mm: improve find_lock_page
[pv_ops_mirror.git] / mm / filemap.c
blob7989c44cb293d09c5c6b306128aceafdb369d311
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
37 * FIXME: remove all knowledge of the buffer layer from the core VM
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
41 #include <asm/mman.h>
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 loff_t offset, unsigned long nr_segs);
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 * Lock ordering:
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_mutex
82 * ->i_alloc_sem (various)
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
115 void __remove_from_page_cache(struct page *page)
117 struct address_space *mapping = page->mapping;
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 BUG_ON(page_mapped(page));
126 void remove_from_page_cache(struct page *page)
128 struct address_space *mapping = page->mapping;
130 BUG_ON(!PageLocked(page));
132 write_lock_irq(&mapping->tree_lock);
133 __remove_from_page_cache(page);
134 write_unlock_irq(&mapping->tree_lock);
137 static int sync_page(void *word)
139 struct address_space *mapping;
140 struct page *page;
142 page = container_of((unsigned long *)word, struct page, flags);
145 * page_mapping() is being called without PG_locked held.
146 * Some knowledge of the state and use of the page is used to
147 * reduce the requirements down to a memory barrier.
148 * The danger here is of a stale page_mapping() return value
149 * indicating a struct address_space different from the one it's
150 * associated with when it is associated with one.
151 * After smp_mb(), it's either the correct page_mapping() for
152 * the page, or an old page_mapping() and the page's own
153 * page_mapping() has gone NULL.
154 * The ->sync_page() address_space operation must tolerate
155 * page_mapping() going NULL. By an amazing coincidence,
156 * this comes about because none of the users of the page
157 * in the ->sync_page() methods make essential use of the
158 * page_mapping(), merely passing the page down to the backing
159 * device's unplug functions when it's non-NULL, which in turn
160 * ignore it for all cases but swap, where only page_private(page) is
161 * of interest. When page_mapping() does go NULL, the entire
162 * call stack gracefully ignores the page and returns.
163 * -- wli
165 smp_mb();
166 mapping = page_mapping(page);
167 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
168 mapping->a_ops->sync_page(page);
169 io_schedule();
170 return 0;
174 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
175 * @mapping: address space structure to write
176 * @start: offset in bytes where the range starts
177 * @end: offset in bytes where the range ends (inclusive)
178 * @sync_mode: enable synchronous operation
180 * Start writeback against all of a mapping's dirty pages that lie
181 * within the byte offsets <start, end> inclusive.
183 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
184 * opposed to a regular memory cleansing writeback. The difference between
185 * these two operations is that if a dirty page/buffer is encountered, it must
186 * be waited upon, and not just skipped over.
188 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
189 loff_t end, int sync_mode)
191 int ret;
192 struct writeback_control wbc = {
193 .sync_mode = sync_mode,
194 .nr_to_write = mapping->nrpages * 2,
195 .range_start = start,
196 .range_end = end,
199 if (!mapping_cap_writeback_dirty(mapping))
200 return 0;
202 ret = do_writepages(mapping, &wbc);
203 return ret;
206 static inline int __filemap_fdatawrite(struct address_space *mapping,
207 int sync_mode)
209 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
212 int filemap_fdatawrite(struct address_space *mapping)
214 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
216 EXPORT_SYMBOL(filemap_fdatawrite);
218 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
219 loff_t end)
221 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
225 * filemap_flush - mostly a non-blocking flush
226 * @mapping: target address_space
228 * This is a mostly non-blocking flush. Not suitable for data-integrity
229 * purposes - I/O may not be started against all dirty pages.
231 int filemap_flush(struct address_space *mapping)
233 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
235 EXPORT_SYMBOL(filemap_flush);
238 * wait_on_page_writeback_range - wait for writeback to complete
239 * @mapping: target address_space
240 * @start: beginning page index
241 * @end: ending page index
243 * Wait for writeback to complete against pages indexed by start->end
244 * inclusive
246 int wait_on_page_writeback_range(struct address_space *mapping,
247 pgoff_t start, pgoff_t end)
249 struct pagevec pvec;
250 int nr_pages;
251 int ret = 0;
252 pgoff_t index;
254 if (end < start)
255 return 0;
257 pagevec_init(&pvec, 0);
258 index = start;
259 while ((index <= end) &&
260 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
261 PAGECACHE_TAG_WRITEBACK,
262 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
263 unsigned i;
265 for (i = 0; i < nr_pages; i++) {
266 struct page *page = pvec.pages[i];
268 /* until radix tree lookup accepts end_index */
269 if (page->index > end)
270 continue;
272 wait_on_page_writeback(page);
273 if (PageError(page))
274 ret = -EIO;
276 pagevec_release(&pvec);
277 cond_resched();
280 /* Check for outstanding write errors */
281 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
282 ret = -ENOSPC;
283 if (test_and_clear_bit(AS_EIO, &mapping->flags))
284 ret = -EIO;
286 return ret;
290 * sync_page_range - write and wait on all pages in the passed range
291 * @inode: target inode
292 * @mapping: target address_space
293 * @pos: beginning offset in pages to write
294 * @count: number of bytes to write
296 * Write and wait upon all the pages in the passed range. This is a "data
297 * integrity" operation. It waits upon in-flight writeout before starting and
298 * waiting upon new writeout. If there was an IO error, return it.
300 * We need to re-take i_mutex during the generic_osync_inode list walk because
301 * it is otherwise livelockable.
303 int sync_page_range(struct inode *inode, struct address_space *mapping,
304 loff_t pos, loff_t count)
306 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
307 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
308 int ret;
310 if (!mapping_cap_writeback_dirty(mapping) || !count)
311 return 0;
312 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
313 if (ret == 0) {
314 mutex_lock(&inode->i_mutex);
315 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
316 mutex_unlock(&inode->i_mutex);
318 if (ret == 0)
319 ret = wait_on_page_writeback_range(mapping, start, end);
320 return ret;
322 EXPORT_SYMBOL(sync_page_range);
325 * sync_page_range_nolock
326 * @inode: target inode
327 * @mapping: target address_space
328 * @pos: beginning offset in pages to write
329 * @count: number of bytes to write
331 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
332 * as it forces O_SYNC writers to different parts of the same file
333 * to be serialised right until io completion.
335 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
336 loff_t pos, loff_t count)
338 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
339 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
340 int ret;
342 if (!mapping_cap_writeback_dirty(mapping) || !count)
343 return 0;
344 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
345 if (ret == 0)
346 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
347 if (ret == 0)
348 ret = wait_on_page_writeback_range(mapping, start, end);
349 return ret;
351 EXPORT_SYMBOL(sync_page_range_nolock);
354 * filemap_fdatawait - wait for all under-writeback pages to complete
355 * @mapping: address space structure to wait for
357 * Walk the list of under-writeback pages of the given address space
358 * and wait for all of them.
360 int filemap_fdatawait(struct address_space *mapping)
362 loff_t i_size = i_size_read(mapping->host);
364 if (i_size == 0)
365 return 0;
367 return wait_on_page_writeback_range(mapping, 0,
368 (i_size - 1) >> PAGE_CACHE_SHIFT);
370 EXPORT_SYMBOL(filemap_fdatawait);
372 int filemap_write_and_wait(struct address_space *mapping)
374 int err = 0;
376 if (mapping->nrpages) {
377 err = filemap_fdatawrite(mapping);
379 * Even if the above returned error, the pages may be
380 * written partially (e.g. -ENOSPC), so we wait for it.
