fs: use kmem_cache_zalloc instead
[pv_ops_mirror.git] / drivers / net / 8139cp.c
bloba453eda834d52e3584755367169ada0ff22e4bc6
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
19 See the file COPYING in this distribution for more information.
21 Contributors:
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
27 TODO:
28 * Test Tx checksumming thoroughly
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
49 #define DRV_NAME "8139cp"
50 #define DRV_VERSION "1.3"
51 #define DRV_RELDATE "Mar 22, 2004"
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/kernel.h>
57 #include <linux/compiler.h>
58 #include <linux/netdevice.h>
59 #include <linux/etherdevice.h>
60 #include <linux/init.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/delay.h>
64 #include <linux/ethtool.h>
65 #include <linux/mii.h>
66 #include <linux/if_vlan.h>
67 #include <linux/crc32.h>
68 #include <linux/in.h>
69 #include <linux/ip.h>
70 #include <linux/tcp.h>
71 #include <linux/udp.h>
72 #include <linux/cache.h>
73 #include <asm/io.h>
74 #include <asm/irq.h>
75 #include <asm/uaccess.h>
77 /* VLAN tagging feature enable/disable */
78 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
79 #define CP_VLAN_TAG_USED 1
80 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
81 do { (tx_desc)->opts2 = cpu_to_le32(vlan_tag_value); } while (0)
82 #else
83 #define CP_VLAN_TAG_USED 0
84 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
85 do { (tx_desc)->opts2 = 0; } while (0)
86 #endif
88 /* These identify the driver base version and may not be removed. */
89 static char version[] =
90 KERN_INFO DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
92 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
93 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
94 MODULE_VERSION(DRV_VERSION);
95 MODULE_LICENSE("GPL");
97 static int debug = -1;
98 module_param(debug, int, 0);
99 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
101 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
102 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
103 static int multicast_filter_limit = 32;
104 module_param(multicast_filter_limit, int, 0);
105 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
107 #define PFX DRV_NAME ": "
109 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
110 NETIF_MSG_PROBE | \
111 NETIF_MSG_LINK)
112 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
113 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
114 #define CP_REGS_SIZE (0xff + 1)
115 #define CP_REGS_VER 1 /* version 1 */
116 #define CP_RX_RING_SIZE 64
117 #define CP_TX_RING_SIZE 64
118 #define CP_RING_BYTES \
119 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
120 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
121 CP_STATS_SIZE)
122 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
123 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
124 #define TX_BUFFS_AVAIL(CP) \
125 (((CP)->tx_tail <= (CP)->tx_head) ? \
126 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
127 (CP)->tx_tail - (CP)->tx_head - 1)
129 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
130 #define RX_OFFSET 2
131 #define CP_INTERNAL_PHY 32
133 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
134 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
135 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
136 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
137 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
139 /* Time in jiffies before concluding the transmitter is hung. */
140 #define TX_TIMEOUT (6*HZ)
142 /* hardware minimum and maximum for a single frame's data payload */
143 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
144 #define CP_MAX_MTU 4096
146 enum {
147 /* NIC register offsets */
148 MAC0 = 0x00, /* Ethernet hardware address. */
149 MAR0 = 0x08, /* Multicast filter. */
150 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
151 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
152 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
153 Cmd = 0x37, /* Command register */
154 IntrMask = 0x3C, /* Interrupt mask */
155 IntrStatus = 0x3E, /* Interrupt status */
156 TxConfig = 0x40, /* Tx configuration */
157 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
158 RxConfig = 0x44, /* Rx configuration */
159 RxMissed = 0x4C, /* 24 bits valid, write clears */
160 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
161 Config1 = 0x52, /* Config1 */
162 Config3 = 0x59, /* Config3 */
163 Config4 = 0x5A, /* Config4 */
164 MultiIntr = 0x5C, /* Multiple interrupt select */
165 BasicModeCtrl = 0x62, /* MII BMCR */
166 BasicModeStatus = 0x64, /* MII BMSR */
167 NWayAdvert = 0x66, /* MII ADVERTISE */
168 NWayLPAR = 0x68, /* MII LPA */
169 NWayExpansion = 0x6A, /* MII Expansion */
170 Config5 = 0xD8, /* Config5 */
171 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
172 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
173 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
174 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
175 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
176 TxThresh = 0xEC, /* Early Tx threshold */
177 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
178 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
180 /* Tx and Rx status descriptors */
181 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
182 RingEnd = (1 << 30), /* End of descriptor ring */
183 FirstFrag = (1 << 29), /* First segment of a packet */
184 LastFrag = (1 << 28), /* Final segment of a packet */
185 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
186 MSSShift = 16, /* MSS value position */
187 MSSMask = 0xfff, /* MSS value: 11 bits */
188 TxError = (1 << 23), /* Tx error summary */
189 RxError = (1 << 20), /* Rx error summary */
190 IPCS = (1 << 18), /* Calculate IP checksum */
191 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
192 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
193 TxVlanTag = (1 << 17), /* Add VLAN tag */
194 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
195 IPFail = (1 << 15), /* IP checksum failed */
196 UDPFail = (1 << 14), /* UDP/IP checksum failed */
197 TCPFail = (1 << 13), /* TCP/IP checksum failed */
198 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
199 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
200 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
201 RxProtoTCP = 1,
202 RxProtoUDP = 2,
203 RxProtoIP = 3,
204 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
205 TxOWC = (1 << 22), /* Tx Out-of-window collision */
206 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
207 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
208 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
209 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
210 RxErrFrame = (1 << 27), /* Rx frame alignment error */
211 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
212 RxErrCRC = (1 << 18), /* Rx CRC error */
213 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
214 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
215 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
217 /* StatsAddr register */
218 DumpStats = (1 << 3), /* Begin stats dump */
220 /* RxConfig register */
221 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
222 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
223 AcceptErr = 0x20, /* Accept packets with CRC errors */
224 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
225 AcceptBroadcast = 0x08, /* Accept broadcast packets */
226 AcceptMulticast = 0x04, /* Accept multicast packets */
227 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
228 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
230 /* IntrMask / IntrStatus registers */
231 PciErr = (1 << 15), /* System error on the PCI bus */
232 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
233 LenChg = (1 << 13), /* Cable length change */
234 SWInt = (1 << 8), /* Software-requested interrupt */
235 TxEmpty = (1 << 7), /* No Tx descriptors available */
236 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
237 LinkChg = (1 << 5), /* Packet underrun, or link change */
238 RxEmpty = (1 << 4), /* No Rx descriptors available */
239 TxErr = (1 << 3), /* Tx error */
240 TxOK = (1 << 2), /* Tx packet sent */
241 RxErr = (1 << 1), /* Rx error */
242 RxOK = (1 << 0), /* Rx packet received */
243 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
244 but hardware likes to raise it */
246 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
247 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
248 RxErr | RxOK | IntrResvd,
250 /* C mode command register */
251 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
252 RxOn = (1 << 3), /* Rx mode enable */
253 TxOn = (1 << 2), /* Tx mode enable */
255 /* C+ mode command register */
256 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
257 RxChkSum = (1 << 5), /* Rx checksum offload enable */
258 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
259 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
260 CpRxOn = (1 << 1), /* Rx mode enable */
261 CpTxOn = (1 << 0), /* Tx mode enable */
263 /* Cfg9436 EEPROM control register */
264 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
265 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
267 /* TxConfig register */
268 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
269 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
271 /* Early Tx Threshold register */
272 TxThreshMask = 0x3f, /* Mask bits 5-0 */
273 TxThreshMax = 2048, /* Max early Tx threshold */
275 /* Config1 register */
276 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
277 LWACT = (1 << 4), /* LWAKE active mode */
278 PMEnable = (1 << 0), /* Enable various PM features of chip */
280 /* Config3 register */
281 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
282 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
283 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
285 /* Config4 register */
286 LWPTN = (1 << 1), /* LWAKE Pattern */
287 LWPME = (1 << 4), /* LANWAKE vs PMEB */
289 /* Config5 register */
290 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
291 MWF = (1 << 5), /* Accept Multicast wakeup frame */
292 UWF = (1 << 4), /* Accept Unicast wakeup frame */
293 LANWake = (1 << 1), /* Enable LANWake signal */
294 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
296 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
297 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
298 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
301 static const unsigned int cp_rx_config =
302 (RX_FIFO_THRESH << RxCfgFIFOShift) |
303 (RX_DMA_BURST << RxCfgDMAShift);
305 struct cp_desc {
306 __le32 opts1;
307 __le32 opts2;
308 __le64 addr;
311 struct cp_dma_stats {
312 __le64 tx_ok;
313 __le64 rx_ok;
314 __le64 tx_err;
315 __le32 rx_err;
316 __le16 rx_fifo;
317 __le16 frame_align;
318 __le32 tx_ok_1col;
319 __le32 tx_ok_mcol;
320 __le64 rx_ok_phys;
321 __le64 rx_ok_bcast;
322 __le32 rx_ok_mcast;
323 __le16 tx_abort;
324 __le16 tx_underrun;
325 } __attribute__((packed));
327 struct cp_extra_stats {
328 unsigned long rx_frags;
331 struct cp_private {
332 void __iomem *regs;
333 struct net_device *dev;
334 spinlock_t lock;
335 u32 msg_enable;
337 struct napi_struct napi;
339 struct pci_dev *pdev;
340 u32 rx_config;
341 u16 cpcmd;
343 struct net_device_stats net_stats;
344 struct cp_extra_stats cp_stats;
346 unsigned rx_head ____cacheline_aligned;
347 unsigned rx_tail;
348 struct cp_desc *rx_ring;
349 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
351 unsigned tx_head ____cacheline_aligned;
352 unsigned tx_tail;
353 struct cp_desc *tx_ring;
354 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
356 unsigned rx_buf_sz;
357 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
359 #if CP_VLAN_TAG_USED
360 struct vlan_group *vlgrp;
361 #endif
362 dma_addr_t ring_dma;
364 struct mii_if_info mii_if;
367 #define cpr8(reg) readb(cp->regs + (reg))
368 #define cpr16(reg) readw(cp->regs + (reg))
369 #define cpr32(reg) readl(cp->regs + (reg))
370 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
371 #define cpw16(reg,val) writew((val), cp->regs + (reg))
372 #define cpw32(reg,val) writel((val), cp->regs + (reg))
373 #define cpw8_f(reg,val) do { \
374 writeb((val), cp->regs + (reg)); \
375 readb(cp->regs + (reg)); \
376 } while (0)
377 #define cpw16_f(reg,val) do { \
378 writew((val), cp->regs + (reg)); \
379 readw(cp->regs + (reg)); \
380 } while (0)
381 #define cpw32_f(reg,val) do { \
382 writel((val), cp->regs + (reg)); \
383 readl(cp->regs + (reg)); \
384 } while (0)
387 static void __cp_set_rx_mode (struct net_device *dev);
388 static void cp_tx (struct cp_private *cp);
389 static void cp_clean_rings (struct cp_private *cp);
390 #ifdef CONFIG_NET_POLL_CONTROLLER
391 static void cp_poll_controller(struct net_device *dev);
392 #endif
393 static int cp_get_eeprom_len(struct net_device *dev);
394 static int cp_get_eeprom(struct net_device *dev,
395 struct ethtool_eeprom *eeprom, u8 *data);
396 static int cp_set_eeprom(struct net_device *dev,
397 struct ethtool_eeprom *eeprom, u8 *data);
399 static struct pci_device_id cp_pci_tbl[] = {
400 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
401 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
402 { },
404 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
406 static struct {
407 const char str[ETH_GSTRING_LEN];
408 } ethtool_stats_keys[] = {
409 { "tx_ok" },
410 { "rx_ok" },
411 { "tx_err" },
412 { "rx_err" },
413 { "rx_fifo" },
414 { "frame_align" },
415 { "tx_ok_1col" },
416 { "tx_ok_mcol" },
417 { "rx_ok_phys" },
418 { "rx_ok_bcast" },
419 { "rx_ok_mcast" },
420 { "tx_abort" },
421 { "tx_underrun" },
422 { "rx_frags" },
426 #if CP_VLAN_TAG_USED
427 static void cp_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
429 struct cp_private *cp = netdev_priv(dev);
430 unsigned long flags;
432 spin_lock_irqsave(&cp->lock, flags);
433 cp->vlgrp = grp;
434 if (grp)
435 cp->cpcmd |= RxVlanOn;
436 else
437 cp->cpcmd &= ~RxVlanOn;
439 cpw16(CpCmd, cp->cpcmd);
440 spin_unlock_irqrestore(&cp->lock, flags);
442 #endif /* CP_VLAN_TAG_USED */
444 static inline void cp_set_rxbufsize (struct cp_private *cp)
446 unsigned int mtu = cp->dev->mtu;
448 if (mtu > ETH_DATA_LEN)
449 /* MTU + ethernet header + FCS + optional VLAN tag */
450 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
451 else
452 cp->rx_buf_sz = PKT_BUF_SZ;
455 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
456 struct cp_desc *desc)
458 skb->protocol = eth_type_trans (skb, cp->dev);
460 cp->net_stats.rx_packets++;
461 cp->net_stats.rx_bytes += skb->len;
462 cp->dev->last_rx = jiffies;
464 #if CP_VLAN_TAG_USED
465 if (cp->vlgrp && (desc->opts2 & cpu_to_le32(RxVlanTagged))) {
466 vlan_hwaccel_receive_skb(skb, cp->vlgrp,
467 swab16(le32_to_cpu(desc->opts2) & 0xffff));
468 } else
469 #endif
470 netif_receive_skb(skb);
473 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
474 u32 status, u32 len)
476 if (netif_msg_rx_err (cp))
477 printk (KERN_DEBUG
478 "%s: rx err, slot %d status 0x%x len %d\n",
479 cp->dev->name, rx_tail, status, len);
480 cp->net_stats.rx_errors++;
481 if (status & RxErrFrame)
482 cp->net_stats.rx_frame_errors++;
483 if (status & RxErrCRC)
484 cp->net_stats.rx_crc_errors++;
485 if ((status & RxErrRunt) || (status & RxErrLong))
486 cp->net_stats.rx_length_errors++;
487 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
488 cp->net_stats.rx_length_errors++;
489 if (status & RxErrFIFO)
490 cp->net_stats.rx_fifo_errors++;
493 static inline unsigned int cp_rx_csum_ok (u32 status)
495 unsigned int protocol = (status >> 16) & 0x3;
497 if (likely((protocol == RxProtoTCP) && (!(status & TCPFail))))
498 return 1;
499 else if ((protocol == RxProtoUDP) && (!(status & UDPFail)))
500 return 1;
501 else if ((protocol == RxProtoIP) && (!(status & IPFail)))
502 return 1;
503 return 0;
506 static int cp_rx_poll(struct napi_struct *napi, int budget)
508 struct cp_private *cp = container_of(napi, struct cp_private, napi);
509 struct net_device *dev = cp->dev;
510 unsigned int rx_tail = cp->rx_tail;
511 int rx;
513 rx_status_loop:
514 rx = 0;
515 cpw16(IntrStatus, cp_rx_intr_mask);
517 while (1) {
518 u32 status, len;
519 dma_addr_t mapping;
520 struct sk_buff *skb, *new_skb;
521 struct cp_desc *desc;
522 unsigned buflen;
524 skb = cp->rx_skb[rx_tail];
525 BUG_ON(!skb);
527 desc = &cp->rx_ring[rx_tail];
528 status = le32_to_cpu(desc->opts1);
529 if (status & DescOwn)
530 break;
532 len = (status & 0x1fff) - 4;
533 mapping = le64_to_cpu(desc->addr);
535 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
536 /* we don't support incoming fragmented frames.
537 * instead, we attempt to ensure that the
538 * pre-allocated RX skbs are properly sized such
539 * that RX fragments are never encountered
541 cp_rx_err_acct(cp, rx_tail, status, len);
542 cp->net_stats.rx_dropped++;
543 cp->cp_stats.rx_frags++;
544 goto rx_next;
547 if (status & (RxError | RxErrFIFO)) {
548 cp_rx_err_acct(cp, rx_tail, status, len);
549 goto rx_next;
552 if (netif_msg_rx_status(cp))
553 printk(KERN_DEBUG "%s: rx slot %d status 0x%x len %d\n",
554 dev->name, rx_tail, status, len);
556 buflen = cp->rx_buf_sz + RX_OFFSET;
557 new_skb = dev_alloc_skb (buflen);
558 if (!new_skb) {
559 cp->net_stats.rx_dropped++;
560 goto rx_next;
563 skb_reserve(new_skb, RX_OFFSET);
565 dma_unmap_single(&cp->pdev->dev, mapping,
566 buflen, PCI_DMA_FROMDEVICE);
568 /* Handle checksum offloading for incoming packets. */
569 if (cp_rx_csum_ok(status))
570 skb->ip_summed = CHECKSUM_UNNECESSARY;
571 else
572 skb->ip_summed = CHECKSUM_NONE;
574 skb_put(skb, len);
576 mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
577 PCI_DMA_FROMDEVICE);
578 cp->rx_skb[rx_tail] = new_skb;
580 cp_rx_skb(cp, skb, desc);
581 rx++;
583 rx_next:
584 cp->rx_ring[rx_tail].opts2 = 0;
585 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
586 if (rx_tail == (CP_RX_RING_SIZE - 1))
587 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
588 cp->rx_buf_sz);
589 else
590 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
591 rx_tail = NEXT_RX(rx_tail);
593 if (rx >= budget)
594 break;
597 cp->rx_tail = rx_tail;
599 /* if we did not reach work limit, then we're done with
600 * this round of polling
602 if (rx < budget) {
603 unsigned long flags;
605 if (cpr16(IntrStatus) & cp_rx_intr_mask)
606 goto rx_status_loop;
608 spin_lock_irqsave(&cp->lock, flags);
609 cpw16_f(IntrMask, cp_intr_mask);
610 __netif_rx_complete(dev, napi);
611 spin_unlock_irqrestore(&cp->lock, flags);
614 return rx;
617 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
619 struct net_device *dev = dev_instance;
620 struct cp_private *cp;
621 u16 status;
623 if (unlikely(dev == NULL))
624 return IRQ_NONE;
625 cp = netdev_priv(dev);
627 status = cpr16(IntrStatus);
628 if (!status || (status == 0xFFFF))
629 return IRQ_NONE;
631 if (netif_msg_intr(cp))
632 printk(KERN_DEBUG "%s: intr, status %04x cmd %02x cpcmd %04x\n",
633 dev->name, status, cpr8(Cmd), cpr16(CpCmd));
635 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
637 spin_lock(&cp->lock);
639 /* close possible race's with dev_close */
640 if (unlikely(!netif_running(dev))) {
641 cpw16(IntrMask, 0);
642 spin_unlock(&cp->lock);
643 return IRQ_HANDLED;
646 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
647 if (netif_rx_schedule_prep(dev, &cp->napi)) {
648 cpw16_f(IntrMask, cp_norx_intr_mask);
649 __netif_rx_schedule(dev, &cp->napi);
652 if (status & (TxOK | TxErr | TxEmpty | SWInt))
653 cp_tx(cp);
654 if (status & LinkChg)
655 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
657 spin_unlock(&cp->lock);
659 if (status & PciErr) {
660 u16 pci_status;
662 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
663 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
664 printk(KERN_ERR "%s: PCI bus error, status=%04x, PCI status=%04x\n",
665 dev->name, status, pci_status);
667 /* TODO: reset hardware */
670 return IRQ_HANDLED;
673 #ifdef CONFIG_NET_POLL_CONTROLLER
675 * Polling receive - used by netconsole and other diagnostic tools
676 * to allow network i/o with interrupts disabled.
678 static void cp_poll_controller(struct net_device *dev)
680 disable_irq(dev->irq);
681 cp_interrupt(dev->irq, dev);
682 enable_irq(dev->irq);
684 #endif
686 static void cp_tx (struct cp_private *cp)
688 unsigned tx_head = cp->tx_head;
689 unsigned tx_tail = cp->tx_tail;
691 while (tx_tail != tx_head) {
692 struct cp_desc *txd = cp->tx_ring + tx_tail;
693 struct sk_buff *skb;
694 u32 status;
696 rmb();
697 status = le32_to_cpu(txd->opts1);
698 if (status & DescOwn)
699 break;
701 skb = cp->tx_skb[tx_tail];
702 BUG_ON(!skb);
704 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
705 le32_to_cpu(txd->opts1) & 0xffff,
706 PCI_DMA_TODEVICE);
708 if (status & LastFrag) {
709 if (status & (TxError | TxFIFOUnder)) {
710 if (netif_msg_tx_err(cp))
711 printk(KERN_DEBUG "%s: tx err, status 0x%x\n",
712 cp->dev->name, status);
713 cp->net_stats.tx_errors++;
714 if (status & TxOWC)
715 cp->net_stats.tx_window_errors++;
716 if (status & TxMaxCol)
717 cp->net_stats.tx_aborted_errors++;
718 if (status & TxLinkFail)
719 cp->net_stats.tx_carrier_errors++;
720 if (status & TxFIFOUnder)
721 cp->net_stats.tx_fifo_errors++;
722 } else {
723 cp->net_stats.collisions +=
724 ((status >> TxColCntShift) & TxColCntMask);
725 cp->net_stats.tx_packets++;
726 cp->net_stats.tx_bytes += skb->len;
727 if (netif_msg_tx_done(cp))
728 printk(KERN_DEBUG "%s: tx done, slot %d\n", cp->dev->name, tx_tail);
730 dev_kfree_skb_irq(skb);
733 cp->tx_skb[tx_tail] = NULL;
735 tx_tail = NEXT_TX(tx_tail);
738 cp->tx_tail = tx_tail;
740 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
741 netif_wake_queue(cp->dev);
744 static int cp_start_xmit (struct sk_buff *skb, struct net_device *dev)
746 struct cp_private *cp = netdev_priv(dev);
747 unsigned entry;
748 u32 eor, flags;
749 unsigned long intr_flags;
750 #if CP_VLAN_TAG_USED
751 u32 vlan_tag = 0;
752 #endif
753 int mss = 0;
755 spin_lock_irqsave(&cp->lock, intr_flags);
757 /* This is a hard error, log it. */
758 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
759 netif_stop_queue(dev);
760 spin_unlock_irqrestore(&cp->lock, intr_flags);
761 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
762 dev->name);
763 return 1;
766 #if CP_VLAN_TAG_USED
767 if (cp->vlgrp && vlan_tx_tag_present(skb))
768 vlan_tag = TxVlanTag | swab16(vlan_tx_tag_get(skb));
769 #endif
771 entry = cp->tx_head;
772 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
773 if (dev->features & NETIF_F_TSO)
774 mss = skb_shinfo(skb)->gso_size;
776 if (skb_shinfo(skb)->nr_frags == 0) {
777 struct cp_desc *txd = &cp->tx_ring[entry];
778 u32 len;
779 dma_addr_t mapping;
781 len = skb->len;
782 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
783 CP_VLAN_TX_TAG(txd, vlan_tag);
784 txd->addr = cpu_to_le64(mapping);
785 wmb();
787 flags = eor | len | DescOwn | FirstFrag | LastFrag;
789 if (mss)
790 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
791 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
792 const struct iphdr *ip = ip_hdr(skb);
793 if (ip->protocol == IPPROTO_TCP)
794 flags |= IPCS | TCPCS;
795 else if (ip->protocol == IPPROTO_UDP)
796 flags |= IPCS | UDPCS;
797 else
798 WARN_ON(1); /* we need a WARN() */
801 txd->opts1 = cpu_to_le32(flags);
802 wmb();
804 cp->tx_skb[entry] = skb;
805 entry = NEXT_TX(entry);
806 } else {
807 struct cp_desc *txd;
808 u32 first_len, first_eor;
809 dma_addr_t first_mapping;
810 int frag, first_entry = entry;
811 const struct iphdr *ip = ip_hdr(skb);
813 /* We must give this initial chunk to the device last.
814 * Otherwise we could race with the device.
816 first_eor = eor;
817 first_len = skb_headlen(skb);
818 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
819 first_len, PCI_DMA_TODEVICE);
820 cp->tx_skb[entry] = skb;
821 entry = NEXT_TX(entry);
823 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
824 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
825 u32 len;
826 u32 ctrl;
827 dma_addr_t mapping;
829 len = this_frag->size;
830 mapping = dma_map_single(&cp->pdev->dev,
831 ((void *) page_address(this_frag->page) +
832 this_frag->page_offset),
833 len, PCI_DMA_TODEVICE);
834 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
836 ctrl = eor | len | DescOwn;
838 if (mss)
839 ctrl |= LargeSend |
840 ((mss & MSSMask) << MSSShift);
841 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
842 if (ip->protocol == IPPROTO_TCP)
843 ctrl |= IPCS | TCPCS;
844 else if (ip->protocol == IPPROTO_UDP)
845 ctrl |= IPCS | UDPCS;
846 else
847 BUG();
850 if (frag == skb_shinfo(skb)->nr_frags - 1)
851 ctrl |= LastFrag;
853 txd = &cp->tx_ring[entry];
854 CP_VLAN_TX_TAG(txd, vlan_tag);
855 txd->addr = cpu_to_le64(mapping);
856 wmb();
858 txd->opts1 = cpu_to_le32(ctrl);
859 wmb();
861 cp->tx_skb[entry] = skb;
862 entry = NEXT_TX(entry);
865 txd = &cp->tx_ring[first_entry];
866 CP_VLAN_TX_TAG(txd, vlan_tag);
867 txd->addr = cpu_to_le64(first_mapping);
868 wmb();
870 if (skb->ip_summed == CHECKSUM_PARTIAL) {
871 if (ip->protocol == IPPROTO_TCP)
872 txd->opts1 = cpu_to_le32(first_eor | first_len |
873 FirstFrag | DescOwn |
874 IPCS | TCPCS);
875 else if (ip->protocol == IPPROTO_UDP)
876 txd->opts1 = cpu_to_le32(first_eor | first_len |
877 FirstFrag | DescOwn |
878 IPCS | UDPCS);
879 else
880 BUG();
881 } else
882 txd->opts1 = cpu_to_le32(first_eor | first_len |
883 FirstFrag | DescOwn);
884 wmb();
886 cp->tx_head = entry;
887 if (netif_msg_tx_queued(cp))
888 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
889 dev->name, entry, skb->len);
890 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
891 netif_stop_queue(dev);
893 spin_unlock_irqrestore(&cp->lock, intr_flags);
895 cpw8(TxPoll, NormalTxPoll);
896 dev->trans_start = jiffies;
898 return 0;
901 /* Set or clear the multicast filter for this adaptor.
902 This routine is not state sensitive and need not be SMP locked. */
904 static void __cp_set_rx_mode (struct net_device *dev)
906 struct cp_private *cp = netdev_priv(dev);
907 u32 mc_filter[2]; /* Multicast hash filter */
908 int i, rx_mode;
909 u32 tmp;
911 /* Note: do not reorder, GCC is clever about common statements. */
912 if (dev->flags & IFF_PROMISC) {
913 /* Unconditionally log net taps. */
914 rx_mode =
915 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
916 AcceptAllPhys;
917 mc_filter[1] = mc_filter[0] = 0xffffffff;
918 } else if ((dev->mc_count > multicast_filter_limit)
919 || (dev->flags & IFF_ALLMULTI)) {
920 /* Too many to filter perfectly -- accept all multicasts. */
921 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
922 mc_filter[1] = mc_filter[0] = 0xffffffff;
923 } else {
924 struct dev_mc_list *mclist;
925 rx_mode = AcceptBroadcast | AcceptMyPhys;
926 mc_filter[1] = mc_filter[0] = 0;
927 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
928 i++, mclist = mclist->next) {
929 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
931 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
932 rx_mode |= AcceptMulticast;
936 /* We can safely update without stopping the chip. */
937 tmp = cp_rx_config | rx_mode;
938 if (cp->rx_config != tmp) {
939 cpw32_f (RxConfig, tmp);
940 cp->rx_config = tmp;
942 cpw32_f (MAR0 + 0, mc_filter[0]);
943 cpw32_f (MAR0 + 4, mc_filter[1]);
946 static void cp_set_rx_mode (struct net_device *dev)
948 unsigned long flags;
949 struct cp_private *cp = netdev_priv(dev);
951 spin_lock_irqsave (&cp->lock, flags);
952 __cp_set_rx_mode(dev);
953 spin_unlock_irqrestore (&cp->lock, flags);
956 static void __cp_get_stats(struct cp_private *cp)
958 /* only lower 24 bits valid; write any value to clear */
959 cp->net_stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
960 cpw32 (RxMissed, 0);
963 static struct net_device_stats *cp_get_stats(struct net_device *dev)
965 struct cp_private *cp = netdev_priv(dev);
966 unsigned long flags;
968 /* The chip only need report frame silently dropped. */
969 spin_lock_irqsave(&cp->lock, flags);
970 if (netif_running(dev) && netif_device_present(dev))
971 __cp_get_stats(cp);
972 spin_unlock_irqrestore(&cp->lock, flags);
974 return &cp->net_stats;
977 static void cp_stop_hw (struct cp_private *cp)
979 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
980 cpw16_f(IntrMask, 0);
981 cpw8(Cmd, 0);
982 cpw16_f(CpCmd, 0);
983 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
985 cp->rx_tail = 0;
986 cp->tx_head = cp->tx_tail = 0;
989 static void cp_reset_hw (struct cp_private *cp)
991 unsigned work = 1000;
993 cpw8(Cmd, CmdReset);
995 while (work--) {
996 if (!(cpr8(Cmd) & CmdReset))
997 return;
999 schedule_timeout_uninterruptible(10);
1002 printk(KERN_ERR "%s: hardware reset timeout\n", cp->dev->name);
1005 static inline void cp_start_hw (struct cp_private *cp)
1007 cpw16(CpCmd, cp->cpcmd);
1008 cpw8(Cmd, RxOn | TxOn);
1011 static void cp_init_hw (struct cp_private *cp)
1013 struct net_device *dev = cp->dev;
1014 dma_addr_t ring_dma;
1016 cp_reset_hw(cp);
1018 cpw8_f (Cfg9346, Cfg9346_Unlock);
1020 /* Restore our idea of the MAC address. */
1021 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1022 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1024 cp_start_hw(cp);
1025 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1027 __cp_set_rx_mode(dev);
1028 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1030 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1031 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1032 cpw8(Config3, PARMEnable);
1033 cp->wol_enabled = 0;
1035 cpw8(Config5, cpr8(Config5) & PMEStatus);
1037 cpw32_f(HiTxRingAddr, 0);
1038 cpw32_f(HiTxRingAddr + 4, 0);
1040 ring_dma = cp->ring_dma;
1041 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1042 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1044 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1045 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1046 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1048 cpw16(MultiIntr, 0);
1050 cpw16_f(IntrMask, cp_intr_mask);
1052 cpw8_f(Cfg9346, Cfg9346_Lock);
1055 static int cp_refill_rx (struct cp_private *cp)
1057 unsigned i;
1059 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1060 struct sk_buff *skb;
1061 dma_addr_t mapping;
1063 skb = dev_alloc_skb(cp->rx_buf_sz + RX_OFFSET);
1064 if (!skb)
1065 goto err_out;
1067 skb_reserve(skb, RX_OFFSET);
1069 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1070 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1071 cp->rx_skb[i] = skb;
1073 cp->rx_ring[i].opts2 = 0;
1074 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1075 if (i == (CP_RX_RING_SIZE - 1))
1076 cp->rx_ring[i].opts1 =
1077 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1078 else
1079 cp->rx_ring[i].opts1 =
1080 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1083 return 0;
1085 err_out:
1086 cp_clean_rings(cp);
1087 return -ENOMEM;
1090 static void cp_init_rings_index (struct cp_private *cp)
1092 cp->rx_tail = 0;
1093 cp->tx_head = cp->tx_tail = 0;
1096 static int cp_init_rings (struct cp_private *cp)
1098 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1099 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1101 cp_init_rings_index(cp);
1103 return cp_refill_rx (cp);
1106 static int cp_alloc_rings (struct cp_private *cp)
1108 void *mem;
1110 mem = dma_alloc_coherent(&cp->pdev->dev, CP_RING_BYTES,
1111 &cp->ring_dma, GFP_KERNEL);
1112 if (!mem)
1113 return -ENOMEM;
1115 cp->rx_ring = mem;
1116 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1118 return cp_init_rings(cp);
1121 static void cp_clean_rings (struct cp_private *cp)
1123 struct cp_desc *desc;
1124 unsigned i;
1126 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1127 if (cp->rx_skb[i]) {
1128 desc = cp->rx_ring + i;
1129 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1130 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1131 dev_kfree_skb(cp->rx_skb[i]);
1135 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1136 if (cp->tx_skb[i]) {
1137 struct sk_buff *skb = cp->tx_skb[i];
1139 desc = cp->tx_ring + i;
1140 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1141 le32_to_cpu(desc->opts1) & 0xffff,
1142 PCI_DMA_TODEVICE);
1143 if (le32_to_cpu(desc->opts1) & LastFrag)
1144 dev_kfree_skb(skb);
1145 cp->net_stats.tx_dropped++;
1149 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1150 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1152 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1153 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1156 static void cp_free_rings (struct cp_private *cp)
1158 cp_clean_rings(cp);
1159 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1160 cp->ring_dma);
1161 cp->rx_ring = NULL;
1162 cp->tx_ring = NULL;
1165 static int cp_open (struct net_device *dev)
1167 struct cp_private *cp = netdev_priv(dev);
1168 int rc;
1170 if (netif_msg_ifup(cp))
1171 printk(KERN_DEBUG "%s: enabling interface\n", dev->name);
1173 rc = cp_alloc_rings(cp);
1174 if (rc)
1175 return rc;
1177 napi_enable(&cp->napi);
1179 cp_init_hw(cp);
1181 rc = request_irq(dev->irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1182 if (rc)
1183 goto err_out_hw;
1185 netif_carrier_off(dev);
1186 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1187 netif_start_queue(dev);
1189 return 0;
1191 err_out_hw:
1192 napi_disable(&cp->napi);
1193 cp_stop_hw(cp);
1194 cp_free_rings(cp);
1195 return rc;
1198 static int cp_close (struct net_device *dev)
1200 struct cp_private *cp = netdev_priv(dev);
1201 unsigned long flags;
1203 napi_disable(&cp->napi);
1205 if (netif_msg_ifdown(cp))
1206 printk(KERN_DEBUG "%s: disabling interface\n", dev->name);
1208 spin_lock_irqsave(&cp->lock, flags);
1210 netif_stop_queue(dev);
1211 netif_carrier_off(dev);
1213 cp_stop_hw(cp);
1215 spin_unlock_irqrestore(&cp->lock, flags);
1217 synchronize_irq(dev->irq);
1218 free_irq(dev->irq, dev);
1220 cp_free_rings(cp);
1221 return 0;
1224 static void cp_tx_timeout(struct net_device *dev)
1226 struct cp_private *cp = netdev_priv(dev);
1227 unsigned long flags;
1228 int rc;
1230 printk(KERN_WARNING "%s: Transmit timeout, status %2x %4x %4x %4x\n",
1231 dev->name, cpr8(Cmd), cpr16(CpCmd),
1232 cpr16(IntrStatus), cpr16(IntrMask));
1234 spin_lock_irqsave(&cp->lock, flags);
1236 cp_stop_hw(cp);
1237 cp_clean_rings(cp);
1238 rc = cp_init_rings(cp);
1239 cp_start_hw(cp);
1241 netif_wake_queue(dev);
1243 spin_unlock_irqrestore(&cp->lock, flags);
1245 return;
1248 #ifdef BROKEN
1249 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1251 struct cp_private *cp = netdev_priv(dev);
1252 int rc;
1253 unsigned long flags;
1255 /* check for invalid MTU, according to hardware limits */
1256 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1257 return -EINVAL;
1259 /* if network interface not up, no need for complexity */
1260 if (!netif_running(dev)) {
1261 dev->mtu = new_mtu;
1262 cp_set_rxbufsize(cp); /* set new rx buf size */
1263 return 0;
1266 spin_lock_irqsave(&cp->lock, flags);
1268 cp_stop_hw(cp); /* stop h/w and free rings */
1269 cp_clean_rings(cp);
1271 dev->mtu = new_mtu;
1272 cp_set_rxbufsize(cp); /* set new rx buf size */
1274 rc = cp_init_rings(cp); /* realloc and restart h/w */
1275 cp_start_hw(cp);
1277 spin_unlock_irqrestore(&cp->lock, flags);
1279 return rc;
1281 #endif /* BROKEN */
1283 static const char mii_2_8139_map[8] = {
1284 BasicModeCtrl,
1285 BasicModeStatus,
1288 NWayAdvert,
1289 NWayLPAR,
1290 NWayExpansion,
1294 static int mdio_read(struct net_device *dev, int phy_id, int location)
1296 struct cp_private *cp = netdev_priv(dev);
1298 return location < 8 && mii_2_8139_map[location] ?
1299 readw(cp->regs + mii_2_8139_map[location]) : 0;
1303 static void mdio_write(struct net_device *dev, int phy_id, int location,
1304 int value)
1306 struct cp_private *cp = netdev_priv(dev);
1308 if (location == 0) {
1309 cpw8(Cfg9346, Cfg9346_Unlock);
1310 cpw16(BasicModeCtrl, value);
1311 cpw8(Cfg9346, Cfg9346_Lock);
1312 } else if (location < 8 && mii_2_8139_map[location])
1313 cpw16(mii_2_8139_map[location], value);
1316 /* Set the ethtool Wake-on-LAN settings */
1317 static int netdev_set_wol (struct cp_private *cp,
1318 const struct ethtool_wolinfo *wol)
1320 u8 options;
1322 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1323 /* If WOL is being disabled, no need for complexity */
1324 if (wol->wolopts) {
1325 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1326 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1329 cpw8 (Cfg9346, Cfg9346_Unlock);
1330 cpw8 (Config3, options);
1331 cpw8 (Cfg9346, Cfg9346_Lock);
1333 options = 0; /* Paranoia setting */
1334 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1335 /* If WOL is being disabled, no need for complexity */
1336 if (wol->wolopts) {
1337 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1338 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1339 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1342 cpw8 (Config5, options);
1344 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1346 return 0;
1349 /* Get the ethtool Wake-on-LAN settings */
1350 static void netdev_get_wol (struct cp_private *cp,
1351 struct ethtool_wolinfo *wol)
1353 u8 options;
1355 wol->wolopts = 0; /* Start from scratch */
1356 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1357 WAKE_MCAST | WAKE_UCAST;
1358 /* We don't need to go on if WOL is disabled */
1359 if (!cp->wol_enabled) return;
1361 options = cpr8 (Config3);
1362 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1363 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1365 options = 0; /* Paranoia setting */
1366 options = cpr8 (Config5);
1367 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1368 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1369 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1372 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1374 struct cp_private *cp = netdev_priv(dev);
1376 strcpy (info->driver, DRV_NAME);
1377 strcpy (info->version, DRV_VERSION);
1378 strcpy (info->bus_info, pci_name(cp->pdev));
1381 static int cp_get_regs_len(struct net_device *dev)
1383 return CP_REGS_SIZE;
1386 static int cp_get_sset_count (struct net_device *dev, int sset)
1388 switch (sset) {
1389 case ETH_SS_STATS:
1390 return CP_NUM_STATS;
1391 default:
1392 return -EOPNOTSUPP;
1396 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1398 struct cp_private *cp = netdev_priv(dev);
1399 int rc;
1400 unsigned long flags;
1402 spin_lock_irqsave(&cp->lock, flags);
1403 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1404 spin_unlock_irqrestore(&cp->lock, flags);
1406 return rc;
1409 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1411 struct cp_private *cp = netdev_priv(dev);
1412 int rc;
1413 unsigned long flags;
1415 spin_lock_irqsave(&cp->lock, flags);
1416 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1417 spin_unlock_irqrestore(&cp->lock, flags);
1419 return rc;
1422 static int cp_nway_reset(struct net_device *dev)
1424 struct cp_private *cp = netdev_priv(dev);
1425 return mii_nway_restart(&cp->mii_if);
1428 static u32 cp_get_msglevel(struct net_device *dev)
1430 struct cp_private *cp = netdev_priv(dev);
1431 return cp->msg_enable;
1434 static void cp_set_msglevel(struct net_device *dev, u32 value)
1436 struct cp_private *cp = netdev_priv(dev);
1437 cp->msg_enable = value;
1440 static u32 cp_get_rx_csum(struct net_device *dev)
1442 struct cp_private *cp = netdev_priv(dev);
1443 return (cpr16(CpCmd) & RxChkSum) ? 1 : 0;
1446 static int cp_set_rx_csum(struct net_device *dev, u32 data)
1448 struct cp_private *cp = netdev_priv(dev);
1449 u16 cmd = cp->cpcmd, newcmd;
1451 newcmd = cmd;
1453 if (data)
1454 newcmd |= RxChkSum;
1455 else
1456 newcmd &= ~RxChkSum;
1458 if (newcmd != cmd) {
1459 unsigned long flags;
1461 spin_lock_irqsave(&cp->lock, flags);
1462 cp->cpcmd = newcmd;
1463 cpw16_f(CpCmd, newcmd);
1464 spin_unlock_irqrestore(&cp->lock, flags);
1467 return 0;
1470 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1471 void *p)
1473 struct cp_private *cp = netdev_priv(dev);
1474 unsigned long flags;
1476 if (regs->len < CP_REGS_SIZE)
1477 return /* -EINVAL */;
1479 regs->version = CP_REGS_VER;
1481 spin_lock_irqsave(&cp->lock, flags);
1482 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1483 spin_unlock_irqrestore(&cp->lock, flags);
1486 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1488 struct cp_private *cp = netdev_priv(dev);
1489 unsigned long flags;
1491 spin_lock_irqsave (&cp->lock, flags);
1492 netdev_get_wol (cp, wol);
1493 spin_unlock_irqrestore (&cp->lock, flags);
1496 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1498 struct cp_private *cp = netdev_priv(dev);
1499 unsigned long flags;
1500 int rc;
1502 spin_lock_irqsave (&cp->lock, flags);
1503 rc = netdev_set_wol (cp, wol);
1504 spin_unlock_irqrestore (&cp->lock, flags);
1506 return rc;
1509 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1511 switch (stringset) {
1512 case ETH_SS_STATS:
1513 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1514 break;
1515 default:
1516 BUG();
1517 break;
1521 static void cp_get_ethtool_stats (struct net_device *dev,
1522 struct ethtool_stats *estats, u64 *tmp_stats)
1524 struct cp_private *cp = netdev_priv(dev);
1525 struct cp_dma_stats *nic_stats;
1526 dma_addr_t dma;
1527 int i;
1529 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1530 &dma, GFP_KERNEL);
1531 if (!nic_stats)
1532 return;
1534 /* begin NIC statistics dump */
1535 cpw32(StatsAddr + 4, (u64)dma >> 32);
1536 cpw32(StatsAddr, ((u64)dma & DMA_32BIT_MASK) | DumpStats);
1537 cpr32(StatsAddr);
1539 for (i = 0; i < 1000; i++) {
1540 if ((cpr32(StatsAddr) & DumpStats) == 0)
1541 break;
1542 udelay(10);
1544 cpw32(StatsAddr, 0);
1545 cpw32(StatsAddr + 4, 0);
1546 cpr32(StatsAddr);
1548 i = 0;
1549 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1550 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1551 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1552 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1553 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1554 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1555 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1556 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1557 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1558 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1559 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1560 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1561 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1562 tmp_stats[i++] = cp->cp_stats.rx_frags;
1563 BUG_ON(i != CP_NUM_STATS);
1565 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1568 static const struct ethtool_ops cp_ethtool_ops = {
1569 .get_drvinfo = cp_get_drvinfo,
1570 .get_regs_len = cp_get_regs_len,
1571 .get_sset_count = cp_get_sset_count,
1572 .get_settings = cp_get_settings,
1573 .set_settings = cp_set_settings,
1574 .nway_reset = cp_nway_reset,
1575 .get_link = ethtool_op_get_link,
1576 .get_msglevel = cp_get_msglevel,
1577 .set_msglevel = cp_set_msglevel,
1578 .get_rx_csum = cp_get_rx_csum,
1579 .set_rx_csum = cp_set_rx_csum,
1580 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
1581 .set_sg = ethtool_op_set_sg,
1582 .set_tso = ethtool_op_set_tso,
1583 .get_regs = cp_get_regs,
1584 .get_wol = cp_get_wol,
1585 .set_wol = cp_set_wol,
1586 .get_strings = cp_get_strings,
1587 .get_ethtool_stats = cp_get_ethtool_stats,
1588 .get_eeprom_len = cp_get_eeprom_len,
1589 .get_eeprom = cp_get_eeprom,
1590 .set_eeprom = cp_set_eeprom,
1593 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1595 struct cp_private *cp = netdev_priv(dev);
1596 int rc;
1597 unsigned long flags;
1599 if (!netif_running(dev))
1600 return -EINVAL;
1602 spin_lock_irqsave(&cp->lock, flags);
1603 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1604 spin_unlock_irqrestore(&cp->lock, flags);
1605 return rc;
1608 /* Serial EEPROM section. */
1610 /* EEPROM_Ctrl bits. */
1611 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1612 #define EE_CS 0x08 /* EEPROM chip select. */
1613 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1614 #define EE_WRITE_0 0x00
1615 #define EE_WRITE_1 0x02
1616 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1617 #define EE_ENB (0x80 | EE_CS)
1619 /* Delay between EEPROM clock transitions.
