page.
797 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
798 * and deadlock against the caller's locked page.
801 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
803 struct page
*page
= find_get_page(mapping
, index
);
806 if (!TestSetPageLocked(page
))
808 page_cache_release(page
);
811 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
812 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
)) {
813 page_cache_release(page
);
818 EXPORT_SYMBOL(grab_cache_page_nowait
);
821 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
822 * a _large_ part of the i/o request. Imagine the worst scenario:
824 * ---R__________________________________________B__________
825 * ^ reading here ^ bad block(assume 4k)
827 * read(R) => miss => readahead(R...B) => media error => frustrating retries
828 * => failing the whole request => read(R) => read(R+1) =>
829 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
830 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
831 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
833 * It is going insane. Fix it by quickly scaling down the readahead size.
835 static void shrink_readahead_size_eio(struct file
*filp
,
836 struct file_ra_state
*ra
)
845 * do_generic_mapping_read - generic file read routine
846 * @mapping: address_space to be read
847 * @_ra: file's readahead state
848 * @filp: the file to read
849 * @ppos: current file position
850 * @desc: read_descriptor
851 * @actor: read method
853 * This is a generic file read routine, and uses the
854 * mapping->a_ops->readpage() function for the actual low-level stuff.
856 * This is really ugly. But the goto's actually try to clarify some
857 * of the logic when it comes to error handling etc.
859 * Note the struct file* is only passed for the use of readpage.
862 void do_generic_mapping_read(struct address_space
*mapping
,
863 struct file_ra_state
*ra
,
866 read_descriptor_t
*desc
,
869 struct inode
*inode
= mapping
->host
;
873 unsigned long offset
; /* offset into pagecache page */
874 unsigned int prev_offset
;
875 struct page
*cached_page
;
879 index
= *ppos
>> PAGE_CACHE_SHIFT
;
880 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
881 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
882 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
883 offset
= *ppos
& ~PAGE_CACHE_MASK
;
889 unsigned long nr
, ret
;
893 page
= find_get_page(mapping
, index
);
895 page_cache_sync_readahead(mapping
,
897 index
, last_index
- index
);
898 page
= find_get_page(mapping
, index
);
899 if (unlikely(page
== NULL
))
902 if (PageReadahead(page
)) {
903 page_cache_async_readahead(mapping
,
905 index
, last_index
- index
);
907 if (!PageUptodate(page
))
908 goto page_not_up_to_date
;
911 * i_size must be checked after we know the page is Uptodate.
913 * Checking i_size after the check allows us to calculate
914 * the correct value for "nr", which means the zero-filled
915 * part of the page is not copied back to userspace (unless
916 * another truncate extends the file - this is desired though).
919 isize
= i_size_read(inode
);
920 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
921 if (unlikely(!isize
|| index
> end_index
)) {
922 page_cache_release(page
);
926 /* nr is the maximum number of bytes to copy from this page */
927 nr
= PAGE_CACHE_SIZE
;
928 if (index
== end_index
) {
929 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
931 page_cache_release(page
);
937 /* If users can be writing to this page using arbitrary
938 * virtual addresses, take care about potential aliasing
939 * before reading the page on the kernel side.
941 if (mapping_writably_mapped(mapping
))
942 flush_dcache_page(page
);
945 * When a sequential read accesses a page several times,
946 * only mark it as accessed the first time.
948 if (prev_index
!= index
|| offset
!= prev_offset
)
949 mark_page_accessed(page
);
953 * Ok, we have the page, and it's up-to-date, so
954 * now we can copy it to user space...
956 * The actor routine returns how many bytes were actually used..
957 * NOTE! This may not be the same as how much of a user buffer
958 * we filled up (we may be padding etc), so we can only update
959 * "pos" here (the actor routine has to update the user buffer
960 * pointers and the remaining count).