381 * But the -EIO is special case, it may indicate the worst
382 * thing (e.g. bug) happened, so we avoid waiting for it.
384 if (err != -EIO) {
385 int err2 = filemap_fdatawait(mapping);
386 if (!err)
387 err = err2;
390 return err;
392 EXPORT_SYMBOL(filemap_write_and_wait);
395 * filemap_write_and_wait_range - write out & wait on a file range
396 * @mapping: the address_space for the pages
397 * @lstart: offset in bytes where the range starts
398 * @lend: offset in bytes where the range ends (inclusive)
400 * Write out and wait upon file offsets lstart->lend, inclusive.
402 * Note that `lend' is inclusive (describes the last byte to be written) so
403 * that this function can be used to write to the very end-of-file (end = -1).
405 int filemap_write_and_wait_range(struct address_space *mapping,
406 loff_t lstart, loff_t lend)
408 int err = 0;
410 if (mapping->nrpages) {
411 err = __filemap_fdatawrite_range(mapping, lstart, lend,
412 WB_SYNC_ALL);
413 /* See comment of filemap_write_and_wait() */
414 if (err != -EIO) {
415 int err2 = wait_on_page_writeback_range(mapping,
416 lstart >> PAGE_CACHE_SHIFT,
417 lend >> PAGE_CACHE_SHIFT);
418 if (!err)
419 err = err2;
422 return err;
426 * add_to_page_cache - add newly allocated pagecache pages
427 * @page: page to add
428 * @mapping: the page's address_space
429 * @offset: page index
430 * @gfp_mask: page allocation mode
432 * This function is used to add newly allocated pagecache pages;
433 * the page is new, so we can just run SetPageLocked() against it.
434 * The other page state flags were set by rmqueue().
436 * This function does not add the page to the LRU. The caller must do that.
438 int add_to_page_cache(struct page *page, struct address_space *mapping,
439 pgoff_t offset, gfp_t gfp_mask)
441 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
443 if (error == 0) {
444 write_lock_irq(&mapping->tree_lock);
445 error = radix_tree_insert(&mapping->page_tree, offset, page);
446 if (!error) {
447 page_cache_get(page);
448 SetPageLocked(page);
449 page->mapping = mapping;
450 page->index = offset;
451 mapping->nrpages++;
452 __inc_zone_page_state(page, NR_FILE_PAGES);
454 write_unlock_irq(&mapping->tree_lock);
455 radix_tree_preload_end();
457 return error;
459 EXPORT_SYMBOL(add_to_page_cache);
461 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
462 pgoff_t offset, gfp_t gfp_mask)
464 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
465 if (ret == 0)
466 lru_cache_add(page);
467 return ret;
470 #ifdef CONFIG_NUMA
471 struct page *__page_cache_alloc(gfp_t gfp)
473 if (cpuset_do_page_mem_spread()) {
474 int n = cpuset_mem_spread_node();
475 return alloc_pages_node(n, gfp, 0);
477 return alloc_pages(gfp, 0);
479 EXPORT_SYMBOL(__page_cache_alloc);
480 #endif
482 static int __sleep_on_page_lock(void *word)
484 io_schedule();
485 return 0;
489 * In order to wait for pages to become available there must be
490 * waitqueues associated with pages. By using a hash table of
491 * waitqueues where the bucket discipline is to maintain all
492 * waiters on the same queue and wake all when any of the pages
493 * become available, and for the woken contexts to check to be
494 * sure the appropriate page became available, this saves space
495 * at a cost of "thundering herd" phenomena during rare hash
496 * collisions.
498 static wait_queue_head_t *page_waitqueue(struct page *page)
500 const struct zone *zone = page_zone(page);
502 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
505 static inline void wake_up_page(struct page *page, int bit)
507 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
510 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
512 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
514 if (test_bit(bit_nr, &page->flags))
515 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
516 TASK_UNINTERRUPTIBLE);
518 EXPORT_SYMBOL(wait_on_page_bit);
521 * unlock_page - unlock a locked page
522 * @page: the page
524 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
525 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
526 * mechananism between PageLocked pages and PageWriteback pages is shared.
527 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
529 * The first mb is necessary to safely close the critical section opened by the
530 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
531 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
532 * parallel wait_on_page_locked()).
534 void fastcall unlock_page(struct page *page)
536 smp_mb__before_clear_bit();
537 if (!TestClearPageLocked(page))
538 BUG();
539 smp_mb__after_clear_bit();
540 wake_up_page(page, PG_locked);
542 EXPORT_SYMBOL(unlock_page);
545 * end_page_writeback - end writeback against a page
546 * @page: the page
548 void end_page_writeback(struct page *page)
550 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
551 if (!test_clear_page_writeback(page))
552 BUG();
554 smp_mb__after_clear_bit();
555 wake_up_page(page, PG_writeback);
557 EXPORT_SYMBOL(end_page_writeback);
560 * __lock_page - get a lock on the page, assuming we need to sleep to get it
561 * @page: the page to lock
563 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
564 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
565 * chances are that on the second loop, the block layer's plug list is empty,
566 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
568 void fastcall __lock_page(struct page *page)
570 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
572 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
573 TASK_UNINTERRUPTIBLE);
575 EXPORT_SYMBOL(__lock_page);
578 * Variant of lock_page that does not require the caller to hold a reference
579 * on the page's mapping.
581 void fastcall __lock_page_nosync(struct page *page)
583 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
584 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
585 TASK_UNINTERRUPTIBLE);
589 * find_get_page - find and get a page reference
590 * @mapping: the address_space to search
591 * @offset: the page index
593 * Is there a pagecache struct page at the given (mapping, offset) tuple?
594 * If yes, increment its refcount and return it; if no, return NULL.
596 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
598 struct page *page;
600 read_lock_irq(&mapping->tree_lock);
601 page = radix_tree_lookup(&mapping->page_tree, offset);
602 if (page)
603 page_cache_get(page);
604 read_unlock_irq(&mapping->tree_lock);
605 return page;
607 EXPORT_SYMBOL(find_get_page);
610 * find_lock_page - locate, pin and lock a pagecache page
611 * @mapping: the address_space to search
612 * @offset: the page index
614 * Locates the desired pagecache page, locks it, increments its reference
615 * count and returns its address.
617 * Returns zero if the page was not present. find_lock_page() may sleep.
619 struct page *find_lock_page(struct address_space *mapping,
620 pgoff_t offset)
622 struct page *page;
624 repeat:
625 read_lock_irq(&mapping->tree_lock);
626 page = radix_tree_lookup(&mapping->page_tree, offset);
627 if (page) {
628 page_cache_get(page);
629 if (TestSetPageLocked(page)) {
630 read_unlock_irq(&mapping->tree_lock);
631 __lock_page(page);
633 /* Has the page been truncated while we slept? */
634 if (unlikely(page->mapping != mapping)) {
635 unlock_page(page);
636 page_cache_release(page);
637 goto repeat;
639 VM_BUG_ON(page->index != offset);
640 goto out;
643 read_unlock_irq(&mapping->tree_lock);
644 out:
645 return page;
647 EXPORT_SYMBOL(find_lock_page);
650 * find_or_create_page - locate or add a pagecache page
651 * @mapping: the page's address_space
652 * @index: the page's index into the mapping
653 * @gfp_mask: page allocation mode
655 * Locates a page in the pagecache. If the page is not present, a new page
656 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
657 * LRU list. The returned page is locked and has its reference count
658 * incremented.
