fs: use kmem_cache_zalloc instead
[pv_ops_mirror.git] / drivers / mtd / ubi / scan.c
blobc7b0afc9d2808e13b64ce2fae7d6755b2c99041e
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Author: Artem Bityutskiy (Битюцкий Артём)
22 * UBI scanning unit.
24 * This unit is responsible for scanning the flash media, checking UBI
25 * headers and providing complete information about the UBI flash image.
27 * The scanning information is represented by a &struct ubi_scan_info' object.
28 * Information about found volumes is represented by &struct ubi_scan_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33 * These objects are kept in per-volume RB-trees with the root at the
34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35 * an RB-tree of per-volume objects and each of these objects is the root of
36 * RB-tree of per-eraseblock objects.
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
43 #include <linux/err.h>
44 #include <linux/crc32.h>
45 #include "ubi.h"
47 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
48 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
49 #else
50 #define paranoid_check_si(ubi, si) 0
51 #endif
53 /* Temporary variables used during scanning */
54 static struct ubi_ec_hdr *ech;
55 static struct ubi_vid_hdr *vidh;
57 /**
58 * add_to_list - add physical eraseblock to a list.
59 * @si: scanning information
60 * @pnum: physical eraseblock number to add
61 * @ec: erase counter of the physical eraseblock
62 * @list: the list to add to
64 * This function adds physical eraseblock @pnum to free, erase, corrupted or
65 * alien lists. Returns zero in case of success and a negative error code in
66 * case of failure.
68 static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
69 struct list_head *list)
71 struct ubi_scan_leb *seb;
73 if (list == &si->free)
74 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
75 else if (list == &si->erase)
76 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
77 else if (list == &si->corr)
78 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
79 else if (list == &si->alien)
80 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
81 else
82 BUG();
84 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
85 if (!seb)
86 return -ENOMEM;
88 seb->pnum = pnum;
89 seb->ec = ec;
90 list_add_tail(&seb->u.list, list);
91 return 0;
94 /**
95 * commit_to_mean_value - commit intermediate results to the final mean erase
96 * counter value.
97 * @si: scanning information
99 * This is a helper function which calculates partial mean erase counter mean
100 * value and adds it to the resulting mean value. As we can work only in
101 * integer arithmetic and we want to calculate the mean value of erase counter
102 * accurately, we first sum erase counter values in @si->ec_sum variable and
103 * count these components in @si->ec_count. If this temporary @si->ec_sum is
104 * going to overflow, we calculate the partial mean value
105 * (@si->ec_sum/@si->ec_count) and add it to @si->mean_ec.
107 static void commit_to_mean_value(struct ubi_scan_info *si)
109 si->ec_sum /= si->ec_count;
110 if (si->ec_sum % si->ec_count >= si->ec_count / 2)
111 si->mean_ec += 1;
112 si->mean_ec += si->ec_sum;
116 * validate_vid_hdr - check that volume identifier header is correct and
117 * consistent.
118 * @vid_hdr: the volume identifier header to check
119 * @sv: information about the volume this logical eraseblock belongs to
120 * @pnum: physical eraseblock number the VID header came from
122 * This function checks that data stored in @vid_hdr is consistent. Returns
123 * non-zero if an inconsistency was found and zero if not.
125 * Note, UBI does sanity check of everything it reads from the flash media.
126 * Most of the checks are done in the I/O unit. Here we check that the
127 * information in the VID header is consistent to the information in other VID
128 * headers of the same volume.
130 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
131 const struct ubi_scan_volume *sv, int pnum)
133 int vol_type = vid_hdr->vol_type;
134 int vol_id = be32_to_cpu(vid_hdr->vol_id);
135 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
136 int data_pad = be32_to_cpu(vid_hdr->data_pad);
138 if (sv->leb_count != 0) {
139 int sv_vol_type;
142 * This is not the first logical eraseblock belonging to this
143 * volume. Ensure that the data in its VID header is consistent
144 * to the data in previous logical eraseblock headers.
147 if (vol_id != sv->vol_id) {
148 dbg_err("inconsistent vol_id");
149 goto bad;
152 if (sv->vol_type == UBI_STATIC_VOLUME)
153 sv_vol_type = UBI_VID_STATIC;
154 else
155 sv_vol_type = UBI_VID_DYNAMIC;
157 if (vol_type != sv_vol_type) {
158 dbg_err("inconsistent vol_type");
159 goto bad;
162 if (used_ebs != sv->used_ebs) {
163 dbg_err("inconsistent used_ebs");
164 goto bad;
167 if (data_pad != sv->data_pad) {
168 dbg_err("inconsistent data_pad");
169 goto bad;
173 return 0;
175 bad:
176 ubi_err("inconsistent VID header at PEB %d", pnum);
177 ubi_dbg_dump_vid_hdr(vid_hdr);
178 ubi_dbg_dump_sv(sv);
179 return -EINVAL;
183 * add_volume - add volume to the scanning information.