962 ret
= actor(desc
, page
, offset
, nr
);
964 index
+= offset
>> PAGE_CACHE_SHIFT
;
965 offset
&= ~PAGE_CACHE_MASK
;
966 prev_offset
= offset
;
968 page_cache_release(page
);
969 if (ret
== nr
&& desc
->count
)
974 /* Get exclusive access to the page ... */
977 /* Did it get truncated before we got the lock? */
978 if (!page
->mapping
) {
980 page_cache_release(page
);
984 /* Did somebody else fill it already? */
985 if (PageUptodate(page
)) {
991 /* Start the actual read. The read will unlock the page. */
992 error
= mapping
->a_ops
->readpage(filp
, page
);
994 if (unlikely(error
)) {
995 if (error
== AOP_TRUNCATED_PAGE
) {
996 page_cache_release(page
);
1002 if (!PageUptodate(page
)) {
1004 if (!PageUptodate(page
)) {
1005 if (page
->mapping
== NULL
) {
1007 * invalidate_inode_pages got it
1010 page_cache_release(page
);
1015 shrink_readahead_size_eio(filp
, ra
);
1016 goto readpage_error
;
1024 /* UHHUH! A synchronous read error occurred. Report it */
1025 desc
->error
= error
;
1026 page_cache_release(page
);
1031 * Ok, it wasn't cached, so we need to create a new
1035 cached_page
= page_cache_alloc_cold(mapping
);
1037 desc
->error
= -ENOMEM
;
1041 error
= add_to_page_cache_lru(cached_page
, mapping
,
1044 if (error
== -EEXIST
)
1046 desc
->error
= error
;
1055 ra
->prev_pos
= prev_index
;
1056 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1057 ra
->prev_pos
|= prev_offset
;
1059 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1061 page_cache_release(cached_page
);
1063 file_accessed(filp
);
1065 EXPORT_SYMBOL(do_generic_mapping_read
);
1067 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1068 unsigned long offset
, unsigned long size
)
1071 unsigned long left
, count
= desc
->count
;
1077 * Faults on the destination of a read are common, so do it before
1080 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1081 kaddr
= kmap_atomic(page
, KM_USER0
);
1082 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1083 kaddr
+ offset
, size
);
1084 kunmap_atomic(kaddr
, KM_USER0
);
1089 /* Do it the slow way */
1091 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1096 desc
->error
= -EFAULT
;
1099 desc
->count
= count
- size
;
1100 desc
->written
+= size
;
1101 desc
->arg
.buf
+= size
;
1106 * Performs necessary checks before doing a write
1107 * @iov: io vector request
1108 * @nr_segs: number of segments in the iovec
1109 * @count: number of bytes to write
1110 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1112 * Adjust number of segments and amount of bytes to write (nr_segs should be
1113 * properly initialized first). Returns appropriate error code that caller
1114 * should return or zero in case that write should be allowed.
1116 int generic_segment_checks(const struct iovec
*iov
,
1117 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1121 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1122 const struct iovec
*iv
= &iov
[seg
];
1125 * If any segment has a negative length, or the cumulative
1126 * length ever wraps negative then return -EINVAL.
1129 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1131 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1136 cnt
-= iv
->iov_len
; /* This segment is no good */
1142 EXPORT_SYMBOL(generic_segment_checks
);
1145 * generic_file_aio_read - generic filesystem read routine
1146 * @iocb: kernel I/O control block
1147 * @iov: io vector request
1148 * @nr_segs: number of segments in the iovec
1149 * @pos: current file position
1151 * This is the "read()" routine for all filesystems
1152 * that can use the page cache directly.