660 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
661 * allocation!
663 * find_or_create_page() returns the desired page's address, or zero on
664 * memory exhaustion.
666 struct page *find_or_create_page(struct address_space *mapping,
667 pgoff_t index, gfp_t gfp_mask)
669 struct page *page, *cached_page = NULL;
670 int err;
671 repeat:
672 page = find_lock_page(mapping, index);
673 if (!page) {
674 if (!cached_page) {
675 cached_page =
676 __page_cache_alloc(gfp_mask);
677 if (!cached_page)
678 return NULL;
680 err = add_to_page_cache_lru(cached_page, mapping,
681 index, gfp_mask);
682 if (!err) {
683 page = cached_page;
684 cached_page = NULL;
685 } else if (err == -EEXIST)
686 goto repeat;
688 if (cached_page)
689 page_cache_release(cached_page);
690 return page;
692 EXPORT_SYMBOL(find_or_create_page);
695 * find_get_pages - gang pagecache lookup
696 * @mapping: The address_space to search
697 * @start: The starting page index
698 * @nr_pages: The maximum number of pages
699 * @pages: Where the resulting pages are placed
701 * find_get_pages() will search for and return a group of up to
702 * @nr_pages pages in the mapping. The pages are placed at @pages.
703 * find_get_pages() takes a reference against the returned pages.
705 * The search returns a group of mapping-contiguous pages with ascending
706 * indexes. There may be holes in the indices due to not-present pages.
708 * find_get_pages() returns the number of pages which were found.
710 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
711 unsigned int nr_pages, struct page **pages)
713 unsigned int i;
714 unsigned int ret;
716 read_lock_irq(&mapping->tree_lock);
717 ret = radix_tree_gang_lookup(&mapping->page_tree,
718 (void **)pages, start, nr_pages);
719 for (i = 0; i < ret; i++)
720 page_cache_get(pages[i]);
721 read_unlock_irq(&mapping->tree_lock);
722 return ret;
726 * find_get_pages_contig - gang contiguous pagecache lookup
727 * @mapping: The address_space to search
728 * @index: The starting page index
729 * @nr_pages: The maximum number of pages
730 * @pages: Where the resulting pages are placed
732 * find_get_pages_contig() works exactly like find_get_pages(), except
733 * that the returned number of pages are guaranteed to be contiguous.
735 * find_get_pages_contig() returns the number of pages which were found.
737 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
738 unsigned int nr_pages, struct page **pages)
740 unsigned int i;
741 unsigned int ret;
743 read_lock_irq(&mapping->tree_lock);
744 ret = radix_tree_gang_lookup(&mapping->page_tree,
745 (void **)pages, index, nr_pages);
746 for (i = 0; i < ret; i++) {
747 if (pages[i]->mapping == NULL || pages[i]->index != index)
748 break;
750 page_cache_get(pages[i]);
751 index++;
753 read_unlock_irq(&mapping->tree_lock);
754 return i;
756 EXPORT_SYMBOL(find_get_pages_contig);
759 * find_get_pages_tag - find and return pages that match @tag
760 * @mapping: the address_space to search
761 * @index: the starting page index
762 * @tag: the tag index
763 * @nr_pages: the maximum number of pages
764 * @pages: where the resulting pages are placed
766 * Like find_get_pages, except we only return pages which are tagged with
767 * @tag. We update @index to index the next page for the traversal.
769 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
770 int tag, unsigned int nr_pages, struct page **pages)
772 unsigned int i;
773 unsigned int ret;
775 read_lock_irq(&mapping->tree_lock);
776 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
777 (void **)pages, *index, nr_pages, tag);
778 for (i = 0; i < ret; i++)
779 page_cache_get(pages[i]);
780 if (ret)
781 *index = pages[ret - 1]->index + 1;
782 read_unlock_irq(&mapping->tree_lock);
783 return ret;
785 EXPORT_SYMBOL(find_get_pages_tag);
788 * grab_cache_page_nowait - returns locked page at given index in given cache
789 * @mapping: target address_space
790 * @index: the page index
792 * Same as grab_cache_page(), but do not wait if the page is unavailable.
793 * This is intended for speculative data generators, where the data can
794 * be regenerated if the page couldn't be grabbed. This routine should
795 * be safe to call while holding the lock for another page.
797 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
798 * and deadlock against the caller's locked page.
800 struct page *
801 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
803 struct page *page = find_get_page(mapping, index);
805 if (page) {
806 if (!TestSetPageLocked(page))
807 return page;
808 page_cache_release(page);
809 return NULL;
811 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
812 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
813 page_cache_release(page);
814 page = NULL;
816 return page;
818 EXPORT_SYMBOL(grab_cache_page_nowait);
821 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
822 * a _large_ part of the i/o request. Imagine the worst scenario:
824 * ---R__________________________________________B__________
825 * ^ reading here ^ bad block(assume 4k)
827 * read(R) => miss => readahead(R...B) => media error => frustrating retries
828 * => failing the whole request => read(R) => read(R+1) =>
829 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
830 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
831 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
833 * It is going insane. Fix it by quickly scaling down the readahead size.
835 static void shrink_readahead_size_eio(struct file *filp,
836 struct file_ra_state *ra)
838 if (!ra->ra_pages)
839 return;
841 ra->ra_pages /= 4;
845 * do_generic_mapping_read - generic file read routine
846 * @mapping: address_space to be read
847 * @_ra: file's readahead state
848 * @filp: the file to read
849 * @ppos: current file position
850 * @desc: read_descriptor
851 * @actor: read method
853 * This is a generic file read routine, and uses the
854 * mapping->a_ops->readpage() function for the actual low-level stuff.
856 * This is really ugly. But the goto's actually try to clarify some
857 * of the logic when it comes to error handling etc.
859 * Note the struct file* is only passed for the use of readpage.
860 * It may be NULL.
862 void do_generic_mapping_read(struct address_space *mapping,
863 struct file_ra_state *ra,
864 struct file *filp,
865 loff_t *ppos,
866 read_descriptor_t *desc,
867 read_actor_t actor)
869 struct inode *inode = mapping->host;
870 pgoff_t index;
871 pgoff_t last_index;
872 pgoff_t prev_index;
873 unsigned long offset; /* offset into pagecache page */
874 unsigned int prev_offset;
875 struct page *cached_page;
876 int error;
878 cached_page = NULL;
879 index = *ppos >> PAGE_CACHE_SHIFT;
880 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
881 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
882 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
883 offset = *ppos & ~PAGE_CACHE_MASK;
885 for (;;) {
886 struct page *page;
887 pgoff_t end_index;
888 loff_t isize;
889 unsigned long nr, ret;
891 cond_resched();
892 find_page:
893 page = find_get_page(mapping, index);
894 if (!page) {
895 page_cache_sync_readahead(mapping,
896 ra, filp,
897 index, last_index - index);
898 page = find_get_page(mapping, index);
899 if (unlikely(page == NULL))
900 goto no_cached_page;
902 if (PageReadahead(page)) {
903 page_cache_async_readahead(mapping,
904 ra, filp, page,
905 index, last_index - index);
907 if (!PageUptodate(page))
908 goto page_not_up_to_date;
909 page_ok:
911 * i_size must be checked after we know the page is Uptodate.