184 * @si: scanning information
185 * @vol_id: ID of the volume to add
186 * @pnum: physical eraseblock number
187 * @vid_hdr: volume identifier header
189 * If the volume corresponding to the @vid_hdr logical eraseblock is already
190 * present in the scanning information, this function does nothing. Otherwise
191 * it adds corresponding volume to the scanning information. Returns a pointer
192 * to the scanning volume object in case of success and a negative error code
193 * in case of failure.
195 static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
196 int pnum,
197 const struct ubi_vid_hdr *vid_hdr)
199 struct ubi_scan_volume *sv;
200 struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
202 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
204 /* Walk the volume RB-tree to look if this volume is already present */
205 while (*p) {
206 parent = *p;
207 sv = rb_entry(parent, struct ubi_scan_volume, rb);
209 if (vol_id == sv->vol_id)
210 return sv;
212 if (vol_id > sv->vol_id)
213 p = &(*p)->rb_left;
214 else
215 p = &(*p)->rb_right;
218 /* The volume is absent - add it */
219 sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
220 if (!sv)
221 return ERR_PTR(-ENOMEM);
223 sv->highest_lnum = sv->leb_count = 0;
224 sv->vol_id = vol_id;
225 sv->root = RB_ROOT;
226 sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
227 sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
228 sv->compat = vid_hdr->compat;
229 sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
230 : UBI_STATIC_VOLUME;
231 if (vol_id > si->highest_vol_id)
232 si->highest_vol_id = vol_id;
234 rb_link_node(&sv->rb, parent, p);
235 rb_insert_color(&sv->rb, &si->volumes);
236 si->vols_found += 1;
237 dbg_bld("added volume %d", vol_id);
238 return sv;
242 * compare_lebs - find out which logical eraseblock is newer.
243 * @ubi: UBI device description object
244 * @seb: first logical eraseblock to compare
245 * @pnum: physical eraseblock number of the second logical eraseblock to
246 * compare
247 * @vid_hdr: volume identifier header of the second logical eraseblock
249 * This function compares 2 copies of a LEB and informs which one is newer. In
250 * case of success this function returns a positive value, in case of failure, a
251 * negative error code is returned. The success return codes use the following
252 * bits:
253 * o bit 0 is cleared: the first PEB (described by @seb) is newer then the
254 * second PEB (described by @pnum and @vid_hdr);
255 * o bit 0 is set: the second PEB is newer;
256 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
257 * o bit 1 is set: bit-flips were detected in the newer LEB;
258 * o bit 2 is cleared: the older LEB is not corrupted;
259 * o bit 2 is set: the older LEB is corrupted.
261 static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
262 int pnum, const struct ubi_vid_hdr *vid_hdr)
264 void *buf;
265 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
266 uint32_t data_crc, crc;
267 struct ubi_vid_hdr *vh = NULL;
268 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
270 if (seb->sqnum == 0 && sqnum2 == 0) {
271 long long abs, v1 = seb->leb_ver, v2 = be32_to_cpu(vid_hdr->leb_ver);
274 * UBI constantly increases the logical eraseblock version
275 * number and it can overflow. Thus, we have to bear in mind
276 * that versions that are close to %0xFFFFFFFF are less then
277 * versions that are close to %0.
279 * The UBI WL unit guarantees that the number of pending tasks
280 * is not greater then %0x7FFFFFFF. So, if the difference
281 * between any two versions is greater or equivalent to
282 * %0x7FFFFFFF, there was an overflow and the logical
283 * eraseblock with lower version is actually newer then the one
284 * with higher version.
286 * FIXME: but this is anyway obsolete and will be removed at
287 * some point.
290 dbg_bld("using old crappy leb_ver stuff");
292 abs = v1 - v2;
293 if (abs < 0)
294 abs = -abs;
296 if (abs < 0x7FFFFFFF)
297 /* Non-overflow situation */
298 second_is_newer = (v2 > v1);
299 else
300 second_is_newer = (v2 < v1);
301 } else
302 /* Obviously the LEB with lower sequence counter is older */
303 second_is_newer = sqnum2 > seb->sqnum;
306 * Now we know which copy is newer. If the copy flag of the PEB with
307 * newer version is not set, then we just return, otherwise we have to
308 * check data CRC. For the second PEB we already have the VID header,
309 * for the first one - we'll need to re-read it from flash.
311 * FIXME: this may be optimized so that we wouldn't read twice.