1155 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1156 unsigned long nr_segs
, loff_t pos
)
1158 struct file
*filp
= iocb
->ki_filp
;
1162 loff_t
*ppos
= &iocb
->ki_pos
;
1165 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1169 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1170 if (filp
->f_flags
& O_DIRECT
) {
1172 struct address_space
*mapping
;
1173 struct inode
*inode
;
1175 mapping
= filp
->f_mapping
;
1176 inode
= mapping
->host
;
1179 goto out
; /* skip atime */
1180 size
= i_size_read(inode
);
1182 retval
= generic_file_direct_IO(READ
, iocb
,
1185 *ppos
= pos
+ retval
;
1187 if (likely(retval
!= 0)) {
1188 file_accessed(filp
);
1195 for (seg
= 0; seg
< nr_segs
; seg
++) {
1196 read_descriptor_t desc
;
1199 desc
.arg
.buf
= iov
[seg
].iov_base
;
1200 desc
.count
= iov
[seg
].iov_len
;
1201 if (desc
.count
== 0)
1204 do_generic_file_read(filp
,ppos
,&desc
,file_read_actor
);
1205 retval
+= desc
.written
;
1207 retval
= retval
?: desc
.error
;
1217 EXPORT_SYMBOL(generic_file_aio_read
);
1220 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1221 pgoff_t index
, unsigned long nr
)
1223 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1226 force_page_cache_readahead(mapping
, filp
, index
,
1227 max_sane_readahead(nr
));
1231 asmlinkage ssize_t
sys_readahead(int fd
, loff_t offset
, size_t count
)
1239 if (file
->f_mode
& FMODE_READ
) {
1240 struct address_space
*mapping
= file
->f_mapping
;
1241 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1242 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1243 unsigned long len
= end
- start
+ 1;
1244 ret
= do_readahead(mapping
, file
, start
, len
);
1253 * page_cache_read - adds requested page to the page cache if not already there
1254 * @file: file to read
1255 * @offset: page index
1257 * This adds the requested page to the page cache if it isn't already there,
1258 * and schedules an I/O to read in its contents from disk.
1260 static int fastcall
page_cache_read(struct file
* file
, pgoff_t offset
)
1262 struct address_space
*mapping
= file
->f_mapping
;
1267 page
= page_cache_alloc_cold(mapping
);
1271 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1273 ret
= mapping
->a_ops
->readpage(file
, page
);
1274 else if (ret
== -EEXIST
)
1275 ret
= 0; /* losing race to add is OK */
1277 page_cache_release(page
);
1279 } while (ret
== AOP_TRUNCATED_PAGE
);
1284 #define MMAP_LOTSAMISS (100)
1287 * filemap_fault - read in file data for page fault handling
1288 * @vma: vma in which the fault was taken
1289 * @vmf: struct vm_fault containing details of the fault
1291 * filemap_fault() is invoked via the vma operations vector for a
1292 * mapped memory region to read in file data during a page fault.
1294 * The goto's are kind of ugly, but this streamlines the normal case of having
1295 * it in the page cache, and handles the special cases reasonably without
1296 * having a lot of duplicated code.
1298 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1301 struct file
*file
= vma
->vm_file
;
1302 struct address_space
*mapping
= file
->f_mapping
;
1303 struct file_ra_state
*ra
= &file
->f_ra
;
1304 struct inode
*inode
= mapping
->host
;
1307 int did_readaround
= 0;
1310 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1311 if (vmf
->pgoff
>= size
)
1312 goto outside_data_content
;
1314 /* If we don't want any read-ahead, don't bother */
1315 if (VM_RandomReadHint(vma
))
1316 goto no_cached_page
;
1319 * Do we have something in the page cache already?
1322 page
= find_lock_page(mapping
, vmf
->pgoff
);
1324 * For sequential accesses, we use the generic readahead logic.
1326 if (VM_SequentialReadHint(vma
)) {
1328 page_cache_sync_readahead(mapping
, ra
, file
,
1330 page
= find_lock_page(mapping
, vmf
->pgoff
);
1332 goto no_cached_page
;
1334 if (PageReadahead(page
)) {
1335 page_cache_async_readahead(mapping
, ra
, file
, page
,
1341 unsigned long ra_pages
;
1346 * Do we miss much more than hit in this file? If so,
1347 * stop bothering with read-ahead. It will only hurt.
1349 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1350 goto no_cached_page
;
1353 * To keep the pgmajfault counter straight, we need to
1354 * check did_readaround, as this is an inner loop.
1356 if (!did_readaround
) {
1357 ret
= VM_FAULT_MAJOR
;
1358 count_vm_event(PGMAJFAULT
);
1361 ra_pages
= max_sane_readahead(file
->f_ra
.ra_pages
);
1365 if (vmf
->pgoff
> ra_pages
/ 2)
1366 start
= vmf
->pgoff
- ra_pages
/ 2;
1367 do_page_cache_readahead(mapping
, file
, start
, ra_pages
);
1369 page
= find_lock_page(mapping
, vmf
->pgoff
);
1371 goto no_cached_page
;
1374 if (!did_readaround
)
1378 * We have a locked page in the page cache, now we need to check
1379 * that it's up-to-date. If not, it is going to be due to an error.