913 * Checking i_size after the check allows us to calculate
914 * the correct value for "nr", which means the zero-filled
915 * part of the page is not copied back to userspace (unless
916 * another truncate extends the file - this is desired though).
919 isize = i_size_read(inode);
920 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
921 if (unlikely(!isize || index > end_index)) {
922 page_cache_release(page);
923 goto out;
926 /* nr is the maximum number of bytes to copy from this page */
927 nr = PAGE_CACHE_SIZE;
928 if (index == end_index) {
929 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
930 if (nr <= offset) {
931 page_cache_release(page);
932 goto out;
935 nr = nr - offset;
937 /* If users can be writing to this page using arbitrary
938 * virtual addresses, take care about potential aliasing
939 * before reading the page on the kernel side.
941 if (mapping_writably_mapped(mapping))
942 flush_dcache_page(page);
945 * When a sequential read accesses a page several times,
946 * only mark it as accessed the first time.
948 if (prev_index != index || offset != prev_offset)
949 mark_page_accessed(page);
950 prev_index = index;
953 * Ok, we have the page, and it's up-to-date, so
954 * now we can copy it to user space...
956 * The actor routine returns how many bytes were actually used..
957 * NOTE! This may not be the same as how much of a user buffer
958 * we filled up (we may be padding etc), so we can only update
959 * "pos" here (the actor routine has to update the user buffer
960 * pointers and the remaining count).
962 ret = actor(desc, page, offset, nr);
963 offset += ret;
964 index += offset >> PAGE_CACHE_SHIFT;
965 offset &= ~PAGE_CACHE_MASK;
966 prev_offset = offset;
968 page_cache_release(page);
969 if (ret == nr && desc->count)
970 continue;
971 goto out;
973 page_not_up_to_date:
974 /* Get exclusive access to the page ... */
975 lock_page(page);
977 /* Did it get truncated before we got the lock? */
978 if (!page->mapping) {
979 unlock_page(page);
980 page_cache_release(page);
981 continue;
984 /* Did somebody else fill it already? */
985 if (PageUptodate(page)) {
986 unlock_page(page);
987 goto page_ok;
990 readpage:
991 /* Start the actual read. The read will unlock the page. */
992 error = mapping->a_ops->readpage(filp, page);
994 if (unlikely(error)) {
995 if (error == AOP_TRUNCATED_PAGE) {
996 page_cache_release(page);
997 goto find_page;
999 goto readpage_error;
1002 if (!PageUptodate(page)) {
1003 lock_page(page);
1004 if (!PageUptodate(page)) {
1005 if (page->mapping == NULL) {
1007 * invalidate_inode_pages got it
1009 unlock_page(page);
1010 page_cache_release(page);
1011 goto find_page;
1013 unlock_page(page);
1014 error = -EIO;
1015 shrink_readahead_size_eio(filp, ra);
1016 goto readpage_error;
1018 unlock_page(page);
1021 goto page_ok;
1023 readpage_error:
1024 /* UHHUH! A synchronous read error occurred. Report it */
1025 desc->error = error;
1026 page_cache_release(page);
1027 goto out;
1029 no_cached_page:
1031 * Ok, it wasn't cached, so we need to create a new
1032 * page..
1034 if (!cached_page) {
1035 cached_page = page_cache_alloc_cold(mapping);
1036 if (!cached_page) {
1037 desc->error = -ENOMEM;
1038 goto out;
1041 error = add_to_page_cache_lru(cached_page, mapping,
1042 index, GFP_KERNEL);
1043 if (error) {
1044 if (error == -EEXIST)
1045 goto find_page;
1046 desc->error = error;
1047 goto out;
1049 page = cached_page;
1050 cached_page = NULL;
1051 goto readpage;
1054 out:
1055 ra->prev_pos = prev_index;
1056 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1057 ra->prev_pos |= prev_offset;
1059 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1060 if (cached_page)
1061 page_cache_release(cached_page);
1062 if (filp)
1063 file_accessed(filp);
1065 EXPORT_SYMBOL(do_generic_mapping_read);
1067 int file_read_actor(read_descriptor_t *desc, struct page *page,
1068 unsigned long offset, unsigned long size)
1070 char *kaddr;
1071 unsigned long left, count = desc->count;
1073 if (size > count)
1074 size = count;
1077 * Faults on the destination of a read are common, so do it before
1078 * taking the kmap.
1080 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1081 kaddr = kmap_atomic(page, KM_USER0);
1082 left = __copy_to_user_inatomic(desc->arg.buf,
1083 kaddr + offset, size);
1084 kunmap_atomic(kaddr, KM_USER0);
1085 if (left == 0)
1086 goto success;
1089 /* Do it the slow way */
1090 kaddr = kmap(page);
1091 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1092 kunmap(page);
1094 if (left) {
1095 size -= left;
1096 desc->error = -EFAULT;
1098 success:
1099 desc->count = count - size;
1100 desc->written += size;
1101 desc->arg.buf += size;
1102 return size;
1106 * Performs necessary checks before doing a write
1107 * @iov: io vector request
1108 * @nr_segs: number of segments in the iovec
1109 * @count: number of bytes to write
1110 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1112 * Adjust number of segments and amount of bytes to write (nr_segs should be
1113 * properly initialized first). Returns appropriate error code that caller
1114 * should return or zero in case that write should be allowed.
1116 int generic_segment_checks(const struct iovec *iov,
1117 unsigned long *nr_segs, size_t *count, int access_flags)
1119 unsigned long seg;
1120 size_t cnt = 0;
1121 for (seg = 0; seg < *nr_segs; seg++) {
1122 const struct iovec *iv = &iov[seg];
1125 * If any segment has a negative length, or the cumulative
1126 * length ever wraps negative then return -EINVAL.
1128 cnt += iv->iov_len;
1129 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1130 return -EINVAL;
1131 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1132 continue;
1133 if (seg == 0)
1134 return -EFAULT;
1135 *nr_segs = seg;
1136 cnt -= iv->iov_len; /* This segment is no good */
1137 break;
1139 *count = cnt;
1140 return 0;
1142 EXPORT_SYMBOL(generic_segment_checks);
1145 * generic_file_aio_read - generic filesystem read routine
1146 * @iocb: kernel I/O control block
1147 * @iov: io vector request
1148 * @nr_segs: number of segments in the iovec
1149 * @pos: current file position
1151 * This is the "read()" routine for all filesystems
1152 * that can use the page cache directly.