314 if (second_is_newer) {
315 if (!vid_hdr->copy_flag) {
316 /* It is not a copy, so it is newer */
317 dbg_bld("second PEB %d is newer, copy_flag is unset",
318 pnum);
319 return 1;
321 } else {
322 pnum = seb->pnum;
324 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
325 if (!vh)
326 return -ENOMEM;
328 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
329 if (err) {
330 if (err == UBI_IO_BITFLIPS)
331 bitflips = 1;
332 else {
333 dbg_err("VID of PEB %d header is bad, but it "
334 "was OK earlier", pnum);
335 if (err > 0)
336 err = -EIO;
338 goto out_free_vidh;
342 if (!vh->copy_flag) {
343 /* It is not a copy, so it is newer */
344 dbg_bld("first PEB %d is newer, copy_flag is unset",
345 pnum);
346 err = bitflips << 1;
347 goto out_free_vidh;
350 vid_hdr = vh;
353 /* Read the data of the copy and check the CRC */
355 len = be32_to_cpu(vid_hdr->data_size);
356 buf = vmalloc(len);
357 if (!buf) {
358 err = -ENOMEM;
359 goto out_free_vidh;
362 err = ubi_io_read_data(ubi, buf, pnum, 0, len);
363 if (err && err != UBI_IO_BITFLIPS)
364 goto out_free_buf;
366 data_crc = be32_to_cpu(vid_hdr->data_crc);
367 crc = crc32(UBI_CRC32_INIT, buf, len);
368 if (crc != data_crc) {
369 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
370 pnum, crc, data_crc);
371 corrupted = 1;
372 bitflips = 0;
373 second_is_newer = !second_is_newer;
374 } else {
375 dbg_bld("PEB %d CRC is OK", pnum);
376 bitflips = !!err;
379 vfree(buf);
380 ubi_free_vid_hdr(ubi, vh);
382 if (second_is_newer)
383 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
384 else
385 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
387 return second_is_newer | (bitflips << 1) | (corrupted << 2);
389 out_free_buf:
390 vfree(buf);
391 out_free_vidh:
392 ubi_free_vid_hdr(ubi, vh);
393 ubi_assert(err < 0);
394 return err;
398 * ubi_scan_add_used - add information about a physical eraseblock to the
399 * scanning information.
400 * @ubi: UBI device description object
401 * @si: scanning information
402 * @pnum: the physical eraseblock number
403 * @ec: erase counter
404 * @vid_hdr: the volume identifier header
405 * @bitflips: if bit-flips were detected when this physical eraseblock was read
407 * This function adds information about a used physical eraseblock to the
408 * 'used' tree of the corresponding volume. The function is rather complex
409 * because it has to handle cases when this is not the first physical
410 * eraseblock belonging to the same logical eraseblock, and the newer one has
411 * to be picked, while the older one has to be dropped. This function returns
412 * zero in case of success and a negative error code in case of failure.
414 int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
415 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
416 int bitflips)
418 int err, vol_id, lnum;
419 uint32_t leb_ver;
420 unsigned long long sqnum;
421 struct ubi_scan_volume *sv;
422 struct ubi_scan_leb *seb;
423 struct rb_node **p, *parent = NULL;
425 vol_id = be32_to_cpu(vid_hdr->vol_id);
426 lnum = be32_to_cpu(vid_hdr->lnum);
427 sqnum = be64_to_cpu(vid_hdr->sqnum);
428 leb_ver = be32_to_cpu(vid_hdr->leb_ver);
430 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, ver %u, bitflips %d",
431 pnum, vol_id, lnum, ec, sqnum, leb_ver, bitflips);
433 sv = add_volume(si, vol_id, pnum, vid_hdr);
434 if (IS_ERR(sv) < 0)
435 return PTR_ERR(sv);
437 if (si->max_sqnum < sqnum)
438 si->max_sqnum = sqnum;
441 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
442 * if this is the first instance of this logical eraseblock or not.
444 p = &sv->root.rb_node;
445 while (*p) {
446 int cmp_res;
448 parent = *p;
449 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
450 if (lnum != seb->lnum) {
451 if (lnum < seb->lnum)
452 p = &(*p)->rb_left;
453 else
454 p = &(*p)->rb_right;
455 continue;
459 * There is already a physical eraseblock describing the same
460 * logical eraseblock present.
463 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
464 "LEB ver %u, EC %d", seb->pnum, seb->sqnum,
465 seb->leb_ver, seb->ec);
468 * Make sure that the logical eraseblocks have different
469 * versions. Otherwise the image is bad.
471 if (seb->leb_ver == leb_ver && leb_ver != 0) {
472 ubi_err("two LEBs with same version %u", leb_ver);
473 ubi_dbg_dump_seb(seb, 0);
474 ubi_dbg_dump_vid_hdr(vid_hdr);
475 return -EINVAL;
479 * Make sure that the logical eraseblocks have different
480 * sequence numbers. Otherwise the image is bad.