1381 if (unlikely(!PageUptodate(page
)))
1382 goto page_not_uptodate
;
1384 /* Must recheck i_size under page lock */
1385 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1386 if (unlikely(vmf
->pgoff
>= size
)) {
1388 page_cache_release(page
);
1389 goto outside_data_content
;
1393 * Found the page and have a reference on it.
1395 mark_page_accessed(page
);
1396 ra
->prev_pos
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
1398 return ret
| VM_FAULT_LOCKED
;
1400 outside_data_content
:
1402 * An external ptracer can access pages that normally aren't
1405 if (vma
->vm_mm
== current
->mm
)
1406 return VM_FAULT_SIGBUS
;
1408 /* Fall through to the non-read-ahead case */
1411 * We're only likely to ever get here if MADV_RANDOM is in
1414 error
= page_cache_read(file
, vmf
->pgoff
);
1417 * The page we want has now been added to the page cache.
1418 * In the unlikely event that someone removed it in the
1419 * meantime, we'll just come back here and read it again.
1425 * An error return from page_cache_read can result if the
1426 * system is low on memory, or a problem occurs while trying
1429 if (error
== -ENOMEM
)
1430 return VM_FAULT_OOM
;
1431 return VM_FAULT_SIGBUS
;
1435 if (!did_readaround
) {
1436 ret
= VM_FAULT_MAJOR
;
1437 count_vm_event(PGMAJFAULT
);
1441 * Umm, take care of errors if the page isn't up-to-date.
1442 * Try to re-read it _once_. We do this synchronously,
1443 * because there really aren't any performance issues here
1444 * and we need to check for errors.
1446 ClearPageError(page
);
1447 error
= mapping
->a_ops
->readpage(file
, page
);
1448 page_cache_release(page
);
1450 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1453 /* Things didn't work out. Return zero to tell the mm layer so. */
1454 shrink_readahead_size_eio(file
, ra
);
1455 return VM_FAULT_SIGBUS
;
1457 EXPORT_SYMBOL(filemap_fault
);
1459 struct vm_operations_struct generic_file_vm_ops
= {
1460 .fault
= filemap_fault
,
1463 /* This is used for a general mmap of a disk file */
1465 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1467 struct address_space
*mapping
= file
->f_mapping
;
1469 if (!mapping
->a_ops
->readpage
)
1471 file_accessed(file
);
1472 vma
->vm_ops
= &generic_file_vm_ops
;
1473 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1478 * This is for filesystems which do not implement ->writepage.
1480 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1482 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1484 return generic_file_mmap(file
, vma
);
1487 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1491 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1495 #endif /* CONFIG_MMU */
1497 EXPORT_SYMBOL(generic_file_mmap
);
1498 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1500 static struct page
*__read_cache_page(struct address_space
*mapping
,
1502 int (*filler
)(void *,struct page
*),
1505 struct page
*page
, *cached_page
= NULL
;
1508 page
= find_get_page(mapping
, index
);
1511 cached_page
= page_cache_alloc_cold(mapping
);
1513 return ERR_PTR(-ENOMEM
);
1515 err
= add_to_page_cache_lru(cached_page
, mapping
,
1520 /* Presumably ENOMEM for radix tree node */
1521 page_cache_release(cached_page
);
1522 return ERR_PTR(err
);
1526 err
= filler(data
, page
);
1528 page_cache_release(page
);
1529 page
= ERR_PTR(err
);
1533 page_cache_release(cached_page
);
1538 * Same as read_cache_page, but don't wait for page to become unlocked
1539 * after submitting it to the filler.
1541 struct page
*read_cache_page_async(struct address_space
*mapping
,
1543 int (*filler
)(void *,struct page
*),
1550 page
= __read_cache_page(mapping
, index
, filler
, data
);
1553 if (PageUptodate(page
))
1557 if (!page
->mapping
) {
1559 page_cache_release(page
);
1562 if (PageUptodate(page
)) {
1566 err
= filler(data
, page
);
1568 page_cache_release(page
);
1569 return ERR_PTR(err
);
1572 mark_page_accessed(page
);
1575 EXPORT_SYMBOL(read_cache_page_async
);
1578 * read_cache_page - read into page cache, fill it if needed
1579 * @mapping: the page's address_space
1580 * @index: the page index
1581 * @filler: function to perform the read
1582 * @data: destination for read data
1584 * Read into the page cache. If a page already exists, and PageUptodate() is
1585 * not set, try to fill the page then wait for it to become unlocked.