1154 ssize_t
1155 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1156 unsigned long nr_segs, loff_t pos)
1158 struct file *filp = iocb->ki_filp;
1159 ssize_t retval;
1160 unsigned long seg;
1161 size_t count;
1162 loff_t *ppos = &iocb->ki_pos;
1164 count = 0;
1165 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1166 if (retval)
1167 return retval;
1169 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1170 if (filp->f_flags & O_DIRECT) {
1171 loff_t size;
1172 struct address_space *mapping;
1173 struct inode *inode;
1175 mapping = filp->f_mapping;
1176 inode = mapping->host;
1177 retval = 0;
1178 if (!count)
1179 goto out; /* skip atime */
1180 size = i_size_read(inode);
1181 if (pos < size) {
1182 retval = generic_file_direct_IO(READ, iocb,
1183 iov, pos, nr_segs);
1184 if (retval > 0)
1185 *ppos = pos + retval;
1187 if (likely(retval != 0)) {
1188 file_accessed(filp);
1189 goto out;
1193 retval = 0;
1194 if (count) {
1195 for (seg = 0; seg < nr_segs; seg++) {
1196 read_descriptor_t desc;
1198 desc.written = 0;
1199 desc.arg.buf = iov[seg].iov_base;
1200 desc.count = iov[seg].iov_len;
1201 if (desc.count == 0)
1202 continue;
1203 desc.error = 0;
1204 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1205 retval += desc.written;
1206 if (desc.error) {
1207 retval = retval ?: desc.error;
1208 break;
1210 if (desc.count > 0)
1211 break;
1214 out:
1215 return retval;
1217 EXPORT_SYMBOL(generic_file_aio_read);
1219 static ssize_t
1220 do_readahead(struct address_space *mapping, struct file *filp,
1221 pgoff_t index, unsigned long nr)
1223 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1224 return -EINVAL;
1226 force_page_cache_readahead(mapping, filp, index,
1227 max_sane_readahead(nr));
1228 return 0;
1231 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1233 ssize_t ret;
1234 struct file *file;
1236 ret = -EBADF;
1237 file = fget(fd);
1238 if (file) {
1239 if (file->f_mode & FMODE_READ) {
1240 struct address_space *mapping = file->f_mapping;
1241 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1242 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1243 unsigned long len = end - start + 1;
1244 ret = do_readahead(mapping, file, start, len);
1246 fput(file);
1248 return ret;
1251 #ifdef CONFIG_MMU
1253 * page_cache_read - adds requested page to the page cache if not already there
1254 * @file: file to read
1255 * @offset: page index
1257 * This adds the requested page to the page cache if it isn't already there,
1258 * and schedules an I/O to read in its contents from disk.
1260 static int fastcall page_cache_read(struct file * file, pgoff_t offset)
1262 struct address_space *mapping = file->f_mapping;
1263 struct page *page;
1264 int ret;
1266 do {
1267 page = page_cache_alloc_cold(mapping);
1268 if (!page)
1269 return -ENOMEM;
1271 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1272 if (ret == 0)
1273 ret = mapping->a_ops->readpage(file, page);
1274 else if (ret == -EEXIST)
1275 ret = 0; /* losing race to add is OK */
1277 page_cache_release(page);
1279 } while (ret == AOP_TRUNCATED_PAGE);
1281 return ret;
1284 #define MMAP_LOTSAMISS (100)
1287 * filemap_fault - read in file data for page fault handling
1288 * @vma: vma in which the fault was taken
1289 * @vmf: struct vm_fault containing details of the fault
1291 * filemap_fault() is invoked via the vma operations vector for a
1292 * mapped memory region to read in file data during a page fault.
1294 * The goto's are kind of ugly, but this streamlines the normal case of having
1295 * it in the page cache, and handles the special cases reasonably without
1296 * having a lot of duplicated code.
1298 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1300 int error;
1301 struct file *file = vma->vm_file;
1302 struct address_space *mapping = file->f_mapping;
1303 struct file_ra_state *ra = &file->f_ra;
1304 struct inode *inode = mapping->host;
1305 struct page *page;
1306 unsigned long size;
1307 int did_readaround = 0;
1308 int ret = 0;
1310 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1311 if (vmf->pgoff >= size)
1312 goto outside_data_content;
1314 /* If we don't want any read-ahead, don't bother */
1315 if (VM_RandomReadHint(vma))
1316 goto no_cached_page;
1319 * Do we have something in the page cache already?
1321 retry_find:
1322 page = find_lock_page(mapping, vmf->pgoff);
1324 * For sequential accesses, we use the generic readahead logic.
1326 if (VM_SequentialReadHint(vma)) {
1327 if (!page) {
1328 page_cache_sync_readahead(mapping, ra, file,
1329 vmf->pgoff, 1);
1330 page = find_lock_page(mapping, vmf->pgoff);
1331 if (!page)
1332 goto no_cached_page;
1334 if (PageReadahead(page)) {
1335 page_cache_async_readahead(mapping, ra, file, page,
1336 vmf->pgoff, 1);
1340 if (!page) {
1341 unsigned long ra_pages;
1343 ra->mmap_miss++;
1346 * Do we miss much more than hit in this file? If so,
1347 * stop bothering with read-ahead. It will only hurt.
1349 if (ra->mmap_miss > MMAP_LOTSAMISS)
1350 goto no_cached_page;
1353 * To keep the pgmajfault counter straight, we need to
1354 * check did_readaround, as this is an inner loop.
1356 if (!did_readaround) {
1357 ret = VM_FAULT_MAJOR;
1358 count_vm_event(PGMAJFAULT);
1360 did_readaround = 1;
1361 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1362 if (ra_pages) {
1363 pgoff_t start = 0;
1365 if (vmf->pgoff > ra_pages / 2)
1366 start = vmf->pgoff - ra_pages / 2;
1367 do_page_cache_readahead(mapping, file, start, ra_pages);
1369 page = find_lock_page(mapping, vmf->pgoff);
1370 if (!page)
1371 goto no_cached_page;
1374 if (!did_readaround)
1375 ra->mmap_miss--;
1378 * We have a locked page in the page cache, now we need to check
1379 * that it's up-to-date. If not, it is going to be due to an error.
1381 if (unlikely(!PageUptodate(page)))
1382 goto page_not_uptodate;
1384 /* Must recheck i_size under page lock */
1385 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1386 if (unlikely(vmf->pgoff >= size)) {
1387 unlock_page(page);
1388 page_cache_release(page);
1389 goto outside_data_content;
1393 * Found the page and have a reference on it.
1395 mark_page_accessed(page);
1396 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1397 vmf->page = page;
1398 return ret | VM_FAULT_LOCKED;
1400 outside_data_content:
1402 * An external ptracer can access pages that normally aren't
1403 * accessible..
1405 if (vma->vm_mm == current->mm)
1406 return VM_FAULT_SIGBUS;
1408 /* Fall through to the non-read-ahead case */
1409 no_cached_page:
1411 * We're only likely to ever get here if MADV_RANDOM is in
1412 * effect.
1414 error = page_cache_read(file, vmf->pgoff);
1417 * The page we want has now been added to the page cache.
1418 * In the unlikely event that someone removed it in the
1419 * meantime, we'll just come back here and read it again.
1421 if (error >= 0)
1422 goto retry_find;
1425 * An error return from page_cache_read can result if the
1426 * system is low on memory, or a problem occurs while trying
1427 * to schedule I/O.
1429 if (error == -ENOMEM)
1430 return VM_FAULT_OOM;
1431 return VM_FAULT_SIGBUS;
1433 page_not_uptodate:
1434 /* IO error path */
1435 if (!did_readaround) {
1436 ret = VM_FAULT_MAJOR;
1437 count_vm_event(PGMAJFAULT);
1441 * Umm, take care of errors if the page isn't up-to-date.
1442 * Try to re-read it _once_. We do this synchronously,
1443 * because there really aren't any performance issues here
1444 * and we need to check for errors.