482 * FIXME: remove 'sqnum != 0' check when leb_ver is removed.
484 if (seb->sqnum == sqnum && sqnum != 0) {
485 ubi_err("two LEBs with same sequence number %llu",
486 sqnum);
487 ubi_dbg_dump_seb(seb, 0);
488 ubi_dbg_dump_vid_hdr(vid_hdr);
489 return -EINVAL;
493 * Now we have to drop the older one and preserve the newer
494 * one.
496 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
497 if (cmp_res < 0)
498 return cmp_res;
500 if (cmp_res & 1) {
502 * This logical eraseblock is newer then the one
503 * found earlier.
505 err = validate_vid_hdr(vid_hdr, sv, pnum);
506 if (err)
507 return err;
509 if (cmp_res & 4)
510 err = add_to_list(si, seb->pnum, seb->ec,
511 &si->corr);
512 else
513 err = add_to_list(si, seb->pnum, seb->ec,
514 &si->erase);
515 if (err)
516 return err;
518 seb->ec = ec;
519 seb->pnum = pnum;
520 seb->scrub = ((cmp_res & 2) || bitflips);
521 seb->sqnum = sqnum;
522 seb->leb_ver = leb_ver;
524 if (sv->highest_lnum == lnum)
525 sv->last_data_size =
526 be32_to_cpu(vid_hdr->data_size);
528 return 0;
529 } else {
531 * This logical eraseblock is older then the one found
532 * previously.
534 if (cmp_res & 4)
535 return add_to_list(si, pnum, ec, &si->corr);
536 else
537 return add_to_list(si, pnum, ec, &si->erase);
542 * We've met this logical eraseblock for the first time, add it to the
543 * scanning information.
546 err = validate_vid_hdr(vid_hdr, sv, pnum);
547 if (err)
548 return err;
550 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
551 if (!seb)
552 return -ENOMEM;
554 seb->ec = ec;
555 seb->pnum = pnum;
556 seb->lnum = lnum;
557 seb->sqnum = sqnum;
558 seb->scrub = bitflips;
559 seb->leb_ver = leb_ver;
561 if (sv->highest_lnum <= lnum) {
562 sv->highest_lnum = lnum;
563 sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
566 sv->leb_count += 1;
567 rb_link_node(&seb->u.rb, parent, p);
568 rb_insert_color(&seb->u.rb, &sv->root);
569 return 0;
573 * ubi_scan_find_sv - find information about a particular volume in the
574 * scanning information.
575 * @si: scanning information
576 * @vol_id: the requested volume ID
578 * This function returns a pointer to the volume description or %NULL if there
579 * are no data about this volume in the scanning information.
581 struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
582 int vol_id)
584 struct ubi_scan_volume *sv;
585 struct rb_node *p = si->volumes.rb_node;
587 while (p) {
588 sv = rb_entry(p, struct ubi_scan_volume, rb);
590 if (vol_id == sv->vol_id)
591 return sv;
593 if (vol_id > sv->vol_id)
594 p = p->rb_left;
595 else
596 p = p->rb_right;
599 return NULL;
603 * ubi_scan_find_seb - find information about a particular logical
604 * eraseblock in the volume scanning information.
605 * @sv: a pointer to the volume scanning information
606 * @lnum: the requested logical eraseblock
608 * This function returns a pointer to the scanning logical eraseblock or %NULL
609 * if there are no data about it in the scanning volume information.
611 struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
612 int lnum)
614 struct ubi_scan_leb *seb;
615 struct rb_node *p = sv->root.rb_node;
617 while (p) {
618 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
620 if (lnum == seb->lnum)
621 return seb;
623 if (lnum > seb->lnum)
624 p = p->rb_left;
625 else
626 p = p->rb_right;
629 return NULL;
633 * ubi_scan_rm_volume - delete scanning information about a volume.
634 * @si: scanning information
635 * @sv: the volume scanning information to delete
637 void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
639 struct rb_node *rb;
640 struct ubi_scan_leb *seb;
642 dbg_bld("remove scanning information about volume %d", sv->vol_id);
644 while ((rb = rb_first(&sv->root))) {
645 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
646 rb_erase(&seb->u.rb, &sv->root);
647 list_add_tail(&seb->u.list, &si->erase);
650 rb_erase(&sv->rb, &si->volumes);
651 kfree(sv);
652 si->vols_found -= 1;
656 * ubi_scan_erase_peb - erase a physical eraseblock.