1620 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1623 #define eeprom_delay() readl(ee_addr)
1625 /* The EEPROM commands include the alway-set leading bit. */
1626 #define EE_EXTEND_CMD (4)
1627 #define EE_WRITE_CMD (5)
1628 #define EE_READ_CMD (6)
1629 #define EE_ERASE_CMD (7)
1631 #define EE_EWDS_ADDR (0)
1632 #define EE_WRAL_ADDR (1)
1633 #define EE_ERAL_ADDR (2)
1634 #define EE_EWEN_ADDR (3)
1636 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1638 static void eeprom_cmd_start(void __iomem *ee_addr)
1640 writeb (EE_ENB & ~EE_CS, ee_addr);
1641 writeb (EE_ENB, ee_addr);
1642 eeprom_delay ();
1645 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1647 int i;
1649 /* Shift the command bits out. */
1650 for (i = cmd_len - 1; i >= 0; i--) {
1651 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1652 writeb (EE_ENB | dataval, ee_addr);
1653 eeprom_delay ();
1654 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1655 eeprom_delay ();
1657 writeb (EE_ENB, ee_addr);
1658 eeprom_delay ();
1661 static void eeprom_cmd_end(void __iomem *ee_addr)
1663 writeb (~EE_CS, ee_addr);
1664 eeprom_delay ();
1667 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1668 int addr_len)
1670 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1672 eeprom_cmd_start(ee_addr);
1673 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1674 eeprom_cmd_end(ee_addr);
1677 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1679 int i;
1680 u16 retval = 0;
1681 void __iomem *ee_addr = ioaddr + Cfg9346;
1682 int read_cmd = location | (EE_READ_CMD << addr_len);
1684 eeprom_cmd_start(ee_addr);
1685 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1687 for (i = 16; i > 0; i--) {
1688 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1689 eeprom_delay ();
1690 retval =
1691 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1693 writeb (EE_ENB, ee_addr);
1694 eeprom_delay ();
1697 eeprom_cmd_end(ee_addr);
1699 return retval;
1702 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1703 int addr_len)
1705 int i;
1706 void __iomem *ee_addr = ioaddr + Cfg9346;
1707 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1709 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1711 eeprom_cmd_start(ee_addr);
1712 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1713 eeprom_cmd(ee_addr, val, 16);
1714 eeprom_cmd_end(ee_addr);
1716 eeprom_cmd_start(ee_addr);
1717 for (i = 0; i < 20000; i++)
1718 if (readb(ee_addr) & EE_DATA_READ)
1719 break;
1720 eeprom_cmd_end(ee_addr);
1722 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1725 static int cp_get_eeprom_len(struct net_device *dev)
1727 struct cp_private *cp = netdev_priv(dev);
1728 int size;
1730 spin_lock_irq(&cp->lock);
1731 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1732 spin_unlock_irq(&cp->lock);
1734 return size;
1737 static int cp_get_eeprom(struct net_device *dev,
1738 struct ethtool_eeprom *eeprom, u8 *data)
1740 struct cp_private *cp = netdev_priv(dev);
1741 unsigned int addr_len;
1742 u16 val;
1743 u32 offset = eeprom->offset >> 1;
1744 u32 len = eeprom->len;
1745 u32 i = 0;
1747 eeprom->magic = CP_EEPROM_MAGIC;
1749 spin_lock_irq(&cp->lock);
1751 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1753 if (eeprom->offset & 1) {
1754 val = read_eeprom(cp->regs, offset, addr_len);
1755 data[i++] = (u8)(val >> 8);
1756 offset++;
1759 while (i < len - 1) {
1760 val = read_eeprom(cp->regs, offset, addr_len);
1761 data[i++] = (u8)val;
1762 data[i++] = (u8)(val >> 8);
1763 offset++;
1766 if (i < len) {
1767 val = read_eeprom(cp->regs, offset, addr_len);
1768 data[i] = (u8)val;
1771 spin_unlock_irq(&cp->lock);
1772 return 0;
1775 static int cp_set_eeprom(struct net_device *dev,
1776 struct ethtool_eeprom *eeprom, u8 *data)
1778 struct cp_private *cp = netdev_priv(dev);
1779 unsigned int addr_len;
1780 u16 val;
1781 u32 offset = eeprom->offset >> 1;
1782 u32 len = eeprom->len;
1783 u32 i = 0;
1785 if (eeprom->magic != CP_EEPROM_MAGIC)
1786 return -EINVAL;
1788 spin_lock_irq(&cp->lock);
1790 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1792 if (eeprom->offset & 1) {
1793 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1794 val |= (u16)data[i++] << 8;
1795 write_eeprom(cp->regs, offset, val, addr_len);
1796 offset++;
1799 while (i < len - 1) {
1800 val = (u16)data[i++];
1801 val |= (u16)data[i++] << 8;
1802 write_eeprom(cp->regs, offset, val, addr_len);
1803 offset++;
1806 if (i < len) {
1807 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1808 val |= (u16)data[i];
1809 write_eeprom(cp->regs, offset, val, addr_len);
1812 spin_unlock_irq(&cp->lock);
1813 return 0;
1816 /* Put the board into D3cold state and wait for WakeUp signal */
1817 static void cp_set_d3_state (struct cp_private *cp)
1819 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1820 pci_set_power_state (cp->pdev, PCI_D3hot);
1823 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1825 struct net_device *dev;
1826 struct cp_private *cp;
1827 int rc;
1828 void __iomem *regs;
1829 resource_size_t pciaddr;
1830 unsigned int addr_len, i, pci_using_dac;
1831 DECLARE_MAC_BUF(mac);
1833 #ifndef MODULE
1834 static int version_printed;
1835 if (version_printed++ == 0)
1836 printk("%s", version);
1837 #endif
1839 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1840 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1841 dev_err(&pdev->dev,
1842 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip\n",
1843 pdev->vendor, pdev->device, pdev->revision);
1844 dev_err(&pdev->dev, "Try the \"8139too\" driver instead.\n");
1845 return -ENODEV;
1848 dev = alloc_etherdev(sizeof(struct cp_private));
1849 if (!dev)
1850 return -ENOMEM;
1851 SET_NETDEV_DEV(dev, &pdev->dev);
1853 cp = netdev_priv(dev);
1854 cp->pdev = pdev;
1855 cp->dev = dev;
1856 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1857 spin_lock_init (&cp->lock);
1858 cp->mii_if.dev = dev;
1859 cp->mii_if.mdio_read = mdio_read;
1860 cp->mii_if.mdio_write = mdio_write;
1861 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1862 cp->mii_if.phy_id_mask = 0x1f;
1863 cp->mii_if.reg_num_mask = 0x1f;
1864 cp_set_rxbufsize(cp);
1866 rc = pci_enable_device(pdev);
1867 if (rc)
1868 goto err_out_free;
1870 rc = pci_set_mwi(pdev);
1871 if (rc)
1872 goto err_out_disable;
1874 rc = pci_request_regions(pdev, DRV_NAME);
1875 if (rc)
1876 goto err_out_mwi;
1878 pciaddr = pci_resource_start(pdev, 1);
1879 if (!pciaddr) {
1880 rc = -EIO;
1881 dev_err(&pdev->dev, "no MMIO resource\n");
1882 goto err_out_res;
1884 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1885 rc = -EIO;
1886 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1887 (unsigned long long)pci_resource_len(pdev, 1));
1888 goto err_out_res;
1891 /* Configure DMA attributes. */
1892 if ((sizeof(dma_addr_t) > 4) &&
1893 !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK) &&
1894 !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1895 pci_using_dac = 1;
1896 } else {
1897 pci_using_dac = 0;
1899 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1900 if (rc) {
1901 dev_err(&pdev->dev,
1902 "No usable DMA configuration, aborting.\n");
1903 goto err_out_res;
1905 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1906 if (rc) {
1907 dev_err(&pdev->dev,
1908 "No usable consistent DMA configuration, "
1909 "aborting.\n");
1910 goto err_out_res;
1914 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1915 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1917 regs = ioremap(pciaddr, CP_REGS_SIZE);
1918 if (!regs) {
1919 rc = -EIO;
1920 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1921 (unsigned long long)pci_resource_len(pdev, 1),
1922 (unsigned long long)pciaddr);
1923 goto err_out_res;
1925 dev->base_addr = (unsigned long) regs;
1926 cp->regs = regs;
1928 cp_stop_hw(cp);
1930 /* read MAC address from EEPROM */
1931 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1932 for (i = 0; i < 3; i++)
1933 ((__le16 *) (dev->dev_addr))[i] =
1934 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1935 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1937 dev->open = cp_open;
1938 dev->stop = cp_close;
1939 dev->set_multicast_list = cp_set_rx_mode;
1940 dev->hard_start_xmit = cp_start_xmit;
1941 dev->get_stats = cp_get_stats;
1942 dev->do_ioctl = cp_ioctl;
1943 #ifdef CONFIG_NET_POLL_CONTROLLER
1944 dev->poll_controller = cp_poll_controller;
1945 #endif
1946 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1947 #ifdef BROKEN
1948 dev->change_mtu = cp_change_mtu;
1949 #endif
1950 dev->ethtool_ops = &cp_ethtool_ops;
1951 dev->tx_timeout = cp_tx_timeout;
1952 dev->watchdog_timeo = TX_TIMEOUT;
1954 #if CP_VLAN_TAG_USED
1955 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1956 dev->vlan_rx_register = cp_vlan_rx_register;
1957 #endif
1959 if (pci_using_dac)
1960 dev->features |= NETIF_F_HIGHDMA;
1962 #if 0 /* disabled by default until verified */
1963 dev->features |= NETIF_F_TSO;
1964 #endif
1966 dev->irq = pdev->irq;
1968 rc = register_netdev(dev);
1969 if (rc)
1970 goto err_out_iomap;
1972 printk (KERN_INFO "%s: RTL-8139C+ at 0x%lx, "
1973 "%s, IRQ %d\n",
1974 dev->name,
1975 dev->base_addr,
1976 print_mac(mac, dev->dev_addr),
1977 dev->irq);
1979 pci_set_drvdata(pdev, dev);
1981 /* enable busmastering and memory-write-invalidate */
1982 pci_set_master(pdev);
1984 if (cp->wol_enabled)
1985 cp_set_d3_state (cp);
1987 return 0;
1989 err_out_iomap:
1990 iounmap(regs);
1991 err_out_res:
1992 pci_release_regions(pdev);
1993 err_out_mwi:
1994 pci_clear_mwi(pdev);
1995 err_out_disable:
1996 pci_disable_device(pdev);
1997 err_out_free:
1998 free_netdev(dev);
1999 return rc;
2002 static void cp_remove_one (struct pci_dev *pdev)
2004 struct net_device *dev = pci_get_drvdata(pdev);
2005 struct cp_private *cp = netdev_priv(dev);
2007 unregister_netdev(dev);
2008 iounmap(cp->regs);
2009 if (cp->wol_enabled)
2010 pci_set_power_state (pdev, PCI_D0);
2011 pci_release_regions(pdev);
2012 pci_clear_mwi(pdev);
2013 pci_disable_device(pdev);
2014 pci_set_drvdata(pdev, NULL);
2015 free_netdev(dev);
2018 #ifdef CONFIG_PM
2019 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2021 struct net_device *dev = pci_get_drvdata(pdev);
2022 struct cp_private *cp = netdev_priv(dev);
2023 unsigned long flags;
2025 if (!netif_running(dev))
2026 return 0;
2028 netif_device_detach (dev);
2029 netif_stop_queue (dev);
2031 spin_lock_irqsave (&cp->lock, flags);
2033 /* Disable Rx and Tx */
2034 cpw16 (IntrMask, 0);
2035 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2037 spin_unlock_irqrestore (&cp->lock, flags);
2039 pci_save_state(pdev);
2040 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2041 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2043 return 0;
2046 static int cp_resume (struct pci_dev *pdev)
2048 struct net_device *dev = pci_get_drvdata (pdev);
2049 struct cp_private *cp = netdev_priv(dev);
2050 unsigned long flags;
2052 if (!netif_running(dev))
2053 return 0;
2055 netif_device_attach (dev);
2057 pci_set_power_state(pdev, PCI_D0);
2058 pci_restore_state(pdev);
2059 pci_enable_wake(pdev, PCI_D0, 0);
2061 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2062 cp_init_rings_index (cp);
2063 cp_init_hw (cp);
2064 netif_start_queue (dev);
2066 spin_lock_irqsave (&cp->lock, flags);
2068 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2070 spin_unlock_irqrestore (&cp->lock, flags);
2072 return 0;
2074 #endif /* CONFIG_PM */
2076 static struct pci_driver cp_driver = {
2077 .name = DRV_NAME,
2078 .id_table = cp_pci_tbl,
2079 .probe = cp_init_one,
2080 .remove = cp_remove_one,
2081 #ifdef CONFIG_PM
2082 .resume = cp_resume,
2083 .suspend = cp_suspend,
2084 #endif
2087 static int __init cp_init (void)
2089 #ifdef MODULE
2090 printk("%s", version);
2091 #endif
2092 return pci_register_driver(&cp_driver);
2095 static void __exit cp_exit (void)
2097 pci_unregister_driver (&cp_driver);
2100 module_init(cp_init);
2101 module_exit(cp_exit);