1446 ClearPageError(page);
1447 error = mapping->a_ops->readpage(file, page);
1448 page_cache_release(page);
1450 if (!error || error == AOP_TRUNCATED_PAGE)
1451 goto retry_find;
1453 /* Things didn't work out. Return zero to tell the mm layer so. */
1454 shrink_readahead_size_eio(file, ra);
1455 return VM_FAULT_SIGBUS;
1457 EXPORT_SYMBOL(filemap_fault);
1459 struct vm_operations_struct generic_file_vm_ops = {
1460 .fault = filemap_fault,
1463 /* This is used for a general mmap of a disk file */
1465 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1467 struct address_space *mapping = file->f_mapping;
1469 if (!mapping->a_ops->readpage)
1470 return -ENOEXEC;
1471 file_accessed(file);
1472 vma->vm_ops = &generic_file_vm_ops;
1473 vma->vm_flags |= VM_CAN_NONLINEAR;
1474 return 0;
1478 * This is for filesystems which do not implement ->writepage.
1480 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1482 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1483 return -EINVAL;
1484 return generic_file_mmap(file, vma);
1486 #else
1487 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1489 return -ENOSYS;
1491 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1493 return -ENOSYS;
1495 #endif /* CONFIG_MMU */
1497 EXPORT_SYMBOL(generic_file_mmap);
1498 EXPORT_SYMBOL(generic_file_readonly_mmap);
1500 static struct page *__read_cache_page(struct address_space *mapping,
1501 pgoff_t index,
1502 int (*filler)(void *,struct page*),
1503 void *data)
1505 struct page *page, *cached_page = NULL;
1506 int err;
1507 repeat:
1508 page = find_get_page(mapping, index);
1509 if (!page) {
1510 if (!cached_page) {
1511 cached_page = page_cache_alloc_cold(mapping);
1512 if (!cached_page)
1513 return ERR_PTR(-ENOMEM);
1515 err = add_to_page_cache_lru(cached_page, mapping,
1516 index, GFP_KERNEL);
1517 if (err == -EEXIST)
1518 goto repeat;
1519 if (err < 0) {
1520 /* Presumably ENOMEM for radix tree node */
1521 page_cache_release(cached_page);
1522 return ERR_PTR(err);
1524 page = cached_page;
1525 cached_page = NULL;
1526 err = filler(data, page);
1527 if (err < 0) {
1528 page_cache_release(page);
1529 page = ERR_PTR(err);
1532 if (cached_page)
1533 page_cache_release(cached_page);
1534 return page;
1538 * Same as read_cache_page, but don't wait for page to become unlocked
1539 * after submitting it to the filler.
1541 struct page *read_cache_page_async(struct address_space *mapping,
1542 pgoff_t index,
1543 int (*filler)(void *,struct page*),
1544 void *data)
1546 struct page *page;
1547 int err;
1549 retry:
1550 page = __read_cache_page(mapping, index, filler, data);
1551 if (IS_ERR(page))
1552 return page;
1553 if (PageUptodate(page))
1554 goto out;
1556 lock_page(page);
1557 if (!page->mapping) {
1558 unlock_page(page);
1559 page_cache_release(page);
1560 goto retry;
1562 if (PageUptodate(page)) {
1563 unlock_page(page);
1564 goto out;
1566 err = filler(data, page);
1567 if (err < 0) {
1568 page_cache_release(page);
1569 return ERR_PTR(err);
1571 out:
1572 mark_page_accessed(page);
1573 return page;
1575 EXPORT_SYMBOL(read_cache_page_async);
1578 * read_cache_page - read into page cache, fill it if needed
1579 * @mapping: the page's address_space
1580 * @index: the page index
1581 * @filler: function to perform the read
1582 * @data: destination for read data
1584 * Read into the page cache. If a page already exists, and PageUptodate() is
1585 * not set, try to fill the page then wait for it to become unlocked.
1587 * If the page does not get brought uptodate, return -EIO.
1589 struct page *read_cache_page(struct address_space *mapping,
1590 pgoff_t index,
1591 int (*filler)(void *,struct page*),
1592 void *data)
1594 struct page *page;
1596 page = read_cache_page_async(mapping, index, filler, data);
1597 if (IS_ERR(page))
1598 goto out;
1599 wait_on_page_locked(page);
1600 if (!PageUptodate(page)) {
1601 page_cache_release(page);
1602 page = ERR_PTR(-EIO);
1604 out:
1605 return page;
1607 EXPORT_SYMBOL(read_cache_page);
1610 * If the page was newly created, increment its refcount and add it to the
1611 * caller's lru-buffering pagevec. This function is specifically for
1612 * generic_file_write().
1614 static inline struct page *
1615 __grab_cache_page(struct address_space *mapping, unsigned long index,
1616 struct page **cached_page, struct pagevec *lru_pvec)
1618 int err;
1619 struct page *page;
1620 repeat:
1621 page = find_lock_page(mapping, index);
1622 if (!page) {
1623 if (!*cached_page) {
1624 *cached_page = page_cache_alloc(mapping);
1625 if (!*cached_page)
1626 return NULL;
1628 err = add_to_page_cache(*cached_page, mapping,
1629 index, GFP_KERNEL);
1630 if (err == -EEXIST)
1631 goto repeat;
1632 if (err == 0) {
1633 page = *cached_page;
1634 page_cache_get(page);
1635 if (!pagevec_add(lru_pvec, page))
1636 __pagevec_lru_add(lru_pvec);
1637 *cached_page = NULL;
1640 return page;
1644 * The logic we want is
1646 * if suid or (sgid and xgrp)
1647 * remove privs
1649 int should_remove_suid(struct dentry *dentry)
1651 mode_t mode = dentry->d_inode->i_mode;
1652 int kill = 0;
1654 /* suid always must be killed */
1655 if (unlikely(mode & S_ISUID))
1656 kill = ATTR_KILL_SUID;
1659 * sgid without any exec bits is just a mandatory locking mark; leave
1660 * it alone. If some exec bits are set, it's a real sgid; kill it.
1662 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1663 kill |= ATTR_KILL_SGID;
1665 if (unlikely(kill && !capable(CAP_FSETID)))
1666 return kill;
1668 return 0;
1670 EXPORT_SYMBOL(should_remove_suid);
1672 int __remove_suid(struct dentry *dentry, int kill)
1674 struct iattr newattrs;
1676 newattrs.ia_valid = ATTR_FORCE | kill;
1677 return notify_change(dentry, &newattrs);
1680 int remove_suid(struct dentry *dentry)
1682 int kill = should_remove_suid(dentry);
1684 if (unlikely(kill))
1685 return __remove_suid(dentry, kill);
1687 return 0;
1689 EXPORT_SYMBOL(remove_suid);
1691 size_t
1692 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1693 const struct iovec *iov, size_t base, size_t bytes)
1695 size_t copied = 0, left = 0;
1697 while (bytes) {
1698 char __user *buf = iov->iov_base + base;
1699 int copy = min(bytes, iov->iov_len - base);
1701 base = 0;
1702 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1703 copied += copy;
1704 bytes -= copy;
1705 vaddr += copy;
1706 iov++;
1708 if (unlikely(left))
1709 break;
1711 return copied - left;
1715 * Performs necessary checks before doing a write
1717 * Can adjust writing position or amount of bytes to write.
1718 * Returns appropriate error code that caller should return or
1719 * zero in case that write should be allowed.