657 * @ubi: UBI device description object
658 * @si: scanning information
659 * @pnum: physical eraseblock number to erase;
660 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
662 * This function erases physical eraseblock 'pnum', and writes the erase
663 * counter header to it. This function should only be used on UBI device
664 * initialization stages, when the EBA unit had not been yet initialized. This
665 * function returns zero in case of success and a negative error code in case
666 * of failure.
668 int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
669 int pnum, int ec)
671 int err;
672 struct ubi_ec_hdr *ec_hdr;
674 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
676 * Erase counter overflow. Upgrade UBI and use 64-bit
677 * erase counters internally.
679 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
680 return -EINVAL;
683 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
684 if (!ec_hdr)
685 return -ENOMEM;
687 ec_hdr->ec = cpu_to_be64(ec);
689 err = ubi_io_sync_erase(ubi, pnum, 0);
690 if (err < 0)
691 goto out_free;
693 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
695 out_free:
696 kfree(ec_hdr);
697 return err;
701 * ubi_scan_get_free_peb - get a free physical eraseblock.
702 * @ubi: UBI device description object
703 * @si: scanning information
705 * This function returns a free physical eraseblock. It is supposed to be
706 * called on the UBI initialization stages when the wear-leveling unit is not
707 * initialized yet. This function picks a physical eraseblocks from one of the
708 * lists, writes the EC header if it is needed, and removes it from the list.
710 * This function returns scanning physical eraseblock information in case of
711 * success and an error code in case of failure.
713 struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
714 struct ubi_scan_info *si)
716 int err = 0, i;
717 struct ubi_scan_leb *seb;
719 if (!list_empty(&si->free)) {
720 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
721 list_del(&seb->u.list);
722 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
723 return seb;
726 for (i = 0; i < 2; i++) {
727 struct list_head *head;
728 struct ubi_scan_leb *tmp_seb;
730 if (i == 0)
731 head = &si->erase;
732 else
733 head = &si->corr;
736 * We try to erase the first physical eraseblock from the @head
737 * list and pick it if we succeed, or try to erase the
738 * next one if not. And so forth. We don't want to take care
739 * about bad eraseblocks here - they'll be handled later.
741 list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
742 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
743 seb->ec = si->mean_ec;
745 err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
746 if (err)
747 continue;
749 seb->ec += 1;
750 list_del(&seb->u.list);
751 dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
752 return seb;
756 ubi_err("no eraseblocks found");
757 return ERR_PTR(-ENOSPC);
761 * process_eb - read UBI headers, check them and add corresponding data
762 * to the scanning information.
763 * @ubi: UBI device description object
764 * @si: scanning information
765 * @pnum: the physical eraseblock number
767 * This function returns a zero if the physical eraseblock was successfully
768 * handled and a negative error code in case of failure.
770 static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, int pnum)
772 long long ec;
773 int err, bitflips = 0, vol_id, ec_corr = 0;
775 dbg_bld("scan PEB %d", pnum);
777 /* Skip bad physical eraseblocks */
778 err = ubi_io_is_bad(ubi, pnum);
779 if (err < 0)
780 return err;
781 else if (err) {
783 * FIXME: this is actually duty of the I/O unit to initialize
784 * this, but MTD does not provide enough information.
786 si->bad_peb_count += 1;
787 return 0;
790 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
791 if (err < 0)
792 return err;
793 else if (err == UBI_IO_BITFLIPS)
794 bitflips = 1;
795 else if (err == UBI_IO_PEB_EMPTY)
796 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
797 else if (err == UBI_IO_BAD_EC_HDR) {
799 * We have to also look at the VID header, possibly it is not
800 * corrupted. Set %bitflips flag in order to make this PEB be
801 * moved and EC be re-created.
803 ec_corr = 1;
804 ec = UBI_SCAN_UNKNOWN_EC;
805 bitflips = 1;
808 si->is_empty = 0;
810 if (!ec_corr) {
811 /* Make sure UBI version is OK */
812 if (ech->version != UBI_VERSION) {
813 ubi_err("this UBI version is %d, image version is %d",
814 UBI_VERSION, (int)ech->version);
815 return -EINVAL;
818 ec = be64_to_cpu(ech->ec);
819 if (ec > UBI_MAX_ERASECOUNTER) {
821 * Erase counter overflow. The EC headers have 64 bits
822 * reserved, but we anyway make use of only 31 bit
823 * values, as this seems to be enough for any existing
824 * flash. Upgrade UBI and use 64-bit erase counters
825 * internally.