1587 * If the page does not get brought uptodate, return -EIO.
1589 struct page
*read_cache_page(struct address_space
*mapping
,
1591 int (*filler
)(void *,struct page
*),
1596 page
= read_cache_page_async(mapping
, index
, filler
, data
);
1599 wait_on_page_locked(page
);
1600 if (!PageUptodate(page
)) {
1601 page_cache_release(page
);
1602 page
= ERR_PTR(-EIO
);
1607 EXPORT_SYMBOL(read_cache_page
);
1610 * If the page was newly created, increment its refcount and add it to the
1611 * caller's lru-buffering pagevec. This function is specifically for
1612 * generic_file_write().
1614 static inline struct page
*
1615 __grab_cache_page(struct address_space
*mapping
, unsigned long index
,
1616 struct page
**cached_page
, struct pagevec
*lru_pvec
)
1621 page
= find_lock_page(mapping
, index
);
1623 if (!*cached_page
) {
1624 *cached_page
= page_cache_alloc(mapping
);
1628 err
= add_to_page_cache(*cached_page
, mapping
,
1633 page
= *cached_page
;
1634 page_cache_get(page
);
1635 if (!pagevec_add(lru_pvec
, page
))
1636 __pagevec_lru_add(lru_pvec
);
1637 *cached_page
= NULL
;
1644 * The logic we want is
1646 * if suid or (sgid and xgrp)
1649 int should_remove_suid(struct dentry
*dentry
)
1651 mode_t mode
= dentry
->d_inode
->i_mode
;
1654 /* suid always must be killed */
1655 if (unlikely(mode
& S_ISUID
))
1656 kill
= ATTR_KILL_SUID
;
1659 * sgid without any exec bits is just a mandatory locking mark; leave
1660 * it alone. If some exec bits are set, it's a real sgid; kill it.
1662 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1663 kill
|= ATTR_KILL_SGID
;
1665 if (unlikely(kill
&& !capable(CAP_FSETID
)))
1670 EXPORT_SYMBOL(should_remove_suid
);
1672 int __remove_suid(struct dentry
*dentry
, int kill
)
1674 struct iattr newattrs
;
1676 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1677 return notify_change(dentry
, &newattrs
);
1680 int remove_suid(struct dentry
*dentry
)
1682 int kill
= should_remove_suid(dentry
);
1685 return __remove_suid(dentry
, kill
);
1689 EXPORT_SYMBOL(remove_suid
);
1692 __filemap_copy_from_user_iovec_inatomic(char *vaddr
,
1693 const struct iovec
*iov
, size_t base
, size_t bytes
)
1695 size_t copied
= 0, left
= 0;
1698 char __user
*buf
= iov
->iov_base
+ base
;
1699 int copy
= min(bytes
, iov
->iov_len
- base
);
1702 left
= __copy_from_user_inatomic_nocache(vaddr
, buf
, copy
);
1711 return copied
- left
;
1715 * Performs necessary checks before doing a write
1717 * Can adjust writing position or amount of bytes to write.
1718 * Returns appropriate error code that caller should return or
1719 * zero in case that write should be allowed.
1721 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
1723 struct inode
*inode
= file
->f_mapping
->host
;
1724 unsigned long limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1726 if (unlikely(*pos
< 0))
1730 /* FIXME: this is for backwards compatibility with 2.4 */
1731 if (file
->f_flags
& O_APPEND
)
1732 *pos
= i_size_read(inode
);
1734 if (limit
!= RLIM_INFINITY
) {
1735 if (*pos
>= limit
) {
1736 send_sig(SIGXFSZ
, current
, 0);
1739 if (*count
> limit
- (typeof(limit
))*pos
) {
1740 *count
= limit
- (typeof(limit
))*pos
;
1748 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
1749 !(file
->f_flags
& O_LARGEFILE
))) {
1750 if (*pos
>= MAX_NON_LFS
) {
1753 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
1754 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
1759 * Are we about to exceed the fs block limit ?