1721 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1723 struct inode *inode = file->f_mapping->host;
1724 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1726 if (unlikely(*pos < 0))
1727 return -EINVAL;
1729 if (!isblk) {
1730 /* FIXME: this is for backwards compatibility with 2.4 */
1731 if (file->f_flags & O_APPEND)
1732 *pos = i_size_read(inode);
1734 if (limit != RLIM_INFINITY) {
1735 if (*pos >= limit) {
1736 send_sig(SIGXFSZ, current, 0);
1737 return -EFBIG;
1739 if (*count > limit - (typeof(limit))*pos) {
1740 *count = limit - (typeof(limit))*pos;
1746 * LFS rule
1748 if (unlikely(*pos + *count > MAX_NON_LFS &&
1749 !(file->f_flags & O_LARGEFILE))) {
1750 if (*pos >= MAX_NON_LFS) {
1751 return -EFBIG;
1753 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1754 *count = MAX_NON_LFS - (unsigned long)*pos;
1759 * Are we about to exceed the fs block limit ?
1761 * If we have written data it becomes a short write. If we have
1762 * exceeded without writing data we send a signal and return EFBIG.
1763 * Linus frestrict idea will clean these up nicely..
1765 if (likely(!isblk)) {
1766 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1767 if (*count || *pos > inode->i_sb->s_maxbytes) {
1768 return -EFBIG;
1770 /* zero-length writes at ->s_maxbytes are OK */
1773 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1774 *count = inode->i_sb->s_maxbytes - *pos;
1775 } else {
1776 #ifdef CONFIG_BLOCK
1777 loff_t isize;
1778 if (bdev_read_only(I_BDEV(inode)))
1779 return -EPERM;
1780 isize = i_size_read(inode);
1781 if (*pos >= isize) {
1782 if (*count || *pos > isize)
1783 return -ENOSPC;
1786 if (*pos + *count > isize)
1787 *count = isize - *pos;
1788 #else
1789 return -EPERM;
1790 #endif
1792 return 0;
1794 EXPORT_SYMBOL(generic_write_checks);
1796 ssize_t
1797 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1798 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1799 size_t count, size_t ocount)
1801 struct file *file = iocb->ki_filp;
1802 struct address_space *mapping = file->f_mapping;
1803 struct inode *inode = mapping->host;
1804 ssize_t written;
1806 if (count != ocount)
1807 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1809 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1810 if (written > 0) {
1811 loff_t end = pos + written;
1812 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1813 i_size_write(inode, end);
1814 mark_inode_dirty(inode);
1816 *ppos = end;
1820 * Sync the fs metadata but not the minor inode changes and
1821 * of course not the data as we did direct DMA for the IO.
1822 * i_mutex is held, which protects generic_osync_inode() from
1823 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
1825 if ((written >= 0 || written == -EIOCBQUEUED) &&
1826 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1827 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1828 if (err < 0)
1829 written = err;
1831 return written;
1833 EXPORT_SYMBOL(generic_file_direct_write);
1835 ssize_t
1836 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1837 unsigned long nr_segs, loff_t pos, loff_t *ppos,
1838 size_t count, ssize_t written)
1840 struct file *file = iocb->ki_filp;
1841 struct address_space * mapping = file->f_mapping;
1842 const struct address_space_operations *a_ops = mapping->a_ops;
1843 struct inode *inode = mapping->host;
1844 long status = 0;
1845 struct page *page;
1846 struct page *cached_page = NULL;
1847 size_t bytes;
1848 struct pagevec lru_pvec;
1849 const struct iovec *cur_iov = iov; /* current iovec */
1850 size_t iov_base = 0; /* offset in the current iovec */
1851 char __user *buf;
1853 pagevec_init(&lru_pvec, 0);
1856 * handle partial DIO write. Adjust cur_iov if needed.
1858 if (likely(nr_segs == 1))
1859 buf = iov->iov_base + written;
1860 else {
1861 filemap_set_next_iovec(&cur_iov, &iov_base, written);
1862 buf = cur_iov->iov_base + iov_base;
1865 do {
1866 unsigned long index;
1867 unsigned long offset;
1868 size_t copied;
1870 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1871 index = pos >> PAGE_CACHE_SHIFT;
1872 bytes = PAGE_CACHE_SIZE - offset;
1874 /* Limit the size of the copy to the caller's write size */
1875 bytes = min(bytes, count);
1877 /* We only need to worry about prefaulting when writes are from
1878 * user-space. NFSd uses vfs_writev with several non-aligned
1879 * segments in the vector, and limiting to one segment a time is
1880 * a noticeable performance for re-write
1882 if (!segment_eq(get_fs(), KERNEL_DS)) {
1884 * Limit the size of the copy to that of the current
1885 * segment, because fault_in_pages_readable() doesn't
1886 * know how to walk segments.
1888 bytes = min(bytes, cur_iov->iov_len - iov_base);
1891 * Bring in the user page that we will copy from
1892 * _first_. Otherwise there's a nasty deadlock on
1893 * copying from the same page as we're writing to,
1894 * without it being marked up-to-date.
1896 fault_in_pages_readable(buf, bytes);
1898 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1899 if (!page) {
1900 status = -ENOMEM;
1901 break;
1904 if (unlikely(bytes == 0)) {
1905 status = 0;
1906 copied = 0;
1907 goto zero_length_segment;
1910 status = a_ops->prepare_write(file, page, offset, offset+bytes);
1911 if (unlikely(status)) {
1912 loff_t isize = i_size_read(inode);
1914 if (status != AOP_TRUNCATED_PAGE)
1915 unlock_page(page);
1916 page_cache_release(page);
1917 if (status == AOP_TRUNCATED_PAGE)
1918 continue;
1920 * prepare_write() may have instantiated a few blocks
1921 * outside i_size. Trim these off again.
1923 if (pos + bytes > isize)
1924 vmtruncate(inode, isize);
1925 break;
1927 if (likely(nr_segs == 1))
1928 copied = filemap_copy_from_user(page, offset,
1929 buf, bytes);
1930 else
1931 copied = filemap_copy_from_user_iovec(page, offset,
1932 cur_iov, iov_base, bytes);
1933 flush_dcache_page(page);
1934 status = a_ops->commit_write(file, page, offset, offset+bytes);
1935 if (status == AOP_TRUNCATED_PAGE) {
1936 page_cache_release(page);
1937 continue;
1939 zero_length_segment:
1940 if (likely(copied >= 0)) {
1941 if (!status)
1942 status = copied;
1944 if (status >= 0) {
1945 written += status;
1946 count -= status;
1947 pos += status;
1948 buf += status;
1949 if (unlikely(nr_segs > 1)) {
1950 filemap_set_next_iovec(&cur_iov,
1951 &iov_base, status);
1952 if (count)
1953 buf = cur_iov->iov_base +
1954 iov_base;
1955 } else {
1956 iov_base += status;
1960 if (unlikely(copied != bytes))
1961 if (status >= 0)
1962 status = -EFAULT;
1963 unlock_page(page);
1964 mark_page_accessed(page);
1965 page_cache_release(page);
1966 if (status < 0)
1967 break;
1968 balance_dirty_pages_ratelimited(mapping);
1969 cond_resched();
1970 } while (count);
1971 *ppos = pos;
1973 if (cached_page)
1974 page_cache_release(cached_page);
1977 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
1979 if (likely(status >= 0)) {
1980 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1981 if (!a_ops->writepage || !is_sync_kiocb(iocb))
1982 status = generic_osync_inode(inode, mapping,
1983 OSYNC_METADATA|OSYNC_DATA);
1988 * If we get here for O_DIRECT writes then we must have fallen through
1989 * to buffered writes (block instantiation inside i_size). So we sync
1990 * the file data here, to try to honour O_DIRECT expectations.