827 ubi_err("erase counter overflow, max is %d",
828 UBI_MAX_ERASECOUNTER);
829 ubi_dbg_dump_ec_hdr(ech);
830 return -EINVAL;
834 /* OK, we've done with the EC header, let's look at the VID header */
836 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
837 if (err < 0)
838 return err;
839 else if (err == UBI_IO_BITFLIPS)
840 bitflips = 1;
841 else if (err == UBI_IO_BAD_VID_HDR ||
842 (err == UBI_IO_PEB_FREE && ec_corr)) {
843 /* VID header is corrupted */
844 err = add_to_list(si, pnum, ec, &si->corr);
845 if (err)
846 return err;
847 goto adjust_mean_ec;
848 } else if (err == UBI_IO_PEB_FREE) {
849 /* No VID header - the physical eraseblock is free */
850 err = add_to_list(si, pnum, ec, &si->free);
851 if (err)
852 return err;
853 goto adjust_mean_ec;
856 vol_id = be32_to_cpu(vidh->vol_id);
857 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOL_ID) {
858 int lnum = be32_to_cpu(vidh->lnum);
860 /* Unsupported internal volume */
861 switch (vidh->compat) {
862 case UBI_COMPAT_DELETE:
863 ubi_msg("\"delete\" compatible internal volume %d:%d"
864 " found, remove it", vol_id, lnum);
865 err = add_to_list(si, pnum, ec, &si->corr);
866 if (err)
867 return err;
868 break;
870 case UBI_COMPAT_RO:
871 ubi_msg("read-only compatible internal volume %d:%d"
872 " found, switch to read-only mode",
873 vol_id, lnum);
874 ubi->ro_mode = 1;
875 break;
877 case UBI_COMPAT_PRESERVE:
878 ubi_msg("\"preserve\" compatible internal volume %d:%d"
879 " found", vol_id, lnum);
880 err = add_to_list(si, pnum, ec, &si->alien);
881 if (err)
882 return err;
883 si->alien_peb_count += 1;
884 return 0;
886 case UBI_COMPAT_REJECT:
887 ubi_err("incompatible internal volume %d:%d found",
888 vol_id, lnum);
889 return -EINVAL;
893 /* Both UBI headers seem to be fine */
894 err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
895 if (err)
896 return err;
898 adjust_mean_ec:
899 if (!ec_corr) {
900 if (si->ec_sum + ec < ec) {
901 commit_to_mean_value(si);
902 si->ec_sum = 0;
903 si->ec_count = 0;
904 } else {
905 si->ec_sum += ec;
906 si->ec_count += 1;
909 if (ec > si->max_ec)
910 si->max_ec = ec;
911 if (ec < si->min_ec)
912 si->min_ec = ec;
915 return 0;
919 * ubi_scan - scan an MTD device.
920 * @ubi: UBI device description object
922 * This function does full scanning of an MTD device and returns complete
923 * information about it. In case of failure, an error code is returned.
925 struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
927 int err, pnum;
928 struct rb_node *rb1, *rb2;
929 struct ubi_scan_volume *sv;
930 struct ubi_scan_leb *seb;
931 struct ubi_scan_info *si;
933 si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
934 if (!si)
935 return ERR_PTR(-ENOMEM);
937 INIT_LIST_HEAD(&si->corr);
938 INIT_LIST_HEAD(&si->free);
939 INIT_LIST_HEAD(&si->erase);
940 INIT_LIST_HEAD(&si->alien);
941 si->volumes = RB_ROOT;
942 si->is_empty = 1;
944 err = -ENOMEM;
945 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
946 if (!ech)
947 goto out_si;
949 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
950 if (!vidh)
951 goto out_ech;
953 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
954 cond_resched();
956 dbg_msg("process PEB %d", pnum);
957 err = process_eb(ubi, si, pnum);
958 if (err < 0)
959 goto out_vidh;
962 dbg_msg("scanning is finished");
964 /* Finish mean erase counter calculations */
965 if (si->ec_count)
966 commit_to_mean_value(si);
968 if (si->is_empty)
969 ubi_msg("empty MTD device detected");
972 * In case of unknown erase counter we use the mean erase counter
973 * value.
975 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
976 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
977 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
978 seb->ec = si->mean_ec;
981 list_for_each_entry(seb, &si->free, u.list) {
982 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
983 seb->ec = si->mean_ec;
986 list_for_each_entry(seb, &si->corr, u.list)
987 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
988 seb->ec = si->mean_ec;
990 list_for_each_entry(seb, &si->erase, u.list)
991 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
992 seb->ec = si->mean_ec;
994 err = paranoid_check_si(ubi, si);
995 if (err) {
996 if (err > 0)
997 err = -EINVAL;
998 goto out_vidh;
1001 ubi_free_vid_hdr(ubi, vidh);
1002 kfree(ech);
1004 return si;
1006 out_vidh:
1007 ubi_free_vid_hdr(ubi, vidh);
1008 out_ech:
1009 kfree(ech);
1010 out_si:
1011 ubi_scan_destroy_si(si);
1012 return ERR_PTR(err);
1016 * destroy_sv - free the scanning volume information
1017 * @sv: scanning volume information
1019 * This function destroys the volume RB-tree (@sv->root) and the scanning
1020 * volume information.