1761 * If we have written data it becomes a short write. If we have
1762 * exceeded without writing data we send a signal and return EFBIG.
1763 * Linus frestrict idea will clean these up nicely..
1765 if (likely(!isblk
)) {
1766 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
1767 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
1770 /* zero-length writes at ->s_maxbytes are OK */
1773 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
1774 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
1778 if (bdev_read_only(I_BDEV(inode
)))
1780 isize
= i_size_read(inode
);
1781 if (*pos
>= isize
) {
1782 if (*count
|| *pos
> isize
)
1786 if (*pos
+ *count
> isize
)
1787 *count
= isize
- *pos
;
1794 EXPORT_SYMBOL(generic_write_checks
);
1797 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
1798 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
1799 size_t count
, size_t ocount
)
1801 struct file
*file
= iocb
->ki_filp
;
1802 struct address_space
*mapping
= file
->f_mapping
;
1803 struct inode
*inode
= mapping
->host
;
1806 if (count
!= ocount
)
1807 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
1809 written
= generic_file_direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
1811 loff_t end
= pos
+ written
;
1812 if (end
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
1813 i_size_write(inode
, end
);
1814 mark_inode_dirty(inode
);
1820 * Sync the fs metadata but not the minor inode changes and
1821 * of course not the data as we did direct DMA for the IO.
1822 * i_mutex is held, which protects generic_osync_inode() from
1823 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
1825 if ((written
>= 0 || written
== -EIOCBQUEUED
) &&
1826 ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
1827 int err
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
1833 EXPORT_SYMBOL(generic_file_direct_write
);
1836 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
1837 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
1838 size_t count
, ssize_t written
)
1840 struct file
*file
= iocb
->ki_filp
;
1841 struct address_space
* mapping
= file
->f_mapping
;
1842 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
1843 struct inode
*inode
= mapping
->host
;
1846 struct page
*cached_page
= NULL
;
1848 struct pagevec lru_pvec
;
1849 const struct iovec
*cur_iov
= iov
; /* current iovec */
1850 size_t iov_base
= 0; /* offset in the current iovec */
1853 pagevec_init(&lru_pvec
, 0);
1856 * handle partial DIO write. Adjust cur_iov if needed.
1858 if (likely(nr_segs
== 1))
1859 buf
= iov
->iov_base
+ written
;
1861 filemap_set_next_iovec(&cur_iov
, &iov_base
, written
);
1862 buf
= cur_iov
->iov_base
+ iov_base
;
1866 unsigned long index
;
1867 unsigned long offset
;
1870 offset
= (pos
& (PAGE_CACHE_SIZE
-1)); /* Within page */
1871 index
= pos
>> PAGE_CACHE_SHIFT
;
1872 bytes
= PAGE_CACHE_SIZE
- offset
;
1874 /* Limit the size of the copy to the caller's write size */
1875 bytes
= min(bytes
, count
);
1877 /* We only need to worry about prefaulting when writes are from
1878 * user-space. NFSd uses vfs_writev with several non-aligned
1879 * segments in the vector, and limiting to one segment a time is
1880 * a noticeable performance for re-write
1882 if (!segment_eq(get_fs(), KERNEL_DS
)) {
1884 * Limit the size of the copy to that of the current
1885 * segment, because fault_in_pages_readable() doesn't
1886 * know how to walk segments.
1888 bytes
= min(bytes
, cur_iov
->iov_len
- iov_base
);
1891 * Bring in the user page that we will copy from
1892 * _first_. Otherwise there's a nasty deadlock on
1893 * copying from the same page as we're writing to,
1894 * without it being marked up-to-date.
1896 fault_in_pages_readable(buf
, bytes
);
1898 page
= __grab_cache_page(mapping
,index
,&cached_page
,&lru_pvec
);
1904 if (unlikely(bytes
== 0)) {
1907 goto zero_length_segment
;
1910 status
= a_ops
->prepare_write(file
, page
, offset
, offset
+bytes
);
1911 if (unlikely(status
)) {
1912 loff_t isize
= i_size_read(inode
);
1914 if (status
!= AOP_TRUNCATED_PAGE
)
1916 page_cache_release(page
);
1917 if (status
== AOP_TRUNCATED_PAGE
)
1920 * prepare_write() may have instantiated a few blocks
1921 * outside i_size. Trim these off again.
1923 if (pos
+ bytes
> isize
)
1924 vmtruncate(inode
, isize
);
1927 if (likely(nr_segs
== 1))
1928 copied
= filemap_copy_from_user(page
, offset
,
1931 copied
= filemap_copy_from_user_iovec(page
, offset
,
1932 cur_iov
, iov_base
, bytes
);
1933 flush_dcache_page(page
);
1934 status
= a_ops
->commit_write(file
, page
, offset
, offset
+bytes
);
1935 if (status
== AOP_TRUNCATED_PAGE
) {
1936 page_cache_release(page
);
1939 zero_length_segment
:
1940 if (likely(copied
>= 0)) {
1949 if (unlikely(nr_segs
> 1)) {
1950 filemap_set_next_iovec(&cur_iov
,
1953 buf
= cur_iov
->iov_base
+
1960 if (unlikely(copied
!= bytes
))
1964 mark_page_accessed(page
);
1965 page_cache_release(page
);
1968 balance_dirty_pages_ratelimited(mapping
);
1974 page_cache_release(cached_page
);
1977 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
1979 if (likely(status
>= 0)) {
1980 if (unlikely((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
1981 if (!a_ops
->writepage
|| !is_sync_kiocb(iocb
))
1982 status
= generic_osync_inode(inode
, mapping
,
1983 OSYNC_METADATA
|OSYNC_DATA
);
1988 * If we get here for O_DIRECT writes then we must have fallen through
1989 * to buffered writes (block instantiation inside i_size). So we sync
1990 * the file data here, to try to honour O_DIRECT expectations.
1992 if (unlikely(file
->f_flags
& O_DIRECT
) && written
)
1993 status
= filemap_write_and_wait(mapping
);
1995 pagevec_lru_add(&lru_pvec
);
1996 return written
? written
: status
;
1998 EXPORT_SYMBOL(generic_file_buffered_write
);
2001 __generic_file_aio_write_nolock(struct kiocb
*iocb
, const struct iovec
*iov
,
2002 unsigned long nr_segs
, loff_t
*ppos
)
2004 struct file
*file
= iocb
->ki_filp
;
2005 struct address_space
* mapping
= file
->f_mapping
;
2006 size_t ocount
; /* original count */
2007 size_t count
; /* after file limit checks */
2008 struct inode
*inode
= mapping
->host
;
2014 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2021 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2023 /* We can write back this queue in page reclaim */
2024 current
->backing_dev_info
= mapping
->backing_dev_info
;
2027 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2034 err
= remove_suid(file
->f_path
.dentry
);
2038 file_update_time(file
);
2040 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2041 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2043 ssize_t written_buffered
;
2045 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2046 ppos
, count
, ocount
);
2047 if (written
< 0 || written
== count
)
2050 * direct-io write to a hole: fall through to buffered I/O
2051 * for completing the rest of the request.
2055 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2056 nr_segs
, pos
, ppos
, count
,
2059 * If generic_file_buffered_write() retuned a synchronous error
2060 * then we want to return the number of bytes which were
2061 * direct-written, or the error code if that was zero. Note
2062 * that this differs from normal direct-io semantics, which
2063 * will return -EFOO even if some bytes were written.
2065 if (written_buffered
< 0) {
2066 err
= written_buffered
;
2071 * We need to ensure that the page cache pages are written to
2072 * disk and invalidated to preserve the expected O_DIRECT
2075 endbyte
= pos
+ written_buffered
- written
- 1;
2076 err
= do_sync_mapping_range(file
->f_mapping
, pos
, endbyte
,
2077 SYNC_FILE_RANGE_WAIT_BEFORE
|
2078 SYNC_FILE_RANGE_WRITE
|
2079 SYNC_FILE_RANGE_WAIT_AFTER
);
2081 written
= written_buffered
;
2082 invalidate_mapping_pages(mapping
,
2083 pos
>> PAGE_CACHE_SHIFT
,
2084 endbyte
>> PAGE_CACHE_SHIFT
);
2087 * We don't know how much we wrote, so just return
2088 * the number of bytes which were direct-written
2092 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2093 pos
, ppos
, count
, written
);
2096 current
->backing_dev_info
= NULL
;
2097 return written
? written
: err
;
2100 ssize_t
generic_file_aio_write_nolock(struct kiocb
*iocb
,
2101 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
2103 struct file
*file
= iocb
->ki_filp
;
2104 struct address_space
*mapping
= file
->f_mapping
;
2105 struct inode
*inode
= mapping
->host
;
2108 BUG_ON(iocb
->ki_pos
!= pos
);
2110 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
2113 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2116 err
= sync_page_range_nolock(inode
, mapping
, pos
, ret
);
2122 EXPORT_SYMBOL(generic_file_aio_write_nolock
);
2124 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2125 unsigned long nr_segs
, loff_t pos
)
2127 struct file
*file
= iocb
->ki_filp
;
2128 struct address_space
*mapping
= file
->f_mapping
;
2129 struct inode
*inode
= mapping
->host
;
2132 BUG_ON(iocb
->ki_pos
!= pos
);
2134 mutex_lock(&inode
->i_mutex
);
2135 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
2137 mutex_unlock(&inode
->i_mutex
);
2139 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2142 err
= sync_page_range(inode
, mapping
, pos
, ret
);
2148 EXPORT_SYMBOL(generic_file_aio_write
);
2151 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2152 * went wrong during pagecache shootdown.
2155 generic_file_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
2156 loff_t offset
, unsigned long nr_segs
)
2158 struct file
*file
= iocb
->ki_filp
;
2159 struct address_space
*mapping
= file
->f_mapping
;
2162 pgoff_t end
= 0; /* silence gcc */
2165 * If it's a write, unmap all mmappings of the file up-front. This
2166 * will cause any pte dirty bits to be propagated into the pageframes
2167 * for the subsequent filemap_write_and_wait().
2170 write_len
= iov_length(iov
, nr_segs
);
2171 end
= (offset
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2172 if (mapping_mapped(mapping
))
2173 unmap_mapping_range(mapping
, offset
, write_len
, 0);
2176 retval
= filemap_write_and_wait(mapping
);
2181 * After a write we want buffered reads to be sure to go to disk to get
2182 * the new data. We invalidate clean cached page from the region we're
2183 * about to write. We do this *before* the write so that we can return
2184 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2186 if (rw
== WRITE
&& mapping
->nrpages
) {
2187 retval
= invalidate_inode_pages2_range(mapping
,
2188 offset
>> PAGE_CACHE_SHIFT
, end
);
2193 retval
= mapping
->a_ops
->direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2198 * Finally, try again to invalidate clean pages which might have been
2199 * faulted in by get_user_pages() if the source of the write was an
2200 * mmap()ed region of the file we're writing. That's a pretty crazy
2201 * thing to do, so we don't support it 100%. If this invalidation
2202 * fails and we have -EIOCBQUEUED we ignore the failure.
2204 if (rw
== WRITE
&& mapping
->nrpages
) {
2205 int err
= invalidate_inode_pages2_range(mapping
,
2206 offset
>> PAGE_CACHE_SHIFT
, end
);
2207 if (err
&& retval
>= 0)
2215 * try_to_release_page() - release old fs-specific metadata on a page
2217 * @page: the page which the kernel is trying to free
2218 * @gfp_mask: memory allocation flags (and I/O mode)
2220 * The address_space is to try to release any data against the page
2221 * (presumably at page->private). If the release was successful, return `1'.
2222 * Otherwise return zero.
2224 * The @gfp_mask argument specifies whether I/O may be performed to release
2225 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2227 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2229 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2231 struct address_space
* const mapping
= page
->mapping
;
2233 BUG_ON(!PageLocked(page
));
2234 if (PageWriteback(page
))
2237 if (mapping
&& mapping
->a_ops
->releasepage
)
2238 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2239 return try_to_free_buffers(page
);
2242 EXPORT_SYMBOL(try_to_release_page
);