1992 if (unlikely(file->f_flags & O_DIRECT) && written)
1993 status = filemap_write_and_wait(mapping);
1995 pagevec_lru_add(&lru_pvec);
1996 return written ? written : status;
1998 EXPORT_SYMBOL(generic_file_buffered_write);
2000 static ssize_t
2001 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2002 unsigned long nr_segs, loff_t *ppos)
2004 struct file *file = iocb->ki_filp;
2005 struct address_space * mapping = file->f_mapping;
2006 size_t ocount; /* original count */
2007 size_t count; /* after file limit checks */
2008 struct inode *inode = mapping->host;
2009 loff_t pos;
2010 ssize_t written;
2011 ssize_t err;
2013 ocount = 0;
2014 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2015 if (err)
2016 return err;
2018 count = ocount;
2019 pos = *ppos;
2021 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2023 /* We can write back this queue in page reclaim */
2024 current->backing_dev_info = mapping->backing_dev_info;
2025 written = 0;
2027 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2028 if (err)
2029 goto out;
2031 if (count == 0)
2032 goto out;
2034 err = remove_suid(file->f_path.dentry);
2035 if (err)
2036 goto out;
2038 file_update_time(file);
2040 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2041 if (unlikely(file->f_flags & O_DIRECT)) {
2042 loff_t endbyte;
2043 ssize_t written_buffered;
2045 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2046 ppos, count, ocount);
2047 if (written < 0 || written == count)
2048 goto out;
2050 * direct-io write to a hole: fall through to buffered I/O
2051 * for completing the rest of the request.
2053 pos += written;
2054 count -= written;
2055 written_buffered = generic_file_buffered_write(iocb, iov,
2056 nr_segs, pos, ppos, count,
2057 written);
2059 * If generic_file_buffered_write() retuned a synchronous error
2060 * then we want to return the number of bytes which were
2061 * direct-written, or the error code if that was zero. Note
2062 * that this differs from normal direct-io semantics, which
2063 * will return -EFOO even if some bytes were written.
2065 if (written_buffered < 0) {
2066 err = written_buffered;
2067 goto out;
2071 * We need to ensure that the page cache pages are written to
2072 * disk and invalidated to preserve the expected O_DIRECT
2073 * semantics.
2075 endbyte = pos + written_buffered - written - 1;
2076 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2077 SYNC_FILE_RANGE_WAIT_BEFORE|
2078 SYNC_FILE_RANGE_WRITE|
2079 SYNC_FILE_RANGE_WAIT_AFTER);
2080 if (err == 0) {
2081 written = written_buffered;
2082 invalidate_mapping_pages(mapping,
2083 pos >> PAGE_CACHE_SHIFT,
2084 endbyte >> PAGE_CACHE_SHIFT);
2085 } else {
2087 * We don't know how much we wrote, so just return
2088 * the number of bytes which were direct-written
2091 } else {
2092 written = generic_file_buffered_write(iocb, iov, nr_segs,
2093 pos, ppos, count, written);
2095 out:
2096 current->backing_dev_info = NULL;
2097 return written ? written : err;
2100 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2101 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2103 struct file *file = iocb->ki_filp;
2104 struct address_space *mapping = file->f_mapping;
2105 struct inode *inode = mapping->host;
2106 ssize_t ret;
2108 BUG_ON(iocb->ki_pos != pos);
2110 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2111 &iocb->ki_pos);
2113 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2114 ssize_t err;
2116 err = sync_page_range_nolock(inode, mapping, pos, ret);
2117 if (err < 0)
2118 ret = err;
2120 return ret;
2122 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2124 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2125 unsigned long nr_segs, loff_t pos)
2127 struct file *file = iocb->ki_filp;
2128 struct address_space *mapping = file->f_mapping;
2129 struct inode *inode = mapping->host;
2130 ssize_t ret;
2132 BUG_ON(iocb->ki_pos != pos);
2134 mutex_lock(&inode->i_mutex);
2135 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2136 &iocb->ki_pos);
2137 mutex_unlock(&inode->i_mutex);
2139 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2140 ssize_t err;
2142 err = sync_page_range(inode, mapping, pos, ret);
2143 if (err < 0)
2144 ret = err;
2146 return ret;
2148 EXPORT_SYMBOL(generic_file_aio_write);
2151 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2152 * went wrong during pagecache shootdown.
2154 static ssize_t
2155 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2156 loff_t offset, unsigned long nr_segs)
2158 struct file *file = iocb->ki_filp;
2159 struct address_space *mapping = file->f_mapping;
2160 ssize_t retval;
2161 size_t write_len;
2162 pgoff_t end = 0; /* silence gcc */
2165 * If it's a write, unmap all mmappings of the file up-front. This
2166 * will cause any pte dirty bits to be propagated into the pageframes
2167 * for the subsequent filemap_write_and_wait().
2169 if (rw == WRITE) {
2170 write_len = iov_length(iov, nr_segs);
2171 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2172 if (mapping_mapped(mapping))
2173 unmap_mapping_range(mapping, offset, write_len, 0);
2176 retval = filemap_write_and_wait(mapping);
2177 if (retval)
2178 goto out;
2181 * After a write we want buffered reads to be sure to go to disk to get
2182 * the new data. We invalidate clean cached page from the region we're
2183 * about to write. We do this *before* the write so that we can return
2184 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2186 if (rw == WRITE && mapping->nrpages) {
2187 retval = invalidate_inode_pages2_range(mapping,
2188 offset >> PAGE_CACHE_SHIFT, end);
2189 if (retval)
2190 goto out;
2193 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2194 if (retval)
2195 goto out;
2198 * Finally, try again to invalidate clean pages which might have been
2199 * faulted in by get_user_pages() if the source of the write was an
2200 * mmap()ed region of the file we're writing. That's a pretty crazy
2201 * thing to do, so we don't support it 100%. If this invalidation
2202 * fails and we have -EIOCBQUEUED we ignore the failure.
2204 if (rw == WRITE && mapping->nrpages) {
2205 int err = invalidate_inode_pages2_range(mapping,
2206 offset >> PAGE_CACHE_SHIFT, end);
2207 if (err && retval >= 0)
2208 retval = err;
2210 out:
2211 return retval;
2215 * try_to_release_page() - release old fs-specific metadata on a page
2217 * @page: the page which the kernel is trying to free
2218 * @gfp_mask: memory allocation flags (and I/O mode)
2220 * The address_space is to try to release any data against the page
2221 * (presumably at page->private). If the release was successful, return `1'.
2222 * Otherwise return zero.
2224 * The @gfp_mask argument specifies whether I/O may be performed to release
2225 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2227 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2229 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2231 struct address_space * const mapping = page->mapping;
2233 BUG_ON(!PageLocked(page));
2234 if (PageWriteback(page))
2235 return 0;
2237 if (mapping && mapping->a_ops->releasepage)
2238 return mapping->a_ops->releasepage(page, gfp_mask);
2239 return try_to_free_buffers(page);
2242 EXPORT_SYMBOL(try_to_release_page);