1022 static void destroy_sv(struct ubi_scan_volume *sv)
1024 struct ubi_scan_leb *seb;
1025 struct rb_node *this = sv->root.rb_node;
1027 while (this) {
1028 if (this->rb_left)
1029 this = this->rb_left;
1030 else if (this->rb_right)
1031 this = this->rb_right;
1032 else {
1033 seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1034 this = rb_parent(this);
1035 if (this) {
1036 if (this->rb_left == &seb->u.rb)
1037 this->rb_left = NULL;
1038 else
1039 this->rb_right = NULL;
1042 kfree(seb);
1045 kfree(sv);
1049 * ubi_scan_destroy_si - destroy scanning information.
1050 * @si: scanning information
1052 void ubi_scan_destroy_si(struct ubi_scan_info *si)
1054 struct ubi_scan_leb *seb, *seb_tmp;
1055 struct ubi_scan_volume *sv;
1056 struct rb_node *rb;
1058 list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1059 list_del(&seb->u.list);
1060 kfree(seb);
1062 list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1063 list_del(&seb->u.list);
1064 kfree(seb);
1066 list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1067 list_del(&seb->u.list);
1068 kfree(seb);
1070 list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1071 list_del(&seb->u.list);
1072 kfree(seb);
1075 /* Destroy the volume RB-tree */
1076 rb = si->volumes.rb_node;
1077 while (rb) {
1078 if (rb->rb_left)
1079 rb = rb->rb_left;
1080 else if (rb->rb_right)
1081 rb = rb->rb_right;
1082 else {
1083 sv = rb_entry(rb, struct ubi_scan_volume, rb);
1085 rb = rb_parent(rb);
1086 if (rb) {
1087 if (rb->rb_left == &sv->rb)
1088 rb->rb_left = NULL;
1089 else
1090 rb->rb_right = NULL;
1093 destroy_sv(sv);
1097 kfree(si);
1100 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1103 * paranoid_check_si - check if the scanning information is correct and
1104 * consistent.
1105 * @ubi: UBI device description object
1106 * @si: scanning information
1108 * This function returns zero if the scanning information is all right, %1 if
1109 * not and a negative error code if an error occurred.
1111 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
1113 int pnum, err, vols_found = 0;
1114 struct rb_node *rb1, *rb2;
1115 struct ubi_scan_volume *sv;
1116 struct ubi_scan_leb *seb, *last_seb;
1117 uint8_t *buf;
1120 * At first, check that scanning information is OK.
1122 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1123 int leb_count = 0;
1125 cond_resched();
1127 vols_found += 1;
1129 if (si->is_empty) {
1130 ubi_err("bad is_empty flag");
1131 goto bad_sv;
1134 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1135 sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1136 sv->data_pad < 0 || sv->last_data_size < 0) {
1137 ubi_err("negative values");
1138 goto bad_sv;
1141 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1142 sv->vol_id < UBI_INTERNAL_VOL_START) {
1143 ubi_err("bad vol_id");
1144 goto bad_sv;
1147 if (sv->vol_id > si->highest_vol_id) {
1148 ubi_err("highest_vol_id is %d, but vol_id %d is there",
1149 si->highest_vol_id, sv->vol_id);
1150 goto out;
1153 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1154 sv->vol_type != UBI_STATIC_VOLUME) {
1155 ubi_err("bad vol_type");
1156 goto bad_sv;
1159 if (sv->data_pad > ubi->leb_size / 2) {
1160 ubi_err("bad data_pad");
1161 goto bad_sv;
1164 last_seb = NULL;
1165 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1166 cond_resched();
1168 last_seb = seb;
1169 leb_count += 1;
1171 if (seb->pnum < 0 || seb->ec < 0) {
1172 ubi_err("negative values");
1173 goto bad_seb;
1176 if (seb->ec < si->min_ec) {
1177 ubi_err("bad si->min_ec (%d), %d found",
1178 si->min_ec, seb->ec);
1179 goto bad_seb;
1182 if (seb->ec > si->max_ec) {
1183 ubi_err("bad si->max_ec (%d), %d found",
1184 si->max_ec, seb->ec);
1185 goto bad_seb;
1188 if (seb->pnum >= ubi->peb_count) {
1189 ubi_err("too high PEB number %d, total PEBs %d",
1190 seb->pnum, ubi->peb_count);
1191 goto bad_seb;
1194 if (sv->vol_type == UBI_STATIC_VOLUME) {
1195 if (seb->lnum >= sv->used_ebs) {
1196 ubi_err("bad lnum or used_ebs");
1197 goto bad_seb;
1199 } else {
1200 if (sv->used_ebs != 0) {
1201 ubi_err("non-zero used_ebs");
1202 goto bad_seb;
1206 if (seb->lnum > sv->highest_lnum) {
1207 ubi_err("incorrect highest_lnum or lnum");
1208 goto bad_seb;
1212 if (sv->leb_count != leb_count) {
1213 ubi_err("bad leb_count, %d objects in the tree",
1214 leb_count);
1215 goto bad_sv;
1218 if (!last_seb)
1219 continue;
1221 seb = last_seb;
1223 if (seb->lnum != sv->highest_lnum) {
1224 ubi_err("bad highest_lnum");
1225 goto bad_seb;
1229 if (vols_found != si->vols_found) {
1230 ubi_err("bad si->vols_found %d, should be %d",
1231 si->vols_found, vols_found);
1232 goto out;
1235 /* Check that scanning information is correct */
1236 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1237 last_seb = NULL;
1238 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1239 int vol_type;
1241 cond_resched();
1243 last_seb = seb;
1245 err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1246 if (err && err != UBI_IO_BITFLIPS) {
1247 ubi_err("VID header is not OK (%d)", err);
1248 if (err > 0)
1249 err = -EIO;
1250 return err;
1253 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1254 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1255 if (sv->vol_type != vol_type) {
1256 ubi_err("bad vol_type");
1257 goto bad_vid_hdr;
1260 if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
1261 ubi_err("bad sqnum %llu", seb->sqnum);
1262 goto bad_vid_hdr;
1265 if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
1266 ubi_err("bad vol_id %d", sv->vol_id);
1267 goto bad_vid_hdr;
1270 if (sv->compat != vidh->compat) {
1271 ubi_err("bad compat %d", vidh->compat);
1272 goto bad_vid_hdr;
1275 if (seb->lnum != be32_to_cpu(vidh->lnum)) {
1276 ubi_err("bad lnum %d", seb->lnum);
1277 goto bad_vid_hdr;
1280 if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1281 ubi_err("bad used_ebs %d", sv->used_ebs);
1282 goto bad_vid_hdr;
1285 if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
1286 ubi_err("bad data_pad %d", sv->data_pad);
1287 goto bad_vid_hdr;
1290 if (seb->leb_ver != be32_to_cpu(vidh->leb_ver)) {
1291 ubi_err("bad leb_ver %u", seb->leb_ver);
1292 goto bad_vid_hdr;
1296 if (!last_seb)
1297 continue;
1299 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
1300 ubi_err("bad highest_lnum %d", sv->highest_lnum);
1301 goto bad_vid_hdr;
1304 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
1305 ubi_err("bad last_data_size %d", sv->last_data_size);
1306 goto bad_vid_hdr;
1311 * Make sure that all the physical eraseblocks are in one of the lists
1312 * or trees.
1314 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1315 if (!buf)
1316 return -ENOMEM;
1318 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1319 err = ubi_io_is_bad(ubi, pnum);
1320 if (err < 0) {
1321 kfree(buf);
1322 return err;
1324 else if (err)
1325 buf[pnum] = 1;
1328 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1329 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1330 buf[seb->pnum] = 1;
1332 list_for_each_entry(seb, &si->free, u.list)
1333 buf[seb->pnum] = 1;
1335 list_for_each_entry(seb, &si->corr, u.list)
1336 buf[seb->pnum] = 1;
1338 list_for_each_entry(seb, &si->erase, u.list)
1339 buf[seb->pnum] = 1;
1341 list_for_each_entry(seb, &si->alien, u.list)
1342 buf[seb->pnum] = 1;
1344 err = 0;
1345 for (pnum = 0; pnum < ubi->peb_count; pnum++)
1346 if (!buf[pnum]) {
1347 ubi_err("PEB %d is not referred", pnum);
1348 err = 1;
1351 kfree(buf);
1352 if (err)
1353 goto out;
1354 return 0;
1356 bad_seb:
1357 ubi_err("bad scanning information about LEB %d", seb->lnum);
1358 ubi_dbg_dump_seb(seb, 0);
1359 ubi_dbg_dump_sv(sv);
1360 goto out;
1362 bad_sv:
1363 ubi_err("bad scanning information about volume %d", sv->vol_id);
1364 ubi_dbg_dump_sv(sv);
1365 goto out;
1367 bad_vid_hdr:
1368 ubi_err("bad scanning information about volume %d", sv->vol_id);
1369 ubi_dbg_dump_sv(sv);
1370 ubi_dbg_dump_vid_hdr(vidh);
1372 out:
1373 ubi_dbg_dump_stack();
1374 return 1;
1377 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */